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ABSTRACT
Digital Twins (DTs) have recently emerged to support domain experts in engineering and operating Cyber-Physical Systems
(CPSs). As a result, software vendors started to create DT services offering advanced functionality to support the development
and operation of DTs in the industry. However, the integration of services into a DT architecture is challenging. Services typically
rely on specific software and modeling languages that are often not interoperable with other services. Hence, they have to be
manually integrated which requires a significant, repetitive effort. Thus, currently, it is tedious to extend the DT’s underlying
architectures with new services or exchange individual service implementations.
In this paper, we propose a tool-supported method for architecture modeling and its application for digital twins. The presented
method provides several steps to manage the complexity of current DT architectures. First, DT reference architectures are
assembled by connecting DT templates, which provide an abstraction for a set of similar DT services. Second, dedicated DT
modules are used to wrap existing services which provide concrete realizations of the DT templates. Third, a product-line-based
generator supports the configuration of reference architectures into concrete architectures by selecting an appropriate set
of modules for the used templates which are finally used in the derived integration solution. The transition from reference
architecture modeling to the product-line-based configuration is supported by a dedicated model transformation. Our evaluation
shows that the proposed DT templates enable the efficient modeling of different DT reference architectures and integration of
new DT services into already existing architectures.

KEYWORDS Digital Twin, Model-Driven Engineering, Architecture Modeling, Modeling Method, Software Language Engineering.

1. Introduction
With the emergence of Cyber-Physical Systems (CPSs), more
and more applications are being developed that utilize the col-
lected runtime data, ranging from monitoring to predictive or
self-adaptive solutions. To handle the complexity induced by
the variety of available CPSs and applications, Digital Twins
(DTs) have emerged. A DT provides access to runtime data
of a CPS (Kritzinger et al. 2018). This data can then be used
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by various services to realize applications that use collected
runtime data. To support the implementation of such DTs in a
scalable way, several DT platforms, e.g., Microsoft Azure Digi-
tal Twins1, Eclipse Vorto2, or AWS TwinMaker3, have emerged
recently (Lehner et al. 2022).
These platforms enable the exchange of data with a physical
twin based on structural models, which are reminiscent of the
core of UML class diagrams (Pfeiffer et al. 2022). Nevertheless,
their provided functionality is not sufficient to manage the full
complexity of DTs (Atkinson & Kühne 2021). To provide
advanced functionality, the addition of further DT services, such

1 https://azure.microsoft.com/en-au/products/digital-twins/
2 https://www.eclipse.org/vorto/
3 https://aws.amazon.com/iot-twinmaker/
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as simulation or monitoring, is needed (Dalibor, Jansen, et
al. 2022). For example, to add simulation functionalities, we
may use a model execution engine as a service that leverages
behavioral models of the respective physical twin. To utilize
runtime data within this simulation, we have to integrate the
model execution engine with a DT platform which is able to
provide the runtime data. We also have to integrate the used
behavioral modeling language (e.g., state machines or rule-
based languages) with the data modeling language used by the
DT platform. Typically, manually performing such integration
is labor-intensive and error-prone as the required glue code is,
of course, not reusable. This situation is further aggravated
when a DT architecture evolves, e.g., when it is extended with
new services or an existing service or when a DT platform is
exchanged with an alternative. Thus, the pairwise integration of
each service with each other drastically increases the complexity
of creating and evolving DT architectures.

To better cope with the complexity of extending different DT
platforms with services that provide additional functionality
into DT architectures (i.e., architectures that leverage runtime
data of physical twins based on DT platforms), we propose a
comprehensive tool-supported method to systematically manage
a set of DT architectures and their evolution, based on ideas first
outlined in (Pfeiffer et al. 2023). In Phase 1 of our method, we
leverage a templating mechanism to generalize services with
similar functionality. In Phase 2, we integrate different tem-
plates into a Reference Architecture Definition (RAD). Based
on this RAD and the available modules implementing the se-
lected templates and wrapping existing services, we automat-
ically derive a product line of available service combinations
for the selected RAD. After choosing a set of services from
this product line in Phase 3, we generate a DT architecture that
integrates the selected services. In this phase, the necessary
glue code is generated automatically based on the RAD spec-
ification. With our method, we go beyond the state-of-the-art
as the template-based reference architecture modeling method
applies to any reference architecture, and thus, is not restricted
to one particular reference architecture such as MAPE-K ar-
chitectures as it is the case in (Dalibor, Heithoff, et al. 2022).
We evaluate the presented method against the state-of-the-art
by investigating several scenarios for modeling DT architec-
tures we defined during discussions with an industry partner in
the SofDCar project. Our evaluation results indicate that even
though our template-based approach requires the definition of
templates as an additional step, it provides better scalability
concerning an increasing number of DT architectures or RADs.

The rest of this paper is structured as follows. Section 2 intro-
duces a motivating example consisting of scenarios for modeling
variants of DT architectures that we derived from discussions
with an industry partner. Then, Section 3 presents our template-
based architecture modeling method. In Section 4, we instanti-
ate our method in the context of DTs. Section 5 evaluates our
method using the scenarios introduced in Section 2. Section 6
discusses related work. Finally, Section 6 concludes the paper.

