
Journal of Object Technology | RESEARCH ARTICLE

An internal DSL for graphical modeling tools
based on GLSP

Georg Hinkel and Bodo Igler
RheinMain University of Applied Sciences, Germany

ABSTRACT The Graphical Language Server Protocol (GLSP) separates the development of graphical modeling language
editors from the specification and processing of individual modeling languages. The open-source project Eclipse GLSP offers
generic framework components that help create custom diagram editors (web-based clients) and language servers. However,
the development of GLSP servers remains a complex and difficult task. This is mainly due to the inherent complexity of the
server-side synchronization of the graphical model with the semantic model.
This paper applies recent advancements in model synchronization, in particular synchronization blocks, to simplify this task.
We propose a language server infrastructure that separates the generic model processing from the details of the model
synchronization for specific graphical modeling languages. The language-specific details are specified via a newly developed
internal DSL. A generic server-side component based on the .Net Modeling Framework (NMF) performs the actual model
synchronization.
We showcase the practicality of the DSL and the server architecture through a graphical class-diagram-like editor for NMF’s
meta-meta-model NMeta (similar to Ecore). The result is a concise, but fully functional prototype compliant with GLSP and
partially based on Eclipse GLSP. Initial comparisons with existing GLSP implementations indicate that this approach significantly
reduces the complexity and effort needed to develop graphical model editors. Moreover, this approach can be applied to any
modeling language based on EMOF (Essential Meta Object Facility).

KEYWORDS Graphical DSL, GLSP, NMF, Synchronization Blocks

1. Introduction
Modeling systems requires appropriate editors. In many cases,
graphical editors are desirable as they combine the editing pro-
cess with a visualization of the model. Recently, there has been
an increasing demand for web-based modeling tools due to their
flexible deployment options (Rodríguez-Echeverría et al. 2018;
Bork et al. 2024). Furthermore, models are typically edited
collaboratively, which requires a distributed system with some
central server to host the model instances.

In the past, many technologies have been introduced to sim-
plify the development of graphical editors, but very often with

JOT reference format:
Georg Hinkel and Bodo Igler. An internal DSL for graphical modeling
tools:based on GLSP. Journal of Object Technology. Vol. 24, No. 2, 2025.
Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2025.24.2.a11

deficits in terms of flexibility or deployment options. Editors
built with technologies like GEF (Rubel et al. 2011) or tech-
nologies based on it are tied to desktops. Existing web tech-
nologies for graphical editors (Eclipse 2024; Martínez-Lasaca
et al. 2023; Rocco et al. 2023; Zweihoff et al. 2019; Corley et
al. 2016) mostly use a proprietary connection between frontend
and backend and hence, require certain technology choices at
either end, causing lock-in effects.

More recently, the Graphical Language Server Protocol
(GLSP) (Bork et al. 2024) was introduced to separate the devel-
opment of the actual user interface from the language semantics
such that the user interface code becomes reusable, including
integrations into common IDEs such as Visual Studio Code
or Eclipse Theia (Bork et al. 2024). In GLSP, the client is re-
sponsible for the rendering of the diagram based on a graphical
model while the server is responsible for the synchronization of

An AITO publication

http://dx.doi.org/10.5381/jot.2025.24.2.a11

the graphical model with the semantic model. An initial LOC
analysis using the tool cloc on BIGUML (Metin & Bork 2023)
as an example for a large project based on GLSP suggests that
the server implementation requires significantly more code. In
the source code of BIGUML 0.5.0, the backend consists of
1347 Java files with a total of 41.958 SLOC, while the frontend
consists of 242 TypeScript files with a total of 9.789 SLOC1. In
addition, most of the missing functionality such as undo/redo
or copy/paste support is missing in the backend rather than the
frontend.

This leads us to the research question of how to further sim-
plify the development of fully-fledged graphical modeling tools
based on GLSP. To this end, this paper examines the application
of recent model synchronization technology results (Hinkel &
Burger 2019; Boronat 2021; Buchmann et al. 2022) based on
synchronization blocks. Synchronization blocks facilitate con-
cise implementations of model synchronizations – even in the
case of the heterogeneous model synchronization that a GLSP
server has to perform. They are based on a solid theoretical
foundation and exhibit desirable properties, in particular with
respect to consistency and automation. This paper discusses
the application of the formal concepts, derives requirements
for a synchronization block based DSL for GLSP servers, pro-
poses a new DSL based on NMF Synchronizations (Hinkel &
Burger 2019) and validates the DSL by the construction of a
class-diagram-like metamodel editor.

The remainder of this paper is structured as follows: In
Section 2, we introduce the relevant foundations of GLSP and
model synchronization with synchronization blocks. Section 3
discusses the usage of model synchronization blocks for graphi-
cal editors and derives requirements for a DSL for GLSP server-
side model synchronization. Section 4 introduces a new DSL
which is based on NMF Synchronization and which satisfies the
stated requirements. Next, Section 5 explains the application of
the DSL for a class-diagram-like metamodel editor. Section 6
describes the limitations of the prototype and discusses possible
next steps. Section 7 compares our results with related work.
Section 8 concludes the paper.

2. Foundations
Our approach is mainly based on two concepts: the GLSP pro-
tocol and model synchronization with synchronization blocks.
This section briefly introduces both concepts.

2.1. GLSP
Compilers are necessary, but not sufficient for state-of-the-art
software development. Developers expect e.g. a lot of pro-
ductivity features to assist while editing (Juarez 2016). This
support is typically integrated into an Integrated Development
Environment (IDE). Microsoft has introduced the Language
Server Protocol (LSP) (Bäumer 2023), in order to be able to pro-
vide full-featured IDE support for each popular programming
language without having to implement a separate user interface
for each of them. LSP allows reusing the implementation of
a text editor (in many cases: Monaco (Microsoft 2024c)) for

1 The numbers have been calculated using the tool cloc 1.90.

a variety of programming languages, as the new editor for a
programming language essentially only has to provide an LSP
server and some configuration2. The frontend only works on
the level of text and all the semantic heavy lifting is performed
by the LSP server. Microsoft lists more than one hundred LSP
server implementations (Microsoft 2024a). As the Monaco ed-
itor is implemented in TypeScript and thus is able to run in a
browser, the resulting editors are very flexible in terms of de-
ployment. Hence, the usefulness of the protocol in particular
for textual domain-specific languages has been proven multiple
times.

Based on the success of LSP for textual languages, there
has been an interest in applying a similar approach to graphical
languages (Rodríguez-Echeverría et al. 2018). The Graphical
Language Server Protocol (GLSP) (Bork et al. 2024) is an out-
come of this idea. Like LSP, GLSP is based on the JSON-RPC
(JSON-RPC Working Group 2013) protocol and establishes a
bidirectional communication between the GLSP server and the
frontend that merely renders the diagram. For this rendering,
GLSP is based on a JSON representation of a graph, taken from
the Eclipse Sprotty (Eclipse 2023) project. This model consists
of elements that at least have an identifier, a type (e.g. node,
edge, label), child elements and may optionally contain further
information – such as layout information or other information
that is necessary for the rendering. This additional information
may depend on the type, e.g., a label typically requires the text
that should be displayed, an edge requires ids of source and
target elements. The client is responsible to render a diagram
from this graphical model. Existing implementations render an
SVG image in the browser using Eclipse Sprotty for this task.

Based on this graphical model, GLSP defines a number of
commands (actions) that are sent to the server when the user
interacts with the diagram. For example, there are actions sent
to the server when the user resizes or moves an element, deletes
an element, reconnects an edge or performs undo or redo opera-
tions. The GLSP protocol comprises type hints, too. The server
provides these to the client in order to limit the actions offered to
the user. The client decides on the basis of type hints whether an
element may be resized, deleted or contained in a certain other
element. The client will typically request the (static) type hints
at the beginning of a session and keep them. For actions where
the validity depends on the exact inputs (e.g. in order to check
whether an edited text for a label is valid), dedicated actions are
used to query the missing information from the GLSP server.

Unlike textual languages where the main editing operation,
typing, is the same across all textual programming languages,
the possible edit operations for a graphical language in terms
of adding elements are highly specific to that language. Thus,
GLSP foresees a dedicated action for the client to request the
allowed operations in a given context, identified by a string.
There are dedicated identifiers for the tool palette and the context
menu. GLSP defines a set of standard actions like triggering a
node creation or edge creation, but also allows the GLSP server
to suggest custom operations. To this purpose, the actions are

2 The added configuration is an optimization: Rather simple features like syntax
highlighting can usually be accomplished without a roundtrip to the LSP
server.

2 Hinkel and Igler

processed using the same JSON-RPC method process, but use
a polymorphic argument, making the protocol easily extensible.
For custom operations, the JSON representation is only required
to carry a property isOperation set to true. Whenever an
operation has an impact on the graphical model, the GLSP
server sends an updated graphical model to adjust the rendered
diagram. As the actions are sent as JSON-RPC notifications,
the server may send an updated graphical model at any given
point in time. This facilitates e.g. concurrent write access to the
same diagram from different sources.

