
Journal of Object Technology | RESEARCH ARTICLE

Methodical and Formally Verified
Model-Driven Architecture Refactoring

Lars Fischer, Hendrik Kausch, Bernhard Rumpe, Max Stachon, Sebastian Stüber, and Lucas Wollenhaupt
Software Engineering, RWTH Aachen University, Germany

ABSTRACT Verification is necessary to ensure the correctness of safety-critical software systems. When developing such
systems in an agile way, it is important to guarantee that the correctness still holds after refactoring, e.g., no new behavior
is introduced. To support the iterative development of such systems, we have translated refactoring patterns based on
syntactic transformations of pipeline architectures to Isabelle, an interactive theorem prover. Isabelle is employed to verify
refactoring steps performed on component-and-connector architectures transformed from SysMLv2 models. In particular, we
have translated several verified architecture refactoring patterns to Isabelle. The application of the development patterns is
demonstrated by a case-study in which a secure communication channel is added to an architecture modeled in SysMLv2. We
envision that by utilizing model-driven system engineering in conjunction with development patterns and tool-supported formal
behavior verification, engineers can effectively improve and refactor existing systems without compromising previously certified
correctness results.

KEYWORDS Architecture Refactoring, Development Pattern, Formal Verification, Theorem Proving, Model-Driven, SysML

1. Introduction
Testing is not always sufficient to safeguard the quality of a
software system. While quality assurance using automated unit
tests can detect many faults within a software system, it cannot
ensure their absence (Dijkstra 1972). Thus, in cases where a
system’s failure to comply with prescribed requirements might
lead to significant damage or costs, formal verification of the
software’s correctness and guarantees becomes crucial. Addi-
tionally, regulatory bodies may require thorough certification
of safety-critical systems. Formal verification contributes to
ensuring that regulatory requirements can be met.

Often, systems are refactored throughout their development
and life cycle to reduce their internal complexity or otherwise
enhance it in a manner that does not change its overall behavior,
e.g., replacing a car’s engine with a different model with roughly
equivalent specifications. Such substantial reconstructions over-

JOT reference format:
Lars Fischer, Hendrik Kausch, Bernhard Rumpe, Max Stachon, Sebastian
Stüber, and Lucas Wollenhaupt. Methodical and Formally Verified
:Model-Driven Architecture Refactoring. Journal of Object Technology. Vol.
24, No. 2, 2025. Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2025.24.2.a13

haul and refactor major parts of the system, but by splitting the
refactoring process into several smaller steps the complexity is
still manageable. Fowler (1999) defines refactoring as changing
the internal structure of a system without changing the overall
behavior. As such, it constitutes a special case of refinement in
the mathematical foundation for specification and verification
of distributed systems FOCUS (Broy & Stølen 2001). The be-
havioral equivalence between the original and refactored system
can be formally verified by proving that a refinement relation
holds in both directions. Note that in many cases the context
of the system must be considered, as well. A gasoline-based
engine and an electric engine serve the same purpose but behave
very differently. However, these differences can be abstracted
away in the context of a larger system. Instead, the behavioral
equivalence under a system invariant is considered. For electri-
cal motor refactoring it might state, that the energy transmitted
via fuel to the gasoline engine is equivalent to the electrical
energy transmitted to the electric engine.

Tool-support is desirable not only to reduce the manual effort
required for formal verification of distributed systems but also to
reduce manual errors. MontiBelle (Kausch, Pfeiffer, et al. 2021)
is a tool enabling the verification of software architecture speci-

An AITO publication

http://dx.doi.org/10.5381/jot.2025.24.2.a13

fications given as SysMLv2 (SST 2023) or MontiArc (Haber et
al. 2012) models. This allows coupling continuous verification
with agile development, thus erasing errors in the early develop-
ment stages and simplifying integration and potential mainte-
nance later on. Both SysML and MontiArc allow the modeling
of hierarchical component-and-connector architectures, where
components are specified regarding their input/output behavior
and connected by channels that allow for asynchronous com-
munication. Using FOCUS as a mathematical underpinning for
these architecture models, allows formal analysis, e.g., verifying
refinement between models.

To formally prove the architectural refinement of these mod-
els, the MontiBelle project employs the interactive theorem
prover Isabelle (University of Cambridge and Technische Uni-
versität München 2023). MontiBelle includes a transformation
tool (Kausch, Michael, et al. 2021; Kausch et al. 2020) that
translates architectures into equivalent Isabelle theories and gen-
erates a corresponding lemma for each refinement step. These
lemmata can then be formally proven with the help of an exist-
ing core library of already-proven lemmata and proof schemata.

Contribution We implemented and formally verified gen-
eralized versions of refactoring patterns for component-and-
connector architecture models introduced by (Philipps & Rumpe
1997, 1999) in the theorem prover Isabelle. These refactoring
patterns include:

1. adding or removing components,

2. adding or removing channels,

3. refactoring under an invariant,

4. (un-)folding of sub-architectures.

In contrast to (Philipps & Rumpe 1997, 1999), we do not re-
quire components to have input or output channels when adding
or removing components. They discuss refinement under in-
variant, whereas we extend this to refactoring. All theorems
stated apply to both the addition or the removal of components
or channels. While (Philipps & Rumpe 1997, 1999) implicitly
use the concept of effects, we formalize this notion and use it
explicitly. Furthermore, we present a SysMLv2 architecture
refactoring process that demonstrates integrated and agile de-
velopment while supporting formal verification of correctness.
Thereby we extend both MontiBelle (Kausch, Pfeiffer, et al.
2021) as wells as FOCUS (Broy & Stølen 2001).

Structure The remainder of this paper is structured as follows:
In the following section, we discuss related work, in particular
publications about the refinement of pipeline architectures, as
well as other works concerning model refinement. In section 3,
we describe the foundational concepts needed to understand our
contributions’ technical and formal aspects. Then, section 4
introduces the refactoring patterns with an example that we
will refer back to in the later sections. In section 5, we outline
the mode-driven development process and the functionality of
the transformation tool, which translates SysML models into
corresponding Isabelle theories and generates lemmata for each
refinement step. The architecture refactoring patterns and their

application are discussed in detail in section 6. Finally, section 7
concludes and gives an outlook on future work.

2. Related Work

According to Mens & Tourwé (2004) the term refactoring was
first introduced by Opdyke (1992) to describe the restructuring
of object-oriented programs. The concepts breakthrough came
with its integration into the software development process Ex-
treme Programming (Beck 1999). Fowler (1999) informally
applies refactoring techniques to Java, presenting 72 refactor-
ings. As discussed by Philipps & Rumpe (2003), the notion
of restructuring the internals of a system without changing its
observable behavior puts refactoring close to the concept of re-
finement, pioneered by Dijkstra (Dahl et al. 1972), Wirth (1971),
and Bauer (Bauer & Woessner 1982).

Model refinement and refactoring require some formal notion
of model semantics. Harel & Rumpe (2004) discuss this notion
independent from any specific modeling language and conclude
that formal semantics for any modeling language includes a
semantic mapping that maps syntactically valid models to a set
of legal instances within a well-defined and well-understood
semantic domain. This formal notion of model semantics is
also used for semantic differencing (Maoz et al. 2010, 2012),
where two models are compared regarding their legal instances.
Semantic differencing operators can also be utilized to check
for model refinement and refactoring. For example, the operator
CDDiff, introduced by Maoz et al. (2011b), takes two class dia-
grams as input and uses a bounded model-checking approach to
find instances of the first diagram that are not part of the seman-
tics of the second diagram. Should no such instances exist, then
the first diagram is a refinement of the second. Note, however,
that the operator only detects instances within a specified bound
and, therefore, generally provides no guarantees on refinement.
Since then, CDDiff has been expanded to allow for semantic
differencing under an open-world assumption (Ringert et al.
2023). However, its completeness is still limited by the bounded
model-checking approach. Similar semantic differencing oper-
ators include variants of ADDiff (Maoz et al. 2011a; Kautz &
Rumpe 2018) for semantic differencing on activity diagrams,
as well as operators for feature models (Drave, Kautz, et al.
2019), statecharts (Drave, Eikermann, et al. 2019; Butting et al.
2017), and sequence diagrams (Kautz 2021). While these oper-
ators are fully automatic, they rely on bounded model-checking
approaches or finite search spaces. They are, therefore, signifi-
cantly more limited in their expressiveness when compared to
verification approaches using Isabelle.

