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ABSTRACT Languages that support dynamically evolving collections present a range of challenges in modern virtual machines,
and require sophisticated optimizations to address any efficiency gaps. Collections in such languages dynamically evolve in size
as well as the types of the elements they contain, and thereby affect performance and memory efficiency due to the expensive
operations required to support resizing and the heterogenous object types. This paper presents two collection optimizations
to address this cost; 1) a novel memory layout, type-based stores, storing primitives of heterogenous collections unwrapped
in contiguous storage areas; and 2) an allocation context aware collection presizing technique, which is a profile-guided
optimization that uses feedback from allocation sites and infers the calling context from the stack height to determine an
optimal collection size. We implement type-based stores as a collection optimization in PyPy, a Python implementation that is
built using the RPython framework for meta-tracing-JIT based virtual machines. We also implement language-independent
type-based stores in RPython and perform evaluation for Topaz, a Ruby implementation and Pycket, a Racket implementation.
Our evaluation shows that while some individual Python collection operations see a noticeable slowdown, in PyPy benchmarks
with more realistic mixes of operations, the overall performance is improved by an average of 11.4%. The language-independent
type-based stores also improve performance for Ruby and Racket applications by as high as 5% and 14% respectively. We also
apply an offline version of the allocation context aware presizing technique to PyPy, observing a performance improvement of
11% and memory savings as high as 16% on average for the best median strategy; while we introduce an overhead as high as
25% when accessing and applying the profiled data.
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1. Introduction
Dynamic languages like Python and JavaScript continue to be
widely used and for a large number of domains. Their main char-
acteristic is that they use dynamic type systems to allow rapid
prototyping, but also provide desired features like: easier syntax,
automatic memory management, a robust ecosystem of standard
libraries and third party packages, support for dynamic code
generation and execution, interactive execution environments,
and advanced introspection capabilities (Ilbeyi 2019).

These productivity-oriented features come at a cost compared
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to static languages. This is because dynamic languages degrade
performance with dynamism due to the extra runtime tasks
required for aspects like type checking and method binding
among others.

One of the most important idioms in languages that support
dynamic features is the use of collections, data structures that
allow the programmer to store and retrieve data by location or
by name. Compared to programming languages that do not
support dynamic evolution, dynamic collections have important
programmer conveniences including the ability to grow and
shrink (resizing), and the ability to contain elements of multiple
types (heterogeneity). Both of these features have a memory
management related performance cost.

This paper makes two contributions to improving the perfor-
mance of collections in dynamic languages. First, we present
and evaluate a type-based stores technique that transparently
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re-organizes heterogeneous collections in memory. Second, we
use offline and lightweight feedback to accurately predict the
final size of a collection while being sensitive to the allocation
context.

Type-based Stores. We use the terms heterogeneous and
homogeneous for collections in this paper.

Heterogeneous Collections are data structures where a single
container can have members of dissimilar types. For instance,
consider the pseudocode for a Python function in Listing 1, that
computes the sum of select items of a list, lst_het, and defines
another list, lst_hom.

1 def process_lst ():
2 lst_het = [1, "foo", 3, "bar", 5, 6]
3 lst_het [0] + lst_het [2]
4 lst_het [0] + lst_het [1] # fails
5 str(lst_het [0]) + lst_het [1]
6 lst_hom = [1, 2, 3]

Listing 1 An Example of Data Structure Heterogeneity

Heterogeneous collections as the one shown on line 2 of List-
ing 1 are typically represented uniformly, with a general object
type, using a technique known as boxing or wrapping. When an
operation is performed on an item, the language implementation
has to unwrap or unbox the memory, to check its concrete type
as a way of verifying whether the operation is acceptable for
that type of value or not. In this example, lines 3 and 5 will
execute correctly while line 4 will throw an exception, as it is
forbidden to perform an arithmetic operation between a string
and an integer.

Homogeneous Collections on the other hand contain items of
the same type, for instance, the list lst_hom on line 6 of List-
ing 1. The literature addresses the challenges regarding collec-
tion boxing of values with optimizations like storage strategies
and element kinds, both of which only handle homogeneous
data structures (Bolz et al. 2013; Clifford et al. 2015). PyPy
supports storage strategies for collections with a mix of floats
and integers but does not do so for any other combination of
types.

PyPy’s storage strategies assume that if any collections be-
come heterogeneous, then they do so when the collection has
few items. However, we show in Section 3.1 that for several
Python workloads, storage strategies actually lead to worse
performance. This is because, when a collection becomes het-
erogeneous, it is iterated, boxing any items that may have been
unboxed before. Therefore storage strategies have two chal-
lenges, 1) they do not optimize heterogeneous collections and
2) they do not deal well with collections that become heteroge-
neous later in program execution.

Element kinds (Clifford et al. 2015) are similar to storage
strategies and minimize dehomogenization through initializing
collections from a given allocation site using a strategy of a
previously allocated collection from the same site. This reduces
the number of transitions a collection can have, but it also means
that a list that becomes homogeneous later will not be optimized
if it already transitioned to a heterogeneous collection prior. For
large collections, that transition to a general kind also incurs a
boxing overhead. Therefore element kinds also share most of
the same challenges as storage strategies.

We propose type-based stores, a new memory layout to han-
dle heterogeneous collections through collection splitting. The
layout introduces multiple contiguous stores to match the types
of items in the collection, storing objects of the same type in
each store, and can use the strategy pattern to manage the stores,
as well as unwrap the values.

We implemented the proposed mechanism in PyPy, a Python
implementation, built using the RPython framework. We
also demonstrate language-independent type-based stores in
RPython and perform evaluation for Topaz, a Ruby implementa-
tion and Pycket, a Racket implementation, both RPython-based
virtual machines.

Our evaluation shows that while some individual Python
collection operations see a noticeable slowdown, in PyPy bench-
marks with more realistic mixes of operations, the overall per-
formance is improved by an average of 11.4%. The language-
independent type-based stores also improve performance for
Ruby and Racket applications by as high as 5% and 14% respec-
tively.

The improvements are much lower in Ruby and Racket be-
cause we integrate and use a modular version of type-based
stores for Ruby and Racket, implemented in the RPython-based
Rstrategies library as RStores. The library uses metaprogram-
ming to interface the runtimes but runtimes also have specific im-
plementation considerations during integration, because Rstrate-
gies does not have complete information about collection imple-
mentation details for the different runtimes.

The goal of the type-based stores technique is to find an effi-
cient storage representation for collections containing values of
a primitive type; based on occurring element types, for dynamic
languages where there is a significant possibility that collec-
tions are heterogeneous. We aim to optimize collections of
primitive types like strings in data structures where techniques
like tagging are hard and complex to achieve. Tagging also has
performance implications due to branch prediction. Type-based
stores can be defined as contiguous storage areas created in
memory, to hold items of the same type.

Context Aware Presizing. Data structure resizing allows for
the expansion and shrinking of collections as shown in Listing 2
on lines 4 and 6. To support this flexibility, first, collections
are internally over allocated, for example the lists a and b are
allocated twice the slots needed in most virtual machines. This
is a performance optimization and it is possible to naively resize
by one on every insertion, but in many cases this performance
optimization is used and over allocation is wasted memory for
data structures that do not expand.

1 a = [1, 2, 3]
2 b = ["foo","bar", "zar", "zoo", "zeh"]
3 if condition:
4 a.extend(b)
5 else:
6 a.append (4)
7

Listing 2 An Example of Data Structure Resizing

Second, expansion requires expensive creation of larger inter-
nal structures and an extra copying cost to the larger structures.
For example, when line 6 is executed, a larger internal array is
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created, copying items from the older list to the new one, as
well as deleting the older list.

Presizing is a technique used to predict an optimal data struc-
ture size to avoid the overhead involved with resizing operations
but can also avoid over-allocation of internal slots. Existing
work uses allocation site-based techniques to achieve presiz-
ing (Clifford et al. 2015), and canonical profiling (Henning et al.
2020), all of which do not account for the calling context and
branches in the program.

Data structure resizing exists in both statically and dynam-
ically typed languages; for example, like Python lists, C++
vectors are a related comparison for a statically typed language.
Static languages have similar dynamism for some collections
like many dynamic languages. The literature known to us does
not mention automatic presizing in these contexts1 . It is there-
fore possible to discuss presizing for static languages in a differ-
ent context.

To address the presizing limitations in existing work, we
show that it is possible to predict an optimal data structure size
by combining the context-identifier of an allocation site, using
call-site analysis with collection size profile data created either
online or offline, thereby achieving allocation context-aware
data structure presizing.

We apply an offline version of this allocation context-aware
presizing methodology to PyPy, observing a performance im-
provement of 12% and memory savings of 16% on average for
the best median strategy; while we introduce an overhead as
high as 25% when accessing and applying the profiled data.
In the rest of this paper, collection and data structure are used
interchangeably.

The allocation context-aware data structure presizing opti-
mization proposed is designed to predict the size of a data struc-
ture, based on its allocation calling context. This is achieved
through matching data structure sizes to their calling contexts
from profiling information.

2. Background
In this section, we briefly introduce the RPython framework
and the different ways collections are optimized in dynamically
typed languages in the context of types and resizing.

2.1. The RPython Framework
The RPython programming language was developed simulta-
neously with the PyPy Python implementation. In fact, earlier
work on PyPy described the RPython framework and translation
process as one of the components of PyPy, the standard Python
interpreter being the other component [76, 83].

The framework is now maintained as a project of its own.
Therefore, for the purposes of the discussion in this work, PyPy
is defined as just the Python implementation written in RPython.
RPython is a restricted and statically typed subset of the Python
language. It is not limited in syntax but more in how it han-
dles objects of various types. Languages developed with the
framework are compiled to various supported environments and

1 There are some manual presizing APIs in C++

platforms, using the RPython translation toolchain. In addi-
tion to PyPy, we implement our work in two other languages
implemented in RPython; namely Topaz (Gaynor 2013) and
Pycket (Bauman et al. 2015).

2.2. Memory Layout of Types in Dynamic Languages
In languages where types are instead associated with runtime
behavior, schemes to identify the types of values at runtime are
required. This category of languages is said to support dynamic
typing. The memory layout in these languages is such that there
is a uniform representation of all objects regardless of type with
a common object type.

In practice, there is a possibility of converting between spe-
cific types like integers, strings, etc., and the uniform object
type, as well as determine what type of object is being rep-
resented. For this reason, Just-In-Time (JIT) compilers defer
optimizations until run-time, when such languages can identify
types of objects (Bolz et al. 2013; Gudeman 1993; Diekmann
2012). We discuss the different ways types are represented in
dynamic languages.

2.2.1. Canonical Type Optimizations Gudeman surveyed
and evaluated several strategies for representing types in dy-
namic languages (Gudeman 1993). The canonical schemes can
be classified as tagged words, partitioned words, object pointers,
large wrappers, and typed locations. A combination of these
techniques can be used for a hybrid representation.

Tagged Words use a tag field to represent the type of an object.
The object is represented as a sequence of bits, with one or more
tags storing the type of the object and the rest storing other
object details (value). This scheme leads to compact memory
layouts and relatively good access time, but not all unwrapped
values can be represented as wrapped values.