The Eclipse GLSP project provides implementations for the
client (in TypeScript, based on Eclipse Sprotty) and provides
a number of libraries for the server, based on either Java or
TypeScript. The Java implementations typically synchronize the
graphical model with a semantic model implemented in EMF
or an EMF.cloud model server. The TypeScript implementation
merely operates directly on the graphical model. Eclipse GLSP
also provides templates for the integration of the editor into
Visual Studio Code, Eclipse Theia or Eclipse RCP.

2.2. Model Synchronization using Synchronization
Blocks

NMF (Hinkel 2018b) supports model-driven engineering using
.NET technologies. It is based on a theoretical framework for-
mulated and analysed in a category-theoretical setting (Hinkel
& Burger 2019; Hinkel 2018a) and comprises several generic
technical components. Two components are particularly rele-
vant in the context of this paper: NMF Expressions and NMF
Synchronization.

NMF Expressions (Hinkel et al. 2019) is an incrementaliza-
tion system integrated into the C# language. It automatically
derives change propagation algorithms from function expres-
sions. This works by setting up a dynamic dependency graph
that keeps track of the model states and adapts when necessary.
The incrementalization system is extensible and supports large
parts of the Standard Query Operators (SQO3).

NMF Synchronizations is a model synchronization approach
based on the algebraic theory of synchronization blocks. Syn-
chronization blocks are a formal tool to run model transforma-
tions in an incremental and bidirectional way (Hinkel & Burger
2019). They combine a slightly modified notion of lenses (Fos-
ter et al. 2007) with incrementalization systems.

A synchronization block declares a synchronization action
between two models in two potentially different mutable type
categories. Consider e.g. the synchronization block in Figure
1. It consists of a morphism ΦGraph↔StateMachine, that pro-
vides a one-to-one correspondence between Graph nodes and
StateMachine objects, and a morphism ΦElement∗↔State∗, that
provides a one-to-one correspondence between the State child
nodes of Graph nodes and the States attribute of StateMachine
objects.

The correspondence between objects and object attributes is
modeled with well-behaved in-model lenses. Lenses provide
a generalized approach to the view-update problem for tree-
structured data. (Foster et al. 2007) We adapt this approach

3 (Microsoft 2007); SQO is a set of language-independent standard APIs for
queries, specifically defined for the .NET platform.

slightly to model the concept of getter and setter methods for
object model attributes and call these well-behaved in-model
lenses. Each such lense consists of a side-effect free GET (“get-
ter“) morphism and PUT (“setter“) morphism (in general with
side effect). These morphisms need to be well-behaved, i.e.
inverse to each other in the following sense:

– applying PUT with the value obtained by GET does not
change anything (PUTGET law of (Foster et al. 2007))

– applying GET on an attribute set with PUT yields the set
value (slightly modified version of the GETPUT law of
(Foster et al. 2007))

In the example of Fig. 1 we have the lense

ChildNodes[type=”State”] : Graph ↪→ Element∗

for the access to the Element∗ child nodes of Graph nodes and
the lense

States : StateMachine ↪→ State∗

for the access to the State∗ attribute of StateMachine objects.4

The synchronization block in Fig. 1 is used to keep the
Graph nodes and their child nodes Element∗ in the left model
(b) of Fig. 2 in sync with their counterparts StateMachine and
State∗ in the right model (c) of Fig. 2.

Graph StateMachine

Element∗ State∗

ΦGraph↔StateMachine

ChildNodes
[type=”State”] States

ΦElement∗↔State∗

Figure 1 Schematic overview of bidirectional synchroniza-
tion blocks applied for the synchronization of ChildNodes
and States

The usage of lenses allows the isomorphism
ΦElement∗↔State∗ to be enforced automatically and in
both directions, if required, by evaluating the PUT operations:
Whenever the synchronization engine finds elements obtained
by a GET operation no longer isomorphic to the value
obtained on the other side, it uses the PUT operation to fix the
correspondence.

The idea of model synchronization using synchronization
blocks is that a complex model synchronization can be obtained
by stacking synchronization blocks. Typically, the first cor-
respondence of a root isomorphism is known. Then, if two
model elements are isomorphic with respect to some isomor-
phism, the synchronization blocks defined for this isomorphism
yield model elements that should be isomorphic. If they are
not, one can use the PUT operation on either side to enforce
the isomorphism. This process is iteratively repeated until the
synchronization terminates. Based on this formal notion of
synchronization blocks and in-model lenses, one can prove that
model synchronizations built with well-behaved in-model lenses

4 A collection type for a base type B is denoted as B∗, where the star symbol
“∗“ denotes Kleene closures.

An internal DSL for graphical modeling tools based on GLSP 3

S1S1

S2S2

aa

type=“State“

id=“S1“

position=…

size=...

e1:Element

type=“State“

id=“S1“

position=…

size=...

e1:Element

type=“State“

id=“S2“

position=…

size=…

e2:Element

type=“State“

id=“S2“

position=…

size=…

e2:Element

type=“Transition“

id=“t1“

sourceId=“S1“

targetId=“S2“

e3:Element

type=“Transition“

id=“t1“

sourceId=“S1“

targetId=“S2“

e3:Element

type=“label“

id=“S1_label“

text=“S1“

:Element

type=“label“

id=“S1_label“

text=“S1“

:Element

type=“graph“

e:Element

type=“graph“

e:Element

type=“label“

id=“S2_label“

text=“S2“

:Element

type=“label“

id=“S2_label“

text=“S2“

:Element

type=“label“

id=“t1_label“

text=“a“

:Element

type=“label“

id=“t1_label“

text=“a“

:Element

sm:StateMachinesm:StateMachine

name=“S1“

s1:State

name=“S1“

s1:State

name=“S2“

s2:State

name=“S2“

s2:State

trigger=“a“

:Transition

trigger=“a“

:Transition

statesstates

transitionstransitions

targettarget

sourcesource

Model

Synchronization

(a) graphical representation (b) graphical model (c) semantic model

Figure 2 A simple state machine with two states and a transition as (a) graphical representation, (b) graphical model and (c)
semantic model. Correspondences between graphical model and semantic model in red, dashed lines.

are correct and hippocratic, provided that the synchronization
terminates (Hinkel & Burger 2019). This means that updates
of either model can be propagated to the other model such that
the consistency relationships are restored and an update to an
already consistent model does not perform any changes.

Synchronization blocks have been implemented in NMF Syn-
chronizations, an internal DSL with C# as host language (Hinkel
2015a; Hinkel & Burger 2019). It maps isomorphisms to nested
classes of a model synchronization class. The synchronization
blocks are specified in a dedicated DeclareSynchronization
method through a dedicated API. The code corresponding to the
synchronization block from Fig. 1 is depicted in Listing 1. The
isomorphism ΦGraph↔StateMachine and the types Graph and
StateMachine are automatically derived from the surrounding
context, i.e. the class Graph_StateMachine that represents
this isomorphism.

1 Synchronize(SyncRule <Element_State >(), <f>, <g>);

Listing 1 Code for the synchronization block from Fig. 2

In this listing, <f> and <g> are placeholders for lenses that
are usually specified as lambda expressions. NMF lifts the
specification of the GET method to a lens by inferring the PUT
operation. In case NMF Expressions cannot infer a PUT method,
an annotation LensPut is provided to specify the PUT method
explicitly. Alternatively, the Synchronize method also has
overloads to pass in a custom PUT implementation.

For the incrementalization, NMF Synchronizations uses the
extensible incrementalization system NMF Expressions.

Using the incrementalization system and the inversion based
on lenses, NMF Synchronizations is able to lift the specification
of a model transformation/synchronization in three orthogonal
dimensions:

– Direction: A client may choose between transformation

from left to right, right to left or check-only mode.
– Change Propagation: A client may choose between three

change propagation options: whether changes to the input
model should be propagated to the output model, also vice
versa or not at all.

– Synchronization: A client may execute the transformation
in synchronization mode between a left and a right model.
In that case, the engine finds differences between the mod-
els and handles them according to the given strategy (only
add missing elements to either side, also delete superfluous
elements on the other side or full duplex synchronization).

This flexibility makes it possible to reuse the specification
of a transformation in a broad range of different use cases. Fur-
thermore, the fact that NMF Synchronizations is an internal
language means that a wide range of advantages from main-
stream languages, most notably modularity and tool support,
can be inherited (Hinkel et al. 2017).

3. Using Model Synchronization Technology
for Graphical Editors

The basic idea of our approach is twofold:

1. A GLSP server performs a continuous model synchroniza-
tion between a graphical model and a semantic model.

2. Continuous model synchronizations can be adequately
specified and performed via synchronization blocks.

This section briefly illustrates how synchronization blocks can
be applied for this task and discusses the design of a correspond-
ing DSL.