In this paper we are concerned with connector-and-
component architectures modeled in SysML and MontiArc.
Both languages describe component-behavior either by a spec-
ification in relational logic relating the input and output of
the component (Broy & Stølen 2001), by a state-chart (Harel
1987; Rumpe 2017), or by hierarchical decomposition (Kausch,
Michael, et al. 2021). The components are then connected to
send data from one component to other components via chan-
nels. An architecture can have multiple hierarchical levels, in
case a sub-component is also defined as a composition of com-

2 Fischer et al.

ponents. These sub-architectures are abstracted (or folded) away
on a higher hierarchical level. A component’s behavior can be
underspecified, i.e., allowing multiple correct implementations
and non-determinism to support iterative development.

The architecture refactoring patterns that we implemented
in Isabelle are generalized versions of patterns introduced by
(Philipps & Rumpe 1997, 1999). A precise mathematical model
of data-flow architectures and their refinement based on FO-
CUS was employed to manually prove the correctness of the
aforementioned patterns. However, to our knowledge, these
patterns have never before been implemented or proven with
formal verification software. FOCUS itself was introduced by
Broy et al. (1992) and designed to specify the input/output be-
havior of software components using relational logic and the
concept of message streams for modeling asynchronous, timed
communication between components via directed channels. The
model allows for under-specification and has a precise notion
of formal refinement, which also ensures that the refinement of
an individual component implies the refinement of the whole
system. Consequently, verifying the refinement of a complex
system can be reduced to verifying the refinement of each sub-
component. As of last year, Broy (2023) continues to extend the
FOCUS theory. Note, however, that the model of data-flow ar-
chitectures in (Philipps & Rumpe 1997) and (Philipps & Rumpe
1999) uses behavioral semantics based on stream-processing
functions instead of relations. In this paper, we also use a notion
of effects of channels first introduced as an influence relation in
(KRW20 2020) to conceptualize prerequisites for some of the
refactorings discussed.

Alternatives to FOCUS include other formalisms such as
Communicating Sequential Processes, as described in (Hoare
1985) and used in, e.g., (Murray & Lowe 2009), Calculus of
Communicating Systems (Milner 1982), π-calculus (Milner
1999), Ptolemy (Lee 2016), Temporal Logic of Actions (Abadi
& Lamport 1994), and Petri Nets (Reisig 1985).

They all constitute possible mathematical underpinnings for
reasoning about system specifications since they support non-
determinism, underspecification, a notion of behavioral refine-
ment, time-sensitive specifications, and hierarchical decomposi-
tion.

Petri Nets are, for example, used within the Palladio ap-
proach (Reussner et al. 2016) to provide a semantic foundation
for modeling and analyzing distributed component-based sys-
tems to predict their performance, throughput, and response
times (Kounev 2006; Koziolek & Reussner 2008). These anal-
yses are simulation-based. The interactive theorem prover Is-
abelle (University of Cambridge and Technische Universität
München 2023), on the other hand, enables machine-support-
ed and automated proof searches and allows the generation
and verification of machine-based and machine-checked formal
proofs. Compared to model-checking, this approach does not
have a significant state-explosion problem but, so far, lacks full
automation.

Just as with FOCUS alternatives to Isabelle exist. E.g., while
the theorem prover Dafny (Leino 2010) allows generating cor-
rect code from proofs, Isabelle does not require termination,
thus permitting the definition of potentially non-terminating

functions, e.g., fixpoints. The well-established theorem prover
Coq is based on the calculus of inductive construction (Bertot &
Castéran 2013), which allows defining dependent types (Baren-
dregt et al. 2013), but misses, similar to the Proof Verification
System (PVS) (Owre et al. 1992), a powerful general proof
finder like Isabelle’s sledgehammer (Böhme & Nipkow 2010).
Lean (de Moura et al. 2015) is an alternative promising and up-
coming theorem prover, so far mainly used for verifying math-
ematical theory, e.g., the theorem of liquid modules (Scholze
2022) or topology theorems for perfectoid spaces (Buzzard et
al. 2020), but lacks the long history and intensive evaluation
of Isabelle’s archive of formal proofs (University of Edinburgh
and Technische Universität München n.d.).

Finally, the Correctness-by-Construction (CbC) ap-
proach (Kourie & Watson 2012) should also be mentioned. It
constitutes a formalism for creating a correct program via incre-
mental refinement of pre-/postcondition specifications based on
Hoare logic (Hoare 1969). Moreover, the approach has since
been applied to component-based software architectures in the
open-source tool ArchiCorC (Knüppel et al. 2020). However,
to our knowledge CbC lacks any notion of time-sensitivity in
its specifications.

3. Foundation
In this section, we present the mathematical foundations of
FOCUS required for the following sections. A more detailed
introduction to FOCUS is given in (Broy & Stølen 2001). The re-
lated implementation of FOCUS in the theorem-prover Isabelle
used in this paper is presented in (Bürger et al. 2020) and ex-
tended and demonstrated in case studies in (Kriebel et al. 2019;
Kausch, Michael, et al. 2021; Kausch, Pfeiffer, et al. 2021;
Kausch et al. 2023).

AccessControl

c1 : ⟨1, 2, 3⟩

c2 : ⟨(2, True), (4, False)⟩
cout : ⟨(2, True)⟩

Figure 1 Component with exemplary input/output

FOCUS is used to mathematically describe compo-
nent&connector systems that send messages over directed com-
munication channels. Figure 1 shows one component named
AccessControl. The component has two input channels
named c1 and c2 and produces output on the channel named
cout. The observation of the transmitted messages is called a
stream. In this example, on channel c1, the first transmitted
message is 1, followed by 2 and 3. Other message types, such
as tuples or booleans, are also possible. Streams are the primary
datatype in FOCUS. They can be finite or infinite. Encoding
observations with infinitely many messages allows FOCUS to
reason about liveness properties.

Definition 1 (Stream (Bürger et al. 2020)). The set of all streams
over message-type M is denoted by

Mω := {ϵ} ∪ {⟨m1, m2, . . . , mi⟩ | i ∈N.∀j ∈ [1, i]. mj ∈ M}
∪ {⟨m1, m2, . . . ⟩ | ∀j ∈N.mj ∈ M}

Methodical and Formally Verified Model-Driven Architecture Refactoring 3

which is the union of the empty stream, the set of all finite
streams and the set of all infinite streams.

As seen in Figure 1, the input of a component can consist of
multiple streams. This is encoded in the bundle datatype, which
maps from channels to streams. Crucially, not all messages may
be transmitted on a channel. For example, one channel may
transmit only boolean messages, while another may transmit
only natural numbers. Thus, each channel c has a set of allowed
messages denoted by Mc.

Definition 2 (Stream Bundle (Bürger et al. 2020)). Let C be
a set of channel names, Mc the set of allowed messages for a
channel c ∈ C and M =

⋃
c∈C

Mc. The stream bundle type is

then defined as:

CΩ := {sb ∈ (C → Mω) | ∀c ∈ C. sb(c) ∈ Mω
c }

The common variable name for stream bundles is sb. In this
paper, we only require two operators over bundles. First, we
define a method to combine two bundles whose channel sets do
not overlap.

Definition 3 (Bundle Union). Given two disjoint channel sets
C1 and C2 and two bundles sb1 ∈ CΩ

1 and sb2 ∈ CΩ
2 . The

union of stream-bundles is defined as:

sb1 ⊎ sb2 ∈ (C1 ∪ C2)
Ω

sb1 ⊎ sb2 := λc.

{
sb1(c) c ∈ C1

sb2(c) c ∈ C2

The domain of bundles can be restricted to a smaller channel
set.

Definition 4 (Bundle Restriction). For C1 ⊆ C2 the bundle
sb ∈ CΩ

2 can be restricted to only the channels in C1 with the
suffix-operator ·|C1 :

sb|C1 ∈ C1
Ω

sb|C1
:= λc.sb(c)

With the bundle-datatype, we can now define the datatypes
for components. First, we define deterministic components
where each input bundle is mapped to exactly one output bundle.
Additionally, these components must be Scott-continuous (Broy
& Stølen 2001; Abramsky & Jung 1995) to ensure realizability
in practice.

Definition 5 (stream processing function (SPF) based on total
function (Bürger et al. 2020)). Let C be the set of all chan-
nels and let I, O ⊆ C. We define the SPF type SPFI,O that
includes all continuous functions with input channels I and
output channels O via

SPFI,O := { f ∈ (IΩ → OΩ) | continuous(f)}

We define the composition operator ⊗ to connect compo-
nents into systems of components. Identical channels are auto-
matically connected.

