I I JOURNAL OF
OBJECT TECHNOLOGY

Journal of Object Technology | COLUMN

Towards a Science of Developer eXperience (DevX)

Benoit Combemale*
*Inria & University of Rennes, France

ABSTRACT As software continues to permeate nearly every facet of modern life, the complexity and ubiquity of digital services
underscore the need for sustainable, effective, and inclusive software development practices. Although software engineering
has made significant progress in technical challenges since its inception, the human experience of those involved in software
creation, broadly defined as developers, remains underexplored. This column advocates for the formal recognition of Developer
eXperience (DevX) as a distinct research field. We argue that DevX profoundly influences critical development activities and
overall productivity, especially as development becomes increasingly collaborative and diverse in terms of application domains.
Building on existing efforts to measure and enhance DevX, we identify key rationales, scientific enablers, and interdisciplinary
intersections that support this emerging discipline. We also outline the core scientific challenges ahead, aiming to call for
actions from the research community and to promote more human-centered approaches to software engineering.

KEYWORDS Software Engineering, Integrated Development Environment, Software Development Life-cycle, User Experience

1. Introduction

In a world increasingly shaped by software, we are witnessing
not only the proliferation of software products but the digital
transformation of nearly every aspect of our professional and
personal life. This transformation is marked by pervasive, adap-
tive, contextualized, and personalized digital services that have
become integral to modern society. While software engineer-
ing as a discipline has matured significantly since its formal
recognition at the 1968 NATO conference, the field has largely
concentrated on technical challenges across the software devel-
opment lifecycle. In doing so, it has often overlooked a critical
dimension: the experience of developers themselves (Fager-
holm & Miinch 2012; Forsgren et al. 2024). We use the term
developer broadly, to encompass not only software profession-
als typically identified as software engineers, but also scientists,
domain experts, and even citizens (e.g., end-user programming
(Barricelli et al. 2019)) who interact with software development
artefacts. Their experience impacts not only the engagement
in key development activities such as design (Palomino et al.

JOT reference format:

Benoit Combemale. Towards a Science of Developer eXperience (DevX).
Journal of Object Technology. Vol. 24, No. 1, 2025. Licensed under
Attribution - NonCommercial - No Derivatives 4.0 International (CC
BY-NC-ND 4.0) http://dx.doi.org/10.5381/jot.2025.24.1.a2

2025) and test (Parry et al. 2022), but also the overall productiv-
ity (Razzaq et al. 2024; Noda et al. 2023).

Today, as the demand for high-quality, complex software
systems expands across diverse domains and involves very het-
erogeneous stakeholders, there is an urgent need to focus on the
human aspects of software creation. While previous research
has explored ways to measure (D’Angelo et al. 2024), under-
stand, and improve (Greiler et al. 2022) the experience of devel-
opers, a systematic articulation of the underlying rationales and
core challenges remains lacking. This column aims to discuss
the motivations for recognizing Developer eXperience (DevX)
as a research field in its own right. We outline the foundational
rationales for this emerging discipline, explore its intersections
with existing scientific domains and key enablers, and discuss
the scientific challenges. Our goal is to prompt the scientific
community to acknowledge and address this vital dimension
of software engineering, ultimately fostering more sustainable,
effective, and inclusive software development practices.

2. Motivations

While addressing the complexity of software systems and meet-
ing the required quality assurance have been the motivations
for software engineering, it is important to review the current
and new motivations that lead to a better consideration of the
experience of engaged developers. In the following, we discuss

An AITO publication

http://dx.doi.org/10.5381/jot.2025.24.1.a2

the new dimensions of the complexity of software systems, as
well as the diversity of developers and the limits of the anthropic
principle in the software development lifecycle.