4 Hinkel and Igler

3.1. Using Synchronization Blocks for Graphical Editors

Graphical editors are used incrementally, i.e. the user will only
change a small portion of a diagram at a time. In the setting
of GLSP, the graphical model comprises only the information
required by the frontend to render it as a graph. The semantic
model contains all the semantic information to represent the con-
cepts or system at hand. In general, the synchronization between
these two models is heterogeneous as there is usually no model
that can be extracted completely from the other model: Not all
of the information from the semantic model is necessarily repre-
sented in the graphical model, other information such as layout
information from the graphical is not present in the semantic
model. Hence, reifying graphical editors as a model synchro-
nization problem, we need bidirectional model synchronization
approaches with support for incremental change propagation.

A model transformation paradigm that fits these requirements
is model transformation through synchronization blocks. The
various solutions to Transformation Tool Contest (TTC) case
studies in the past (Hinkel 2015b, 2017; Anjorin et al. 2020;
Hinkel 2020, 2021) have shown a wide applicability of model
synchronization through synchronization blocks.

As an example, consider the case of a simple state machine
that consists of two states connected by a transition and depicted
as UML state machine diagram in Fig. 2 (a). In order to render
such a diagram, GLSP editors typically use Sprotty, which
internally uses a graphical model such as depicted in Fig. 2 (b).
The graphical model is what the client gets from a GLSP server.
To support downstream applications, ideally the GLSP server
should synchronize this graphical model with a semantic model,
in our example with the model in Fig. 2 (c).

To describe the synchronization of the graphical model in Fig.
2 (b) with the semantic model in Fig. 2 (c), one has to create syn-
chronization blocks for the different kinds of correspondences
(red dashed lines in Fig. 2). One of these synchronization
blocks has already been sketched in Fig. 1 in Section 2.2. In the
general case, we have isomorphisms like ΦGraph↔StateMachine
and ΦElement∗↔State∗ that describe how the different elements
of the semantic model are represented in the diagram. These are
connected through synchronization blocks that synchronize the
child nodes or edges or labels of a graphical element using a lens
from the semantic model. In the case of Fig. 1, we synchronize
the states with the child nodes of the graph.

Applying model synchronization through synchronization
blocks seems a viable candidate here, as the two theoretical
properties of correctness and hippocraticness translate well to
desirable properties for graphical editors: a correct synchroniza-
tion means that the information shown in the graphical model is
consistent with the information contained in the semantic model.
Hippocraticness means that

1. changes made to the diagram that do not impact the seman-
tic model (such as layout changes) would not change the
semantic model and

2. changes made to the semantic model affecting properties
that are not shown in the diagram will not change the
diagram.

Such changes would probably be surprising to the user and thus
should be avoided.

3.2. Requirements
We share the vision in (Bork et al. 2024) that GLSP is a solid
foundation for the future development of flexible graphical
model editors. To make it as easy as possible for language engi-
neers to create new graphical languages, we see the following
requirements to support language engineers using synchroniza-
tion blocks:

R1: GLSP-specific model synchronizations NMF Synchro-
nizations provides a generic DSL for synchronization blocks.
It has to be adapted respectively enhanced in order to provide
a tailored development experience when using the DSL. For
instance, the above-mentioned heterogeneity phenomenon re-
quires the treatment of n:m-relations between elements of the
graphical and semantic models. This can be manually achieved
by a combination of synchronizations blocks which were origi-
nally designed for 1:1-relations. However, the usability of the
DSL benefits from dedicated language elements that address
this phenomenon. Another example is the layout. As the lay-
out information is agnostic of the domain and stored separately
from the semantic model, developers of a graphical language
should not have to specify it explicitly.

R2: Reusable graphical models The information needed by
the clients in order to correctly render elements in the diagram
typically depends on the specific use case: Sometimes, visual
elements such as arrow types have a semantic meaning, some-
times not. In the former case, the graphical model needs to
contain this information while in the latter case, it is often omit-
ted in order to reduce the size of the graph. If the visuals cannot
be adjusted using CSS classes, the graphical model needs to
contain this semantic information. Therefore, the code in exist-
ing GLSP backend implementations often contains dedicated
element classes to define these properties and a considerable
amount of code is necessary to populate these properties and
to register the corresponding code, e.g. with the dependency
injection container. For instance, the information that a state is
a final state is highly relevant for the graphical model as UML
foresees an entirely different rendering of this state in the dia-
gram that cannot be expressed only by CSS classes. However, in
the semantic model this may be just a boolean attribute. Custom
classes to represent the graphical model lead to bloated code.
Therefore, we think that the language engineer should not have
to bother and be able to reuse the graphical model.

R3: Metadata support GLSP requires servers to provide meta-
data that is difficult to provide using plain model synchroniza-
tion approaches, sometimes very specific for GLSP. For instance,
servers are requested to return shape hints and edge hints that the
client uses to decide to which other nodes a given type of nodes
can be added to or which nodes can be possible sources or tar-
gets of an edge. Furthermore, a GLSP server is also responsible
for deciding about the actions possible in a given context, such
as for the tool palette. In order to obtain that information in a
flexible way (that also allows for localization of tool labels), the

An internal DSL for graphical modeling tools based on GLSP 5

framework needs to provide metadata for the synchronization
fitting with the abstractions needed for a GLSP implementation.

R4: Protocol support A framework supporting GLSP server
development should abstract from protocol implementation de-
tails of GLSP.

3.3. Architecture

Fig. 3 sketches the architecture of a typical graphical editor
using NMF-GLSP, in the form of an FMC5 block diagram.
Model-relevant user actions are performed by the backend. The
main task of the frontend consists in propagating model-relevant
user actions to the server, obtaining the changed graphical model
from the GLSP server and rendering it in SVG (e.g., using the
Eclipse GLSP client implementation).

In the diagram of Fig. 3, we printed components of the ar-
chitecture that can be reused as unchanged packages6 in blue
(Eclipse GLSP client implementation) or green (NMF-GLSP).
In the frontend, the language developer has to specify a ren-
dering (in the example, states in the graphical model should
be shown as rectangles with rounded corners) and potentially
an extension to the graphical model, in case custom renderers
require some semantic information in the graphical model (cf.
R2). Meanwhile, the component to implement the communica-
tion with the GLSP server and to update the graphical model
accordingly can be reused without modifications.

On the server-side of GLSP, NMF-GLSP allows us to keep
the implementations of all the server-side GLSP actions and also
the graphical model entirely agnostic of the graphical language
such that the language developer can reuse these without modi-
fications. Domain-specific actions such as custom operations
use generic implementation and call into the synchronization
to perform model actions. The layout metamodel and synchro-
nization is also agnostic of the graphical language and can be
reused, only the semantic (meta-)model of the language and
the synchronization with the graphical model have to be pro-
vided. The dependency on the semantic metamodel is clear as
this forms the abstract syntax of the graphical language. This
metamodel can be provided either in NMeta or Ecore format. To
simplify specifying the synchronization, we offer a DSL based
on synchronization blocks.

4. NMF-GLSP

Our GLSP server framework provides the basis for the imple-
mentation of a concrete graphical language server. Such an
implementation comprises the specification of the graphical
language via NMF-GLSP and the invocation of this specifi-
cation via dependency injection. The remaining server-side
tasks (GLSP protocol implementation, model manipulation, un-
do/redo) have not to be specified via the DSL. They are either
independent of the specific graphical model language or can be
inferred by our framework from the DSL-based specification of
the graphical language.

5 Fundamental Modelling Concepts, (Knopfel et al. 2006)
6 NPM packages for TypeScript, NuGet packages for .NET parts

1 protected override void DefineLayout () {
2 Nodes(D<StateDescriptor >(), m => m.States);
3 }

Listing 2 Defining that the semantic property States should
be used to render child nodes.

4.1. Structure of the Internal DSL
The basic idea of our DSL is very similar to the construction of
NMF Synchronizations, which in turn is based on the construc-
tion of the NMF Transformation Language (NTL) (Hinkel et al.
2017): A graphical language is represented by a class that inher-
its from GraphicalLanguage and consists of rules as nested
classes that inherit from a few abstract base classes provided by
the DSL. In order to create the rules for the synchronization, the
GraphicalLanguage class instantiates each nested type and
generally identifies rules with their type. Then, synchronization
blocks are specified as calls inside a method DefineLayout.
As we know the target model statically, the available methods
represent synchronization blocks tied to specific lenses at the
graphical model.

The DSL defines three base classes, all of which take the
semantic element type as a generic type parameter:7

– NodeDescriptor<T> for isomorphisms describing how
to render a semantic model element as a node

– EdgeDescriptor<T> for isomorphisms describing how
to render a semantic model element as an edge

– LabelDescriptor<T> for isomorphisms describing how
to render a semantic model element as a label.