Partitioned Words allocate each type to a certain subset of
the available bit patterns. Each type is therefore restricted to
representing those values that it can represent in the bit patterns
allocated to it. The entire word in this strategy is legitimate as
opposed to only the value field being legitimate for the tagged
word representation. Object pointers use a machine pointer to a
memory block containing all type information to represent each
wrapped value. The object is therefore a structure that consists
of the required information to identify what type of value the
block represents.

Large Wrappers use more than a single word to represent
both the type and a complete machine value. This scheme
requires more registers, uses more memory, and incurs higher
costs in loading and storing wrapped values than the single word
schemes. Some optimizations can reduce this cost, and those
optimizations are not possible for single word schemes.

Typed Locations allow for determining the type of the pointer
based on where it is located on the stack, register, or any place
in memory. In static languages, locations rather than values
have types. Closely related, dynamic systems can also have a
memory layout where types have type codes, but the value and
the type code are located in separate places.

Type-based Stores and Context Aware Presizing 3



Figure 1 Storage Strategies (Bolz et al. 2013)

2.2.2. Specialized Optimizations for Collections An in-
tegral part of recent research on the representation of types for
dynamic languages has focused on optimizations targeting the
design of efficient collection libraries (Bolz et al. 2013; Clifford
et al. 2015; Bergel et al. 2018; Daloze et al. 2018; Henning et al.
2020; Maas et al. 2020a). We discuss two of these prominent
optimizations, namely storage strategies and element kinds.

Storage Strategies Aiming to solve the challenges of pointer
tagging for type representation, storage strategies optimize the
treatment of collections (Bolz et al. 2013). Storage strate-
gies were proposed with two assumptions, 1) that homoge-
neous collections seldom de-homogenize and 2) when they
de-homogenize, this happens when a collection has a small
number of elements.

The design is such that each collection references a storage
strategy and storage area in memory. Similar to the strategy de-
sign pattern, the storage strategy manages all operations related
to a collection but also how data is laid out in the storage area.

Figure 1 shows that collections can evolve through several
storage strategies during program execution starting with an
EmptyStrategy for an empty collection. A collection gets a
specific strategy when items are added to it. The specialized
strategy unwraps the elements and stores them.

When an element of a different type is added to a collec-
tion, the collection is assigned a general ObjectStrategy and
each element is boxed returning to the equivalent of the default
representation of the collection in dynamic languages.

Storage strategies are generally more efficient than pointer
tagging but for some corner cases, they actually perform worse
compared to when they are not used. One of the cases is where
a large homogeneous collection de-homogenizes. This results
in the re-boxing of each element in the collection, an operation
with high overhead. The changes in strategies are also a source
of overhead. To solve this, the V8’s element kinds, discussed
next, limit the frequency of strategy transitions.

Element Kinds V8’s element kinds were developed during
the same time as storage strategies (Clifford et al. 2015). Both
approaches share the same underlying object model where col-

Figure 2 Element Kinds in V8 (Clifford et al. 2015)

lections with elements of the same type are unboxed and stored
in a designated area in memory. The representation of elements
of a collection is called ElementKinds as shown in Figure 2.

Elements in a collection are represented in six ways depend-
ing on their type and whether the collection has holes. A spatial
array is an example of a collection with holes, i.e., with missing
items in some memory cells.

A list of integers will have a special kind of SmiElements,
adding a float to the list will transition it to a DoubleElements
kind. Similarly, when the list gets a hole, it will be transitioned
to a respective Holey kind like HoleySmiElements for integers.
The paper on ElementKinds discusses support for only Integer
and Double types and it is not confirmed anywhere if other types
like Strings are supported (Bynens 2017).

A shortcoming for both approaches is the fact that they both
do not optimize heterogeneous collections. We propose an
alternate approach to handle this in Section 3.

2.3. Collection Presizing Schemes for Dynamic Lan-
guages

The performance overhead and resource wastage due to shrink-
ing and expanding collections in dynamic languages has been
addressed using presizing together with other optimizations like
pretenuring and pretransitioning (Bruno et al. 2019; Maas et
al. 2020a; Henning et al. 2020; Marr & Daloze 2018a), with
anecdotal details on implementation and evaluation.

Presizing is a technique in which profiling information is
used to create an optimal internal size of a collection. We
discuss some of the techniques from the literature on presizing,
which include mementos, recycling, lazy creation and other
language specific methods.

2.3.1. Mementos Allocation mementos as proposed by Clif-
ford et al. (Clifford et al. 2015), are temporary objects allocated
next to an object they track for purposes of storing profiling
information about the object to allow for further optimization.
Mementos are created at either the object’s call-site or allocation
site and live for a short time typically, only surviving the closest
garbage collection cycle.

For presizing, mementos are used to store the sizes of col-
lections from the last run at a given allocation site or call site
so that in future, collections from a given site are allocated an
internal data structure with slots of an observed size to avoid
the overhead of having to resize the collection.

Mementos do not take up any space when garbage collected
in the object and are observed to have no engineering com-
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plexity, having been achieved in roughly 150 lines of code for
presizing in the V8 runtime but they have overhead associated
with their operation. They are also tied to the garbage collector
and so runtimes like Graal VM could not directly emulate or
use them for presizing (Henning et al. 2020).

2.3.2. Recycling When a collection expands from a user
request to a point where the internal structure has to be resized,
the process involves creating a new larger collection, copying
the items from the older collection and garbage collecting the
old unused collection.

Bergel et al. propose not garbage collecting the unused col-
lections (Bergel et al. 2018), and instead reusing them for future
requests that fit the specifications of the now unused internal
collection. This may avoid creating many internal collections
but does not take away the overhead from copying of items from
the old to the new internal collection.

2.3.3. Lazy Creation When a collection is initialized in dy-
namic languages, an internal collection is immediately created
and over-allocated with the assumption that the collection will
expand eventually, which is not true in some cases.

Lazy collection creation or initialization is a technique where
the internal slots of the collection are not allocated until a request
to add items to the collection is encountered (Bergel et al. 2018).
This avoids extra slots that may have been allocated, which may
have been more than required, hence wastage.

2.3.4. Other Language Specific Approaches In the
GraalPython project, due to the garbage collector requirements
of mementos, the creation and append operations of Python
lists were intercepted, observing the sizes of collections, lists
in this case, and using this information to compute the optimal
sizes for all other collection instances using the same allocation
site (Henning et al. 2020).

This profiling information is collected during interpreta-
tion to reduce performance overhead. This approach generally
avoids most of the bookkeeping overhead of mementos but does
not consider the allocation calling context, limiting its appli-
cability. The calling context captures the control flow of the
program in branches.

3. Type-based Stores for Heterogenous Collec-
tions

We start with the motivation in Section 3.1 before discussing
our solution and its evaluation in Sections 3.2 and 3.3.

3.1. The Overhead of Heterogenous Collections
To motivate our study, we start with an analysis of the impact of
storage strategies on Python applications, and also test the hypo-
thetical case of a very large homogeneous collection becoming
heterogeneous, common for applications with large collections
that transition. The prevalence of strategy transitions at least
suggests a potential for improvement.

We demonstrate the prevalence of heterogeneous collections
in Table 2 and the overhead of an existing optimization, storage
strategies, that only handles homogeneous data structures in

Benchmark Description

Nqueens The n-queen problem solver using different search algorithms

Pidigits-modified A modified implementation that computes arbitrary digits of pi

Float Heavy floating-point arithmetic

Richards A Python implementation of the Martin Richards program

Delta Blue Constraint solving problem

AI An algorithm to exercise the performance of a simple AI system

Eparse LXM parsing

Meteor-contest An implementation of the Meteor puzzle board

Fannkuch Indexed-access to tiny integer-sequence

Spectral-Norm Calculating the spectral norm of an infinite matrix

Chaos Fractals for the chaos game

Nbody The original nbody problem solver as translated to Python

Telco Measuring the performance of decimal calculations

Call_Simple A trivial function call

Regex_Effbot Working of Regex

Nbody-modified The modified nbody problem solver as translated to Python

Unpack_Sequence Unpacking a sequence

Fib The fibonacci algorithm

Table 1 A Description of PyPy Benchmarks

Figure 3. The numbers in Table 2 are an approximation break-
down of how many collections transition from homogeneous
integer, string and empty collections, to being heterogeneous.
For this experiment we evaluate four collection intensive stan-
dard PyPy benchmarks (Contributors 2012) modeled after the
official PyPerformance Python benchmark suite (Python 2016).

The benchmarks are described in Table 1. Figure 3 also uses
an artificial example, list-example, to create a homogeneous
list of one million integers and transitions it to a heterogeneous
collection by adding a string to it. The rest of the benchmarks
are part of the standard Python benchmark suite. We reproduce
the benchmark results of the storage strategies paper (Bolz et al.
2013), observing two key limitations.

First, we show that about as high as 50% of collections
in our benchmarks are heterogeneous and thereby remain un-
optimized by storage strategies as shown in Table 2. We observe
that list-based collections transition the most by about 50% from
being empty. Equally significant are list transitions from being
integer-based, which impacts about 22% of the lists. Lists are
followed by dictionaries where about 42% of integer-based dic-
tionaries become heterogeneous. Transitions from being empty
are also significant at about 100,000 lists, a point capable of
introducing overhead. Sets experience the least transition to the
general object/wrapped state, the highest being 4% transitions
from being empty. We do not track the distribution of collec-
tion sizes when a transition happens but the speed overhead
discussed next elaborates on the overhead storage strategies.

Secondly, optimizing for only homogeneous collections de-
grades performance for some workloads with large collection
sizes due to the need to re-box items when a homogeneous
collection becomes heterogeneous. When collections become
heterogeneous, we observe a slowdown in speed when storage
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Total Number Number of Transitions Percentage (%)

Lists

Integer 9,000,000 2,000,000 22.2

String 20,000,000 3,000,000 15

Empty 30,000,000 15,000,000 50†

Sets

Integer 1,500,000 20,000 1.3

String 30,000,000 30 1.5

Empty 5,000,000 200,000 4

Dictionaries (Key Types)

Integer 120,000 50,000 41.7

String 350,000 30 0.2

Empty 2,000,000 100,000 5

Table 2 Collection Strategy Transitions – an approximate
breakdown of collection transitions to the object strategy dur-
ing program execution while running the PyPy benchmark
suite for benchmarks described in Table 1 . For some key con-
tainer type combinations, as much as 40%–50% of collections
become heterogeneous from a specific type like integer, string
or empty. (†) We show the total number of transitions from
the empty strategy to both homogeneous and heterogeneous
collections here.

strategies are used. To our second observation, to understand
this overhead, we ran the five benchmarks in Figure 3, against
two PyPy versions, one with storage strategies turned off and
the other with storage strategies turned on. We only exercise
lists since they are the most used data structures but insight from
the experiment is consistent with sets and dictionaries. The slow
down is because every item in the list is revisited to box the
items again at the point of becoming heterogeneous.

In Figure 3 the hypothetical example is interesting; when we
transitioned a list of one million integers to the object strategy,
the program took 25 seconds with storage strategies to run
while it took less than five seconds without storage strategies.
We also observe similar slow downs of about 4% by mean
with the other four PyPy benchmarks, though not as dramatic
as the hypothetical example. This shows that optimizing for
heterogeneous collections is potentially beneficial for some
Python applications and storage strategies instead worsen the
performance of such applications.