2. Motivating Example
We now proceed with the motivation for dedicated support for
modeling DT architectures using two scenarios that we derived
from discussions with an industry partner. The scenarios are
described with the help of a representative example.

2.1. Software-Defined Car Research Project

The Software-Defined Car4 (SofDCar) project is a government-
sponsored research program. It is sponsored by the German Fed-
eral Ministry of Economic Affairs and Climate Action (BMWK).
One of its four workstreams is concerned with building a digital
twin for vehicles. The digital twin should tackle the challenges
of constantly increasing and changing customer demands and
expectations on modern vehicles. Our industry partner, one
of the members of this workstream, plans to use the resulting
software solutions to provide architectures for such DTs of cars
to their customers. However, the specific requirements of indi-
vidual customers lead to different DT architecture variants that
have to be managed by our industry partner. Additionally, the
evolution of services and their functionality also required the
adaptation of existing DT architecture variants over time. Next,
we describe a representative example of such DT architecture
variants, followed by a set of scenarios required to provide DT
solutions, that we defined together with our industry partner.

2.2. Motivating Example
Fig. 1 depicts two DT architectures that showcase different
use cases of DTs in the context of the SofDCar project. The
first use case (cf. DT architecture Variants 1 and 2) concerns
temperature control for smart cars, where the driver sets a target
temperature. Based on the actual temperature measured in the
car, either air conditioning or a seat heater is activated until the
chosen target temperature is reached. The second use case (cf.
DT architecture Variant 3) is the reconfiguration of an electric
car depending on the battery charging level and the remaining
distance to the destination. On this basis, energy consumption is
adjusted, e.g., by limiting acceleration, setting maximum speed,
or turning off air conditioning or the entertainment system.
In the first use case, we extend different DT platforms with
a Planner service that computes a sequence of actions for re-
alizing a certain goal (i.e., target situation) for a given initial
situation. The planner is used to maintain optimal temperatures
as described above. In the second use case, the DT platform
functionality is extended with a Deviation Checker service to
identify reconfiguration needs, together with a planner to cal-
culate required actions to adjust the energy consumption. All
used services provide modeling languages for configuration,
i.e., a DT Platform language describes structural aspects of data
omitted by physical twins, a Planner language defines the goals
and optimization rules of the planner, and a Deviation Checker
language describes deviation checking rules.

2.3. Scenarios for building and evolving DT architectures
Scenario 1: Building new DT architecture variants from scratch.
In a typical situation, specific requirements of individual cus-

4 https://sofdcar.de/language/en/
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Figure 1 Scenario 1 from our industry partner: Building new DT architecture variants from scratch.

tomers lead to different variants of DT architectures realizing
similar functionality (cf. Scenario 1.A in Fig. 1), or variants that
realize different functionality, but still share certain commonali-
ties (e.g., they all make use of a DT Platform, cf. Scenario 1.B in
Fig. 1). For example, Variants 1 and 2 in Fig. 1 both realize the
air conditioning use case, but Variant 1 makes use of the Azure
DT platform and its offered Digital Twin Definition Language
(DTDL)5, whereas Variant 2 uses the AWS IoT TwinMaker
service as DT Platform, together with its TwinMaker language.
Such variants often emerge because of existing infrastructure
(e.g., one customer might already rely on Azure as a cloud
provider, whereas another customer already uses AWS cloud in-
frastructure), or specific restrictions (e.g., if a customer requires
the use of on-premise solutions for legal reasons, cloud-based
services cannot be employed). In addition, different use cases
require individual service combinations. For example, while
both use cases presented in Fig. 1 make use of a DT platform
and Planner service, the Deviation Checking service is only
needed for Variant 3.

As a result, our industry partner is forced to create and manage
a wide range of DT architecture variants, based on the specific
requirements of different customers. Currently, providing such
a set of different DT architectures requires manual integration
of each available service that provides a certain functionality
with each service that makes use of this functionality. Such
manual integration of services is tedious and error-prone, as it
involves a lot of redundant work.

5 https://github .com/Azure/opendigitaltwins -dtdl/blob/master/DTDL/v2/
dtdlv2.md

Scenario 2: Evolving existing variants of DT architectures.
Over time, most organizations iteratively evolve their employed
DT architectures by switching services (Scenario 2.A) or adding
new functionality(Scenario 2.B). For instance, clients might ask
to add a new time-based deviation checker to replace the default
event-based one or raise the need for a new DT platform (e.g.,
Eclipse Ditto6) (cf. Scenario 2.A in Fig. 2). Over time, continu-
ous innovation also leads to the development of new services
that customers want to add to their existing DT architectures
(Scenario 2.B). For instance, the organization wants to leverage
multiple DT platforms and, hence, requires a platform integrator
that builds a federated DT platform to interact with both DT
platforms (cf. Scenario 2.B in Fig. 2).
Adding a new service to existing DT architectures (Scenario
2.A) currently requires to integrate this new service with each
DT architecture configuration, while making sure that both the
software interfaces match, and the service-specific languages
are made compatible. This effort increases with the number
of available services. Introducing new service functionality
into existing DT architectures (Scenario 2.B) adds another level
of complexity to the integration process, as this communica-
tion with existing services needs to be defined for all different
configuration options.