Definition 6 (Composition of SPF). Let f ∈ SPFI f ,O f and
g ∈ SPFIg ,Og with disjoint output channels O f and Og. For
the composition of deterministic components ⊗, the following
properties hold:

(f ⊗ g) ∈ SPF(I f∪Ig)\(O f∪Og),(O f∪Og)

(f ⊗ g)|O f = λsb. f ((sb ⊎ ((f ⊗ g)sb))|I f)

(f ⊗ g) = (g⊗ f)

The composition operator is defined by a least-fixed point
whose existence is guaranteed by Kleene’s fixed-point theorem
(Kleene 1952). Consequently, it can be recursively computed
by a fixed-point iteration which is defined as follows.

f ixiter(f , g, sb)i ∈ (O f ∪Og)
Ω

f ixiter(f , g, sb)i :=

λc.ϵ i = 0
f (sb ⊎ f ixiter(f , g, sb)i−1) ⊎
g(sb ⊎ f ixiter(f , g, sb)i−1)

i > 0

Similar to the bundle restriction we can restrict stream pro-
cessing functions. This is achieved by essentially setting some
of the input channels to contain no information. We use this in
theorem 3.

Definition 7 (Restriction of SPF). Let C be the set of all chan-
nels and let I, I′, O ⊆ C such that I ⊆ I′. For f ∈ SPFI′ ,O we
define

f |I : IΩ → OΩ : sb 7→ f (sb ⊎ ε)

where ε ∈ (I′ \ I)Ω is the bundle of empty streams.

A set of deterministic components is used to encode under-
specified components. This can be used in early development
steps to precisely describe the behavior that is known and leave
unknown behavior under-specified.

Definition 8 (stream processing specification (SPS) (Bürger
et al. 2020)). Let C be the set of all possible channels and
I, O ⊆ C. We define the SPS type SPSI,O with input channels I
and output channels O as shown below:

SPSI,O := P(SPFI,O)

We call an SPS consistent when there exists at least one SPF
in the set.

Definition 9 (Composition of SPS). Let F ∈ SPSIF ,OF and
G ∈ SPSIG ,OG with disjoint output channels OF and OG. The
composition of non-deterministic components

⊗
is defined as:

F
⊗

G ∈ SPS(IF∪IG)\(OF∪OG),(OF∪OG)

F
⊗

G := { f ⊗ g | f ∈ F ∧ g ∈ G}

Similar to the bundle restriction from definition 4, the chan-
nel sets of components can be restricted. This operation can
be used to include unused input channels and to hide output
channels of a component.

4 Fischer et al.

Definition 10 (Restriction of SPS). Let channel sets I ⊆ I′,
O′ ⊆ O, and the component F ∈ SPSI,O.

[F]I
′

O′ ∈ SPSI′ ,O′

[F]I
′

O′ := {(λsb.(f (sb|I))|O′) | f ∈ F}

We omit the restriction of an unchanged bundle. For example,
in the case of an unchanged output bundle O′ = O, we only
write [F]I

′
instead of [F]I

′
O′ , and in the case of an unchanged

input bundle I = I′, we write [F]O′ instead of [F]I
′

O′ .
FOCUS uses refinement to relate abstract components with

more concrete components. Since the non-deterministic com-
ponents are represented as sets of deterministic components,
we can use the subset relation as a refinement relation. When
F′ ⊆ F, we say that component F′ refines component F. As a
consequence, properties of component F directly hold for the
refined component F′. Consider, for example, property P that
holds over all SPF in F. Then this property automatically holds
over all SPF in F′:

F′ ⊆ F −→ ∀SPF ∈ F. P(SPF) −→ ∀SPF’ ∈ F′. P(SPF’)

In the special case of set equivalence F′ = F, we say that
component F′ refactors component F. Consequently, a refac-
toring consists of two distinct, mutually inverse refinements.
Refactoring a component can modify the internal specification
of a component while preserving its behavior.

Sometimes, refining components is only possible if a spe-
cific condition for the input bundle is fulfilled. For example,
a refinement may only be valid if a pair of input channels al-
ways contain the same stream. In such cases, refinement cannot
be used. Therefore, we define a more general form of refine-
ment, namely refinement under input-invariant that utilizes an
invariant constraining the input bundles.

Definition 11 (Refinement under Input-Invariant). For two com-
ponents F′, F ∈ SPSI,O refinement under invariant J ⊆ IΩ is
defined as:

F′ ⊆J F :←→ ∀SPF’ ∈ F′.∃SPF ∈ F.∀sb ∈ J.
SPF’ sb = SPF sb

For the special case of refactoring under invariant, write
F′ =J F as an abbreviation for F′ ⊆J F ∧ F ⊆J F′.

The exposition of the conditions we meet when discussing
the refactoring pattern for adding or deleting input channels ben-
efits from conceptualizing a specific property. Intuitively, for a
channel to be deleted without changing the components’ behav-
ior, this channel must not be relevant to any of the components’
outputs. This property can be formalized as follows.

Definition 12 (Effect). Let F ∈ SPSI,O be a stream processing
specification where I, O ⊆ C for a set of possible channels C.
We say that channel i ∈ I has an effect on output channels O′ ⊆
O if there exists f ∈ F and there exist two input bundles s, t ∈
IΩ which are equal on all channels except i, i.e., s \ i = t \ i,
and the output on ports O′ differs, that is, f (s)|O′ ̸= f (t)|O′ .

We denote input channel i affecting output channel o by
i⇝ o.

Consider for example f ∈ SPSI,O where I = {i1, i2} and
O = {o}. Let f (sb) = sb(i1) ∧ sb(i2) calculate the element
wise or of two binary streams. Then both inputs have an effect
on the output channel. In fact, any two different streams on i1
yield different output streams when the stream on i2 is fixed and
vice versa.

4. Case-Study
This section gives an overview of the considered system and the
refactoring objective. The original system is presented in Fig-
ure 2a and consists of two strongly underspecified components
Admin and AccessControl. For the architecture refactoring
process, several requirements must be ensured throughout the
development:

1. the system behavior shall not change

2. on this abstract level, the encryption should be configurable

3. the refactoring must be formally verified

The first requirement ensures the original system’s functional-
ity is preserved throughout the refactoring process. The sec-
ond requirement facilitates freedom regarding final encryption
scheme choices. The last requirement demands valid mathe-
matical and formal evidence, e.g., for certification. From a
mathematical view, this removes the need to certify the refac-
tored system again. This could prove useful in the aviation
sector, where adding secure communication to already existing
airplanes could entail verifying correctness again.

In the demonstrating example, AccessControl’s inputs con-
sist of Control messages and Request messages and outputs
Control messages. An input Control message sets the ac-
cess control rights for users. Furthermore, the AccessControl
component can be requested to output the access control rights.
Admin accepts Control messages and outputs them according
to the rights towards the AccessControl component. This
is represented by an underspecified filtering by the Admin
component. Thus, users can manage user roles and rights
through the Admin component, if they are eligible, and users
can receive the roles and rights by sending requests to the
AccessControl component. To prevent malicious users from
faking admin control messages by hijacking the network connec-
tion, access should be secured by encrypting the communication
channel between the components. At the end of the refactor-
ing, the EncryptedSystem is composed of two subcompo-
sitions EncryptedAdmin and EncryptedAccessControl as
depicted in Figure 2g. EncryptedAdmin sequentially com-
poses Admin with an Encrypt component, which takes a
stream of Control messages as input and outputs a stream
of EncryptedControl messages that also acts as the output
for the composition. EncryptedAccessControl sequentially
composes a Decrypt component and AccessControl. The
former takes a stream of EncryptedControl messages as input
for the composition. It outputs a stream of Control messages
that act as input for AccessControl.

The Encrypt applies the encryption function to map the
Control input to encrypted messages that are transmitted to

Methodical and Formally Verified Model-Driven Architecture Refactoring 5

Decrypt. Similarly, Decrypt uses its decryption function to
map the EncryptedControl messages to Control messages
for the access control. To allow usage of any encryption scheme,
we must also assume that the decryption function is a left inverse
of the encryption function. This is enough to allow formal
verification of behavior equivalence over the systems. There are
no concrete specification message datatypes to allow the use of
this refactored architecture as a reference architecture that can
be implemented in different scenarios with different encryption
algorithms and systems. Formally abstracting away from the
Admin and AccessControl behavior allows a formally verified
secure channel implementation into an arbitrary system. As a
result, this demonstration not only verifies this specific case but
also results in a verified reference model.

The proof of equality between the refactored and original
system is divided into six smaller proofs to showcase the appli-
cation of the different development patterns. Five intermediate
systems are modeled for this, and each proof step represents a
transformation operation.

The final architecture in Figure 2g is iteratively developed.
Each development step is presented in section 6. As a result, an
encryption component and a decryption component are added
to ensure secure communication while maintaining behavioral
equivalence throughout the process.