2.1. System Complexity

Modern software systems are more intricate than ever before, in
the form of socio-technical eco-systems (Bencomo et al. 2024).
They are characterized by distributed architectures, microser-
vices, machine learning models, and large-scale integrations.
Developers must reason about layers of abstractions, manage
dependencies, and debug interactions across components that
are often opaque or poorly documented. This complexity poses
significant cognitive challenges, leading to inefficiencies, errors,
and frustration.

To succeed with the development of modern software, or-
ganizations must have the agility to adapt faster to constantly
evolving environments to deliver more reliable and optimized
solutions that can be adapted to the needs and environments of
their stakeholders including users, customers, business, develop-
ment, and IT. However, stakeholders are missing tool support for
global decision-making, considering the increasing variability
of the solution space, the frequent lack of explicit representa-
tion of its associated variability and decision points, and the
uncertainty of the impact of decisions on stakeholders and the
solution space (Kienzle et al. 2022). This leads to an ad-hoc
decision making process that is slow, error-prone, and often
favors local knowledge over global, organization-wide objec-
tives. It urges to provide automation and tool support in aid
of a multi-criteria decision making process involving different
stakeholders within a feedback-driven software development
process where feedback cycles aim to reduce uncertainty.

While software is revolutionizing the modern world, software
systems evolve under frequently changing environments, and
are expected to handle ever-increasing uncertainty. This blurs
not only the line between engineering-time and execution-time
(Baresi & Ghezzi 2010), but also between software and the real
world as both are fusing into a single fabric. These dynamics
require accelerated levels of adaptability—indeed, a temporal
adaptability, i.e., the ability to adapt not only to a fixed space of
variable requirements, but also to an emerging chain of changing
requirements, often driven by incoming input data.

2.2. Developer Diversity

The developer community is no longer limited to tradi-
tional software engineers. Scientists, domain experts, and
even non-programmers—often referred to as "citizen devel-
opers"—increasingly engage in programming to advance their
fields or solve domain-specific problems. This heterogeneity
creates challenges in designing tools and processes that cater
to diverse skill levels, mental models, and goals. For example,
while experienced software engineers may seek extensibility
and fine-grained control, citizen developers prioritize simplicity
and intuitive interfaces (Bucaioni et al. 2022) with possibly vi-
sual programming (e.g., no/low-code development (Luo et al.
2021)), domain experts expect to manipulate relevant abstrac-
tions of the domain to bridge the gap between the problem space
and the solution space (Madni & Sievers 2018), and scientists

2 Benoit Combemale

relies on complex processes and various software languages to
move from continuous mathematical models to efficient imple-
mentation on HPC infrastructures (Leroy et al. 2021).

2.3. Complexity of Software Development Practices

Modern software development has evolved into a highly intri-
cate discipline characterized by a multiplication of processes,
tools, and responsibilities. Far from being limited to coding
alone, contemporary development practices encompass various
tasks, including requirement engineering, architectural design,
implementation, testing, deployment, infrastructure manage-
ment, monitoring, and continuous maintenance and evolution.
Each of these dimensions introduces its own set of artifacts and
tools, leading to increasing cognitive and operational overhead
for developers.

A major contributor to this complexity is the proliferation
of development artifacts—ranging from source code and docu-
mentation to configuration files, test scripts, CI/CD pipelines,
and telemetry data. These artifacts are often managed across
heterogeneous tools such as version control systems, issue track-
ers, integrated development environments, build servers, and
cloud platforms. The resulting fragmentation demands frequent
context switching, which can negatively impact developer pro-
ductivity and mental well-being (Forsgren et al. 2021; Meyer et
al. 2014).

Moreover, developers are now expected to assume respon-
sibilities traditionally handled by specialized roles. Practices
like DevOps and Site Reliability Engineering blur the lines be-
tween development, and operations. This convergence, while
promoting agility and collaboration, also necessitates continu-
ous learning and adaptation to new frameworks, paradigms, and
toolchains.

The pace of technological change further exacerbates the
complexity. The rapid evolution of programming languages, li-
braries, cloud-native technologies, and architectural styles (e.g.,
microservices, serverless computing) demands that developers
not only build software but also stay perpetually current with
trends and best practices.