EdgeDescriptor defines methods for the creation of syn-
chronization blocks for the source and target of the respec-
tive edge or labels along the edge. NodeDescriptor de-
fines methods to create synchronization blocks to denote
child nodes, edges, compartments and child labels. The
LabelDescriptor<T> class only defines methods to adjust
the label text. All of these classes inherit methods to adjust the
type attribute of the graph elements (which the client uses to
decide how the element is rendered), configure the CSS classes
and forward information as static content.

In all cases, the classes representing the isomorphisms are
also responsible for the creation of new elements. NMF provides
reflection-based instance creation for generic type parameters
(even if the generic type parameter is the interface for a meta-
model class), but typically one wants to create pre-initialized
objects. Therefore, all these classes have a common generic
base class ElementDescriptor<T> that allows to override the
creation of new elements.

The major advantage of this construction is that, like NTL
and NMF Synchronizations, our DSL can inherit modularization
concepts from the host language, i.e., it is rather easy to create
reusable DSL modules and inherit the tool support from the host
language.

7 This structure is based on the generic graphical model structure as recom-
mended by Eclipse GLSP.

6 Hinkel and Igler

GLSP ServerGLSP Client

Action Dispatcher

Graphical Model

Graphical

Model

Semantic

Model

Synchroni-

zation

GLSP

SVG

Rendering

Layout

Model
ActionAction

Figure 3 Architecture of a GLSP-based editor using our DSL. Reusable components from Eclipse GLSP-client in blue, reusable
components from NMF-GLSP in green, parts with necessary custom code in red.

As an example of this usage, Listing 2 sketches how to
create a synchronization block defining that the semantic el-
ements of a property States should be rendered using the
rule StateDescriptor. This listing uses a method D that se-
lects the rule instance of a given rule type. The lens .States
(= lense States in fig. 1) is denoted through its GET opera-
tion. NMF infers the PUT operation as well as the types and
the lense of the left model from the context. The left lense
ChildNodes[type=”State”] is automatically derived from the
generic GLSP graphical model structure.

Next to creating child nodes, another frequent requirement
is to generate a label element for each semantic element and
synchronize the text shown in this label with an attribute in the
semantic model such as e.g., the name.

1 Label(e => e.Name);

Listing 3 Synchronizing the name of an element with the text
in a label element

Creating a label with a text synchronized with a specific
attribute is a frequent use case. This has dedicated support in
the DSL. In particular, a minimal implementation is depicted
in Listing 3. There are further parameters available to specify
guards, fix the position of the label, to provide a custom PUT
method or to specify explicitly whether users are allowed to edit
the label text.

Frequently, especially in UML, nodes can have compart-
ments. Therefore, compartments have a dedicated support in
our DSL: The rules derived from NodeDescriptor are respon-
sible for a node and a hierarchy of compartments instead of only
a single element. To visually indicate these compartments, we
use the using-syntax in C#.

1 using (Compartment("comp:header")) {
2 Label(e => e.Name);
3 }

Listing 4 Snippet to define a label with the name of an
element inside a compartment with the type comp:header.

In order to support inheritance in the semantic model, we
also introduce the concept of refinements in the isomorphisms.
This means, an isomorphism class can refine another if it de-
scribes a more concrete semantic element type. In this case,
the synchronization blocks of both the refined and the refining
isomorphism are used.

4.2. Invocation of the Internal DSL
The DSL integrates with ASP.NET Core: In order to expose
a given graphical language to a GLSP server, the language
needs to be added to the ASP.NET Core dependency injection
container and another call is necessary to expose the GLSP
server on a given path. We created an API that integrates with
the minimal API provided by ASP.NET Core.

1 var builder = WebApplicationBuilder.Create ();
2 builder.Services.AddWebSockets(opts => { });
3 builder.Services.AddGlspServer ();
4 builder.Services.AddLanguage <StateMachineLanguage

>();
5 // add more services ...
6 var app = builder.Build();
7 app.UseWebSockets ();
8 app.MapGlspWebSocketServer("/glsp");
9 app.Run();

Listing 5 Glue code necessary to start the GLSP server

The minimal code to start a GLSP server is depicted in
Listing 5. Line 2 loads the components to support web sockets,
line 3 loads the general GLSP components, line 4 loads the
graphical language. By repeating line 4, the server can also
support multiple graphical languages simultaneously. Line 8
declares the entrypoint for the GLSP server as the websocket
with address /glsp.

4.3. Implementation of the GLSP Protocol
In order to obtain the type hints for GLSP as well as context
actions, we extended the DSL classes with the necessary UI
information. In order to populate the tool palette, we iterate all
the synchronization blocks present in the DSL instance where
the target isomorphism is not the identity (which is the case
e.g., for labels) and render an action to add an element to this
synchronization block. If the class for the target isomorphism
defines profiles, a separate action is generated for each profile.

For the type hints, we go through all of the iso-
morphism classes (i.e., the nested classes inheriting
ElementDescriptor<T>) and generate a type hint for each
of them, provided that the corresponding semantic class is not
abstract. Depending on the type of description, this can be a
shape type hint or edge hint. The necessary information such
as other types that can be contained inside an element of that
type can be drawn from the synchronization blocks for this
isomorphism.

An internal DSL for graphical modeling tools based on GLSP 7

We also extended the lenses that create labels with an op-
tional validator callback method in order to support a validation
of label edits before the user applies the label.

The basic idea of the DSL, however, is that the developer
ideally does not even see or need to know the GLSP protocol as
it is entirely hidden in the abstractions offered by the DSL.

4.4. Model Manipulation
GLSP already defines operations to manipulate the graphi-
cal model: CreateNodeOperation, DeleteNodeOperation,
ChangeBoundsOperation and similar operations that directly
manipulate the graphical model. For these operations, the online
incremental, bidirectional model synchronization makes these
very easy to implement: They only need to operate on the graph-
ical model and the model synchronization in the background
takes care of the synchronization with the semantic model.

However, GLSP is an extensible protocol and allows the
server to define custom operations. These can be used for
context actions: the server can propose context actions at-
tached to menu items. When the user clicks on these menu
items, the client sends the associated GetContextAction to
the server. The main use case for such custom operations is to
support domain-specific operations, such as for instance tog-
gling whether a state is a start state. To support these, NMF-
GLSP contains a generic operation implementation that uses a
callback provided through the DSL.

4.5. Undo and Redo
The GLSP protocol provides operations for undo and redo,
but implementing an undo and redo functionality can be quite
challenging. However, NMF has a builtin generic operation
recorder that uses events generated by the code generator to
produce a model of changes as they are being applied to the
model.

This generic operation recorder simplifies the implementa-
tion of custom operations heavily as it does not require develop-
ers to provide an undo operation for custom operations. Instead,
the change recorder records the changes that the operation in-
troduced to the model, inverts them and applies the inverted
changes if necessary. This also means that the redo operation
reapplies the exact original changes, such that undo and redo
cancel out each other, even if the original operation was not
deterministic.

4.6. Layout
In GLSP, the GLSP server is also responsible for creating an
initial layout. For this, we integrated the Microsoft Automatic
Graph Layout library (MSAGL) (Microsoft 2024b). We allow a
graphical language to override the default layouting algorithm
but default to a π

2 rotated Sugiyama layered layout algorithm
(Sugiyama et al. 1981) with rectilinear edge routing.

1 public override ILayoutEngine DefaultLayoutEngine
=> new LayeredLayoutService(new()

2 {
3 EdgeRoutingSettings = { EdgeRoutingMode =

EdgeRoutingMode.StraightLine }
4 });

Listing 6 Changing the default layout engine to straight lines

As an example, Listing 6 shows how to change the layouting
strategy to straight lines (and no rotation). As the layout engine
is abstracted in an interface, one can also easily exchange the
layout library to use something else than the MSAGL.

4.7. Language Composition
Applying the DSL construction from prior work (Hinkel et al.
2017), our language inherits composition functionality. In partic-
ular, a language engineer could reuse a GraphicalLanguage
implementation and override some rules by inheriting from the
graphical language root class and inserting a public nested class
inheriting from the descriptor the developer wishes to extend
or overwrite. As the DSL is an internal DSL in C#, artifacts
like reusable graphical language libraries would be technically
feasible. However, we have not applied this functionality in a
practical use case, this will be subject to future research.

5. A metamodel editor for NMeta
We use the implementation of a graphical editor for the graph-
ical model language NMeta8 in order to demonstrate how the
different bits of our DSL can be applied in an example with
real-world complexity.

5.1. The language basics
To create a new graphical language, we first specify the abstract
syntax of the graphical model language NMeta via a meta-meta-
model language (Ecore or NMeta) and have our framework
generate the corresponding meta-model in C#. We then cre-
ate a class inheriting from GraphicalLanguage and override
the abstract members, denoting the diagram type and the start
isomorphism, called start rule.