The overhead is therefore more pronounced during the box-
ing operations when a collection becomes heterogenous, but
in the transitions as well. Reducing the frequency of transi-
tions using mementos and allocation-site feedback can improve
performance but does not optimize heterogeneous collections,
which is the main focus of our work.

3.2. The Type-based Memory Layout
We do not attempt to forward homogeneous collections to the
type-based stores technique, as these are already handled by

Figure 3 The Overhead of Storage Strategies – the unop-
timized heterogeneous collections and the impact of strategy
transitions slows down applications. This leads to an overhead
of 4% by mean for the four benchmarks we ran from the PyPy
benchmark suite described in Table 1. Transitioning a list of
one million integers to the object strategy, takes the program
25 seconds with storage strategies while it takes less than five
seconds without storage strategies

existing optimizations. Instead, the heterogeneous data structure
is broken down by categorizing its members by type creating
two stores in this example: one to hold the strings and the
other for integers. We use contiguous storage areas that are
expandable and capable of holding both sequential and hash-
like data.

(a) Storage Strategies

(b) Type-based Stores

Figure 4 Type-based Stores vs. Storage Strategies – con-
sider a list lst = [1, "foo", 2, "bar", 3, "zar"], (a)
shows the memory layout of the list after applying storage
strategies; and (b) shows the memory layout of the list after
applying type-based stores and storage strategies
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For example, the heterogeneous collection lst = [1,
"foo", 2, "bar", 3, "zar"], can not be optimized with
existing techniques like storage strategies. Instead, the items
stay wrapped, with types W_IntObject for integers and
W_StringObject for strings as shown in Figure 4 (a). How-
ever, with type-based stores, shown in Figure 4 (b), the numeric
items 1, 2, 3 are stored in a separate contiguous area, while
the textual items foo, bar, zar are stored in another adjacent
area, each storage area managed by a storage strategy which
unwraps the items.

The stores are created on demand, and there is a one-to-one
mapping between a data structure and its respective internal set
of stores. Therefore given a collection L, and an internal layout
D, a mapping function exists, f, from D to L, for all d in D and l
in L such that, f (d) = l. The associated stores of a collection
are dynamic, to expand and contract, matching the size of the
collection they represent. Therefore, at all times, |L| = |D| as
discussed further in Section 3.2.2.

For sequential data structures, the indexing in the sequential
storage area is implied. The size N of each storage area in
the sequential parts is computed dynamically, every time the
internal layout has to resize as the largest power of two such that
at least half the elements in the stores will be filled. A mapping
is also needed between the source collection and the type based
stores.

The goal of restructuring the collection to use stores is to
allow for further optimization. Therefore, when the collections
have been split into the different stores by type, we take advan-
tage of the RPython methods that are based on the rerased
RPython library module to unbox the items in each store.

The rerased library provides two main functions of interest
to our work, namely; erase and unerase. The erase method
wraps the object by erasing its type, returning a generic type
which is the equivalent of a void pointer in C or Object in many
languages while unerase unwraps the objects in the storage
area to access their actual types. We mostly use unerase since
unwrapping is the core of our technique and call erase to wrap
objects for cases we do not support.

3.2.1. Memory Layout Analysis Our technique determines
how elements of a heterogeneous collection are allocated in
memory using a restructure function that creates a set of stores
for a collection, placing elements in one of the following
relative positions:

{colocated, close}

Given an arbitrary collection, lst = [X1, X2, ...,
Xn], we define a colocate operation, ∼ to show that two objects
are in the same store. For any given heterogeneous collection, a
layout mapping exists with several stores as follows:

layout(lst) =


store 1 X1 ∼ X2 ∼ ...
store ... ... ∼ ... ∼ ...
store k Xn−2 ∼Xn−1 ∼ Xn

Any of the items will be colocated in the same store, for
example, X1 ∼ X2, if they are of the same type and close (X1

and Xn−1) if not in the same store but in the same set of stores
belonging to a given collection.

At the point of restructuring the collection, triggered by
creation or modification, every item should be allocated in one
of the stores. We optimize for collections containing a mix
of primitive types like strings and integers but if a collection
contains non-primitive types, optimization (splitting to stores)
is not supported yet, so we do nothing in this case and delegate
to wrapping. At all times, two collection primitive items of
different types will be colocated only if they have not been
mapped to any stores yet.

3.2.2. Internal Mapping after Restructure The conse-
quence of reorganizing the original data structure, for sequential
collections, is that there has to be a way to track items in the
stores and their positions in the original collection to help with
access and modification by any operations. We maintain a non-
trivial map, implemented efficiently as a hash, that is updated
on collection creation/update and read when there is a read re-
quest to the items of the collection. This map is the same map
referenced in the storage strategies paper, PyPy already also
uses maps to handle certain structures, like instances.

Figure 5 Internal Mapping to Support Operations – the
map tracks positions of items in the source data structure to
help with processing access operations. This map is useful for
sequential collections

Figure 5 shows how items in a list, lst = [1, "foo", 2,
"bar", 3, "zar"], are laid out in memory, and a map used
to track positions of items in the source data structure. For
purposes of easier presentation in this figure, the map is rear-
ranged to group values of the same type together. A typical
access, lst[i], first checks the map to acquire the position in
the stores for an item at this index.

The values in the map, should have an indication of the
type so that during the search, we can distinguish between two
similar indices that may refer to different stores. This map
introduces an extra step in collection access but as we show
in the evaluation section, the benefits of unwrapping the items
outweigh this overhead. The pseudocode below shows the steps
to access lst[i] in a given representation.

1 store = lst.map[i] −> (int , 0)
2 for stor in lst.stores ()
3 type = store [0]
4 if stor.type == type
5 index = store [1]
6 item = stor[index]

Listing 3 The Internal Map Access Algorithm
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First, we search the internal map by index i as shown on line
1 of Listing 3, which returns a tuple containing the item type
and its index in the store. On lines 2–4, we search the collection
stores by the type, retrieving a store that matches the type of
item we want to access. We use the index read from the map to
access the item in the retrieved store on line 6.

3.2.3. Dictionaries Type-based stores for dictionaries can
be applied for both keys and values, but we do not take this
route of unwrapping each pairwise (key, value) primitive type
combination. We instead optimize for hashing and comparing
of keys by creating multiple stores to match the types of keys in
the original data structure as shown in Figure 6.

Figure 6 Type-based Stores for Dictionaries – we only
optimize keys to reduce the cost of handling every possible
key/value type combination when unwrapping

Consider a dictionary, {a: 1, b: 2, x: "foo", y:
"bar"}, where a and b are integer keys while x and y are string
keys. The keys are unwrapped while values remain wrapped.
This is a good compromise because keys are more stable in
many applications than values in terms of type transition (Bolz
et al. 2013) but the many type combinations if we were to handle
both keys and values can also easily become costly.

We also do not create a separate internal map for dictionaries,
instead dictionary operations search the associated stores by
key, since duplicate keys are not allowed. This reduces the
bookkeeping for dictionaries.

3.2.4. Implementation The algorithm for the optimization
described in this work is summarized in Algorithm 1 and im-
pacts list, set, and dictionary data objects. We modify the
PyPy3.9 branch, which is the latest version at the time of writ-
ing this paper. This algorithm is invoked at the point where a
collection switches from homogeneous to heterogeneous.

We first read all the items in the heterogeneous collection
(line 3), then transfer control to the layout function to allocate
the required stores (lines 6 and 10). Depending on whether the
collection is a list, set or dictionary, we create a new instance of
storage areas, either create sequential storage areas for lists or
hash-like storage areas for dictionaries, then split the objects,
sorted by type into the storage areas, and finally update the map
on line 7 for lists.

Algorithm 1 TypeBasedStores: layout(ds)
Input: Let ds be the heterogeneous collection.
Result: Layout and unbox heterogeneous collections.

initialization;
items = ds.getItems();
ds.discard();
if type(ds) == list then

createSequentialStores(items);
updateMap();

if type(ds) == dict or set then
createHashStores(items);

To achieve the procedures in Algorithm 1, we implement a
new internal data structure in PyPy. Splitting of the heteroge-
neous collections involves intercepting the implementation of
the collections at the points where collections currently switch
to the general object strategy or at initialization after checking
if the collection is heterogeneous, thereby creating stores for
each collection, and passing items by type to the stores.

Listing 4 is an extract of the implementation of the List data
structure/collection in PyPy. Lines 5–9 consist of the method
that currently switches any heterogeneous collections, while
lines 10–13 have an implementation of the length() method
for lists. For lists, the switch_to_object_strategy (line
5) routine and from_storage_and_strategy (not shown in
this code), which is one of the other operations, have special
conditions to handle heterogeneous collections by boxing.

1 class W_ListObject(W_Root):
2 strategy = None
3 storages = None
4 ....
5 def switch_to_object_strategy(self , w_item=

None):
6 list_w = self.getitems ()
7 self.clear(self.space)
8 if self.stores is None:
9 self.stores = create_stores(self.space

, list_w)
10 def length(self):
11 if self.stores:
12 return self.stores.size
13 return self.strategy.length(self)

Listing 4 Splitting Objects to Type-based Stores –
pseudocode for the key implementation details of the type-
based stores technique for the list data structure in PyPy

We therefore intercepted them to use or pass their data to the
type-based stores mechanism. We also consequently modify
existing functions like length() on line 10, etc., to instead
read and/or modify the stores of the said collection (line 12).
In PyPy and CPython, sets are handled as dictionaries with the
actual items of the set as keys and corresponding values being
None, so in our implementation sets are handled by the code for
dictionaries.

3.2.5. Evaluation The goal of our evaluation is to compare
the PyPy version based on our technique with a default PyPy
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Property Specification

CPU Intel(R) Xeon(R) Gold 6248

Clock Speed 2.50GHz

Operating System 64-bit Debian 10.2.1

Cores 10

GCC Version 10.2.1

Table 3 Experimental Hardware Setup

baseline version that does not optimize heterogeneous data struc-
tures, i.e., the one based solely on storage strategies.

We use this baseline for two main reasons 1) PyPy, the
Python implementation used, has storage strategies in its default
upstream branch, which means all PyPy users currently use
storage strategies making it the feasible baseline by virtue of
widespread use and 2) turning off storage strategies completely
would involve a major overhaul of the interpreter because all
major data structures including classes are affected, which is
unrealistic and out of scope of our research.

Optimizations that reduce the boxing overhead mostly im-
pact execution time but also reduce the memory footprint. We
therefore use both metrics in our experiments and attempt to
answer the following questions:

1. How much, if at all, does the technique improve the execu-
tion speed of Python applications?

2. How much, if at all, does the technique reduce the memory
consumption of Python applications?

3. How much, if at all, does the technique introduce overhead
to collection operations?

Methodology We use a subset of the standard PyPy bench-
mark suite, mainly the unladen swallow benchmarks, based on
the standard Pyperformance benchmark suite. Pyperformance
benchmarks are designed to emulate real-world Python appli-
cations. To generate results exercising all supported collection
operations, we used artificial workloads. We use the hardware
setup detailed in Table 3. We run the benchmark programs 30
times, ignoring the first 5 runs; this is not aimed at determining
accurate steady-state because it is impractical, but rather a large
number of iterations increases the likelihood of getting close to
steady-state. The acronyms TBS and NTBS, denote, type-based
stores and no type-based stores respectively.