Hence, the complexity of software development today arises
not just from the systems being built but also from the ecosys-
tem in which they are developed, thus degrading the developer
experience.

3. Rationales for DevX

In an era where software systems underpin critical infrastruc-
tures and drive global innovation, the experience of developers
—the creators of these systems— has become a central concern.
DevX transcends traditional software engineering metrics by
emphasizing the holistic impact of tools, workflows, and en-
vironments on developers’ creativity, engagement, and overall
effectiveness (Forsgren et al. 2024). DevX is not merely a pro-
ductivity enhancer; it is an enabler of accessible, pleasurable,
and accountable development practices that align with the grow-
ing complexity and diversity of modern software ecosystems.
In the following, we review the rationales of DevX from the
point of view of software engineering.

3.1. Fostering Creativity and Engagement

Creativity is a cornerstone of effective software development.
Developers constantly devise novel solutions to technical chal-
lenges, a process that thrives in environments fostering engage-
ment and flow. Poorly designed tools, fragmented workflows,
and opaque systems disrupt this creative process, eroding en-
gagement and increasing cognitive load. DevX research high-
lights the importance of affordances—features that intuitively
guide developers toward productive interactions. By enabling
seamless exploration, experimentation, and debugging, a strong
DevX cultivates environments where developers can fully lever-
age their creative potential.

3.2. Enhancing Accessibility and Confidence

The democratization of software development has brought di-
verse actors into the field, including scientists, domain experts,
and citizen developers. Accessibility is a critical aspect of DevX,
ensuring that tools and processes cater to varying levels of ex-
pertise and technical backgrounds. Equally vital is fostering
confidence, as intuitive and transparent systems help developers
trust their tools and outputs. By prioritizing accessibility and
confidence, DevX bridges the gap between novice and expert
developers, empowering all to contribute effectively.

3.3. Prioritizing Social Translucence and Accountability
Modern software development is inherently collaborative, of-
ten involving distributed teams working across different time
zones and roles. Social translucence—the ability to make others’
actions and intentions visible in a respectful and comprehensi-
ble way—is a key attribute of effective development environ-
ments. Tools like forges and practices like DevOps promote
accountability by offering clear records of contributions while
facilitating open communication and feedback. DevX research
emphasizes the role of such systems in building trust, reducing
misunderstandings, and ensuring that collaborative processes
are as seamless as individual workflows.

3.4. Balancing Pleasure with Productivity and Efficiency
A compelling DevX is not merely functional; it is also pleasur-
able. Developers derive satisfaction from smooth workflows,
elegant tools, and systems that anticipate their needs. This
pleasure, in turn, feeds motivation and engagement, fostering
sustainable productivity. For instance, tools that offer visual
feedback, gamified elements, or aesthetic design can transform
routine tasks into enjoyable experiences. However, pleasure
must align with productivity and efficiency. Tools should min-
imize repetitive or redundant work and allow developers to
achieve their goals swiftly without sacrificing the joy of problem-
solving. Striking this balance is a central challenge in DevX
research.

3.5. Addressing Overwhelming Complexity and Artifact
Management

As software systems grow in complexity, developers must nav-

igate a large set of software development artefacts—source

code, documentation, tests, logs, configurations—across nu-

merous tools and platforms. This fragmentation often leads

to inefficiencies, as developers are forced to context-switch or
manually integrate disparate workflows. DevX research seeks
to streamline these processes, offering integrated environments
that provide developers with a clear mental model of their work
and reduce friction. By improving efficiency and productivity,
such environments enable developers to spend more time on
creative and high-impact tasks.

4. Key Enablers and Scientific Challenges

The experience of software developers is a multifaceted concern
that extends beyond the technical concerns related to artefacts,
tools, and methodologies. It also encompasses human and social
dimensions, thereby demanding a comprehensive perspective.
In this section, we identify key enablers and discuss the remain-
ing open scientific challenges, with attention to both technical
and social aspects.