1 internal partial class NMetaLanguage :
GraphicalLanguage {

2 public override string DiagramType => "nmeta";
3 public override DescriptorBase StartRule
4 => Descriptor <RootDescriptor >();
5 ...
6 }

Listing 7 Definition of the graphical language

The implementation is depicted in Listing 7. The diagram
type is necessary as a single GLSP server is allowed to support
multiple languages simultaneously. If the language is integrated
into an IDE, this typically matches the file extension. To declare
the start rule, we reference it by type. The rest of the class con-
sists of the rules and private helper functions used by multiple
rules.

5.2. The root descriptor
We begin with the start rule of the graphical editor. Metamodel
editors are like class diagram editors, so the surface consists of
nodes for types or child packages (in NMeta called namespaces)
and edges for associations (in NMeta called references) and
inheritance relations between classes.
8 NMeta is the meta-metamodel used in NMF and structurally identical to Ecore.

In particular, NMF includes a model transformation from Ecore to NMeta
(Hinkel 2018b).

8 Hinkel and Igler

1 public class RootDescriptor : NodeDescriptor <
INamespace > {

2 protected override void DeclareLayout () {
3 Nodes(D<TypeDescriptor >(), n => n.Types);
4 Nodes(D<NamespaceDescriptor >(), n => n.

ChildNamespaces);
5

6 Edges(D<ReferenceDescriptor >(),
7 n => n.Types.OfType <IReferenceType >()
8 .SelectMany(c => c.References)
9 .IgnoreUpdates ());

10 Edges(D<ClassDescriptor >(), D<
ClassDescriptor >(),

11 n => new BaseClassCollection(n))
12 .WithLabel("New Base −Class")
13 .WithType("edge:inheritance");
14 }
15 }

Listing 8 The root descriptor implementation

In the DSL, the reference to child nodes is implemented in
the synchronization blocks depicted in lines 3 and 4 of Listing
8. The type RootDescriptor (definition in line 1) repre-
sents the isomorphism ΦNode↔Namespace, as it connects the
types NodeDescriptor (node type in the generic graphical
model) and INamespace (name of the C#-interface that has
been generated for the meta-model class Namespace). The
remaining two types for the synchronizations blocks in lines 3
and 4 are derived by the framework from the context.

As the language infers lenses from the lambda expressions,
there is a single specification used both to infer the graphical
model and to perform updates on the semantical model in re-
sponse to an operation on the graphical model. In particular,
the framework understands that, as a namespace uses types as
nodes, the user should be able to create any concrete type and
add it to the types lens. Hence, the framework automatically
calculates what GLSP calls type shape hints, static informa-
tion provided by a GLSP server to visually assist a user when
creating a node where this node can be created. Further, the
framework automatically populates the palette, offering users
to add types to a namespace. This is in contrast to the GLSP
reference examples where developers have to develop classes
for and thus understand each of these GLSP features separately.
Large existing editors such as the BIGUML editor, employ their
own frameworks to simplify this process but currently cannot
hide protocol details such as node creation handlers or type
hints from the developer.

The references to child nodes manifest themselves in a se-
mantic model reference (Types and ChildNamespaces), hence
NMF Expressions is able to automatically turn the specifica-
tion into a lens. We do not need to provide a PUT method.
For the edges, i.e. the references of classes contained in the
namespace, this is different. Therefore, NMF cannot infer an
operation that adds an element to the query result. However, this
is not necessary as the References reference is an opposite of
the DeclaringType reference which will be used to map the
source of the edge. Hence, it is safe to ignore updates to the
collection, implemented in lines 6–9 in Listing 8.

1 public BaseClassCollection(INamespace ns)
2 : base(ns.Types.OfType <IClass >().SelectMany(
3 c => c.BaseTypes ,

4 (c,baseClass) => ValueTuple.Create(c,
baseClass)))

5 {}

Listing 9 The query expression to obtain inheritance links in
the metamodel

For the base classes of a class, this is different as there is no
opposite reference that we can use. Therefore, we need to imple-
ment a custom collection class. As NMF is able to infer change
propagation, this essentially means that we need to implement
the methods Add, Remove and Clear. The incrementalization
of the query expression can be done by NMF, by passing the
query expression to the constructor, depicted in Listing 9.

With the help of this custom collection, we can specify the
synchronization block to create inheritance edges as depicted
in lines 10–13 of Listing 8: inheritance edges connect classes
to classes and we use the custom collection to denote between
which classes an inheritance edge should be drawn. Creating
such an edge from tools such as the palette should have the
label New Base-Class and the created edge should have the type
edge:inheritance. The advantage here is that the developer
stays in the semantic model, specifying what it means if an
inheritance link as a tuple of two classes is added or removed.
Unlike GLSP reference implementations, the developer does
not have to bother with lower level protocol details of GLSP.
The only leftovers from the protocol are those that are required
by the frontend, in this case the type and display name of the
generated edge.

5.3. Classes
In NMeta, classes are a special kind of reference type. Classes
appear in class diagrams as boxes with three compartments, one
for the name, one for attributes and one for operations. These
compartments are typically laid out in a vertical box.

1 Refines(D<ReferenceTypeDescriptor >());
2 Layout(LayoutStrategy.Vbox);
3 using (Compartment("comp:header")) {
4 Label(e => e.Name).Validate(ClassNameRegex (),

"Not a valid class name!");
5 }
6 using (Compartment("comp:divider")) { }
7 using (Compartment("comp:comp")) {
8 Labels(D<AttributeDescriptor >(), c => c.

Attributes);
9 }

10 using (Compartment("comp:divider")) { }
11 using (Compartment("comp:comp")) {
12 Labels(D<OperationDescriptor >(), c => c.

Operations);
13 }

Listing 10 Rule to describe graphical contents for a class

In the DSL, the implementation of this specification is de-
picted in Listing 10. Line 1 of this listing specifies that classes
are a kind of reference type. As ReferenceTypeDescriptor
similarly refines TypeDescriptor, the framework will popu-
late the palette with a command to add a class to a namespace.
Line 2 specifies that the children of classes are to be laid out
using a Vbox algorithm. Lines 3–5 specify that the first com-
partment should contain the name of the class, using a regular

An internal DSL for graphical modeling tools based on GLSP 9

expression to check the validity of a name. Lines 6 and 10
add compartment dividers. Lines 7–9 specify that the second
compartment should consist of the attributes that are to be ren-
dered using the AttributeDescriptor class. Similarly, lines
11–13 specify that the next compartment should consist of the
operations.

As before, labels are specified as lenses such that no further
specification is required to support label edits, again in contrast
to the GLSP reference implementation. In case additional in-
formation is required for GLSP, this extra information is added
explicitly and in terms of the abstract syntax rather than GLSP
protocol classes. As the use of regular expressions is a frequent
and very convenient way of validating label contents, we created
a convenience overload to accept a regular expression and pass
it directly.9

5.4. Attributes
An attribute in a class diagram appears as a label, therefore the
DSL class AttributeDescriptor inherits from the base class
LabelDescriptor<IAttribute>. The main responsibility of
a label descriptor consists in the specification of how the text
of the label is constructed and set. The label for an attribute is
constructed from multiple properties of an attribute and encodes
the name, the type and bounds.10

1 Label(a => a.Name + (a.Type != null ? (" : " + a.
Type.Name) : string.Empty)

2 + " [" + GetBounds.Evaluate(a) + "]"
3 + (a.DefaultValue != null ? " = " + a.

DefaultValue : ""))
4 .Validate(AttributeRegex (), "not a valid

attribute")
5 .WithSetter(SetAttributeFromString);

Listing 11 DefineLayout implementation for
AttributeDescriptor

This encoding is depicted in Lines 1–3 of Listing 11. As
the rendering of the bounds string is used multiple times in the
NMeta editor, it is implemented as a reusable method. In order
to make the structure of the method visible to the incremen-
talization system NMF Expression, the lambda expression is
passed as a code model rather than a delegate. This way, NMF
can automatically infer when the label text needs to be updated
and hence, the developer does not need to specify this. As NMF
can only infer an incrementalization, but not an inversion of
generic string operations, we need to specify a method to invert
the encoding in Line 5. Otherwise, the framework does not
allow to edit the text of the label. Line 4 specifies that updated
values for an attribute should be checked against the specified
regular expression.

The signature of the method SetAttributeFromString is
depicted in Listing 12. As the DSL incrementalizes the label
expression, this method is only responsible for updating the
semantic model based on the input string.

9 The reason that the regular expression is returned from a method in Listing
10 is that we rely on compile-time source code generation from a regular
expression in .NET.