Execution Speed Figure 7 shows the execution time. To an-
swer the first question, we observe that the type-based stores
technique improves performance for 11 of the 16 benchmarks.
Of these, five benchmarks (float, richards, deltablue, ai, regex-
effbot) have speedups of 20% and above and the rest are
10%–19% or slightly below (spectral-norm, call-simple, eparse,
meteor-contest, fannkuch, nbody-modified). Of these 11 bench-
marks, storage strategies alone could not improve performance.

We estimate the magnitude of this speed to be 11.4% for
the 16 benchmarks, a number we arrived at by calculating the

geometric mean increase (positive speed ups) and slow down
(negative percentages) for the benchmarks. For specifics, the
speedup is between 2% to 40%. The slow downs are between
2% to 60%.

The benefits of our technique can be better appreciated
by comparing the boosts and slow downs in the origi-
nal homogeneous-only optimization in the storage strategies
work (Bolz et al. 2013) with our results. Benchmarks like
fannkuch, meteor-contest, richards, and spectral-norm per-
formed worse when only homogeneous collections were op-
timized, but with our technique they are faster, which means
heterogeneous collection optimization is beneficial to them.

On the other hand, looking closely at the benchmarks where
our technique slows down performance, the slow down is ob-
served for benchmarks like telco and nbody that ran faster with
just the homogeneous collection optimization. This is because
we perform extra checking in the algorithm before splitting,
even though the algorithm does not optimize homogeneous col-
lections; these extra checks are overhead. These benchmarks
are fewer, and by default dynamic languages assume polymor-
phism, so we can optimize for language defaults. The chaos and
unpack-sequence benchmarks are an outliers as they run slower
for both the homogeneous and heterogeneous optimization.

Memory Consumption Figure 8 shows the memory consump-
tion. To answer the second question, these results are mixed;
our technique uses less memory in some benchmarks and more
memory in other benchmarks. The benchmarks ai and eparse
run faster, and still use about 3% and 1% less memory respec-
tively; however, while the float and fannkuch benchmarks run
faster, they use more memory, about 1% - 2% more respectively.
The benchmarks fib and unpack-sequence run slower but use
less memory.

Our technique generally has to reduce the size of objects,
so we expect less memory consumption, but we introduce a
memory layout with a map that may use more memory in some
cases. For example the richards benchmark runs faster but uses
more memory with type-based stores. The storage strategies
paper (Bolz et al. 2013) also shows increased memory usage
for some benchmarks, so we can expect that type-based stores
will inherit the same behaviour because of using strategies in
the stores.

The reason is that without storage strategies, a single object
is allocated once on the heap, with multiple pointers to it from
collections and elsewhere. With storage strategies, the same
element can be unboxed in the storage strategy, and then, when
pulled out of the list, reboxed to multiple distinct objects in the
heap. This is because some items that are unboxed inside a list
are later used outside and reboxed.

The Overhead of Type-based Stores We base our analysis
on the results shown in Figure 9. To answer the third question,
several operations slow down due to the extra checks we do
before creating or accessing the stores of a collection while
others are not affected.

Despite some extra checking and processing of stores, some
list operations are faster, specifically getitem(), sort(),
count(), and create() are 23%–60% faster, remove() runs
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Figure 7 Speedup for PyPy – the results are normalized to the storage strategies baseline, lower is better, the type-based stores
technique accelerates execution times for most of the benchmarks
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Figure 8 Memory Savings for PyPy – the results are normalized to the storage strategies baseline, lower is better, the type-based
stores technique reduces the memory footprint for some benchmarks and increases the memory footprint for some others
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Figure 9 The Overhead of Collection Operations – the results are normalized to the storage strategies baseline, lower is better
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at almost similar speeds with overhead no more than 8%,
append() and insert() operations cost about 100%–200%
overhead due to the extra search and bookkeeping required for
indices. Similarly the other operations like setitem(), pop(),
extend(), and reverse() experience overhead between 25%–
90%.

Similarly, most of the set operations run faster with
our technique, for example, about 24% better for the
remove() operation, 39% better for the update() op-
eration, 30% better for the intersection() operation
and 41% better for the intersect_update() operation.
However, the difference_update(), create(), and
symmetric_difference_update() operations are almost
twice as slow due to extra checks and collection of items from
the different stores. Sets are processed as dictionaries, so some
of the overhead related to dictionaries discussed next, applies.

Due to not requiring any synchronization of indices between
the original dictionary and the stores using the map, dictionary
operations like fromkeys() and create() are less impacted
and run at approximately the same speed. However, we ex-
perience about 500% to 800% slow-downs for the set() and
update() operations because of extra checking, and creation
of stores. Generally, most dictionary operations have overhead
with our approach.

As noted above, there is an overhead observed for a few
operations, where we added an extra step of creating the stores,
but also where some checks are required to access certain items
in the collection. However, as we discussed in Section 3.2.5,
this overhead is insignificant and does not have much impact on
the general speed for most applications, the unwrapping perfor-
mance boosts outweigh the overhead in these few operations for
most applications.

3.3. Language-independent Type-based Stores
Storage strategies were generalized for use by RPython virtual
machines (VMs) in a library called rstrategies (Pape et al. 2015).
The library was ported to several languages. This work also
extends this library to optimize heterogeneous collections in a
language-independent way. This section discusses our algorithm
for providing type-based stores in rstrategies, along with an
integration to two RPython VMs, Topaz and Pycket.

3.3.1. Overview of Language-independent Storage
Strategies The rstrategies library is based on the use of
metaclasses and metaprogramming concepts rather than making
normal API calls, due to the complexity involved in handling
collection types in the generic manner required and the need for
flexibility.

Integration with an RPython VM requires that a collection
implementation adheres to the use of a central class structure
or hierarchy. All RPython classes implemented in the VM
can duplicate attributes and functionality from the library by
importing mixin classes. The VMs we experiment with all
follow this structure and the actual integration of the baseline
rstrategies library involves three main steps.

The first step is to implement getter and setter methods
in the VM collection class to expose the strategy and stor-

age attributes required to optimize collections using storage
strategies. These methods can be implemented manually but
rstrategies also uses a method, make_accessors(strategy=
’strategy’,storage=’storage’), that can be called within
the VM collection class to automate the implementation of these
getter/setter methods.

Secondly, rstrategies provides mixins that should be used
to create strategy classes, starting with a single root strat-
egy class, AbstractStrategy. The AbstractStrategy
class is an interface that should be subclassed to specific
strategy classes, to implement the methods used to inter-
act with various storage strategies. The specific strategy
classes match the known strategies for the different ob-
ject types like IntegerStrategyClass, etc. The strat-
egy classes can use a decorator which signals to the strat-
egy class what strategy to switch to in case the cur-
rent collection cannot be assigned to the current strategy,
@rstrategies.strategy(generalize=alist). This usu-
ally happens when an incoming item to the collection is not of
the same type as the items in the current collection.

Then thirdly and finally, VMs have to subclass a class with
some modifications (StrategyFactory) to any methods re-
sponsible, like instantiate_strategy for strategy initializa-
tion, switch actions (switch_strategy), etc. This allows the
VM collection operations to use the storage strategies mecha-
nisms of unboxing.

3.3.2. Extending Rstrategies with Type-based Stores
In extending rstrategies with type-based stores, we modified the
mechanism responsible for switching between storage strategies.
The switch that we care about for this work is where a concrete
strategy is switching to the general strategy.

Therefore, inside rstrategies, we intercept the step that is
responsible for strategy classes (step two in Section 3.3.1 above),
modifying how generalization works. We define generalization
as a point where the current strategy class notices an incoming
item of a different type and defers to a routine that assigns the
ObjectStrategy instead, and boxing items as required.

We specifically provide a decorator rstores that can be
applied to strategy classes in the VM, that invokes type-based
stores instead of switching to the ObjectStrategy when a
collection becomes heterogeneous. We therefore do not directly
modify generalization, the type-based stores feature is optional,
and if the rstores decorator is not applied, we default to as-
signing the ObjectStrategy.

The ObjectStrategy can also be assigned when you ap-
ply the rstores decorator for aspects we do not support yet,
like instances. Therefore, anything the strategy class can not
handle through a concrete strategy or rstores will default to
generalization.

Listing 5 contains pseudocode for the routine that handles
collections that are not homogeneous. We use an example
where a new object value of a different type is appended to a
homogeneous collection, w_self. On line 1, we override the
generalization method, generalize_for_value(), self is
the current instance of the collection class. We first process the
type of the incoming item value on line 4. Then we invoke
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1 def generalize_for_value(self , w_self , value):
2 ......
3 try:
4 strategy_type_value = self.get_stategy_type(

value)
5 create_type_based_stores(self.

strategy_factory (), w_self ,
strategy_type_value , value)

6 ......
7 except (ValueError , AttributeError):
8 pass
9 ......

10 def create_type_based_stores(self , collection ,
strategy , ∗args):

11 self.store_one = collection
12 list_w = collection.strategy.get_storage(

collection)
13 self.update_map(self.store_one , list_w)
14 self.store_two = allocate_storage(value , size

)
15 self.store_two.strategy.append(self.store_two

, list(args))
16 self.update_map(self.store_two , list(args))

Listing 5 Language-independent Type-based Stores -
– the method, generalize_for_value is called at the point
where an incoming item does not match the items in the
current collection, and thereby requires generalization to the
ObjectStrategy

the creation of the required stores on line 5, the items in the
current collection, w_self, the incoming item, value, and
strategy type of this item, strategy_type_new, are taken as
arguments.

When creating the stores, the first store (line 12) is for the
existing homogeneous collection, collection, which was al-
ready allocated a storage strategy of appropriate type and size,
all items unwrapped. The second store on the other hand is
allocated a storage strategy on line 15, for the incoming item
type, and line 16 stores the items, in the store in unwrapped
form. For both stores, we have to update the map on lines 14
and 17, tracking positions of the items in the stores, to allow for
future access of the collection items.

3.3.3. Evaluation We applied the language-independent
type-based stores, implemented in the rstrategies library to both
Topaz and Pycket with the new rstores decorator. To assess
the benefits of the technique, we compare versions of the im-
plementations, using just storage strategies as a baseline, in this
case through rstrategies with a version that has the type-based
stores extension.

We use this baseline because of similar reasons as PyPy 1)
The language implementations use storage strategies by default
and 2) turning off storage strategies through rstrategies requires
modifications to each language implementation, and are im-
pacted by the collection structure of the language, which is an
overhaul that is out of scope of this work.

For Ruby, we use benchmarks from the YJit project by
Shopify (Shopify 2023) and add a few more benchmarks from
the standard computer language benchmarks game. For Racket,
we use benchmarks from the computer language benchmarks

game (Chakraborty 2023). All benchmarks are run on a ma-
chine with specifications described in Table 3. The numbers are
a geometric mean of 30 invocations for each benchmark. We do
not describe each benchmark, but the links point to the relevant
documentation.