5. Model-driven Development Process

Combining the model-driven development and refactoring of the
system with a transformer to generate the case study in Isabelle
allows for using simple and abstract models in an architecture
description language. Here, we use a SysMLv2 (SST 2023) pro-
file that perfectly fits the architecture descriptions and already
supports generating Isabelle code from model artifacts (Kausch,
Michael, et al. 2021). The refactoring of a system is achieved
by first changing the SysML models of the system (1), creating
Isabelle theories for the original and the changed system (2), and
finally verifying the refactoring (3). After changing the SysML
models manually (1), a developer can use a generator to create
system encodings and proof obligations in the theorem prover
Isabelle automatically (2). Proving the refactoring in Isabelle
(3) is currently done manually, but automation possibilities exist
and are discussed in section 7. Because of the mathematical
foundation FOCUS, the refinement of a component leads directly
to the refinement of an architecture. Each component of a sys-
tem can be iteratively developed further and refined through the
cycles of a typical agile development process without compro-
mising already achieved goals. The model-driven refactoring
process facilitates agility further, by allowing for changing sys-
tem architectures throughout the whole development process or
even in production, without the need for additional (integration)
testing.

The running example consists of models for part definitions,
constraints, and compositions. These correspond to components
and systems interfaces, behavior, and internal architecture. An
example of the original system model is given in Listing 1.
The original system is defined as a part/component (Line 1).
Furthermore, the input and output interface is defined using

ports (Lines 2-4). In this example, a ’∼’ prefix denotes an input
port definition. Afterward, subcomponents are instantiated as
parts (Lines 6, 7). The referenced subcomponents Admin and
AccessControl have their own interfaces and are modularly
defined in other models. At the end of the model, the internal
system architecture is modeled by connecting the ports of the
subcomponents and the system (Lines 9-12).

1 part def OriginalSystem {
2 port input: ~Requests;
3 port control: ~Controls;
4 port output: Controls;
5

6 part admin: Admin;
7 part access_control: AccessControl;
8

9 connect control to admin.control;
10 connect input to access_control.input;
11 connect admin.config to access_control.config;
12 connect access_control.output to output;
13 }

Listing 1 SysMLv2 model of original system, graphical
representation in Figure 2a.

The communication between components specifies the behavior
of OriginalSystem. The behavior of each sub-component
is defined by constraints in a requirement block as shown in
listing 2. The AccessControl constraint (Lines 7-8) enforces
that only received control messages are sent over the output
channel.

1 part def AccessControl {
2 port input: ~Requests;
3 port config: ~Controls;
4 port output: Controls;
5

6 satisfy requirement OutputRequirements {
7 require constraint OutputSubsetControl {
8 output.data.values() ⊆ config.data.values()
9 }}}

Listing 2 SysMLv2 model of the access control component

The models of all components and intermediate representations
are then transformed to Isabelle by mapping the model artifacts
to the corresponding FOCUS concepts using the semantics for
behavior descriptions in SysMLv2 defined in (Kausch, Pfeiffer,
et al. 2021). Then, it is possible to specify and reason about the
preservation of behavior within the theorem prover.

Scalability for larger cases is achieved by specifying mean-
ingful hierarchical levels. In this case study, listing 1 defines one
hierarchical level that is later further analyzed. It is irrelevant
if sub-components are later decomposed over additional hierar-
chical levels since each decomposition itself can be analyzed.
Thus, even though the original system has only two components
in our abstract architecture, the Admin component can be speci-
fied by 1000 additional components over 3 hierarchical levels,
where each (sub)-architecture has only 10 components and each
decomposition is analyzable. Building upon the transformed
Isabelle models, the architecture refactoring process, including
formal development patterns, their application to the running
example, and the formal verification thereof, are described in
the following section.

6 Fischer et al.

Admin AccessControl
configcontrol

input
output

Original System

(a) Original system architecture.

Admin AccessControl

Encrypt DecryptEmpty

1. Intermediate System

control config
input
output

(b) Added Encrypt and DecryptEmpty component.

Admin AccessControl

Encrypt Decrypt

2. Intermediate System

control config
input
output

(c) Added output channel to DecryptEmpty component.

Admin AccessControl2

Encrypt Decrypt

3. Intermediate System

control
config input

output

(d) Replaced AccessControl with AccessControl2 which
additionally accepts Decrypt’s output as input.

Admin AccessControl3

Encrypt Decrypt

4. Intermediate System

control
config input

output

(e) Replaced AccessControl2 (specified using Admin’s output)
with AccessControl3 (specified using Decrypt’s output).

Admin AccessControl

Encrypt Decrypt

5. Intermediate System

control
input
output

(f) Replaced AccessControl3 with AccessControl which
only accepts Decrypt’s output as input.

Admin AccessControl

Encrypt Decrypt

Encrypted System
Encrypted Admin Encrypted AccessControl

control
input
output

(g) Fold components into two separate subarchitectures.

Figure 2 Overview of the original system architecture (2a), the encrypted system architecture (2g) and all intermediate system
architectures in between that are used to formally verify their equivalence using refactoring patterns. The bold and blue border
indicates a modification compared to the previous system architecture.

Methodical and Formally Verified Model-Driven Architecture Refactoring 7

6. Architecture Refactoring Patterns
There are many ways to refactor an architecture. For instance, a
component’s interface is modified, or its internal channel routing
is changed. In the following sections, we will introduce five
distinct patterns of systematic architecture refactoring. We refer
to each refactoring pattern by its corresponding pair of mutually
inverse refinements. The theorems presented have been proven
using the theorem prover Isabelle in the general case as stated
below. Thus, it suffices to prove that the respective assumptions
hold for for any specific case to conclude that the respective
refinement is valid. We discuss how we achieved this for our
case-study for each of the theorems.

6.1. Adding/Removing Components
The first refactoring pattern allows components to be added/re-
moved from an architecture. In both cases, it is crucial that the
behavior of the component in question does not influence the
behavior of the architecture. Assuming that each output channel
of the component is not used either as a direct output of the
architecture or as an input to another component ensures this.
This assumption holds immediately for the special cases consid-
ered in (Philipps & Rumpe 1999), where the added components
have no output channels. Note, however, that the components’
output channels are allowed to contain feedback channels to
the component itself. Assumption (2) in Theorem 1 constrains
the component to be consistent. This is needed to ensure that
removing the component is a valid refinement. Otherwise, re-
moving an inconsistent component from an architecture may
result in a consistent architecture, which would be an invalid
refinement.

G

(a) Architecture without the
additional component.

G

F

(b) Architecture with the
added component.

Figure 3 Illustration of the adding/removing component
refactoring pattern.

Theorem 1 (Adding/Removing Components). Let C be the set
of all channels. Let [G1

⊗ · · ·⊗ Gn]IO ∈ SPSI,O be an archi-
tecture for an n ∈N, where I ⊆ C is the input channel set and
O ⊆ C is the output channel set of the architecture. Further-
more, let IG, OG ⊆ C be the input, respectively output channel
sets such that G1

⊗ · · ·⊗ Gn ∈ SPSIG ,OG . Additionally, let
F ∈ SPSIF ,OF be a component with input channels IF ⊆ C and
output channels OF ⊆ C. If

OF ∩ (IG ∪O) = ∅, (1)
and F ̸= ∅ (2)

then

[F
⊗

G1
⊗
· · ·

⊗
Gn]

I
O = [G1

⊗
· · ·

⊗
Gn]

I
O,

that is, the architecture [G1
⊗ · · ·⊗ Gn]IO is invariant under

addition (or removal) of component F.

Case-Study In the case-study, this refactoring pattern is ap-
plied twice to the original system in Figure 2a to add the
Encrypt and DecryptEmpty components, resulting in the first
intermediate system shown in Figure 2b. The correctness of the
refactorings is verified by proving the corresponding assump-
tions. First of all, Encrypt and DecryptEmpty are shown to
be consistent with their specifications. Secondly, it is shown that
the output of Encrypt is not used anywhere else in the archi-
tecture, so Encrypt is added. Finally, DecryptEmpty is added
after proving that DecryptEmpty’s output is not used anywhere
else in the architecture. Note that Encrypt must be added first,
as DecryptEmpty depends on the output of Encrypt. Other-
wise, when adding DecryptEmpty before Encrypt, assump-
tion (2) would be violated as the output of Encrypt would be
used as input by DecryptEmpty. Although DecryptEmpty
uses Encrypt’s output channel, DecryptEmpty itself does not
affect the architecture behavior. Thus, adding Encrypt after
adding DecryptEmpty is also valid. However, a more thorough
effect analysis is required to formally verify this.

6.2. Adding/Removing Input Channels

G

F

(a) Architecture without the
additional input channel.

G

F’

(b) Architecture with the
added input channel.

Figure 4 Illustration of the adding/removing input channel
refactoring pattern.