4.1. Technical Dimension

From a technical standpoint, enhancing the developer experi-
ence hinges on the evolution of programming environments,
languages, and tools. One fundamental concern is program
comprehension. As systems grow in complexity, understand-
ing their structure and behavior becomes increasingly difficult.
This necessitates improved static and dynamic analysis tech-
niques, better visualization methods, and deeper insights into
the cognitive processes involved in reading and modifying code.

The interfaces through which developers interact with code
also play a critical role. Programming notebooks, such as
Jupyter, support exploratory and data-centric workflows, yet
still present usability and reproducibility challenges. Similarly,
diverse programming styles—ranging from live and exploratory
programming to literate programming—demand flexible and
responsive environments that support rapid feedback, inline doc-
umentation, and iterative development. Methods to facilitate the
understanding of the overall behavior—such as example-based
programming (Niephaus et al. 2020), omniscient debugging
(Pothier & Tanter 2009) and moldable development (Nierstrasz
& Girba 2024)—offer promising avenues but require further
refinement and integration with the various programming styles
and interfaces.

Another important area involves the design and implemen-
tation of program representations that are both abstract and
manipulable. These representations should enable intuitive
interaction, particularly for end-users. Visual programming
environments (incl., block-based programming environment
(Weintrop & Wilensky 2017)) attempt to address this by accel-
erating the learning curve, though issues related to scalability,
expressiveness, and debugging remain open.

To better support a wide range of users and tasks, program-
ming languages and environments are increasingly incorporat-
ing mixed notations that combine text, graphics, and symbolic el-
ements. Creating coherent semantics and robust tooling around
these hybrid notations presents a significant research challenge.
Closely related is the field of abstraction engineering, which
focuses on developing, managing, and evolving meaningful
abstractions.

Towards a Science of Developer eXperience (DevX) 3

As software development processes shift toward continuous
practices, such as continuous integration and deployment, new
demands are placed on tools and infrastructures. Environments
must support real-time feedback and ongoing changes while
maintaining stability. This, in turn, drives the need for more
adaptable input and output modalities—including touch, voice,
and gesture-based interactions—that can make programming
more accessible and intuitive.

Finally, there remains a strong need for infrastructures, meta-
tools, and frameworks that streamline the creation and extension
of programming environments. These tools are essential not
only for researchers and educators but also for practitioners who
wish to customize or prototype new workflows.

4.2. Social Dimension

Beyond the technical realm, the social dimension of developer
experience introduces a range of human-centric and interdisci-
plinary challenges. Addressing these effectively requires the
engagement of researchers from the social sciences and hu-
manities (SHS), alongside computer scientists and software
engineers.

At the individual level, it is important to consider how con-
cepts such as affordance, cognitive load, motivation, and emo-
tional engagement influence the way users interact with pro-
gramming environments. Tools should be designed with these
psychological and ergonomic factors in mind, to foster inclusive
and empowering experiences for diverse populations.

At the collective level, social dynamics such as collabora-
tion, communication, and shared understanding come to the
forefront (Booch & Brown 2003). Concepts like social translu-
cence—the visibility of others’ activities and intentions—are
vital for supporting teamwork and community practices. De-
signing programming environments that promote awareness,
coordination, and mutual support among users remains an open
challenge.

Research communities such as Human—Computer Interac-
tion (HCI)—including Computer-Supported Cooperative Work
(CSCW)—and Visual Languages and Human-Centric Comput-
ing (VL/HCC) have developed longstanding bodies of work on
issues highly relevant to understanding and improving DevX.
HCT and CSCW provide rich insights into collaboration, coor-
dination, and socio-technical aspects of software development
(Grudin 1994; Herbsleb & Mockus 2003; Stol & Fitzgerald
2018), while VL/HCC has focused on making programming
more accessible and comprehensible through visual notations,
end-user programming, and human-centered design of tools
(Burnett & Myers 2014; Cao et al. 2013). Leveraging this prior
work can provide theoretical foundations and practical strategies
for advancing DevX research and practice.