The goal of our evaluation here is to assess the impact of
language-independent type-based stores on Ruby and Racket
benchmarks for language runtimes using the RPython meta-
tracing JIT-based framework. Table 4 has the results for Pycket
and Topaz.

Pycket For Pycket, we provide full support for vectors and
partial support for hash tables. Both mutable and immutable
properties of vector operations are supported.

As shown in Table 4, the highest speed gains are from the
spectral norm benchmark with about 17%. The lowest gains
are from the CTAK benchmark with just about 2%. We can
conclude that type-based stores highly impact applications with
collections for Racket and still work well for applications that
may not be heavily dependent on collections.

We also observe some overhead in some benchmarks; the
highest slowdown is registered in the dot benchmark of about
20%. For benchmarks with mostly homogeneous collections,
we incur overhead due to an extra check to optimize heteroge-
neous collections, so this is expected and minimal; the dot case
is an outlier with the highest overhead here.

As shown in Table 4, the highest memory saving is from
the meteor benchmark, about 32%. This means that type-based
stores can improve both speed and memory usage. There are
cases where optimization improves performance at the expense
of using more memory, case in point, the triangle benchmark,
which gains speed but uses 25% more memory. This can be due
to the extra bookkeeping in maps for type-based stores to work.

The dot benchmark also uses more memory, which can be
linked to the fact that compared to the storage strategies branch,
it uses mostly homogeneous vectors that work well with an
optimization that assumes homogeneity; therefore, the extra
processing for type-based stores is just overhead for this bench-
mark without much benefit.

Topaz The integration with Topaz was more complete than
that with Pycket, with all collection data structures and opera-
tions supported. Our optimization has the highest speed gain
for the getvar benchmark, 13%, and the lowest gain for GC
array, also showing that data structures can run with accelerated
performance. We also register overhead sometimes as high as
16% for the throw benchmark.

A direct integration of type-based stores may accelerate
speed gains if the overhead of calling type-based stores func-
tionality through a library is eliminated. This applies to Pycket
too but we do not quantify the overhead, because we considered
it out of scope for now.

Other benchmarks that do not heavily rely on collections like
setvar and respond also experience about 3% overhead. Like
Pycket, memory is saved in some benchmarks, like nbody, and
more memory is used in other cases, such as sieve benchmark.
The memory savings and overhead are all negligible in the
Topaz benchmarks, all barely 1% in absolute value.
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Pycket Topaz

Speed Memory Speed Memory

nbody 1.046
(1.026, 1.066)

1.012
(1.012, 1.013)

nbody 0.982
(0.978, 1.039)

0.999
(0.997, 1.003)

meteor 0.937
(0.912, 0.963)

0.689
(0.689, 0.690)

fibonacci 0.938
(0.929, 1.100)

0.999
(0.996, 1.002)

spectral 0.834
(0.723, 0.963)

0.999
(0.997, 1.002)

binary tree 1.033
(1.010, 1.075)

1.000
(0.999, 1.001)

triangle 0.944
(0.924, 0.967)

1.253
(1.252, 1.254)

throw 1.159
(1.112, 1.239)

1.003
(1.001, 1.005)

vector 1.025
(1.016, 1.035)

0.988
(0.987, 0.988)

getvar 0.869
(0.851, 1.070)

0.999
(0.999, 1.000)

bubble 1.015
(0.982, 1.048)

1.269
(1.268, 1.270)

setvar 0.968
(0.963, 1.013)

1.001
(1.000, 1.002)

nqueens 1.010
(1.000, 1.018)

0.996
(0.996, 0.997)

respond 0.969
(0.961, 1.020)

0.997
(0.996, 1.002)

puzzle 0.868
(0.849, 0.888)

1.259
(1.258, 1.260)

keywords var 0.914
(0.905, 1.050)

1.000
(1.000, 1.000)

fannkuch 1.030
(0.996, 1.092)

0.999
(0.997, 1.002)

gc array 0.983
(0.979, 1.006)

0.999
(0.997, 1.000)

hash table 0.992
(0.713, 1.178)

0.999
(0.998, 1.001)

sieve 0.945
(0.927, 1.056)

1.002
(1.000, 1.005)

CTAK 0.979
(0.862, 1.113)

0.997
(0.997, 1.210)

spectral 0.946
(0.844, 1.186)

1.000
(0.998, 1.001)

dot 1.202
(1.171, 1.234)

1.004
(1.004, 1.004)

fannkuch 1.033
(1.005, 1.060)

1.001
(0.999, 1.005)

min 0.834 0.689 min 0.869 0.997

max 1.202 1.269 max 1.159 1.003

geomean 0.986 1.027 geomean 0.976 0.999

Table 4 Language-independent Benefits of Type-based Stores – lower values are better, all results are shown as ratios normal-
ized to the baselines. The language-independent type-based stores improve performance for both Ruby and Racket applications

4. Context Aware Presizing

We begin with the presizing challenges in Section 4.1 then delve
into a motivating example in Section 4.2. Sections 4.3, 4.4,
4.5, 4.6, 4.7, 4.8, and 4.9 further detail the approach, while
Section 4.10 discusses its evaluation.

4.1. Optimal Presize Prediction Challenges

Presizing addresses the over-allocation and resizing overhead
of data structures by hypothesizing that data structures from
a given allocation site exhibit similar behaviour in regards to
size. An observed size through allocation-site-based profiling
can be used to compute the optimal size of a data structure.
The key benefit for presizing is that it reduces and/or eliminates
the overhead due to expansion and shrinking operations when a
data structure resizes. Memory consumption is also significantly
reduced because with optimal internal slot allocation, there is
no need to allocate extra slots for memory that is likely not to
be used. Optimal size prediction of data structures is believed
to mostly be beneficial if used in hot sections of the code, and

impacts large data structures (Henning et al. 2020).
The literature as noted earlier achieves presizing using

allocation-site-based profiling, storing the information with
garbage collection (GC) assisted approaches (Clifford et al.
2015) by Clifford et al. The GC assisted approach was adopted
with some modifications by Henning et al., for GraalPython due
to the limited level of access to the GC (Henning et al. 2020) in
this virtual machine. Presizing has been attempted in only these
two articles known to us, and in both, the technique is discussed
with anecdotal evidence and evaluation is performed for one
benchmark, DeltaBlue. Most significantly both implementa-
tions do not solve the key presizing challenges. Optimal data
structure presize prediction in existing work does not support
the following aspects, namely, branches and allocation calling
context.

4.1.1. Branches Setting sizes without accounting for the
control flow of a program causes less optimal estimations and
leads to the same resizing overhead we seek to avoid with pre-
sizing. For example, in Listing 2, the optimal size of list a
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depends on whether the code follows the if path or the else
path. Finding an optimal size with this instability is hard and
remains an open question in all the existing work on presizing,
because making the optimal size 8 could lead to allocation of 4
extra slots if the else path is taken, while making the size 4 as-
suming the else path, will lead to costly expansion operations
if the if path is taken. A more accurate solution must account
for the program path in addition to the list size, growth factor,
frequency of growth, and allocation site of a data structure.

4.1.2. Allocation Calling Context Similar to the branching
problem, the allocation calling context is part of the application
call graph, important for profiling real-world applications. Allo-
cation site profiling alone, as demonstrated in existing presizing
work, is not sufficient for abstractions built on top of resizable
data structures that provide a different interface as observed
and pointed out in the GraalPython study (Henning et al. 2020).
This is because a high-level collection library, for example, can
be seen to have the same allocation site for data structure in-
stantiation at different locations in the program. Profiling the
allocation context of these allocation sites is therefore required
to facilitate better accuracy in size estimation.

4.2. Our Approach
We use listings 6 and 7 as a non-trivial example of collection
resizing to motivate our work. Listing 6 defines several classes
and a method, all of which use collections. The main program
Listing 7 contains the call sites of interest to our profiling.

In Listing 7, allocation site-based presizing will identify the
five allocation sites 2, 3, 5, 6 and 13 but because sites 6 and 13
initialize the same abstraction, the allocation sites appear the
same at both locations. Also, presizing for allocation site 5 is
difficult without understanding the context determined by the
flag on line 7.
1 import collections
2 class AbstractCollection:
3 def allocate(self , num_slots):
4 self.slots = [None] ∗ num_slots
5 class List(AbstractCollection):
6 def init(self):
7 super.allocate (16)
8 class Map(AbstractCollection):
9 def init(self):

10 super.allocate (2∗16)
11 def initialize_map ():
12 return collections.OrderedDict ()

Listing 6 Collection Resizing Class and Method Definitions

For better accuracy, context aware profiling profiles call sites
in addition to the allocation site. Figure 10 shows the calling
contexts, denoted by arrows, for Listing 7, which are the se-
quence of calls associated with an allocation site and call site.
We use C@n and A@n to represent call sites and allocation sites
respectively.

In Figure 10, for example, the allocation on line 4 in List-
ing 6 can have two calling contexts, main() → newList() →
AbstractCollection() and main() → newMap() →
AbstractCollection(). Similarly, list_ex has two contexts,
main() → IF → range() → append() and main() →
ELSE → append().

1 def main():
2 R = List()
3 K = Map()
4

5 list_ex = []
6 d1 = initialize_map ()
7 if flag:
8 for i in range(0, 10000):
9 list_ex.append(i)

10 else:
11 list_ex.append (1)
12

13 d2 = initialize_map ()
14

15 if __name__ == ’__main__ ’:
16 main()

Listing 7 Example Code Exercising Collections

Figure 10 Call Graph for Listing 7 – collections are indi-
cated at the respective call sites. Arrows indicate the calling
context which is a chain of calls with origins from the main
method

Our approach does not store the whole call chain, we instead
infer the context using the (call symbol, stack height) pair and
allocation site, with the assumption that the stack height is
unique for a given call path or chain of calls. The context
identifier, stack height value for the current calling context and
call site are computed from the stack pointer (SP) and program
counter (PC). This way, even on the different paths for list_ex,
for example, it is possible to observe a unique stack height for
the different append() call sites.

This assumption is not always true as the a call path can have
the same call site symbol and stack height, like lines 6 and 13,
which can cause uncertainty. In these cases, we use existing
disambiguation approaches to reduce the duplication of the
mappings between call paths and the stack height. We discuss
the three cases we are able to disambiguate in Section 4.6. For
any cases we can not disambiguate, then our approach will not
accurately perform presizing but as acknowledged in existing
work (Mytkowicz et al. 2009) and our findings in Section 4.6,
this assumption holds for most cases with disambiguation.

4.3. Approach Overview

Answering the presizing question stated at the start of this sec-
tion is not straightforward, and like many optimizations, ad-
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dressing every use case is aspirational. Figure 11 shows the
techniques used to answer the question and the following novel
profile-guided methodology is used to arrive at an ideal solution:

1. The first step is to gather profiling data about collection
sizes, allocation sites and their allocation contexts. This
can be done either offline or online.

2. The profiling data is initially stored in a log file but we
provide some structure by storing it in a hash map, we call
a context map, to guide the presizing optimization. We
also install the allocation context in the object header, that
is matched later. We discuss the impact in size to the object
header in Section 4.7.1.