The second refactoring pattern concerns the addition or re-
moval of input channels of components within an architecture.
Three assumptions are needed to verify this refactoring. Adding
or removing input channels of a component replaces the com-
ponent in the architecture with another component that has the
same output signature but an input signature that contains more
or fewer channels, respectively. This requirement is captured
in assumption (1) of Theorem 2. Assumption (2) requires the
added input channel to be either an output of another component
or an input of the architecture. Similarly to the first pattern, it
is important to ensure that adding or removing the channel in
question does not change the behavior of the entire architecture.
Therefore, assumption (3) is essential to ensure that the behavior
of the replaced component remains unchanged. On one hand, it
requires that the component with additional input channels is a
refinement of the component with fewer inputs when restricted
to the common inputs which means that the former does not in-
troduce any new behavior that depends on the additional inputs.
On the other hand, it ensures that the component with fewer
input channels is a refinement of the component with additional

8 Fischer et al.

inputs which means that the former is capable of all behaviors
of the latter when restricted to the common input channels. The
assumptions of the theorem below apply both for addition or
removal of input channels. Note, that F is always the component
with less input channels and F′ is always the component with
more input channels.

Theorem 2 (Adding/Removing Input Channels). Let C be the
set of all channels. Let [F

⊗
G1

⊗ · · ·⊗ Gn]IO ∈ SPSI,O be
an architecture for an n ∈N, where I ⊆ C is the input channel
set and O ⊆ C is the output channel set of the architecture.
Furthermore, let IG, OG ⊆ C be the input, respectively output
channel sets such that G1

⊗ · · ·⊗ Gn ∈ SPSIG ,OG . Addition-
ally, let F ∈ SPSIF ,OF and F′ ∈ SPSIF′ ,OF be components with
input channels IF, IF′ ⊆ C and output channels OF ⊆ C. If

IF ⊆ IF′ (1)
IF′ \ IF ⊆ I ∪OF ∪OG (2)

[F]IF′ = F′ (3)

then

[F
⊗

G1
⊗
· · ·

⊗
Gn]

I
O = [F′

⊗
G1

⊗
· · ·

⊗
Gn]

I
O,

that is, the architecture [F
⊗

G1
⊗ · · ·⊗ Gn]IO is invariant

under addition (or removal) of input channels to the component
F.

Case-Study This refactoring pattern is applied twice in the
case-study. First, it is used to add the output of Decrypt as an in-
put to the AccessControl component in Figure 2c. The result-
ing component is named AccessControl2, shown in Figure 2d,
whose behavior is specified equally to that of AccessControl.
The second application of this refactoring pattern removes the
output channel Control of the Admin component from the in-
put of AccessControl3 in Figure 2e. The resulting component
is again AccessControl, as shown in Figure 2f.

In both cases, the most challenging part of verifying this
refactoring is proving the assumption (3), ensuring equal behav-
ior between the replaced components. More precisely, proving

F′ ⊆ [F]IF′ , (4)

i.e., showing that no new behavior is introduced by adding input
channels, turns out to be challenging. This is because construct-
ing for every f ′ ∈ F′ the corresponding f ∈ F that has equal
behavior on the common input channels is not straightforward
since the behavior of f ′ may depend on the added input channel.
Our approach to this problem in the case-study exploits the
fact that the stream on the added channel is always identical to
the stream of one of the existing input channels. This invariant
holds nicely in our particular example and enables concise proof
that property (4) holds. Finding a suitable invariant might not
always be possible, however. In subsection 6.4, a more detailed
introduction to invariants is given.

In cases where no suitable invariant can be found additional
information about F′ is required.

To ensure the added channel does not change the compo-
nent’s behavior, the predicate specifying the behavior of F′ has

to provide information about the inputs on the added channel.
A helpful way to conceptualize this is via effects. It suffices if
the component’s behavior, depending on the previously existing
input channels, stays the same, and the added channel has no
effect on any output channel. Therefore, if the predicates speci-
fying F′ follow from those specifying F as well as the absence
of any effects property (4) can be proven more easily. If only the
addition of a channel is desired, one may reuse the predicates
specifying F with appropriately adapted signatures; that is, they
accept a bundle extended by the additional channel but assert
nothing about input on this channel. In addition, one can then
add a predicate specifying that the added channel has no effect
on any output channel, that is, i ̸⇝ o for all added channels i
and all output channels o. Note that this is necessary since if the
predicate provides no assertion about the added channel F′ may
include functions for which the added channel exhibits an effect
on an output channel. Hence, we have to restrict the component
to only those functions that do not exhibit such effects.

This yields the following theorem, which we encoded and
proved in Isabelle as well.

Theorem 3. Let C be the set of all channels. Let
[F

⊗
G1

⊗ · · ·⊗ Gn]IO ∈ SPSI,O be an architecture for an
n ∈ N, where I ⊆ C is the input channel set and O ⊆ C
is the output channel set of the architecture. Furthermore,
let IG, OG ⊆ C be the input, respectively output channel
sets such that G1

⊗ · · ·⊗ Gn ∈ SPSIG ,OG . Additionally, let
F ∈ SPSIF ,OF and F′ ∈ SPSIF′ ,OF be components with input
channels IF, IF′ ⊆ C and output channels OF ⊆ C. If

IF ⊆ IF′ (1)
IF′ \ IF ⊆ I ∪OF ∪OG (2)

∀ f ′ ∈ F′∃ f ∈ F : f ′|IF = f (3)
∀i ∈ IF′ \ IF∀o ∈ OF : i ̸⇝ o (4)

then
F′ ⊆ [F]IF′

Here, assumption (3) encodes that F′ behaves on common
channels equivalent to F. It asserts that as long as no information
flows on the added channels, F′ behaves like F. Crucially,
this does not mean that F′ can not exhibit different behavior
when non-trivial input is provided on the added channels. Only
assumption (4) guarantees that this is not the case.

6.3. Adding/Removing Output Channels
Similar to adding or removing input channels, the next refac-
toring pattern allows for adding or removing unused output
channels of components within an architecture. This is done by
replacing the component with another component whose input
signature is the same, but whose output signature is modified.
To verify this refactoring, three assumptions must be shown.
Assumption (1) requires the output channels of the component
with fewer output channels to be a subset of the output channels
of the other component. Furthermore, assumption (2) ensures
that any added output channels do not affect the behavior of
the architecture, meaning that they are not used as input for any
other component (including the refactored component itself),

Methodical and Formally Verified Model-Driven Architecture Refactoring 9

G

F

(a) Architecture without the
additional output channel.

G

F′

(b) Architecture with the
added output channel.

Figure 5 Illustration of the adding/removing output channel
refactoring pattern.

nor are they directly used as output for the architecture. Assump-
tion (3) constrains the behavior of the components. It ensures
that every possible component behavior with fewer outputs is
also possible with more output channels when restricting the
component to the common output channels, an vice versa. Fur-
ther, it also ensures that the component with additional output
does not exhibit behavior that is not possible in the component
with fewer output channels.

Theorem 4 (Adding/Removing Output Channels). Let C be the
set of all channels. Let [F

⊗
G1

⊗ · · ·⊗ Gn]IO ∈ SPSI,O be
an architecture for an n ∈N, where I ⊆ C is the input channel
set and O ⊆ C is the output channel set of the architecture.
Furthermore, let IG, OG ⊆ C be the input, respectively output
channel sets such that G1

⊗ · · ·⊗ Gn ∈ SPSIG ,OG . Addition-
ally, let F ∈ SPSIF ,OF and F′ ∈ SPSIF ,OF′

be components with
input channels IF ⊆ C and output channels OF, OF′ ⊆ C. If

OF ⊆ OF′ (1)
(OF′ \OF) ∩ (O ∪ IF ∪ IG) = ∅ (2)

F = [F′]OF (3)

then

[F
⊗

G1
⊗
· · ·

⊗
Gn]

I
O = [F′

⊗
G1

⊗
· · ·

⊗
Gn]

I
O.

that is, the architecture [F
⊗

G1
⊗ · · ·⊗ Gn]IO is invariant

under addition (or removal) of output channels to the component
F.

Case-Study This refactoring pattern was applied to add an
output channel to DecryptEmpty within the first intermediate
system (Figure 2b). Thereby DecryptEmpty is replaced with
Decrypt that uses the same input signature and a different
output signature that contains an additional channel as shown
in Figure 2c. Since DecryptEmpty has no output channels,
assumption (1) holds directly. Assumption (2) is also satisfied
since the added output channel is not used elsewhere in the
architecture as an input for another component or as output
for the architecture itself. Since there are no common output
channels between DecryptEmpty and Decrypt, as the former
has no output channels, assumption (3) follows directly from
the consistency of both components.

6.4. Refactoring under Invariant
The pattern of refactoring under invariant is based on refinement
under invariant, which is a generalized form of behavioral refine-

F

G

(a) Architecture with compo-
nent F.

F′

G

(b) Architecture with compo-
nent F′.