10 Similar to Ecore but unlike UML, NMeta does not contain a definition of
access modifiers.

1 private static void SetAttributeFromString(
IAttribute attribute , string attributeString)

Listing 12 Signature for the SetAttributeFromString
method

This lens construction yields a very powerful editing capa-
bility as the user may change the name, bounds, the type and
the default value with a single label change. During editing,
the GLSP server is constantly asked for feedback whether the
current attribute string is valid. After the user has entered the
string, it is automatically formatted correctly as the server actu-
ally uses the provided PUT operation to set the properties in the
semantic model. This results in an incremental update of the
GET operation.

5.5. References
References in NMeta are special as they have to be rendered
as edges that correspond to either one of two semantic model
elements: A reference and its opposite (if it exists) are rendered
as a single edge. However, if a reference has an opposite, we
want both the name and bounds of the reference and its opposite
to be shown.

1 Label(r => r.Name)
2 .At(0.5, EdgeSide.Top , offset: 10)
3 .Validate(IdentifierRegex (), "not a valid

identifier");
4 Label(r => r.Opposite.Name)
5 .If(r => r.Opposite != null)
6 .At(0.5, EdgeSide.Bottom , offset: 10)
7 .Validate(IdentifierRegex (), "not a valid

identifier");
8 Label(r => GetBoundsString.Evaluate(r))
9 .At(0.9, EdgeSide.Top , offset: 10)

10 .Validate(BoundsRegex (), "not a valid bounds
string")

11 .WithSetter(UpdateBounds);
12 Label(r => GetBoundsString.Evaluate(r.Opposite))
13 .If(r => r.Opposite != null)
14 .At(0.1, EdgeSide.Top , offset: 10)
15 .Validate(BoundsRegex (), "not a valid bounds

string")
16 .WithSetter(UpdateOppositeBounds);
17

18 SourceNode(D<ReferenceTypeDescriptor >(), r => r.
DeclaringType);

19 TargetNode(D<ReferenceTypeDescriptor >(), r => r.
ReferenceType);

20

21 Forward("renderEndArrow", r => r.Opposite == null
);

22 Forward("renderComposition", r => r.IsContainment
);

23

24 Profile(Bidirectional);
25 Profile(Containment);
26

27 Operation("Toggle Containment", (r,_) => r.
IsContainment = !r.IsContainment);

Listing 13 DefineLayout implementation for
ReferenceDescriptor

Listing 13 depicts the DefineLayout implementation for
the ReferenceDescriptor. Lines 1–3 specifiy that the name

10 Hinkel and Igler

of the reference should be visible on top of the middle of the
reference with an offset of 10 pixels to the edge. If the user
edits the label, it should validate against a regular expression.
Lines 4–7 create a label for the opposite reference, but only if
the opposite reference is actually present. Similarly, lines 8–
11 render the bounds of the reference near the reference target
whereas lines 12–16 render the bounds of the opposite reference,
if present.

Lines 18 and 19 define the synchronization blocks that con-
nect an edge to its source node and target node. Both source
and target are set to simple property accesses. NMF can infer
a PUT operation in this case and the DSL enables the user to
reconnect the edges.

Lines 21 and 22 forward two query results to the client: Is
the edge bidirectional (i.e. is there an opposite present)? Is
the edge a composition? The client decides on the basis of this
information whether to render an arrow symbol or a composition
diamond.

Next, lines 24 and 25 define two additional profiles for refer-
ences, encoding the profile with a simple string. With these
profiles, the framework provides three different actions for
the creation of a reference – a standard reference, a bidirec-
tional reference and a containment reference. When the user
chooses one of these actions, the CreateElement method of
the ReferenceDescriptor class is used to instantiate the ref-
erence.

Lastly, line 27 declares a custom toggle operation (contain-
ment: true/false).

1 public override IReference CreateElement(string
profile , object parent) {

2 var reference = new Reference {
3 Name = "NewReference",
4 IsContainment = profile == Containment ,
5 Opposite = profile == Bidirectional ? new

Reference { Name = "Opposite" } : null ,
6 };
7

8 SetHooks(reference);
9 SetHooks(reference.Opposite);

10

11 return reference;
12 }

Listing 14 Implementation of CreateElement for the
ReferenceDescriptor

The implementation of CreateElement is shown in Listing
14. A new reference is created. Depending on the profile
parameter, it is a containment reference and optionally has an
opposite. Note that the CreateElement method does neither
set the source or target of the edge, as these will be set using
the synchronization blocks from lines 18 and 19 of Listing 13.
However, for a bidirectional reference, the type of the reference
is always the declaring type of the opposite and vice versa.
This consistency relation is not defined in the metamodel and
therefore should be ensured by the editor. Setting these hooks
is done in lines 8 and 9 of Listing 14.

5.6. Evaluation
Fig. 4 shows a screenshot of the NMeta editor: a metamodel
for finite state machines is being edited. The palette on the right

side of the screenshot is populated based on the synchronization
blocks specified in the DSL. Palette entries are grouped by the
name of their semantic enclosing type by default. In particular,
the tool palette options for the creation of a new class, a new
enumeration or a new namespace are derived from lines 3 and 4
of Listing 8 and the fact that enumerations and classes are the
only non-abstract implementations of types. The three options
for the creation of a new reference are a consequence of the
synchronization block in lines 6–9 of the same listing. There are
three different entries, as the ReferenceDescriptor declares
two additional profiles (lines 24 and 25 of Listing 13). The
option for the addition of a new base class is a consequence of
lines 10–13 in Listing 8. Lastly, the context menu for a reference
is populated based on the operations provided for references,
i.e. line 27 of Listing 13. The context menu entry to delete the
element is currently generically available.

Although the editor is only a prototype, it has full support for
undo and redo operations (cf. Sec. 4.5), as NMF uses a generic
operation recorder to record changes performed on the model.
The implementation of the editor is available online11.

6. Discussion
This section describes the limitations of the prototype and dis-
cusses potential next steps:

– The DSL restricts edges to start and end at nodes12. The
corresponding assumption in GLSP is mainly due to a
similar assumption in Sprotty. As soon as Sprotty supports
edges starting at edges, we can extend our DSL.

– Regarding custom operations, we currently provide all
operations that are bound to one selected element and allow
users to declare these operations in the rules to describe
the visual appearance of these elements. Operations that
require multiple inputs are not supported yet. This can be
implemented as an extension to the DSL.

– We have not applied the framework to a diagram type with
a semantic notion of ports. Mainly, ports do not impact
the graph model and therefore hardly influence the DSL
as most of the changes affect the frontend, only. However,
the layouting engine needs to know that a child graphical
element is to be rendered as a port in order to get the initial
layout right.

All discussed changes to the existing DSL can be achieved as
extensions, i.e. without impact on the existing API.

Creating the NMeta editor, we also noticed that although the
DSL reduces it, there is still quite some manual code necessary,
especially when processing label changes. This supports our de-
sign choice for an internal DSL as such a DSL typically makes
it easy to integrate code of the host language. However, it also

11 The full language implementation is available at https://github.com/NMFCode/
NMF/blob/main/Glsp/NMetaGlspEditor/NMetaGlspEditor.Server/
Language/NMetaLanguage.cs, the frontend implementation is avail-
able at https://github.com/NMFCode/nmf-web-client/tree/main/packages/
nmeta-glsp-client.

12 Association classes in UML class diagrams and reference refinements in
NMeta are two examples for situations in which an edge is visullay connected
to another edge.

An internal DSL for graphical modeling tools based on GLSP 11

https://github.com/NMFCode/NMF/blob/main/Glsp/NMetaGlspEditor/NMetaGlspEditor.Server/Language/NMetaLanguage.cs
https://github.com/NMFCode/NMF/blob/main/Glsp/NMetaGlspEditor/NMetaGlspEditor.Server/Language/NMetaLanguage.cs
https://github.com/NMFCode/NMF/blob/main/Glsp/NMetaGlspEditor/NMetaGlspEditor.Server/Language/NMetaLanguage.cs
https://github.com/NMFCode/nmf-web-client/tree/main/packages/nmeta-glsp-client
https://github.com/NMFCode/nmf-web-client/tree/main/packages/nmeta-glsp-client

Figure 4 Screenshot of the resulting editor creating a metamodel for finite state machines

limits the degree to which our approach can be generalized to
other programming languages as the expression tree feature of
C#, that we use (through NMF Expressions) to obtain incremen-
tal change propagations for lambda expressions, is rather rare.
If such a syntax feature is missing, such as in Java, one can
either go for an external DSL or use a framework such as Active
Operations (Calvar et al. 2019) to achieve a similar syntax.

7. Related Work
We divide related work into GLSP implementations, graphical
editors using model transformation technology and graphical
editors using web technologies.

7.1. GLSP Implementations
The BIGUML modeling tool is one of the first UML editors
based on GLSP and the reference architecture for GLSP (Metin
& Bork 2023). BIGUML is under development and provides
currently basic support for several UML diagram types. In
contrast to our approach, a high proportion of the code is devoted
to the backend, as domain specific actions and extensions to the
graph model need to be implemented by the language engineer.
We believe that the language engineer has to have a much better
understanding of the GLSP protocol than with our DSL.