In summary, the development of future programming envi-
ronments must be informed by both technical innovation and
human-centered design. Progress in this area will depend on
a sustained commitment to cross-disciplinary research and on
tools that reflect the complexity of both the artefacts and the
communities that produce and maintain them.

4 Benoit Combemale

5. Conclusion

DevX is a multidimensional construct that encompasses creativ-
ity, engagement, accessibility, confidence, and collaboration. It
emphasizes affordance, social translucence, accountability, and
the balance between pleasure, productivity, and efficiency. As
software systems grow increasingly complex and developer pop-
ulations become more diverse, systematically investing in DevX
is essential to empower developers and to ensure the sustainable
evolution of software engineering practices.

To foster such progress, we conceptualize DevX along mea-
surable dimensions such as creativity, emotional well-being,
flow, and collaboration efficiency. Each dimension can be stud-
ied through complementary methods, including surveys, teleme-
try, and cognitive load analysis. While these dimensions are
not exhaustive, they provide a concrete starting point for future
empirical research and a shared vocabulary for the community.

A critical challenge, however, lies in the fragmented nature
of existing research. Relevant insights originate from diverse
subdomains—cognitive psychology (e.g., cognitive load, flow),
organizational science (e.g., collaboration models, team struc-
tures), and usability research (e.g., developer tools and inter-
faces)—yet they often remain siloed. DevX offers a unifying
perspective by articulating their interdependencies: for instance,
an unsuitable organizational model may elevate cognitive load
and diminish well-being, while poor tool usability can disrupt
flow and undermine collaboration efficiency.

This column seeks to establish DevX as a recognized re-
search field within software engineering and to call the com-
munity to action. The immediate next step is to consolidate
foundational concepts, establish measurable dimensions, de-
velop benchmarks for empirical studies, and provide a compre-
hensive research roadmap that integrates the aforementioned
dimensions and subdomains, ultimately advancing both the sci-
ence and practice of software engineering. In the medium term,
validated instruments and integrated tools can emerge, enabling
evidence-based improvements in practice and industry adoption.
In the longer term, a mature science of DevX could establish
dedicated venues and curricula, deliver holistic tool ecosystems,
and demonstrate tangible impacts on innovation, sustainability,
and inclusivity in software development. Such a trajectory illus-
trates how DevX can evolve from a promising perspective into
a transformative discipline at the heart of software engineering.

About the authors

Benoit Combemale is a Research Director at Inria and a Full
Professor of Software Engineering at the University of Rennes.
His research interests in Software Engineering include Software
Language Engineering, Model-Driven Engineering, and Soft-
ware Validation & Verification. You can contact the author at
benoit.combemale @inria.fr or visit http://combemale.fr.

Acknowledgments

The author thanks all the early readers for their valuable feed-
back. I also kindly thank Valentin Bourcier and Steven Costiou
for our insightful discussions.

mailto:benoit.combemale@inria.fr?subject=Your paper "Towards a Science of Developer eXperience (DevX)"
http://combemale.fr

References

Baresi, L., & Ghezzi, C. (2010). The disappearing boundary
between development-time and run-time. In Proceedings
of the fse/sdp workshop on future of software engineering
research (p. 17-22). New York, NY, USA: Association for
Computing Machinery. Retrieved from https://doi.org/10
.1145/1882362.1882367 doi: 10.1145/1882362.1882367

Barricelli, B. R., Cassano, F., Fogli, D., & Piccinno, A.
(2019). End-user development, end-user programming
and end-user software engineering: A systematic mapping
study. Journal of Systems and Software, 149, 101-137. Re-
trieved from https://www.sciencedirect.com/science/article/
pii/S0164121218302577 doi: https://doi.org/10.1016/j.jss
.2018.11.041