Figure 6 Illustration of the refactoring under an invariant
pattern.

ment. It enables replacing a component within an architecture
with another component of the same input and output signature.
To ensure the replacement is valid, an invariant that encodes
a condition on the input of the components has to be satisfied
in the context of the architecture for all possible inputs. For
example, an invariant might require two distinct input channels
always to contain the same stream.

To verify this refactoring pattern, two assumptions have to be
shown. Assumption (1) requires that the replaced components
exhibit equal behavior under the given invariant. In contrast,
assumption (2) ensures that the invariant holds in the context
of every possible input of the architecture. More precisely, for
every possible input of the architecture, the invariant must hold
at every step of the corresponding fixed-point iteration of the
composition.

Theorem 5 (Refactoring under Invariant). Let C be the set of
all channels. Let [F

⊗
G1

⊗ · · ·⊗ Gn]IO ∈ SPSI,O be an ar-
chitecture for an n ∈ N, where I ⊆ C is the input channel
set and O ⊆ C is the output channel set of the architecture.
Furthermore, let IG, OG ⊆ C be the input, respectively output
channel sets such that G1

⊗ · · ·⊗ Gn ∈ SPSIG ,OG . Addition-
ally, let F ∈ SPSIF ,OF and F′ ∈ SPSIF ,OF be components with
input channels IF ⊆ C and output channels OF ⊆ C. Further,
let J ⊆ IF

Ω be an invariant. If

F =J F′ (1)

∀ f ∈ F ∪ F′,
g ∈ G, i ∈N,

sb ∈ ((IF ∪ IG) \ (OF ∪OG))
Ω.

(sb ⊎ f ixiter(f , g, sb)i)|IF ∈ J

(2)

then

[F
⊗

G1
⊗
· · ·

⊗
Gn]

I
O = [F′

⊗
G1

⊗
· · ·

⊗
Gn]

I
O.

that is, the architecture [F
⊗

G1
⊗ · · ·⊗ Gn]IO is invariant

under refactoring under invariant J on the component F.

Case-Study In the case-study, refactoring under invariant was
used to verify the replacement of AccessControl2 in the third
intermediate system (Figure 2d) by AccessControl3, result-
ing in the fourth intermediate system shown in Figure 2e. While
AccessControl2 is specified using the output of the Admin

10 Fischer et al.

component, AccessControl3 is specified by an equal speci-
fication, except that it uses the output of Decrypt instead of
Admin. The chosen invariant requires that the streams on the
output channel Control of Admin and Decrypt are equal.

The correctness of this refactoring was verified by prov-
ing both assumptions. Assumption (1) follows from the cho-
sen invariant in combination with AccessControl2’s and
AccessControl3’s specifications. The proof of assumption
(2) one uses the assumption that Decrypt is left inverse to
Encrypt, resulting in Decrypt’s output stream being equal to
Admin’s output stream. Consequently, the chosen invariant is
satisfied in this context.

6.5. Un-/Folding of Sub-Architectures

F
H

G

(a) Architecture with compo-
nents F, G and H.

F
H

G

(b) Architecture with compo-
nents F and G folded into a
sub-architecture.

Figure 7 Illustration of the folding refactoring pattern.

The last refactoring pattern enables folding and unfolding of
sub-architectures within an architecture. A sub-architecture is
a component that is specified by another architecture. For ex-
ample, sub-architectures are used to separate groups of closely
related components. Unfolding a sub-architecture means re-
placing the component specified by the sub-architecture with
the components contained in the sub-architecture. Conversely,
folding a component means replacing a set of components in
the architecture with a single component specified by a sub-
architecture consisting of the replaced components.

Two assumptions, which only constrain the input and output
signature of the sub-architecture are necessary to verify this
refactoring. Assumption (1) ensures the input channels of the
sub-architecture at least contain all non-feedback input channels
of the components of the sub-architecture. Additionally, it limits
it to contain at most all channels which are input channels of
the architecture or output channels of components from the
remaining architecture. Consequently, the input of the sub-
architecture may contain channels that are not used by any
of its components. Similarly, assumption (2) constrains the
output channels of the sub-architecture to contain at least all
output channels of components from the sub-architecture that
are used as either output for the architecture or input for another
component in the remaining architecture. As a result, it allows
the sub-architecture to conceal internal output channels that
are not used outside of the sub-architecture. Assumption (2)
also ensures that the sub-architecture outputs no more than the
output channels of its contained components.

Theorem 6 (Un-/Folding Sub-Architectures). Let C be the set

of all channels. Let [F1
⊗ · · ·⊗ Fn

⊗
G1

⊗ · · ·⊗ Gm]IO ∈
SPSI,O be an architecture for n, m ∈ N, where I ⊆ C is the
input channel set and O ⊆ C is the output channel set of the
architecture. Furthermore, let IF, OF ⊆ C be the input, respec-
tively output channel sets such that F1

⊗ · · ·⊗ Fn ∈ SPSIF ,OF .
Similarly, let IG, OG ⊆ C be the input, respectively output chan-
nel sets such that G1

⊗ · · ·⊗ Gm ∈ SPSIG ,OG . Additionally,
let I′, O′ ⊆ C be the input, respectively output channel sets of
the sub-architecture. If

IF \OF ⊆ I′ ⊆ I ∪OG (1)

(O ∪ IG) ∩OF ⊆ O′ ⊆ OF (2)

then

[F1
⊗
· · ·

⊗
Fn

⊗
G1

⊗
· · ·

⊗
Gm]

I
O =

[[F1
⊗
· · ·

⊗
Fn]

I′
O′

⊗
G1

⊗
· · ·

⊗
Gm]

I
O

that is, the architecture [F1
⊗ · · ·⊗ Fn

⊗
G1

⊗ · · ·⊗ Gm]IO
is invariant under folding (or unfolding) on the sub-architecture
[F1

⊗ · · ·⊗ Fn]I
′

O′ .

Case-Study This refactoring pattern is applied twice in
the case-study to fold Admin and Encrypt as well as
Decrypt and AccessControl in the fifth intermediate sys-
tem architecture (Figure 2f), into dedicated sub-architectures
named EncryptedAdmin and EncryptedACcessControl
(Figure 2g), respectively. Both sub-architectures group closely
related components while hiding internal channels, resulting
in only the EncryptedControl channel being exposed be-
tween them. Again, the correctness of these refactorings was
verified by proving the corresponding assumptions. In the
case of EncryptedAdmin, for instance, it was proven that the
input of EncryptedAdmin includes at least the input chan-
nel of the Admin component. It is worth noting that the in-
put of the Encrypt component is not included since it is al-
ready internally connected to the output channel of the Admin
component. Additionally, it was shown that the output of
EncryptedAdmin only contains output channels from either
Admin or Encrypt. Finally, it was proven that the output chan-
nel of Admin, which is the only hidden channel, is not used in
any other part of the outer architecture. The proof for unfolding
the EncryptedAccessControl sub-architecture works simi-
larly.

7. Conclusion
We discussed the five architecture refactoring patterns presented
in (Philipps & Rumpe 1999) and demonstrated their application
in an example where a secure communication channel is added
to an architecture by inserting two components that encrypt
and decrypt the communication. Then these added components
are folded. For each of these patterns, we demonstrated which
conditions suffice to conclude that the refactored architecture is
equivalent to the original one by proving the presented theorems
in Isabelle. Our work’s main contribution is an encoding of
these refactoring patterns in the theorem prover Isabelle as well
as exemplifying its applicability. Crucially, each pattern has

Methodical and Formally Verified Model-Driven Architecture Refactoring 11

been formally verified through our work. Our encoding consists
of both proof schemes and various lemmata about the pattern’s
properties. These properties are generalized and are independent
of the particular example for which they were initially conceived,
enabling them to be used for other examples as well. Currently,
the specific proofs required to verify the particular example
discussed here are, for the most part, hand-written.

However, our analysis indicates that automating the verifi-
cation process required for adding and removing components,
as well as for folding and unfolding sub-architectures, should
be feasible. Full automation might not be feasible for the other
refactoring patterns. For instance, when refactoring under an
invariant, it is necessary to have a valid invariant.

Lessons-learned and Future Work Finding invariants such
as those required for the refactoring pattern in subsection 6.4
automatically is difficult. By using advanced proving tools like
sledgehammer (Böhme & Nipkow 2010) or PSL (Nagashima
& Kumar 2017) the burden of manual proving each step can
be reduced. But automatically finding the correct invariant for
a proof is only possible in special cases. The same holds for
adding and removing input channels for which either an invari-
ant needs to be found, or the effects of the added or removed
channel have to be known. Encoding effects in Isabelle and
deducing effect properties from given predicates specifying the
behavior of a component is actively investigated. Similarly,
using effects as additional prescriptive properties to specify
component behavior is future work.