3. Before presizing, we access the object header and the map
to match the size using the calling context as key.

4. Then the data structure is allocated slots using an exact
size, estimated and read from the map to avoid waste.

We define the size of a data structure as the number of ele-
ments it contains. We estimate this size using profiling infor-
mation that tracks the maximum, median and mean sizes of
collections along with the number of times they grow and the
growth factor when their allocated size is exhausted.

On the other hand, the allocation calling context is a tuple
containing (1) the allocation site identifier, which is the alloca-
tion location in the source code for the collection object; and (2)
the context identifier, which is a pair containing the symbolized
name of the currently executing function and the stack height.
The context identifier infers the stack state or trace during object
allocation as discussed in the next section.

4.4. Object Size Profiling
The branching and calling context challenges discussed earlier
are addressed by our approach by enhancing presizing to work
with profiling data that is based on both allocation sites and
the calling context. We infer the calling context by building
on existing assumptions in the literature about the context iden-
tifier (Maas et al. 2020b; Mytkowicz et al. 2009). A context
identifier is a pair consisting of the call site symbol and stack
height while a call path is the nested sequence of calls invoked
at runtime.

We therefore complement allocation site profiling with call
site analysis, and inferring the calling context through a context
identifier that is based on the stack height. By using the stack
height, we avoid the significant overhead of capturing the calling
stack using instrumentation to track the stack epilogue and
prologue. We therefore hypothesize that:

Knowing the context identifier characterized by the
currently executing function, and stack height in bytes
mostly identifies the calling context we need to pre-
cisely predict the size of data structures.

4.5. Inferring the Calling Context
Inferring the call chain using the stack height is discussed in
the context of C/C++ in the literature with no evaluation for

dynamic languages (Mytkowicz et al. 2009; Maas et al. 2020b).
Therefore, to use the stack height hypothesis for a dynamic
language, we implemented a tool to profile Python applications,
logging the program’s context identifier and call paths, first to
prove the assumption, all done without annotating the program.
For further profiling we do not include the call paths, we only
use a context identifier that is based on the call site symbol and
stack height.

Listing 8 shows an example of logs generated from profiling
a hypothetical target program, while Table 5 shows profiling
statistics. We capture the program log number, file name, line
number of a call site, the function name at the call site, the
stack height, the call path and a tuple with information about
any data structures associated with the call site. The tuple of
data structure details contains the collection type, the variable
name of the collection, the size and allocation site. Call sites
that do not involve any data structure use, will not have the data
structure fields in their log.

1, target.py:45, add , 4, <module > −> <module > −>
add −> trace_function ,
([Tuple , add:4, 4])

2, target.py:6, tul , 5, <module > −> <module > −>
add −> tul −>
trace_function , ([List , tul_list :22, 4])

3, target.py:21, calculate_factorial , 6, <module >
−> <module > −> add −>

tul −> calculate_factorial
4, target.py:31, n_queens , 7, <module > −> <module

> −> add −> tul −>
calculate_factorial −> n_queens −>
trace_function ,
([Tuple , my_tuple :35, 4], [List , item_list
:36, 4])

5, target.py:7, mul , 5, <module > −> <module > −>
add −> mul −>
trace_function

6, target.py:46, sub , 4, <module > −> <module > −>
sub −> trace_function ,
([Tuple , sub:11, 4])

Listing 8 Logs Generated from the Profiler

The stack height in this case refers to the distance between
the current stack pointer and the top of stack in bytes. By
combining the stack height with the current return address (i.e.,
local call site) and the data structure size, we are able to get a
fingerprint of a particular stack trace. This corresponds to the
current number of frames on the call stack in Python, calculated
by inspecting code objects of a frame.

For the call paths, we build the Python interpreter with frame
pointers, accessing the frames to read the calls in a file. To log
collections in the body of a function call, the first challenge we
encountered was that the exec() function produces the source
code of a function in the form of text if we inspect the source
lines of the frames instead of code objects, which makes it hard
to identify any nodes of interest for our profiling. We instead
through some form of static analysis parse the source code,
generating an abstract syntax tree (AST), then walking the AST
to identify list, set and dictionary nodes.
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Figure 11 Context Aware Collection Size Profiling

stmts stmts cov. fns fns cov. calls

ai 98 6 3 3 6

call_simple 198 84 6 5 84

html5lib 59 5 5 5 5

nbody 143 8 4 3 8

pickle 350 9 6 4 9

regex_compile 92 5 2 2 5

richards 427 57 19 17 57

unpack_sequence 458 7 4 4 7

regex_effbot 147 47 4 4 47

Table 5 Call Site Analysis for Python – statistics generated
from the profiling tool
4.6. Accuracy of Context Identifiers
The generated logs are not completely accurate and thereby
require disambiguation in some cases because of the lack of
precision in mapping between context identifiers and call paths,
i.e., multiple distinct call paths mapping to the same (func-
tion_name, stack height) pair. We used the methods of dis-
ambiguation discussed in the literature which include: active
record resizing (ARR), call site wrapping (CSW) and function
cloning (FC) (Mytkowicz et al. 2009). The following patterns
of ambiguity are handled in our benchmarks:

X → Y → Z X → W → Z (1)
X → Y → Z Y → X → Z (2)
X → Y → X → X → Z X → X → Y → X → Z (3)

The first pattern involves two profile items with the same
(function_name, stack height) but the call paths have a unique

call, i.e., Y in the first call path and W in the other. To disam-
biguate this case, the intermediate operand of the instruction
is modified, changing the function’s active record size (ARR)
to account for function’s local variables on the stack, which
changes the stack height of the path, making it precise.

The second pattern is harder, since the same (function_name,
stack height) pair matches the same call paths, and active record
resizing does not help with this. This case is managed by re-
placing a call on one of the edges with a wrapper function that
then calls the original function using the call site wrapping tech-
nique. The wrapper function adds its own active record, thereby
changing the stack height.

The third case contains more duplicate calls and can not be
handled by call site wrapping; instead, it is handled by replacing
a call to a duplicate function with a call to a copy of the function.
The function clone contains disambiguation, in this example,
clone X → X′ so that X’ wraps its call to Y. The additional
disambiguation in the clone changes the stack height.

Figure 12 shows the degree of precision before and after the
disambiguation, for the three disambiguation methodologies.
We used nine benchmarks from the standard PyPy benchmarks
described in Table 1. The profiler uses these benchmarks as
target programs and generates four logs in this experiment, one
without disambiguation, one after applying only active record
resizing, another after applying only function cloning and call
site wrapping, and the last log file is the one after applying
all the three techniques. The hardware specifications for this
experiment are detailed in Table 3. We use the geometric mean
for all mean computations of the results.

Before disambiguation, we observe the precision of 43. 3%
by means of the benchmarks we used. The highest level of
precision is 60% seen in four benchmarks, namely html5lib,
regex_compile, unpack_sequence and regex_effbot. The lowest
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Figure 12 Proving the Stack Height Hypothesis – the profiler generates four logs in this experiment, one without disambigua-
tion, one after applying only active record resizing, another after applying only function cloning and call site wrapping and the
last log file is the one after applying all the three techniques. The configurations correspond to the disambiguation methods; active
record resizing (ARR) : the intermediate operand of the instruction is modified, changing the function’s active record size; call site
wrapping (CSW): replacing a call on one of the edges with a wrapper function that then calls the original function; and function
cloning (FC): replacing a call to a duplicate function with a call to a copy of the function. We observe that the context identifier
can uniquely identify a call path with a 79.9% accuracy level by mean.

level of precision is observed for the richards and call_simple
benchmarks, at a degree of 10% and 20%, respectively. The
general observation is that the more complex the workload, the
higher the chances of ambiguity; as an example, the richards
benchmark is more complex compared to the rest of the bench-
marks.

Active record resizing was only beneficial for richards and
unpack_sequence benchmarks with improvements in precision
of 10% and 20%, respectively. Call site wrapping was only
beneficial after function cloning, improving the precision of the
rest of the benchmarks by 2%–100%. The benchmarks html5lib
and regex_compile had 100% precision and the lowest degree
of precision was 60% for the nbody benchmark after complete
disambiguation.

After applying all the disambiguation techniques, we observe
that by mean the context identifier (executing function and stack
height) can uniquely identify a call path with a 79.9% accuracy
level for the Python workloads we used. An 80% mean precision
level justifies our use of the stack hypothesis assumptions in
inferring the calling context for the presizing optimization.

4.7. Optimal Size Prediction

The profiling information collected is stored on a globally ac-
cessible context map. The context identifier and the allocation
site for each object are also installed in the object header to
help with prediction (this is not needed if all prediction were to
be done offline). In the RPython framework, the object layout
is modified to store the allocation context. We store both the
context identifier and the allocation site.

4.7.1. Installing the Context in the Object Header The
structure of the RPython object as shown in Figure 11 consists of
one word for the GC header and vtable pointer, the identity hash
field and the rest of the bits are used for static data in classes. In
practice, there are a few spare bits on 64-bit machines, which
we can use for the default incminimark garbage collector, and
we mostly reuse some bits from the header to complement the
spare bits. However, other times, we use extra bits in the object
header if we cannot reuse the hash field bits. We maintain one
more bit as a flag to signal whether profile is set or not, as shown
in Figure 13.

Python objects are usually assigned a hash field in the
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Figure 13 Installing the Context in the RPython Object
Header – when a collection object is allocated, memory is
allocated and reserved for the context identifier. The set and
unset is for the hash field

CPython and earlier versions of PyPy interpreters, since these
objects could be stored in a dictionary by the program. PyPy
modified this feature later to only create a hash field when the
object’s identity hash is used, but once set, it can not be reset, so
it is possible that some objects whose identity hash is not taken
still have a hash field assigned to them.

We work on the assumption that all objects in Python are
assigned a hash field as supported by the reference CPython
implementation, and reuse the bits of the hash field to store
the context identifier, if the object does not have its identity
hash taken. This is a common case in Python, where just a
fraction of Python objects have their identity hash taken. When
the object later requires its hash field, the profile information is
overwritten. This allows us to not enlarge the object header for
most objects, but for objects whose hash-field is taken, we use
any spare bits and only enlarge the object header by a few bits,
introducing a memory trade-off in those cases.

The garbage collector is thus modified upon allocation to
install context data in the hash field if the object does not use its
hash field. We maintain an extra flag as part of the GC header to
signal if the object has profiling data installed. The new version
of the object has its flag for the profile set, and is extended,
allocating space for the profile information that is to be written
at the end of the object header, as shown in Figure 13. Reusing
bits allows us to not use more memory in the object header for
most objects, but for dictionaries, we may use some extra bits
to store this information.

4.7.2. Reading and Writing to the Context Map Upon
allocation, data from a collection object x’ on the number of
collections, the allocation site, Ax, the context identifier, Cx,
and any observed sizes, SN , are recorded in the context map as
shown in Figure 11. The context map presented in Figure 11
contains the number of objects organized by allocation context
and item size. For example, if an object is allocated in the
allocation context Cx + t with size, S0, where t is a constant,
the context map is updated to increment the number in the
cell corresponding to the row Cx + t and the column S1 (one
more object with size S1). An allocation site can have several
observed sizes for a given context, S0, .., SN .