7.2. Graphical editors using transformation technolo-
gies

Our approach is not the first to utilize model transformation tech-
nology to develop graphical editors. With EuGENia (Kolovos
et al. 2010), Kolovos et al. used model transformations spec-
ified in ETL to simplify the development of graphical editors
using the GMF framework. However, these transformations are
non-incremental and are run at compile-time. The novelty of
our approach is that the model synchronization is executed at
run-time and incrementally, in order to continuously keep the
graphical model consistent with the semantic model.

Similarly, Picto (Kolovos et al. 2020) allows to create graph-
ical views of a model through a model-to-text transformation.

With Picto Web (Yohannis et al. 2024), there is also a tool that
creates a web application rather than an Eclipse plugin from
such a specification. However, both Picto and Picto Web are lim-
ited to view capabilities where the GLSP protocol adds editing
capabilities exposed by our implementation.

Closest to our approach, Rath et al. propose to use bidirec-
tional, online incremental model synchronizations (called live
transformations) to synchronize the concrete syntax with the
abstract syntax of a model (Ráth et al. 2010). This is also what
we do in our approach, but we use a dedicated internal transfor-
mation DSL instead of a general transformation language (cf.
Section 3.2). We believe that this DSL could be more declara-
tive than the transformation rules presented in this paper as our
DSL allows the developer to specify correspondences instead of
triggers, but such a comparison will be subject of future work.

7.3. Graphical editors using web technologies
Several technologies exist to simplify the process of creating
graphical domain specific languages (Eclipse 2024; Martínez-
Lasaca et al. 2023; Rocco et al. 2023; Zweihoff et al. 2019;
Corley et al. 2016). As the connection between the frontend
that displays diagrams to the user and the backend that stores
the semantic model is proprietary in such tools, the deployment
options of the resulting editors are limited as the user typically
has to use the entire platform. Integrating these editors into
existing editors like Visual Studio Code or entirely tailored
editing environments such as those based on Eclipse Theia can
therefore be rather difficult.

The Sirius Web project (Eclipse 2024) facilitates the develop-
ment of graphical editors based on web technologies by letting
developers model their editor. Whereas our DSL is an internal
DSL that makes it easy for developers to insert custom code,
Sirius Web uses a tree editor for a formal viewer model, relying
on OCL-like expressions for navigation. Sirius Web lacks an
abstraction (like e.g. lenses) from model features. This leads for
many features to a higher degree of coupling and is therefore
less flexible. Similarly, Dandelion (Martínez-Lasaca et al. 2023)
also creates a view model with text-based model navigation

12 Hinkel and Igler

expressions, but focuses more on support for diverse modeling
frameworks.

jjodel (Rocco et al. 2023) uses TSX as the technology that
developers use to specify the visuals of a graphical editor, simi-
lar to the Eclipse GLSP client that uses TSX to create custom
SVG elements. In the paper, the authors focus on collaborative
modeling. This important feature is implicit for GLSP-based
editors as of the client-server architecture, but unlike jjodel, the
underlying protocol is standardized.

8. Conclusion
In this paper, we have shown how model synchronization tech-
nology can be used for the development of graphical editors,
in particular for the heterogeneous model synchronization be-
tween a graphical model and a semantic model. We suggest to
use the paradigm of model synchronization via synchronization
blocks. This paradigm ensures basic properties, like correctness
and hippocraticness, and helps to separate the concerns in the
development of graphical editors. In order to tailor the model
synchronization technology for this task, we suggest to use a
dedicated DSL and introduced a candidate. The application of
this DSL to a class-diagram-like editor with real-world com-
plexity has shown the flexibility and conciseness that can be
achieved using such a DSL.

References
Anjorin, A., Buchmann, T., Westfechtel, B., Diskin, Z., Ko, H.,

Eramo, R., . . . Zündorf, A. (2020). Benchmarking bidirec-
tional transformations: theory, implementation, application,
and assessment. Softw. Syst. Model., 19(3), 647–691. doi:
10.1007/s10270-019-00752-x

Bork, D., Langer, P., & Ortmayr, T. (2024). A vision for
flexible glsp-based web modeling tools. In J. P. A. Almeida,
M. Kaczmarek-Heß, A. Koschmider, & H. A. Proper (Eds.),
The practice of enterprise modeling (pp. 109–124). Cham:
Springer Nature Switzerland.

Boronat, A. (2021). Incremental execution of rule-based model
transformation. Int. J. Softw. Tools Technol. Transf., 23(3),
289–311. doi: 10.1007/S10009-020-00583-Y

Buchmann, T., Bank, M., & Westfechtel, B. (2022). Bxtenddsl:
A layered framework for bidirectional model transformations
combining a declarative and an imperative language. Journal
of Systems and Software, 189, 111288. doi: https://doi.org/
10.1016/j.jss.2022.111288

Bäumer, D. (2023). LSP specification 3.17.0.
https://microsoft.github.io/language-server-protocol/
specifications/lsp/3.17/specification. ([Online; accessed
2024-11-26])

Calvar, T. L., Jouault, F., Chhel, F., & Clavreul, M. (2019,
July). Efficient ATL incremental transformations. Journal
of Object Technology, 18(3), 2:1-17. Retrieved from http://
www.jot.fm/contents/issue_2019_03/article2.html (The 12th
International Conference on Model Transformations) doi:
10.5381/jot.2019.18.3.a2

Corley, J., Syriani, E., & Ergin, H. (2016). Evaluating the
cloud architecture of AToMPM. In S. Hammoudi, L. F. Pires,

B. Selic, & P. Desfray (Eds.), MODELSWARD 2016 - pro-
ceedings of the 4rd international conference on model-driven
engineering and software development, rome, italy, 19-21
february, 2016 (pp. 339–346). SciTePress. doi: 10.5220/
0005776903390346

Eclipse, F. (2023). Sprotty. https://sprotty.org. ([Online;
accessed 2024-11-26])

Eclipse, F. (2024). Sirius Web. https://eclipse.dev/sirius/sirius
-web.html. ([Online; accessed 2024-11-26])

Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C., &
Schmitt, A. (2007, May). Combinators for bidirectional tree
transformations: A linguistic approach to the view-update
problem. ACM Transactions on Programming Languages and
Systems (TOPLAS), 29(3). doi: 10.1145/1232420.1232424

Hinkel, G. (2015a). Change Propagation in an Internal Model
Transformation Language. In D. Kolovos & M. Wimmer
(Eds.), Theory and Practice of Model Transformations: 8th
International Conference, ICMT 2015, Held as Part of STAF
2015, L’Aquila, Italy, July 20-21, 2015. Proceedings (pp. 3–
17). Cham: Springer International Publishing. doi: 10.1007/
978-3-319-21155-8_1

Hinkel, G. (2015b, 7 24). An NMF Solution to the Java Refac-
toring Case. In L. Rose, T. Horn, & F. Krikava (Eds.), Pro-
ceedings of the 8th Transformation Tool Contest, a part of
the Software Technologies: Applications and Foundations
(STAF 2015) federation of conferences (Vol. 1524, pp. 95–99).
CEUR-WS.org. Retrieved from http://ceur-ws.org/Vol-1524/
paper9.pdf

Hinkel, G. (2017, July 21). An NMF solution to the Smart Grid
Case at the TTC 2017. In A. Garcia-Dominguez, G. Hinkel,
& F. Krikava (Eds.), Proceedings of the 10th Transformation
Tool Contest, a part of the Software Technologies: Applica-
tions and Foundations (STAF 2017) federation of conferences.
CEUR-WS.org.

Hinkel, G. (2018a). Implicit incremental model analyses and
transformations (Doctoral dissertation, Karlsruhe Institute of
Technology, Germany). Retrieved from https://publikationen
.bibliothek.kit.edu/1000084464

Hinkel, G. (2018b). NMF: A multi-platform modeling frame-
work. In A. Rensink & J. Sánchez Cuadrado (Eds.), Theory
and practice of model transformation (pp. 184–194). Cham:
Springer International Publishing.