2.4. Limitations of existing approaches

To integrate services comprising software and related modeling
languages, we proposed in previous work the notion of language
plugins (Dalibor, Heithoff, et al. 2022), which we will refer to

6 https://www.eclipse.org/ditto/
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Figure 2 Scenario 2 from our industry partner: Evolving existing variants of DT architectures.

as modules in this paper. These modules can be integrated
pairwise using a component and connector (C&C) architecture
description language for the software level, and a language
component notation to enable language composition based on
an explicit language interface. To this end, we also provided a
predefined set of high-level software and language interfaces
that are integrated into a reference architecture realizing the
MAPE-K (Kephart & Chess 2003) pattern. By implementing
these interfaces, specific modules could be plugged into this
predefined reference architecture. However, when building
and evolving a set of DT architecture variants (cf. Scenario
1.A and 2.A), we realized that the pairwise integration of each
module is not feasible. From the discussions with our industry
partner, we also learned that plugging modules into a predefined
reference architecture is not sufficient to support architectures
that realize different applications (cf. Scenario 1.B) or add
service functionality to existing architectures (cf. Scenario
2.B).

3. A Method for Template-based Architecture
Modeling

To overcome the aforementioned limitations, we provide a
method to abstract a set of modules into so-called templates.
In particular, we use these templates to (i) define arbitrary ref-
erence architectures by connecting the software and language
ports of available templates, and (ii) generate a product line
from such a reference architecture description that allows the
selection of available modules for each template.

Fig. 3 gives an overview of the individual phases of this method,
which we elaborate on in the remainder of this section. In
this overview, grey boxes indicate steps in which we draw on
existing work (Dalibor, Heithoff, et al. 2022), whereas white
boxes mark the steps that are added based on the template-based
nature of the method proposed in this paper. In our explanations,
we will focus on these new parts. The following section gives
an overview on the individual steps of our method, focusing on
these new parts. Section 4 then instantiates these steps in the
context of digital twins, using a specific example.

3.1. Phase 1: Service Definition.
In this first phase, we define available services as modules and
templates.
In Step 1.1, we define a module for each service that wraps
the corresponding software and language components of this
service utilizing the Module Definition Language. Soft-
ware components are interfaces that can be used to interact with
the respective service. For this interaction, each software com-
ponent offers incoming ports to send data to the service, and
outcoming ports to retrieve the data produced by the service.
The functionality provided by a service can be configured us-
ing models. The languages that these models conform to are
specified as language components. Each language component
specifies a set of so-called language ports. We can connect
different languages by connecting these ports using language
composition (Butting et al. 2020). This definition of modules
is compliant with what is proposed in (Dalibor, Heithoff, et al.
2022).
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In Step 1.2, we create templates as abstractions of the previ-
ously defined modules. These templates provide contracts for
modules by specifying software and language ports that must
be implemented by all modules that realize a certain template.
These ports are specified together with a name for the template
using a Template Definition Language
After Step 1.1, the modules provide specific ports based on
the respective service. For a module to implement a certain
template, these ports have to be wrapped to realize the con-
tracts imposed by this template. Therefore, we define a map-
ping from the module specific port names and port types to
the abstracted ports imposed by the templates in a Data Port
Mapping Language. A similar mapping is also performed be-
tween the language components of the module and the template.
For this mapping, we leverage the existing concept of language
inheritance, and specify the required mapping rules using a
Transformation Language.

3.2. Phase 2: Reference Architecture Definition (RAD)
Step 2.1 is concerned with the definition of so-called reference
architectures. For this, a set of templates is connected to real-
ize a certain reference architecture. This connection must be
performed for all (software and language) components of the
selected templates. For the software components, this means
that outgoing software ports of a template must be connected to
the incoming software port of another template. This connection
also involves the definition of glue code to map the data type
provided by the outgoing port to the data type required by the
incoming port. For language components, this means that we
connect each provided language port of selected templates to
the required ports of another template. This connection affects

that both languages are composed using language aggregation,
i.e., a link between both language’s ports is created, e.g., to
check consistency between models conform to these languages.
As a result of this Reference Architecture Definition (RAD)
of templates, we obtain a reference architecture model,
that is used in Step 2.2 to generate an architecture product
line. The first level of this product line contains the list of tem-
plates that we already connected in the respective RAD model,
followed by the modules that we connected to the respective
templates in Step 1.3.

3.3. Phase 3: Product Line Configuration
The mentioned architecture product line, generated from the
selected DT reference architecture model, allows the connection
of available modules into different architecture variants. To
select a specific variant from the product line in Step 3.1, we
have to define a product line configuration model by selecting
one available module for each template available in the product
line.
Based on this product line configuration, in Step 3.2, we can
integrate the selected modules into a finished architecture based
on (i) the glue code between the respective templates defined in
Step 2.1 in the RAD, and (ii) the inheritance relation between
the modules and their template specified in Step 1.3. Such
an integration is already shown in (Dalibor, Heithoff, et al.
2022) and this allows us to reuse existing tooling to achieve the
following two integration solutions. The result of the integration
of the software components is the operable DT architecture. For
the language components, their integration results in a modeling
editor that allows the instantiation of the software architecture
for specific use cases.
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The DT architecture can be instantiated by domain experts who
can create models of the service-specific languages contained in
the modules selected in Step 3.1. As these modules inherit from
templates, and the templates are connected through language
aggregation in the RAD, the created models are automatically
integrated into one common model that contains the combined
information of all created models. This model is then used to
configure the respective services to a particular use case.