4.8. Optimal Size Estimation
The optimal size of the collection is determined by reading the
context map to access the maximum, mean, or median size of

the collection size that matches an object’s calling context. We
thus support three strategies, max, mean and median for the
maximum, mean, and median sizes, respectively.

Max Strategy: This strategy uses the latest maximum sizes
of an allocation site to determine the presize of a collection.
A threshold is maintained Pth, where if the current presize
exceeds this threshold, the new maximum is set as a presize.
It suffers from overestimation should most collections end up
being smaller. In the worst case, unused slots may be used, but
this strategy has the advantage of still reducing the overhead
of expansion operations. In our analysis, we do not shrink the
internal slots in case the collection is smaller, so there is no
shrinking overhead.

Mean Strategy: Rather than naively taking the maximum
value of observed sizes from profiles, this strategy uses the
geometric mean value of the sizes of the observed list for an
allocation site. The presize value is also likely to be high like
in the max strategy, hence unused slots for smaller collections,
but the impact may be less. This strategy can suffer from the
overhead of expansion operations for larger collections, but the
impact is less than if there was no pre-sizing at all. If anything,
the performance impact of this strategy is closer to the max
strategy.

Median Strategy: The presize using this strategy is calculated
from the median of the sizes observed for an allocation site.
The presize is smaller than in the max and mean strategies,
hence fewer cases of unused slots in the best case scenario.
However, because of the underestimation, it is likely to suffer
from the overhead of expansion operations for larger collections.
The strategy produces the best results for most experiments
discussed in Section 4.10.

4.9. Implementation
We modify the PyPy3.9 branch, which was the latest version at
the time of writing this paper. The default RPython incminimark
GC is modified to install profiling information on allocation, and
to read from the global context map to presize data structures.
The incminimark GC is a generational GC, so we naturally
identify collection objects in nursery allocation when they are
first allocated, putting a flag on these objects asking for the id
or identityhash. This flag is different from the profiling flag,
which is set to signal if presize profiling is on or off.

The memory for these objects is initialized and reserved at
the time of object creation. The nursery objects with this flag
are tracked and assigned destination locations during the closest
nursery collection cycle. The incminimark GC supports resizing
of arrays in the nursery so that they consume less memory when
moved to tenure, but objects flagged to use the id for our case
are not resized with this feature, as we can lose pre-allocated
memory in these objects.

When moving objects, we also first visit all the objects we
marked as susceptible for our profiling and have the flag that
signals using the id field, this traversal has an eminent cost
quantified later in Section 4.10. We then copy over the objects
while overwriting the relevant header fields with the allocation
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and context information. We access the global context map
to allocate the optimal size. The hash value is not static and
changes the next time the object needs to move again. Our
implementation relies on generational and moving collectors,
but it is possible to have an alternate implementation of our
methodology in other contexts.

4.10. Evaluation
The evaluation discussion in this section has two main goals —
we present results on execution time and peak memory usage —
as a way of demonstrating the benefits of our technique. We also
explore the allocation sites in the benchmarks used. Profiling
has overhead, so we focus our evaluation on profile guided
optimization, where we use information from a previous run, a
use case that is useful for when the optimization can be used
during deployment. There is overhead involved with reading
the off-line information to perform the actual profiling but it is
not significant; we have left this overhead investigation for our
future work when we have fully explored the online option.

4.10.1. Methodology The default PyPy Incminimark incre-
mental garbage collector is used and four pre-sizing config-
urations are compared in this evaluation; the baseline is the
main upstream PyPy branch without pre-sizing optimization;
the max, mean and median settings correspond to the heuristics
for choosing the presize as either maximum, mean or median
depending on the several sizes observed at an allocation site dur-
ing profiling. Even in the baseline, we assume that all collection
objects are assigned a hash field; if we used the default settings
where the hash field is assigned to a few objects, then the results
would be different. All benchmarks are run on a machine with
specifications described in Table 3.

4.10.2. Workload Description The official Python bench-
mark suite used in Section 4.4 was not sufficient for this evalua-
tion. We instead use workloads recommended and open sourced
for cross language benchmarking (Marr 2016), to demonstrate
the significance of the approach. The workloads described next
are chosen because they use both a small and a large number of
collections compared to the official Python benchmark suite; of
these, four benchmarks are macro while two of them are micro.

The CD (macro workload) benchmark aims to simulate air-
plane collision detection and was designed to evaluate real-time
JVMs. We use the Python implementation of the workload with
a setting of two planes and 5000 iterations. DeltaBlue (macro
workload) is an algorithm that implements a constraint solver
and runs for 300 iterations. Havlak (macro workload) contains
a loop recognition algorithm with a number of collections that
serves as a good use case for our approach, we run it for 20 itera-
tions. The JSON (macro workload), Permute (micro workload),
and List (micro workload) implement JSON string parsing, per-
mutations and list operations, respectively. These benchmarks
are all run for 5000 iterations.

4.10.3. Observed Allocation Sites Figure 14 shows a
breakdown of the allocation sites and the number of collec-
tions observed at these sites. To understand the plots in this
figure, it is worth noting that the line dividing the box into two

represents the median value and shows that 50% of the data lies
on the left-hand side of the median value and 50% lies on the
right-hand side. The left and right edges of the box represent the
lower and upper quartiles. The lower quartile shows the value at
which the first 25% of the data falls. The upper quartile shows
that 25% of the data is to the right of the upper quartile value.
The values at the ends of the horizontal lines are the upper and
lower values of the data, while single points on the diagram
show any outliers.

The allocation sites correspond to line numbers in the source
code. We show the maximum, mean, and median values for the
allocation site as well. We do not show the types of collections
at the allocation sites, but for a breakdown, the benchmarks
DeltaBlue, JSON, Lists and Permute only use lists. The CD
benchmark uses only vectors. The Havlak benchmark uses a list
at allocation site 318, a set at allocation site 160, a dictionary at
allocation site 316, and vectors at allocation sites 315, 314 and
404.

The values without bars are mostly fixed size collections and
smaller collection numbers, especially for the Lists and Permute
workloads. The macro benchmarks CD, DeltaBlue, Havlak, and
JSON contribute the highest number of collections, since they
are macro workloads. The different presize strategies generally
benefit different workloads depending on the distribution of
sizes observed at the allocation sites.

4.10.4. Discussion of Results In terms of execution time
as shown in Table 6, the max configuration achieves the best
speed-up in wall clock time of 4% for workload CD followed
by 2% and 1% for the median and mean strategies compared to
baseline. This is the only workload where choosing the maxi-
mum observed size at an allocation site has the best results in
execution time. The CD workload is stable across call sites,
mainly depending on the number of planes involved in the simu-
lation. For the rest of the workloads, we observe that the median
setting works best due to more distribution and variation in the
sizes observed at the allocation sites, which means that using the
median value is a good compromise. For example, the JSON,
Havlak, List, and Permute workloads have the best speed-ups of
6%, 3%, 3%, and 12%, respectively, compared to the baseline
with the median strategy. The DeltaBlue benchmark experi-
ences the highest gains of 35% overall also with the median
strategy because it is collection intensive.

Memory-wise, when we reuse some header bits to store the
allocation context data, our approach can reduce memory con-
sumption due to a reduction in memory overallocation from
the presizing in objects. As shown in Table 6, the best memory
savings are with the median strategy across all benchmarks. The
memory results show the memory savings of the technique with-
out accounting for the header overhead. Profiling information
does not have to be stored in the header; existing techniques
such as memorabilia can be used instead.

4.10.5. The Overhead of using the Profiles Table 7
shows the overhead of accessing the object header and the con-
text map while presizing; for workloads from the standard PyPy
benchmark suite. We use standard benchmarks here with a
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(a) Aircraft Collision Detection (CD) (b) JSON

(c) DeltaBlue (d) Lists

(e) Havlak (f) Permute

Figure 14 Number of Observed List Sizes per Line Number of Allocation Sites – the Y (collection count) and X (line number)
axes show the size of collections and allocation sites respectively, while the orange and green lines show the mean and median

Type-based Stores and Context Aware Presizing 21



Strategy

Max Mean Median

Execution Speed

collision detection 0.965
(0.954, 0.971)

0.985
(0.973, 0.999)

0.981
(0.978, 1.014)

json 0.963
(0.958, 0.970)

0.962
(0.953, 1.013)

0.943
(0.939, 0.976)

havlak 0.983
(0.977, 0.987)

0.979
(0.968, 0.997)

0.975
(0.975, 0.987)

deltablue 0.987
(0.965, 0.996)

0.916
(0.908, 0.930)

0.652
(0.650, 0.820)

lists 0.987
(0.978, 1.000)

0.980
(0.973, 1.001)

0.973
(0.964, 1.000)

permute 0.998
(0.996, 1.002)

0.998
(0.995, 1.001)

0.882
(0.874, 0.906)

min 0.963 0.916 0.652

max 0.998 0.998 0.981

geomean 0.980 0.969 0.892

Peak Memory

collision detection 0.919
(0.919, 1.175)

0.903
(0.850, 1.177)

0.962
(0.850, 1.037)

json 0.973
(0.969, 1.311)

0.972
(0.963, 1.322)

0.973
(0.943, 1.032)

havlak 0.685
(0.320, 1.003)

0.984
(0.975, 1.006)

0.991
(0.975, 1.001)

deltablue 0.972
(0.960 ,1.060)

0.943
(0.932, 1.378)

0.978
(0.951, 1.030)

lists 0.915
(0.868, 1.086)

0.910
(0.785, 1.136)

1.004
(0.973, 1.023)

permute 0.916
(0.890, 1.144)

0.902
(0.886, 1.148)

1.006
(0.902, 1.143)

min 0.685 0.902 0.962

max 0.973 0.984 1.006

geomean 0.891 0.935 0.985

Table 6 Performance Gains and Memory Savings for Context Aware Presizing – lower values are better, all results are shown
as ratios normalized to the baselines and aggregated based on the geometric mean across 30 invocations. The error values corre-
spond to 95% confidence intervals; for details see Appendix A. There is a 11% performance improvement for the best median
strategy and memory savings of 11% for the best max strategy by geometric mean.
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mix of small and large collections. The goal is to observe the
overhead of the operations that access profile data.

The numbers presented in Table 7 do not directly compare to
the evaluation in the previous Section 4.10.4 due to the cost of
instrumentation used, but we also mostly consider installation
of profiles in the object header an offline task in our evaluation.

We present results for both reading and writing to the object
header, as well as reading from the context map. We do not
show the overhead of writing to the context map.

Our approach spends the most overhead on reading from the
context map (maximum of 7.7%). Reading the object header
is the least costly (maximum overhead of 4.9%). The total
overhead of the three operations can be as high as 25% and
6% by mean. Due to our evaluation methodology, the overhead
presented here may include overhead of the instrumentation
used.

Our main contribution is the use of the stack height to capture
the calling context required for pre-sizing accuracy. The way
profiling information is stored can change. We do not therefore
consider the overhead presented here as a bottleneck to the
underlying technique, as alternative approaches can be used
instead of the object header and the context map.