An effect specification language, which is under active devel-
opment, could be helpful to simplify such a specification. For
composition, we restricted the composite to only allow behavior
already exhibited by its components. Instead, we could have
used a composition operator without this restriction, adding all
possible behaviors adhering to the components’ specifications,
including those with different signatures. This is helpful for
refinement proofs. However, it renders reasoning about effects
much more difficult as this operator adds functions with differ-
ing signatures and effects across channels that do not appear
with the other. Examination of different composition operators
regarding effect analyses is ongoing work.

In Figure 2, we provide a complete model for each refactor-
ing step. This approach increases the modeling effort signifi-
cantly. Instead, we could use a delta model that only models the
difference from an original model to reduce this complexity or
streamline the refactoring process by not explicitly modeling all
intermediate systems.

The refactoring patterns discussed in this paper can be consid-
ered atomic because they cannot be partitioned further. A larger
redesign of a system can be achieved by applying a sequence
of these atomic patterns, e.g. fig. 2. Such a sequence of atomic
refactoring patterns can be understood as a refactoring pattern
for a specific purpose, such as inserting encrypted communica-
tion as in our case-study. In practice, the starting point of the
refactoring might be the final refactored model only. Dividing
the refactoring into the atomic patterns is akin to decomposing
a high-level function to assembler code. Note, that this decom-
position is not necessarily unique. However, it suffices to show

behavior preservation for one sequence of atomic refactoring
steps to formally verify the overall refactoring. Instead of doing
this manually, it could be beneficial to automatically decom-
pose the final refactoring into atomic steps that can be verified
automatically if possible, such that manual intervention is only
required for those steps for which an automated proof is not
feasible.

Acknowledgments
This work was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) - 499241390 &
250902306 and German Federal Ministry for Economic Af-
fairs and Climate Action, AMoBaCoD-Project (Grant No.
20X2201C).

References
Abadi, M., & Lamport, L. (1994). Open Systems in TLA. In

J. Anderson, D. Peleg, & E. Borowsky (Eds.), Proceedings
of the thirteenth annual acm symposium on principles of
distributed computing - podc ’94 (pp. 81–90). New York,
New York, USA: ACM Press.

Abramsky, S., & Jung, A. (1995). Domain theory. In Handbook
of logic in computer science (vol. 3): Semantic structures
(p. 1–168). USA: Oxford University Press, Inc.

Barendregt, H. P., Dekkers, W., & Statman, R. (2013). Lambda
calculus with types. Cambridge University Press.

Bauer, F. L., & Woessner, H. (1982). Algorithmic language
and program development. Springer-Verlag.

Beck, K. (1999). Embracing change with extreme programming.
Computer, 32(10), 70–77.

Bertot, Y., & Castéran, P. (2013). Interactive theorem proving
and program development: Coq’art: the calculus of inductive
constructions. Springer Science & Business Media.

Böhme, S., & Nipkow, T. (2010). Sledgehammer: Judgement
Day. In Automated reasoning: 5th international joint confer-
ence, ijcar 2010, edinburgh, uk, july 16-19, 2010. proceedings
5 (pp. 107–121).

Broy, M. (2023). Specification and verification of concurrent
systems by causality and realizability. Theoretical Computer
Science, 974, 114106.

Broy, M., Dederichs, F., Dendorfer, C., Fuchs, M., Gritzner,
T. F., & Weber, R. (1992). The Design of Distributed Systems
– An Introduction to FOCUS. Munich, Germany: Institut für
Informatik, Technische Universität München.

Broy, M., & Stølen, K. (2001). Specification and Development
of Interactive Systems. Focus on Streams, Interfaces and
Refinement. Springer Verlag Heidelberg.

Bürger, J. C., Kausch, H., Raco, D., Ringert, J. O., Rumpe, B.,
Stüber, S., & Wiartalla, M. (2020). Towards an Isabelle
Theory for distributed, interactive systems - the untimed case.
Shaker Verlag.

Butting, A., Kautz, O., Rumpe, B., & Wortmann, A. (2017,
April). Semantic Differencing for Message-Driven Compo-
nent & Connector Architectures. In International conference
on software architecture (icsa’17) (p. 145-154). IEEE.

Buzzard, K., Commelin, J., & Massot, P. (2020). Formal-
ising perfectoid spaces. In (p. 299–312). New York, NY,

12 Fischer et al.

USA: Association for Computing Machinery. doi: 10.1145/
3372885.3373830

Dahl, O.-J., Dijkstra, E. W., & Hoare, C. A. R. (1972). Struc-
tured programming. Academic Press Ltd.

de Moura, L., Kong, S., Avigad, J., Van Doorn, F., & von
Raumer, J. (2015). The Lean theorem prover (system descrip-
tion). In Automated deduction-cade-25: 25th international
conference on automated deduction (Vol. 25, pp. 378–388).

Dijkstra, E. W. (1972, oct). The humble programmer. Commun.
ACM, 15(10), 859–866.

Drave, I., Eikermann, R., Kautz, O., & Rumpe, B. (2019,
February). Semantic Differencing of Statecharts for Object-
oriented Systems. In S. Hammoudi, L. F. Pires, & B. Selić
(Eds.), Proceedings of the 7th international conference on
model-driven engineering and software development (model-
sward’19) (p. 274-282). SciTePress.

Drave, I., Kautz, O., Michael, J., & Rumpe, B. (2019, Septem-
ber). Semantic Evolution Analysis of Feature Models. In
T. Berger et al. (Eds.), International systems and software
product line conference (splc’19) (p. 245-255). ACM.

Fowler, M. (1999). Refactoring: Improving the design of
existing code. Addison-Wesley.

Haber, A., Ringert, J. O., & Rumpe, B. (2012, February). Mon-
tiArc - Architectural Modeling of Interactive Distributed and
Cyber-Physical Systems (Technical Report No. AIB-2012-
03). Aachen, Germany: RWTH Aachen University.

Harel, D. (1987). Statecharts: a visual formalism for complex
systems. Science of Computer Programming, 8(3), 231-274.
doi: 10.1016/0167-6423(87)90035-9

Harel, D., & Rumpe, B. (2004, October). Meaningful Modeling:
What’s the Semantics of ”Semantics”? IEEE Computer
Journal, 37(10), 64-72.

Hoare, C. A. R. (1969). An axiomatic basis for computer
programming. Communications of the ACM, 12(10), 576–
580.

Hoare, C. A. R. (1985). Communicating Sequential Processes.
Englewood Cliffs, N.J.: Prentice Hall International.

Kausch, H., Michael, J., Pfeiffer, M., Raco, D., Rumpe, B., &
Schweiger, A. (2021, November). Model-Based Develop-
ment and Logical AI for Secure and Safe Avionics Systems:
A Verification Framework for SysML Behavior Specifica-
tions. In Aerospace europe conference 2021 (aec 2021).
Council of European Aerospace Societies (CEAS).

Kausch, H., Pfeiffer, M., Raco, D., Rath, A., Rumpe, B., &
Schweiger, A. (2023, February). A Theory for Event-Driven
Specifications Using Focus and MontiArc on the Example of
a Data Link Uplink Feed System. In I. Groher & T. Vogel
(Eds.), Software engineering 2023 workshops (p. 169-188).
Gesellschaft für Informatik e.V.

Kausch, H., Pfeiffer, M., Raco, D., & Rumpe, B. (2020, Febru-
ary). An Approach for Logic-based Knowledge Representa-
tion and Automated Reasoning over Underspecification and
Refinement in Safety-Critical Cyber-Physical Systems. In
R. Hebig & R. Heinrich (Eds.), Combined proceedings of the
workshops at software engineering 2020 (Vol. 2581). CEUR
Workshop Proceedings.

Kausch, H., Pfeiffer, M., Raco, D., & Rumpe, B. (2021, Febru-

ary). Model-Based Design of Correct Safety-Critical Systems
using Dataflow Languages on the Example of SysML Archi-
tecture and Behavior Diagrams. In S. Götz, L. Linsbauer,
I. Schaefer, & A. Wortmann (Eds.), Proceedings of the soft-
ware engineering 2021 satellite events (Vol. 2814). CEUR.

Kautz, O. (2021). Model Analyses Based on Semantic Differ-
encing and Automatic Model Repair. Shaker Verlag.

Kautz, O., & Rumpe, B. (2018, October). Semantic Differ-
encing of Activity Diagrams by a Translation into Finite
Automata. In Proceedings of models 2018. workshop me.

Kautz, O., Rumpe, B., & Wortmann, A. (2020, April). Auto-
mated semantics-preserving parallel decomposition of finite
component and connector architectures. Automated Software
Engineering Journal, 27, 119-151.

Kleene, S. C. (1952). Introduction to metamathematics. Gronin-
gen: P. Noordhoff N.V.