3.4. Tool Support
We provide a prototypical implementation of the presented
method online7. This implementation builds upon the frame-
work introduced in (Dalibor, Heithoff, et al. 2022), which
integrates software components defined in the MontiArc
ADL (Butting et al. 2017) and SCOLaR (Butting et al. 2020;
Pfeiffer & Wortmann 2021, 2023) black-box language compo-
nents into an operable software architecture and the respective
modeling editor (i.e., Phase 3 of our method). The composition
of two language components consists of two main activities: (1)
Composing the components’ interfaces; and (2) Composition
of the comprised language definition constituents (grammar,
well-formedness rules, code generators). In our approach, we
leverage the two language composition operators language inher-
itance and language aggregation. Language inheritance extends
an existing language, i.e., the generic template languages, with
new concepts, i.e., the service-specific module language. Lan-
guage aggregation takes two language definitions as input and
creates a link between them. In contrast to inheritance, how-
ever, the models and the language definitions remain separate
and are only connected by glue code on the language definition
level. This is especially useful in our approach where we aim to
allow independently developed languages to interact. For imple-
menting our method, we provide dedicated languages to define
modules and templates in Phase 1, as well as RADs, and product
line configurations in Phase 2, using the MontiCore (Krahn et
al. 2010) language workbench. We also implement a model-to-
model transformation that translates RAD models defined in
Phase 2 into the product lines used in Phase 3. Since both the
RAD language and the language for product lines are defined
using MontiCore, the transformation is implemented by trans-
forming the abstract syntax tree (AST) of a parsed RAD model
into an AST of the product line language according to the map-
ping defined in Section 3.2. The final AST is then pretty-printed
into a product line model.

4. Method Instantiation in the Context of Digital
Twins

The reference architecture modeling method we introduced
above is generally applicable to reference architectures from dif-
ferent application domains. Thus, as a prerequisite to applying
this method to the scenarios introduced in Section 2, we have to
instantiate it in the context of DTs. In the following, we answer
the question of “Which steps are required to model DT architec-
tures using our template-based approach?” by instantiating the
proposed method for connecting different planning tools (i.e.,
7 https://github.com/cdl-mint/DT-Product-Line-Architecture
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the model-driven optimization tool MOMoT (Bill et al. 2019),
and planners based on executing basic or timed statecharts) with
commercial DT platforms offered by AWS and Azure, to create
a reference architecture for DT-based reactive planning, as e.g.
discussed in (Eisenberg et al. 2022).
The different planning services yield a plan that has to be ex-
ecuted on a system in order to achieve a certain goal (e.g.,
optimize overall energy consumption). Based on a model rep-
resenting a system state, a planner returns the next action that
needs to be performed in this system state, based on the stored
plan. In the MOMoT planner, the plan is calculated by exe-
cuting a set of predefined graph transformations on the input
model using genetic algorithms. The list of graph transforma-
tions that achieve the planning target most efficiently is taken as
the to-be-executed actions for the system. The used transforma-
tions must be specified using the Henshin graph transformation
tool (Arendt et al. 2010), and the system state must be a model
conforming to a meta-model specified in Ecore (Steinberg et al.
2008). In the statechart-based planners, the plan is stored as a
basic or timed statechart, respectively. The next action in the
plan is calculated based on the currently activated state and the
input model. For instance, in a temperature control statechart,
if the system is in idle state, but the actual temperature in the
room is higher than the threshold value, the state is switched to
cooling, and an action for activating the cooler is triggered.
To perform such planning based on live data rather than a per-
sisted model, we need to connect these planners to DT platforms
that host the running devices to derive the input model used for
planning from live data and execute the action returned by the
planner on the running devices. In this section, we use the Azure
Digital Twins and AWS TwinMaker service as examples of such
DT platforms. Both of these DT platforms provide a REST
interface for interacting with running devices.

4.1. Phase 1: Service Definition
Part of the output of this phase is depicted in Fig. 4, namely an
AzureDT module that implements the DTPlatform template as
well as a MOMoT module implementing the planner template.

Step 1.1: Define modules In this first step, we define the
modules for all available services. The goal of this step is to
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bridge the specific technologies of the different tools (e.g., the
MOMoT tool is stored as an executable Java Archive (JAR) file,
whereas the DT platforms provide an HTTP interface) using
Java code as an integration platform. Therefore, we provide
a textual description of the in and out-ports of each module
and use the MontiArc framework to generate a Java class based
on this description. The resulting class contains an attribute
for each port, a setter method for each incoming and a getter
method for each outgoing port. On top of these port definitions,
MontiArc also generates a compute method that needs to be
implemented to bridge the specific technology of the respective
tool and Java.
For example, in the module wrapping the MOMoT tool, the
inputModel is stored as EObject, i.e., the Java class for in-
teracting with models that conform to an Ecore meta-model
together with a String representing the name of the respec-
tive meta-model, and the calculated plan is stored as a list of
UnitApplication Java objects which contain execution in-
formation of a Henshin graph transformation. In the compute
method of this class, these Java attributes are bridged with the
jar-file containing the respective MOMoT configuration by ex-
ecuting this jar-file with the inputModel as the parameter, and
storing the resulting plan in the plan attribute. The correct jar-
file is located based on the meta-model name. The inputModel
is stored as an xmi-file, and the path to this xmi-file is passed as
the parameter when executing this jar-file.
For the AzureDT module wrapping the Azure platform and
the AWS TwinMaker (AWSTM) module wrapping the AWS
DT platform, the compute method of the respective Java class
generated by MontiArc implements the interaction with the
Azure digital twins or AWS TwinMaker service. To enable this
interaction, we have to set the chosen service’s web address.
Based on this web address, we call the correct service methods
and set the parameters accordingly. For instance, for updating
the currentState of a DT in the AzureDT module, we call
the getById method of the Azure DT webservice8, passing the
id of the twin we want to update as a parameter. The value
of the currentState attribute is updated based on the Twin
object received as a response. We perform this update of the
currentState on every call of the compute method and also
execute an operation on the system according to the value of the
command attribute.