Bencomo, N., Cabot, J., Chechik, M., Cheng, B. H. C., Combe-
male, B., Wasowski, A., & Zschaler, S. (2024). Ab-
straction engineering. Retrieved from https://arxiv.org/abs/
2408.14074

Booch, G., & Brown, A. W. (2003). Collaborative development
environments. Adv. Comput., 59, 1-27. Retrieved from
https://doi.org/10.1016/S0065-2458(03)59001-5 doi: 10
.1016/S0065-2458(03)59001-5

Bucaioni, A., Cicchetti, A., & Ciccozzi, F. (2022). Modelling
in low-code development: a multi-vocal systematic review.
Software and Systems Modeling, 21(5), 1959-1981.

Burnett, M. M., & Myers, B. A. (2014). Future of end-
user software engineering: beyond the silos. In Future
of software engineering proceedings (p. 201-211). New
York, NY, USA: Association for Computing Machinery. Re-
trieved from https://doi.org/10.1145/2593882.2593896 doi:
10.1145/2593882.2593896

Cao, J., Kwan, 1., Bahmani, F., Burnett, M., Fleming, S. D.,
Jordahl, J., ... Yang, S. (2013). End-user programmers in
trouble: Can the idea garden help them to help themselves?
In 2013 ieee symposium on visual languages and human
centric computing (p. 151-158). doi: 10.1109/VLHCC.2013
.6645260

D’Angelo, S., Lin, J., Dicker, J., Egelman, C., Hodges, M.,
Green, C., & Jaspan, C. (2024). Measuring developer ex-
perience with a longitudinal survey. IEEE Software, 41(4),
19-24.

Fagerholm, F., & Miinch, J. (2012). Developer experience:
Concept and definition. In 2012 international conference on
software and system process (icssp) (pp. 13=77).

Forsgren, N., Kalliamvakou, E., Noda, A., Greiler, M., Houck,
B., & Storey, M.-A. (2024). Devex in action. Communica-
tions of the ACM, 67(6), 42-51.

Forsgren, N., Storey, M.-A., Maddila, C., Zimmermann, T.,
Houck, B., & Butler, J. (2021, March). The space of
developer productivity: There’s more to it than you think.
Queue, 19(1), 20-48. Retrieved from https://doi.org/10.1145/
3454122.3454124 doi: 10.1145/3454122.3454124

Greiler, M., Storey, M.-A., & Noda, A. (2022). An actionable
framework for understanding and improving developer expe-
rience. IEEE Transactions on Software Engineering, 49(4),
1411-1425.

Grudin, J. (1994). Computer-supported cooperative work:
history and focus. Computer, 27(5), 19-26. doi: 10.1109/
2.291294

Herbsleb, J., & Mockus, A. (2003). An empirical study of
speed and communication in globally distributed software
development. IEEE Transactions on Software Engineering,
29(6), 481-494. doi: 10.1109/TSE.2003.1205177

Kienzle, J., Combemale, B., Mussbacher, G., Alam, O., Bor-
deleau, F., Burguefo, L., ... Syriani, E. (2022, Octo-
ber). Global Decision Making Over Deep Variability in
Feedback-Driven Software Development. In ASE 2022 - 37th
IEEE/ACM International Conference on Automated Software
Engineering (p. 1-6). Rochester, MI, United States: IEEE.
Retrieved from https://inria.hal.science/hal-03770004 doi:
10.1145/3551349.3559551

Leroy, D., Sallou, J., Bourcier, J., & Combemale, B. (2021).
When scientific software meets software engineering. Com-
puter, 54(12), 60-71. doi: 10.1109/MC.2021.3102299

Luo, Y., Liang, P., Wang, C., Shahin, M., & Zhan, J. (2021).
Characteristics and challenges of low-code development: The
practitioners’ perspective. In Proceedings of the 15th acm
/ ieee international symposium on empirical software engi-
neering and measurement (esem). New York, NY, USA:
Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/3475716.3475782 doi: 10.1145/
3475716.3475782

Madni, A. M., & Sievers, M. (2018). Model-based systems
engineering: Motivation, current status, and research oppor-
tunities. Systems Engineering, 21(3), 172-190.