Knüppel, A., Runge, T., & Schaefer, I. (2020). Scaling
correctness-by-construction. In Leveraging applications of
formal methods, verification and validation: Verification prin-
ciples: 9th international symposium on leveraging applica-
tions of formal methods, isola 2020, rhodes, greece, october
20–30, 2020, proceedings, part i 9 (pp. 187–207).

Kounev, S. (2006). Performance modeling and evaluation of
distributed component-based systems using queueing petri
nets. IEEE Transactions on Software Engineering, 32(7),
486–502.

Kourie, D. G., & Watson, B. W. (2012). The correctness-by-
construction approach to programming (Vol. 264). Springer.

Koziolek, H., & Reussner, R. (2008). A model transforma-
tion from the palladio component model to layered queueing
networks. In Spec international performance evaluation
workshop (pp. 58–78).

Kriebel, S., Raco, D., Rumpe, B., & Stüber, S. (2019, February).
Model-Based Engineering for Avionics: Will Specification
and Formal Verification e.g. Based on Broy’s Streams Be-
come Feasible? In S. Krusche et al. (Eds.), Proceedings of the
workshops of the software engineering conference. workshop
on avionics systems and software engineering (aviose’19)
(Vol. 2308, p. 87-94). CEUR Workshop Proceedings.

Lee, E. (2016, 11). Fundamental limits of cyber-physical
systems modeling. ACM Transactions on Cyber-Physical
Systems, 1, 1-26.

Leino, K. R. M. (2010). Dafny: An automatic program verifier
for functional correctness. In International conference on
logic for programming artificial intelligence and reasoning
(pp. 348–370).

Maoz, S., Ringert, J., & Rumpe, B. (2012, November).
An Interim Summary on Semantic Model Differencing.
Softwaretechnik-Trends, 32. doi: 10.1007/BF03323524

Maoz, S., Ringert, J. O., & Rumpe, B. (2010). A Manifesto for
Semantic Model Differencing. In Proceedings int. workshop
on models and evolution (me’10) (p. 194-203). Springer.

Maoz, S., Ringert, J. O., & Rumpe, B. (2011a). ADDiff:
Semantic Differencing for Activity Diagrams. In Conference
on foundations of software engineering (esec/fse ’11) (p. 179-
189). ACM.

Maoz, S., Ringert, J. O., & Rumpe, B. (2011b). CDDiff:

Methodical and Formally Verified Model-Driven Architecture Refactoring 13

Semantic Differencing for Class Diagrams. In M. Mezini
(Ed.), Ecoop 2011 - object-oriented programming (p. 230-
254). Springer Berlin Heidelberg.

Mens, T., & Tourwé, T. (2004). A survey of software refactoring.
IEEE Transactions on software engineering, 30(2), 126–139.

Milner, R. (1982). A Calculus of Communicating Systems.
Berlin, Heidelberg: Springer-Verlag.

Milner, R. (1999). Communicating and mobile systems: the pi
calculus. Cambridge university press.

Murray, T., & Lowe, G. (2009, 09). On Refinement-Closed Se-
curity Properties and Nondeterministic Compositions. Electr.
Notes Theor. Comput. Sci., 250, 49-68.

Nagashima, Y., & Kumar, R. (2017). A proof strategy language
and proof script generation for isabelle/hol. In Automated
deduction–cade 26: 26th international conference on auto-
mated deduction, gothenburg, sweden, august 6–11, 2017,
proceedings (pp. 528–545).

Opdyke, W. F. (1992). Refactoring object-oriented frameworks.
University of Illinois at Urbana-Champaign.

Owre, S., Rushby, J. M., & Shankar, N. (1992). Pvs: A pro-
totype verification system. In International conference on
automated deduction (pp. 748–752).

Philipps, J., & Rumpe, B. (1997). Refinement of Information
Flow Architectures. In M. Hinchey (Ed.), Icfem’97 proceed-
ings. Hiroshima, Japan: IEEE CS Press.

Philipps, J., & Rumpe, B. (1999). Refinement of Pipe-and-Filter
Architectures. In Congress on formal methods in the devel-
opment of computing system (fm’99) (p. 96-115). Toulouse,
France: Springer.

Philipps, J., & Rumpe, B. (2003). Refactoring of Programs
and Specifications. In Kilov, H. and Baclavski, K. (Ed.),
Practical Foundations of Business and System Specifications
(p. 281-297). Kluwer Academic Publishers.

Reisig, W. (1985). Petri Nets: An Introduction. Berlin, Heidel-
berg: Springer.

Reussner, R. H., Becker, S., Happe, J., Heinrich, R., & Koziolek,
A. (2016). Modeling and simulating software architectures:
The palladio approach. MIT Press.

Ringert, J. O., Rumpe, B., & Stachon, M. (2023, July). On
implementing open world semantic differencing for class
diagrams. Journal of Object Technology, 22(2), 2:1-14. doi:
10.5381/jot.2023.22.2.a11

Rumpe, B. (2017). Agile Modeling with UML: Code Generation,
Testing, Refactoring. Springer International.

Scholze, P. (2022). Liquid tensor experiment. Experimental
Mathematics, 31(2), 349–354.

SST. (2023). Sysml v2. Retrieved 07.08.2023, from https://
github.com/Systems-Modeling

University of Cambridge and Technische Universität München.
(2023). Isabelle. Retrieved 26.07.2023, from https://isabelle
.in.tum.de/

University of Edinburgh and Technische Universität München.
(n.d.). Archive of Formal Proofs. Retrieved from https://
www.isa-afp.org/

Wirth, N. (1971). Program development by stepwise refinement.
Communications of the ACM, 14(4), 221–227.

About the authors
Lars Fischer is a former research assistant at the Chair of Soft-
ware Engineering at RWTH Aachen University. His research
interests covered formal verification in the theorem prover Is-
abelle.

Hendrik Kausch is a research assistant and Ph.D. candidate at
the Chair of Software Engineering at RWTH Aachen University.
His research interests cover model semantics, refinement, and
formal analyses and model-driven development of distributed
systems.You can contact the author at kausch@se-rwth.de or
visit https://se-rwth.de/~kausch.

Bernhard Rumpe is professor at the RWTH Aachen University
leading the Software Engineering department and the Deputy
Editor-in-Chief of the International Journal on Software and
Systems Modeling. His main interests are rigorous and practical
software and system development methods based on adequate
modeling techniques. This includes agile development methods,
as well as model engineering based on UML/SysML-like nota-
tion and domain-specific languages.You can contact the author
at rumpe@se-rwth.de or visit https://se-rwth.de/~rumpe.

Max Stachon is a research assistant and Ph.D. candidate at the
Chair of Software Engineering at RWTH Aachen University.
His research focuses on model semantics, refinement, and differ-
ence analysis. You can contact the author at stachon@se-rwth.de
or visit https://se-rwth.de/~stachon.

Sebastian Stüber is a research assistant and Ph.D. candidate at
the Chair of Software Engineering at RWTH Aachen University.
His research interests cover model semantics, refinement, formal
verification, and compositional analysis of systems.You can
contact the author at stueber@se-rwth.de or visit https://se-rwth
.de/~stueber.

Lucas Wollenhaupt is a research assistant and Ph.D. candidate
at the Chair of Software Engineering at RWTH Aachen Univer-
sity. His research interests cover analyses of effects and a formal
foundation of effects, effect chains, and effect networks in dis-
tributed systems.You can contact the author at wollenhaupt@se-
rwth.de or visit https://se-rwth.de/~wollenhaupt.

14 Fischer et al.

https://github.com/Systems-Modeling
https://github.com/Systems-Modeling
https://isabelle.in.tum.de/
https://isabelle.in.tum.de/
https://www.isa-afp.org/
https://www.isa-afp.org/
mailto:kausch@se-rwth.de?subject=Your paper "Methodical and Formally Verified \Model-Driven Architecture Refactoring"
https://se-rwth.de/~kausch
mailto:rumpe@se-rwth.de?subject=Your paper "Methodical and Formally Verified \Model-Driven Architecture Refactoring"
https://se-rwth.de/~rumpe
mailto:stachon@se-rwth.de?subject=Your paper "Methodical and Formally Verified \Model-Driven Architecture Refactoring"
https://se-rwth.de/~stachon
mailto:stueber@se-rwth.de?subject=Your paper "Methodical and Formally Verified \Model-Driven Architecture Refactoring"
https://se-rwth.de/~stueber
https://se-rwth.de/~stueber
mailto:wollenhaupt@se-rwth.de?subject=Your paper "Methodical and Formally Verified \Model-Driven Architecture Refactoring"
mailto:wollenhaupt@se-rwth.de?subject=Your paper "Methodical and Formally Verified \Model-Driven Architecture Refactoring"
https://se-rwth.de/~wollenhaupt