Step 1.2: Abstract modules into templates In this second step,
we use the defined modules and abstract common functionality
into the DT platform and planner templates. For example, for
the DT platform template, this means that we generalize the
specific languages used by different platforms into a common
Structure Language. A simplified version of this language
is shown in Fig. 4. It provides a TypeDef port that specifies
type information on available twins, and a Method port defining
operations that can be executed on twins. The provided software
ports allow access to runtime data through the currentState
port, and the execution of operations through the opToExecute
port. We also need to define generic data types that are used

8 https://learn .microsoft .com/en -us/rest/api/digital -twins/dataplane/twins/
digital-twins-get-by-id
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Figure 5 Structure of the TwinState and Operation-
Execution data types of the software ports used by the DT
platform and planner templates (in class diagram syntax).

by these software ports. Fig. 5 gives an overview of the data
types we define for both DT platform and Planner template
(TwinState is used by the currentState and initialState ports,
and OperationExecution is used by the opToExecute and
nextAction ports).

Step 1.3: Integrate modules with templates The modules
specified in Step 1.1 can now implement the generic ports of the
respective templates, as shown in Fig. 4. Therefore, they have
to provide the same ports as the software and language compo-
nents of the template. However, most software and languages
use specific software and language ports. For example, Azure
uses the Twin datatype for the currentState port, instead of the
TwinState type imposed by the DT platform template. Thus,
we have to write so-called wrappers that map the specific ports
of the module’s software and language components to those
imposed by the respective template. Fig. 6 gives an excerpt of
the rules that have to be implemented in such a wrapper.

<-- Azure2DTPlatform Transformation

rule TwinToState{

from twin Azure!Twin

to state DTPlatform.TwinState(

name -> twin.name

type -> twin.type

params -> twin.properties

params -> twin.telemetries

)

}

...

<-- DTPlatform2Azure Transformation

rule OpExecToCommand{

from op DTPlatform!OperationExecution

to cmd Azure.Command(

type.name -> cmd.name

params -> cmd.commandParameters

)

}
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Figure 6 Excerpt of the transformation rules required by the
AzureDT module generated from MontiArc for the integration
with the DT platform template.
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Step 2.2

<<Template>> DTPlatform

DataAccess

Interface

Structure

Language

<<Module>> AzureDT

Azure

Accessor

DT

Definition 

Language

import DTPlatform;

import Planner;

refarch ReactivePlanning {

software {

DataAccessInterface synchronizer;

PlannerInterface planner;

synchronizer.currentState -> planner.initialState;

planner.nextAction -> synchronizer.opToExecute;  

}

language {

StructureLang.TypeDef -> PlannerLang.ElemType;

StructureLang.PropertyDef -> PlannerLang.ElemProperty;

StructureLang.MethodDef -> PlannerLang.Capability;

StructureLang.IMethodCall -> PlannerLang.Action;

}

}
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Figure 7 Definition of the DT RAD model using templates
defined in Phase 1 (top), and visualization of the resulting DT
product line with the chosen templates (green) and available
modules (blue).

4.2. Phase 2: RAD
In Phase 2, we use the DT platform and planner templates
defined in Phase 1 to generate a product line for our DT-based
reactive planning reference architecture.

Step 2.1: Define Reference Architecture The upper part of
Fig. 7 shows how we define the respective reference architec-
ture in Step 2.1. This RAD model starts with the import of the
templates to be used (lines 1-2). Then the keyword refarch
followed by a name defines the architecture (line 4). After-
ward, the mappings between the template’s software compo-
nents (lines 6-7) are defined, thereby, connecting all ingoing and
outgoing ports (lines 9-10). For defining the composition of the
template’s language components, their provided and required
interfaces need to be bound together defining which concepts
should be linked using language aggregation (lines 13-16).

Step 2.2: Generate Product Line In Step 2.2, we use this RAD
model to generate the product line depicted at the bottom of
Fig. 7. In this product line, the root feature is derived from the
name of the RAD, i.e., ReactivePlanning. The level 1 fea-
tures are the names of the imported templates, i.e., DTPlatform
and Planner. The leaves of the tree are all referring to mod-
ules that implement the respective parent feature’s template.
Hence, AWS IoT TwinMaker and Azure DT are children of
the feature DTPlatform.