Meyer, A. N., Fritz, T., Murphy, G. C., & Zimmermann, T.
(2014). Software developers’ perceptions of productivity. In
Proceedings of the 22nd acm sigsoft international symposium
on foundations of software engineering (pp. 19-29).

Niephaus, F.,, Rein, P, Edding, J., Hering, J., Konig, B., Opahle,
K., ... Hirschfeld, R. (2020). Example-based live program-
ming for everyone: building language-agnostic tools for live
programming with Isp and graalvm. In Proceedings of the
2020 acm sigplan international symposium on new ideas,
new paradigms, and reflections on programming and soft-
ware (p. 1-17). New York, NY, USA: Association for Com-
puting Machinery. Retrieved from https://doi.org/10.1145/
3426428.3426919 doi: 10.1145/3426428.3426919

Nierstrasz, O. M., & Girba, T. (2024). Moldable development
patterns. In Proceedings of the 29th european conference on
pattern languages of programs, people, and practices. New
York, NY, USA: Association for Computing Machinery. Re-
trieved from https://doi.org/10.1145/3698322.3698327 doi:
10.1145/3698322.3698327

Noda, A., Storey, M.-A., Forsgren, N., & Greiler, M. (2023).
Devex: What actually drives productivity? Communications
of the ACM, 66(11), 44-49.

Palomino, P., Fonseca, M., Souza, J., Toda, A., Pereira, R. L.,
Cordeiro, T., ... Demerval, D. (2025). Enhancing developers
experience (devex) for successful design system implementa-
tion. International Journal of Human—Computer Interaction,
41(1), 807-819.

Parry, O., Kapfhammer, G. M., Hilton, M., & McMinn, P.

Towards a Science of Developer eXperience (DevX) 5

https://doi.org/10.1145/1882362.1882367
https://doi.org/10.1145/1882362.1882367
https://www.sciencedirect.com/science/article/pii/S0164121218302577
https://www.sciencedirect.com/science/article/pii/S0164121218302577
https://arxiv.org/abs/2408.14074
https://arxiv.org/abs/2408.14074
https://doi.org/10.1016/S0065-2458(03)59001-5
https://doi.org/10.1145/2593882.2593896
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.1145/3454122.3454124
https://inria.hal.science/hal-03770004
https://doi.org/10.1145/3475716.3475782
https://doi.org/10.1145/3426428.3426919
https://doi.org/10.1145/3426428.3426919
https://doi.org/10.1145/3698322.3698327

(2022). Surveying the developer experience of flaky tests.
In Proceedings of the 44th international conference on soft-
ware engineering: Software engineering in practice (pp. 253—
262).

Pothier, G., & Tanter, E. (2009). Back to the future: Omniscient
debugging. IEEE Software, 26(6), 78-85. doi: 10.1109/
MS.2009.169

Razzaq, A., Buckley, J., Lai, Q., Yu, T., & Botterweck, G.
(2024). A systematic literature review on the influence of
enhanced developer experience on developers’ productivity:
Factors, practices, and recommendations. ACM Computing
Surveys, 57(1), 1-46.

Stol, K.-J., & Fitzgerald, B. (2018, September). The abc
of software engineering research. ACM Trans. Softw. Eng.
Methodol., 27(3). Retrieved from https://doi.org/10.1145/
3241743 doi: 10.1145/3241743

Weintrop, D., & Wilensky, U. (2017). Comparing block-based
and text-based programming in high school computer science
classrooms. ACM Transactions on Computing Education
(TOCE), 18(1), 1-25.

6 Benoit Combemale

https://doi.org/10.1145/3241743
https://doi.org/10.1145/3241743