Hinkel, G. (2020). An NMF solution to the TTC 2020 roundtrip
engineering case. In A. Boronat, A. García-Domínguez, &
G. Hinkel (Eds.), TTC 2020/2021 - Joint Proceedings of
the 13th and 14th Tool Transformation Contests. The TTC
pandemic proceedings with CEUR-WS co-located with Soft-
ware Technologies: Applications and Foundations (STAF
2021), Virtual Event, Bergen, Norway, July 17, 2020 and
June 25, 2021 (Vol. 3089). CEUR-WS.org. Retrieved from
http://ceur-ws.org/Vol-3089/ttc20_paper4_Hinkel.pdf

Hinkel, G. (2021). An NMF solution to the TTC2021 in-
cremental recompilation of laboratory workflows case [ttc].
In A. Boronat, A. García-Domínguez, & G. Hinkel (Eds.),
TTC 2020/2021 - Joint Proceedings of the 13th and 14th
Tool Transformation Contests. The TTC pandemic proceed-
ings with CEUR-WS co-located with Software Technologies:

An internal DSL for graphical modeling tools based on GLSP 13

https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification
http://www.jot.fm/contents/issue_2019_03/article2.html
http://www.jot.fm/contents/issue_2019_03/article2.html
https://sprotty.org
https://eclipse.dev/sirius/sirius-web.html
https://eclipse.dev/sirius/sirius-web.html
http://ceur-ws.org/Vol-1524/paper9.pdf
http://ceur-ws.org/Vol-1524/paper9.pdf
https://publikationen.bibliothek.kit.edu/1000084464
https://publikationen.bibliothek.kit.edu/1000084464
http://ceur-ws.org/Vol-3089/ttc20_paper4_Hinkel.pdf

Applications and Foundations (STAF 2021), Virtual Event,
Bergen, Norway, July 17, 2020 and June 25, 2021 (Vol. 3089).
CEUR-WS.org. Retrieved from http://ceur-ws.org/Vol-3089/
ttc21_paper9_labflow_Hinkel_solution.pdf

Hinkel, G., & Burger, E. (2019). Change propagation and
bidirectionality in internal transformation DSLs. Softw. Syst.
Model., 18(1), 249–278. doi: 10.1007/s10270-017-0617-6

Hinkel, G., Goldschmidt, T., Burger, E., & Reussner, R. (2017).
Using Internal Domain-Specific Languages to Inherit Tool
Support and Modularity for Model Transformations. Software
& Systems Modeling, 1–27. doi: 10.1007/s10270-017-0578
-9

Hinkel, G., Heinrich, R., & Reussner, R. (2019, Jan 29). An
extensible approach to implicit incremental model analyses.
Software & Systems Modeling. doi: 10.1007/s10270-019
-00719-y

JSON-RPC Working Group. (2013). JSON-RPC 2.0 Spec-
ification. https://www.jsonrpc.org/specification. ([Online;
accessed 2024-11-26])

Juarez, S. (2016). Anders Hejlsberg on Modern Compiler
Construction. https://learn.microsoft.com/en-us/shows/seth
-juarez/anders-hejlsberg-on-modern-compiler-construction.
([Online; accessed 2024-11-26])

Knopfel, A., Grone, B., & Tabeling, P. (2006). Fundamental
Modeling Concepts: Effective communication of IT systems.
Hoboken, New Jersey, USA: Wiley.

Kolovos, D. S., de la Vega, A., & Cooper, J. C. (2020). Efficient
generation of graphical model views via lazy model-to-text
transformation. In E. Syriani, H. A. Sahraoui, J. de Lara,
& S. Abrahão (Eds.), Models ’20: ACM/IEEE 23rd interna-
tional conference on model driven engineering languages
and systems, virtual event, canada, 18-23 october, 2020 (pp.
12–23). ACM. doi: 10.1145/3365438.3410943

Kolovos, D. S., Rose, L. M., bin Abid, S., Paige, R. F., Polack,
F. A. C., & Botterweck, G. (2010). Taming EMF and GMF
using model transformation. In D. C. Petriu, N. Rouquette, &
Ø. Haugen (Eds.), Model driven engineering languages and
systems - 13th international conference, MODELS 2010, oslo,
norway, october 3-8, 2010, proceedings, part I (Vol. 6394, pp.
211–225). Springer. doi: 10.1007/978-3-642-16145-2_15

Martínez-Lasaca, F., Díez, P., Guerra, E., & de Lara, J. (2023).
Engineering low-code modelling environments with dande-
lion. In ACM/IEEE international conference on model driven
engineering languages and systems, MODELS 2023 compan-
ion, västerås, sweden, october 1-6, 2023 (pp. 14–18). IEEE.
doi: 10.1109/MODELS-C59198.2023.00011

Metin, H., & Bork, D. (2023). On Developing and Operating
GLSP-based Web Modeling Tools: Lessons Learned from
BIGUML. In 2023 ACM/IEEE 26th International Confer-
ence on Model Driven Engineering Languages and Systems
(MODELS) (p. 129-139). doi: 10.1109/MODELS58315.2023
.00031

Microsoft. (2007). The .NET Standard Query Operators. http://
msdn.microsoft.com/en-us/library/bb394939.aspx. ([Online;
accessed 2024-11-26])

Microsoft. (2024a). LSP Language Servers. https://microsoft
.github.io/language-server-protocol/implementors/servers.

([Online; accessed 2024-11-26])
Microsoft. (2024b). Microsoft Automatic Graph Layout.

https://github.com/microsoft/automatic-graph-layout. ([On-
line; accessed 2024-11-26])

Microsoft. (2024c). Monaco Editor. https://microsoft.github.io/
monaco-editor/. ([Online; accessed 2024-11-26])

Ráth, I., Ökrös, A., & Varró, D. (2010). Synchronization of
abstract and concrete syntax in domain-specific modeling
languages - by mapping models and live transformations.
Softw. Syst. Model., 9(4), 453–471. doi: 10.1007/S10270-009
-0122-7

Rocco, J. D., Ruscio, D. D., Salle, A. D., Vincenzo, D. D.,
Pierantonio, A., & Tinella, G. (2023). jjodel - A reflec-
tive cloud-based modeling framework. In ACM/IEEE in-
ternational conference on model driven engineering lan-
guages and systems, MODELS 2023 companion, västerås,
sweden, october 1-6, 2023 (pp. 55–59). IEEE. doi: 10.1109/
MODELS-C59198.2023.00019

Rodríguez-Echeverría, R., Izquierdo, J. L. C., Wimmer, M.,
& Cabot, J. (2018). Towards a language server proto-
col infrastructure for graphical modeling. In A. Wasowski,
R. F. Paige, & Ø. Haugen (Eds.), Proceedings of the 21th
ACM/IEEE international conference on model driven engi-
neering languages and systems, MODELS 2018, copenhagen,
denmark, october 14-19, 2018 (pp. 370–380). ACM. doi:
10.1145/3239372.3239383

Rubel, D., Wren, J., & Clayberg, E. (2011). The eclipse graphi-
cal editing framework (gef). Addison-Wesley Professional.

Sugiyama, K., Tagawa, S., & Toda, M. (1981). Methods
for Visual Understanding of Hierarchical System Structures.
IEEE Transactions on Systems, Man, and Cybernetics, 11(2),
109-125. doi: 10.1109/TSMC.1981.4308636

Yohannis, A. R., Kolovos, D. S., & García-Domínguez, A.
(2024). Exploring complex models with picto web. Sci.
Comput. Program., 232, 103037. doi: 10.1016/J.SCICO
.2023.103037

Zweihoff, P., Naujokat, S., & Steffen, B. (2019). Pyro: Gen-
erating domain-specific collaborative online modeling envi-
ronments. In R. Hähnle & W. M. P. van der Aalst (Eds.),
Fundamental approaches to software engineering - 22nd
international conference, FASE 2019, held as part of the
european joint conferences on theory and practice of soft-
ware, ETAPS 2019, prague, czech republic, april 6-11, 2019,
proceedings (Vol. 11424, pp. 101–115). Springer. doi:
10.1007/978-3-030-16722-6_6

About the authors
Georg Hinkel is professor at the RheinMain University of Ap-
plied Sciences (Germany) and maintainer of NMF. His re-
search focuses on MDE topics, incremental change propaga-
tion and laboratory automation You can contact the author at
georg.hinkel@hs-rm.de.

Bodo Igler is professor at the RheinMain University of Applied
Sciences (Germany). His research focuses on the application of
formal methods for software quality and DSLs embeddings.You
can contact the author at bodo.igler@hs-rm.de.

14 Hinkel and Igler

http://ceur-ws.org/Vol-3089/ttc21_paper9_labflow_Hinkel_solution.pdf
http://ceur-ws.org/Vol-3089/ttc21_paper9_labflow_Hinkel_solution.pdf
https://www.jsonrpc.org/specification
https://learn.microsoft.com/en-us/shows/seth-juarez/anders-hejlsberg-on-modern-compiler-construction
https://learn.microsoft.com/en-us/shows/seth-juarez/anders-hejlsberg-on-modern-compiler-construction
http://msdn.microsoft.com/en-us/library/bb394939.aspx
http://msdn.microsoft.com/en-us/library/bb394939.aspx
https://microsoft.github.io/language-server-protocol/implementors/servers
https://microsoft.github.io/language-server-protocol/implementors/servers
https://github.com/microsoft/automatic-graph-layout
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
mailto:georg.hinkel@hs-rm.de?subject=Your paper "An internal DSL for graphical modeling tools\based on GLSP"
mailto:bodo.igler@hs-rm.de?subject=Your paper "An internal DSL for graphical modeling tools\based on GLSP"