4.3. Phase 3: Product Line Configuration
By selecting one module for each available template, we con-
figure our product line in Step 3.1, as shown in the upper part
of Fig. 8. In the lower part of this figure, we can see the DT
architecture generated from this product line configuration in
Step 3.2. The integration of software components in this step
is rather straightforward. The modules’ software components
can be replaced in the DT RAD model, yielding a new Mon-

Digital Twin

DTPlatform: Azure

Planner: Basic Statecharts

Azure
Basic

Statecharts

DTDL

Model

uses

SC

Models

uses

Azure DT
SC Model 

Execution Engine

DT service

uses

uses

DT module 

wrapper

Product Line 

configuration

DTPlatform Planner

DT template 

bridge

generate

Step 3.2

Step 3.1

Figure 8 Configuration of product line generated in Phase
2 (top) and the DT architecture (bottom) resulting from the
generation performed in Phase 3.

tiArc architecture model that comprises the modules’ MontiArc
components and their connections. MontiArc can then generate
executable Java code, connecting the selected software com-
ponents. More precisely, DT template bridges are generated
that contain the glue code that bridges the used templates based
on the chosen DT RAD model. This glue code is inherited by
DT module wrappers that perform the communication between
the software components for the modules selected in the DT
architecture configuration model. These DT module wrappers
also wrap the actual software component of the selected module
by mapping each specific port of this software component to the
abstracted port imposed by the respective template. Thus, the
specific software component of the module still runs decoupled
from the Java code generated by our method.

For integrating available language components, we use two
different language composition techniques, i.e., language aggre-
gation between languages of templates (Pfeiffer & Wortmann
2021), and language inheritance between the languages of tem-
plates and modules. The former is performed based on the DT
RAD model. When using language aggregation the composed
languages remain independent of each other after the composi-
tion. Considering the running example of this section, the state
machine language stays independent of the aggregated structure
description language of the DTPlatform. Thus, both languages
can be extended by module-specific languages without requir-
ing adaptation of the aggregating language or vice versa. The
languages of modules and templates are composed using lan-
guage inheritance. Thereby, similar to object-orientation, the
language of the module extends the language, in particular the
contained language concepts, of the template. Consequently, the
languages can be utilized by domain experts using the module-
specific syntax but can be reused via the generic language of
the templates that they extend at the same time.
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4.4. Result: Integrated DT architecture
After receiving the integrated software architecture and the re-
spective language to configure the architecture components as
result of Phase 3, we can define models in the respective lan-
guage to tailor our architecture to a particular use case. For
the DT architecture in Fig. 8, we create models in the DT Defi-
nition Language used by the AzureDT module and statechart
language used by the Basic Statechart module. As these two
languages are integrated, the statechart models can reference
types, attributes, and methods of the DTDL model. For this, we
rely on previous work (Dalibor, Heithoff, et al. 2022).

5. Evaluation
We now evaluate the method proposed in this paper for DTs by
using the scenarios introduced in Section 2. More precisely, we
aim to answer the following research question.
Research Question (RQ): What are the pros and cons of using
the presented approach compared to the state-of-the-art? To
answer this RQ, we perform a comparative study of realizing the
scenarios from our industry partner (see Section 2) with three
different approaches. The template-based approach em-
ploys the method proposed in this paper. In the module-only
approach, we manually integrate available modules directly
with each other by using the approach presented in (Dalibor,
Heithoff, et al. 2022). For the MAPE-only approach, we inte-
grate modules into a given MAPE RAD, as done in (Dalibor,
Heithoff, et al. 2022; Pfeiffer et al. 2023). Thereby, we inves-
tigate the impact that the different approaches on the overall
effort for realizing the aforementioned scenarios (cf. Section 5.2
for Scenario 1 and Section 5.3 for Scenario 2). We finish this
section with a discussion of the limitations of our evaluation
and the proposed method of this paper (Section 5.5).
All necessary artifacts to create the described setup and execute
the different scenarios are available in our online repository7.

5.1. Setup
We now describe the setup of our study, namely the used tem-
plates and modules, the considered RADs, and how we apply
the different methods for the scenarios of our industry partner.

5.1.1. Used templates/modules In this evaluation, we
make use of the following templates and modules:
DTPlatform enables communication with industrial DT plat-
forms. We specify modules for Microsoft Azure DT and AWS
TwinMaker.
Planner provides planning functionality, implemented in the
already described basic and time-based SC planner modules,
next to the MOMoT planner.
DeviationChecker allows us to observe the runtime data (e.g.,
from a DTPlatform) and compares this data to simulation results
retrieved from a simulation component which is also part of the
DeviationChecker template. In the DT architecture variant 3
from Fig. 1, we use an event-based deviation checker that uses
the full state of the running system and compares this state with
the results of an event-based simulation. As an alternative, we
introduce the time-based deviation checker module which uses
time-based simulation as a basis for comparison.

Integrator builds a federated DTPlatform interface to interact
with DTPlatforms that run in different instantiations of the
DTPlatform template. It provides (i) the same software and
language ports as the DTPlatform template to connect the
Integrator to other templates based on the DTPlatform inter-
face, and (ii) additional software and language ports that are
connected to the DTPlatform templates that should be federated.

Fig. 9 gives three examples of the aforementioned templates
and one module realization for each of them.