5. Related Work

We present related work on presizing and type optimizations for
heterogeneous collections in this section to contextualize our
contributions relative to existing work.

5.1. Type Optimizations for Collections

Much work exists that uses techniques like tagging, and new
frameworks (Chambers et al. 1989; Bigot & Debray 1997;
Kataoka et al. 2018; Holkner & Harland 2009) to represent
the types of data in dynamic languages (Ureche et al. 2015), but
regardless of these efforts, we have not been able, as a field, to
completely avoid boxing in dynamic languages; efforts to date
have targeted specific use cases. This work extends existing
work to handle type representation of heterogeneous collections,
which the literature has not solved.

Type optimization for collections has been researched with
various levels of success, the most recent, in Graal (Henning et
al. 2020; De Wael et al. 2015); storage strategies were studied
to aid list presizing, the Pharo language was modified with
similar optimizations to reduce resource usage (Bergel et al.
2018; Marr & Daloze 2018b), even parallelization algorithms
exist for collections in dynamic languages (Daloze et al. 2018)
but none of these optimize heterogeneous collections.

Storage strategies (Bolz et al. 2013) and element kinds (Clif-
ford et al. 2015) discussed in Section 2.2.2 are similar optimiza-
tions to the ones we describe in this paper. We extend their
use with modifications to support cases they do not support by
efficiently handling heterogeneous collections. Storage strate-
gies were made language-agnostic by Pape et al. (Hudson et al.
1991) in their work on the RPython translation toolchain; we
also support the type-based stores mechanism in the RPython
framework.

Memory restructuring is also not new; Aleksandros et
al. (Tasos et al. 2020) reshape the layout for objects to ad-
dress locality and the Collection Skeleton technique (Franke
et al. 2022) also provides flexibility in handling collections,
but neither handle unboxing. D’Souza et al. solve parametric
polymorphism (D’Souza et al. 2023) instead.

5.2. Presizing
Clifford et al., use allocation-site-based profiling, storing the
information with garbage collection assisted approaches in one
paper (Clifford et al. 2015) where a temporary object called a
memento is allocated close to the object being profiled, created
at the object’s allocation site, and survives long enough just
to survive the next GC cycle. The concept of mementos was
demonstrated in V8 but has no further indication of being used
upstream.

Mementos were adopted by Henning et al., with some mod-
ifications in GraalPython due to the limited level of access to
the GC (Henning et al. 2020) in the runtime. We solve the lim-
itations acknowledged in these papers by inferring the calling
context based on the stack height in this work.

6. Conclusion
In summary, we propose two techniques that optimize collec-
tions in dynamic languages. This section summarizes the key
contributions for the explored topics of research.

6.1. Type Optimizations for Collections
The type-based stores technique described in Section 3 restruc-
tures the layout of heterogeneous collections, splitting the col-
lection into contiguous memory partitions and unboxing the
items in the partitions.

Storage strategies will benefit workloads with heavy use
of homogeneous collections better than our technique. This
is because we incur overhead due to extra checking before
and during splitting. Our technique is especially beneficial for
large heterogeneous collections or where a large homogeneous
collection becomes heterogeneous.

As shown in the evaluation, we guarantee gains for work-
loads with large heterogeneous collections (11 of the 16 bench-
marks in our experimentation). Type-based stores can com-
plement type speculation optimizations, because objects are
stored in their concrete types. Type speculation benefits from
our technique by being able to know the types of the objects
involved.

In general, applications with heterogeneous data structures
with primitives will benefit from this optimization. The number
of data types may have less impact since we support integers,
floats, and strings. In fact integers and floats share a store, in
which case, by default only two stores will ever be created for
any heterogeneous collection, hence the number of data types is
unimportant.

Storing objects in an unboxed form benefits even non-JIT in-
terpreters like CPython in both speed and memory consumption.
However, JIT-based interpreters gain more because JIT compil-
ers benefit further from using the type information for further
optimization, like type speculation mentioned in V8 earlier.
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Header Map All

Benchmark WR RD WRD RD Total

ai 1.017
(1.007, 1.029)

1.014
(1.006, 1.023)

1.030
(1.014, 1.046)

1.010
(0.999, 1.022)

1.070
(1.031, 1.109)

call simple 0.992
(0.971, 1.018)

0.985
(0.967, 1.006)

0.976
(0.944, 1.013)

0.984
(0.962, 1.011)

0.929
(0.854, 1.020)

nbody 0.999
(0.995, 1.003)

1.004
(1.000, 1.007)

1.003
(0.996, 1.009)

1.001
(0.997, 1.006)

1.007
(0.990, 1.019)

pickle 1.010
(1.002, 1.019)

1.018
(1.008, 1.028)

1.028
(1.014, 1.043)

1.009
(1.001, 1.018)

1.064
(1.035, 1.097)

richards 1.012
(1.000, 1.022)

1.004
(0.993, 1.014)

1.016
(1.003, 1.028)

0.996
(0.988, 1.002)

1.026
(1.001, 1.053)

threading 1.009
(0.994, 1.022)

1.005
(0.990, 1.021)

1.013
(0.991, 1.036)

1.007
(0.994, 1.018)

1.031
(0.981, 1.080)

unpack sequence 1.029
(1.016, 1.042)

1.045
(1.025, 1.058)

1.073
(1.041, 1.096)

1.045
(1.025, 1.058)

1.189
(1.118, 1.241)

pystone 0.980
(0.940, 1.026)

1.016
(0.990, 1.049)

0.995
(0.941, 1.056)

0.990
(0.949, 1.028)

0.968
(0.855, 1.108)

binary tree 1.013
(1.010, 1.016)

1.009
(1.006, 1.012)

1.022
(1.018, 1.026)

1.010
(1.008, 1.012)

1.054
(1.047, 1.061)

chaos 1.009
(1.003, 1.014)

1.012
(1.005, 1.019)

1.020
(1.012, 1.029)

1.011
(1.005, 1.016)

1.051
(1.033, 1.073)

delta 1.018
(1.009, 1.029)

1.012
(1.006, 1.018)

1.030
(1.020, 1.040)

1.005
(1.000, 1.015)

1.064
(1.043, 1.088)

float 1.018
(1.014, 1.022)

1.035
(1.025, 1.047)

1.055
(1.039, 1.067)

1.036
(1.021, 1.047)

1.144
(1.107, 1.166)

go 1.017
(1.011, 1.023)

1.018
(1.013, 1.022)

1.035
(1.027, 1.042)

1.077
(1.010, 1.301)

1.147
(1.073, 1.382)

meteor contest 1.011
(1.000, 1.021)

1.010
(1.000, 1.020)

1.021
(1.006, 1.034)

1.020
(1.009, 1.029)

1.061
(1.026, 1.092)

pidits 1.001
(1.000, 1.001)

1.010
(1.009, 1.011)

1.010
(1.010, 1.011)

1.015
(1.014, 1.015)

1.035
(1.035, 1.036)

spectral norm 1.053
(1.048, 1.060)

1.049
(1.043, 1.053)

1.102
(1.092, 1.110)

1.051
(1.047, 1.054)

1.254
(1.232, 1.274)

telco 1.008
(1.001, 1.014)

1.002
(0.993, 1.009)

1.010
(0.997, 1.020)

1.005
(0.997, 1.010)

1.024
(0.996, 1.047)

min 0.980 0.985 0.976 0.984 0.929

max 1.053 1.049 1.073 1.077 1.254

geomean 1.011 1.014 1.025 1.016 1.063

Table 7 The Overhead of using the Profiles – lower values are better, values presented as ratios relative to the PyPy baseline
within the given error margins. The columns (WR) and (RD) refer to write and read respectively. (WRD) refers to both read
and write. We also present the total overhead for all operations, all values are normalized to the baseline, aggregated across 30
invocations
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Regarding fragmentation, when objects are stored in an un-
boxed form, primitives are now not individually heap allocated
objects; hence less GC pressure, which is why we observe
speedups for most benchmarks. In addition to creating several
objects through splitting, our technique does not manage GC
allocation; fragmentation should be handled by the underlying
GC allocator like any other object. Splitting in our type-based
stores technique is high-level, at least in the garbage collection
sense.

6.2. Presizing
In Section 4, we propose a technique that optimizes data struc-
ture resizing in dynamic languages. It addresses the branching
and allocation context challenges for data structure pre-sizing,
by inferring the allocation context through a profiled call site
symbol and stack height, along with a profiled allocation site
and list size information.

The stack height assumption is not always true, as the same
call path can have the same call site symbol and stack height,
which is a threat to validity in our work. We remedy this with
existing disambiguation approaches to reduce the duplication
of the mappings between call paths and the stack height.

Our approach will not accurately perform presizing for any
cases we cannot disambiguate but as acknowledged in existing
work (Mytkowicz et al. 2009) and our findings in Section 4.6,
this assumption is not always true.

We observed between 4%—30% performance gains and
an average 16% of memory savings while incurring profiling
overhead that is as high as 25% for Python applications when
context-aware presizing is applied to the PyPy implementation.

We implemented an offline version of the technique and
the results did not reflect the full profile overhead. Our main
contribution is the use of the stack height to capture the calling
context required for presizing accuracy. The way profiling
information is stored can change. We do not therefore consider
the overhead presented here as a bottleneck to the underlying
technique, as alternative approaches can be used instead of the
object header and the context map.

7. Future Work
We discuss and propose potential future directions for the type-
based stores and context aware presizing techniques in this
section.

7.1. Type-based Stores
The language-independent type-based stores and storage strate-
gies techniques can be extended to a library that is not based on
the RPython toolchain for wider adoption by other languages,
where using the toolchain is not an option.

7.2. Context Aware Presizing
The presizing technique needs to address the profiling overhead
since such optimizations are more beneficial if they are online
and dynamic.

We also believe that there is a relationship between stack
height and live size, a key insight in driving garbage collec-

tion optimizations. For example, the square-root rule algo-
rithm (Kirisame et al. 2022) proposed by Kirisame et al. can use
the height of the stack to automatically sizing the heap instead
of the live size, because the live size cannot be measured until
after a garbage collection cycle. Optimizations of this nature
are best evaluated on realistic workloads to observe their impact
on pause time, cache behavior, etc.
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A. Calculation of confidence intervals for nor-
malized values

The well known geometric mean is defined for a series X of
positive numbers as

GM(X) := n
√

ΠiXi

This has the nice property that for two equal length series X and
Y of positive numbers,

GM(Xi/Yi) = GM(X)/ GM(Y)

In particular this statistic is invariant under reordering X and Y.
Unfortunately, the same does not hold for the standard deviation
(nor for the geometric version defined by Kirkwood (Kirkwood
1979)). In less abstract terms, when calculating speedups, it
matters which new run is compared with which baseline run,
and in our experimental setup there is no obvious bijection. In
order to account for different possible bijections, we calculate
error bars via bootstrapping (Chernick 2011). More specifically,
we use the scipy.stats.bootstrap function with parameter
confidence_level equal to 0.95; for each of the default 9999
resamples (with replacement) (X′, Y′), the method calculates
GM(X′)/ GM(Y′), and reports a 95% confidence interval for
the resulting values.
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