5.1.2. Considered RADs Using the aforementioned tem-
plates, we can build a variety of RAD models, including all
of the RADs used by the DT architecture variants presented in
Fig. 1 and Fig. 2. In particular, we use the following RADs:
RAD 1 combines the DTPlatform with Deviation Checker and
planner templates to realize a self-adaptation RAD based on
the MAPE pattern (Kephart & Chess 2003). RAD 2 builds an
alternative RAD that directly connects the DTPlatform with the
planner template, without using the Deviation Checker. With
RAD 3, we can create two instantiations of the DTPlatform
template and federate them using the Integrator. By connecting
the Integrator to the planner, we can realize a self-adaptation
RAD for devices running in different DTPlatforms.

5.1.3. Evaluation Settings In the following, we imple-
ment different DT architectures using the three different ap-
proaches and compare their resulting implementations. For the
template-based approach, we use the setup as introduced
in Section 4. Next, we detail the setup of the module-only
approach and MAPE-only approach.
Module-only approach. To describe the setup of the
module-only approach, we use the example of connecting
planners with DT platforms from the previous section but focus
on the connection of the software components of the MOMoT
planner with the Azure and AWS DT platforms. To perform
this connection, we have to (1) manually write the glue code
that transforms (1.1) the live data retrieved from the DT plat-
forms to the input model required by MOMoT, and (1.2) trans-
form the UnitApplication object calculated by MOMoT to
the data format required by the DT platforms to execute this
UnitApplication on a running device. Based on this map-
ping, we (2) connect the respective modules to finalize the con-
nection of MOMoT to the DT platforms. The remaining steps
to generate the respective DT architectures in this setting (i.e.,
module definition, product line configuration, and generation of
a DT architecture based on a product line configuration) are sim-
ilar to the respective steps in the template-based approach.
(1.1) Glue code for transforming live data into an EObject. In
order to connect the live data retrieved from the DT platform (an
object of type Interface for Azure and Component for AWS)
with the input model of type EObject required by MOMoT,
we need to write for each DT platform a dedicated setter
method of the inputModel attribute in the respective class of
the MOMoT module. For the Azure DT platform, this method
requires a parameter of type Interface, and transforms this
parameter into an EObject by implementing the transformation
rules described in Fig. 10. The method for the AWS DT platform
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template DTPlatform {

software DataAccessInterface{

in OperationExecution opToExecute;

out TwinState currentState; 

}

language StructureLang{   

provides TypeDef, MethodDef, 

MethodParamDef, PropertyDef,     

Instance, MethodCall;

}

}

module Azure implements DTPlatform {

language AzureDTDefinitionLanguage {

Interface -> TypeDef;

Command -> MethodDef;

CommandPayload -> MethodParamDef;

Property -> PropertyDef;

Telemetry -> PropertyDef;

Twin -> Instance;

OperationCall -> MethodCall;

}

}

template Planner {

software PlannerInterface{

in TwinState currentState;

out OperationExecution opToExecute;

}

language PlannerLang{

requires ElemType, Capability

ElemProperty, Action;

provides GoalSpec; 

}

}

module BasicSCPlanner

implements Planner {

language UMLSC{

SCDef -> GoalSpec;

}

}

template DeviationChecker {

software CheckerInterface{

in  TwinState currentState;

out TwinState deviation;

}

language CheckingLang{

requires ConditionElem, 

ConditionProp;

provides Condition;  

}

}

module EventBasedChecker

implements DeviationChecker {

language TimedCheckingLang{

Guard -> Condition;

}

}

Figure 9 Excerpt of module and template definition for the evaluation setup.

requires a parameter of type Component instead, implementing
the respective rules to transform this Component object into an
element of type EObject.
(1.2) Glue code for executing UnitApplication on running de-
vices. For mapping the UnitApplication object retrieved as
nextStep from MOMoT to the respective element in the DT
platform, we have to implement a dedicated getter method of
this nextStep attribute for each DT platform. Each method
returns the value of the nextStep attribute in the specific
format required by the respective DT platform. Therefore,
the method implements the rules required to transform the
UnitApplication object of the MOMoT tool to a Command ob-
ject for Azure (cf. Fig. 10) or a Function object for AWS.
(2) Connecting the modules. We can now integrate MO-
MoT with the Azure DT platform by regularly retrieving the
currentState from the AzureDT module and passing it to
the Azure setter method of the inputModel of the MOMoT
module, and retrieving the nextStep of the MOMoT module
via the getter method that returns the Command element that can
be passed to the AzureDT module.
MAPE-only approach To perform a similar integration than
described in the MAPE-only approach, we have to connect the
MOMoT, AzureDT, and AWS modules with their respective
components of the predefined MAPE RAD, similar to Step 1.3
of the method outline in Fig. 3. To perform this integration,
we have to implement the same transformation rules as in the
template-based approach, as outlined in Fig. 6. In contrast
to the template-based approach, this integration only allows
us to generate DT architectures that use the MAPE RAD, i.e.,
not all possible DT architecture variants are supported.
Next, we investigate how the differences in these individual
approaches manifest in the context of the scenarios of Section 2.

5.2. Application to Scenario 1: Building DT architecture
variants from scratch

In the following, we discuss how to model different ref-

erence architectures and their configurations to realize Sce-
nario 1 using the three different approaches (i.e.,, template-
based approach, module-only approach, and MAPE-only
approach). Therefore, we assume that we already defined
the available modules for the template-based approach,
module-only approach and MAPE-only approach, and tem-
plates for the template-based approach, as described above.

5.2.1. Create a single DT architecture Using the
template-based approach, the creation of a single DT ar-
chitecture requires following the three phases described in Sec-
tion 3. For example, to create a system that follows the MAPE
RAD, we could use the DTPlatform, deviation checker, and
planner template from above and connect them accordingly. In
the product line, we select the Azure DT module as DTPlatform,
the time-based variant for the Deviation Checker, and the basic
SC module for the planner template. This allows us to generate
the DT architecture, as described in Phase 3 of Fig. 3.
In contrast, as the MAPE-only approach imposes the MAPE
RAD, it is only necessary to define and integrate the modules.
In the module-only approach, the glue code to integrate the
three required modules—Azure, time-based deviation checker,
and basic SC planner—needs to be developed by hand. This
integration requires connecting all incoming and outgoing ports
of the individual modules manually.

Lessons Learned Our approach requires definition of both
templates and modules, before a DT architecture can be cre-
ated. In comparison, the module-only approach can di-
rectly integrate the modules via the manual development of
glue code. In the MAPE-only approach, the templates are
already provided by the imposed MAPE RAD. We see that for
creating a single DT architecture our method requires extra
effort.

5.2.2. Scenario 1.A: Creating several DT architecture
variants for one RAD Our partner might need to create
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rule currentStateToInputModel{

from twin Azure!Twin

to eobj MOMoT.EObject(

name -> twin.name

type -> twin.type

eAttributes -> twin.telemetries

eAttributes -> twin.properties

...

)

}

...

rule UnitApplicationToCommand{

from ua MOMoT!UnitApplication

to cmd Azure!Command(

name -> ua.name

parameterValues

-> ua.executionParameters

)

}

rule ParamValueToCommandParam{

from param MOMoT!ExecutionParameter

to cmdParam Azure.CommandParameter(

name -> param.name

value -> param.parameterValue

)

}
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Figure 10 Excerpt of transformation rules that need to be im-
plemented by the MOMoT module generated from MontiArc
for its integration with the Azure DT platform.

different variants of MAPE (i.e., particular DT architectures
realizing the MAPE-based RAD) based on the specifications of
different clients, as described in Scenario 1.A.
In our template-based approach this versatility is built in.
This means that once a RAD is defined, it is possible to generate
all combinations of modules for each client’s DT architecture
based on this RAD. For instance, for our MAPE-based RAD,
we can generate 12 different DT architectures using the modules
described in Section 5.1.
In the MAPE-only approach, we may reuse the same modules
defined above. However, as MAPE is imposed by the method,
it is not necessary to define a RAD.
For realizing the same example in the module-only approach,
in the absence of templates, modules would have to be integrated
manually for each of the 12 available DT architectures.

Lessons Learned When generating several DT architecture
variants for the same RAD, using templates and DT RAD
models is more scalable than the manual integration of mod-
ules for each DT architecture. As the MAPE-only approach
is optimized for integrating DT architectures for the MAPE
RAD, it is also more efficient in building MAPE-based DT
architectures.

5.2.3. Scenario 1.B: Creating DT architectures using
different RADs To realize Scenario 1.B in our template-
based approach, we have to create a DT RAD model for each
RAD according to the DT architectures to be built. Based on
these DT RAD models, we can create a DT architecture config-

uration model for each required DT architecture. For example,
in addition to the MAPE RAD (Scenario 1.A), we can generate
six further DT architectures where we directly connect the three
different planner modules with the two DTPlatform modules.
Twelve further variants can be created by connecting the three
available planners with the available integrators in combination
with all possible combinations of instantiating two DTPlatforms.
This results in 30 total DT architectures that can be built from
these three RADs.
Evidently, in the module-only approach the effort is much
higher. To realize this example in the module-only approach,
we would need to manually integrate module combinations in
the 30 different DT architectures, regardless of the reference
architecture used. This means writing glue code to connect the
two DTPlatform modules with the different Integrator modules,
and these Integrator modules with the three different planners,
and these planners again with the DTPlatform modules, just to
realize the DT architectures for one of the three RADs. To create
the DT architectures of the other RADs, we need to connect all
DTPlatforms with all Deviation Checker and planner modules,
and the Deviation Checker with the planner modules.
The MAPE-only approach is only applicable to the twelve
MAPE-based RADs. DT architectures for other RADs can-
not be built using this approach.

Lessons Learned The high variability of the integration of dif-
ferent RADs and DT architectures clearly shows the benefits
of increased scalability of the template-based approach in
comparison to the module-only approach. The MAPE-only
approach is applicable for twelve out of the overall 30 DT
architectures in this scenario, which shows that several DT
architectures cannot be supported.

5.3. Application to Scenario 2: Evolving existing variants
of DT architectures

In the following, we demonstrate the realization of Sce-
nario 2 using the three different approaches (i.e.,template-
based approach, module-only approach, and MAPE-only
approach). More precisely, we showcase the addition of a new
module and a new template into the DT architectures created
for Scenario 1.B.

5.3.1. Scenario 2.A: Switch to new module in existing DT
architectures To add a new module using the template-
based approach, we first define the service following the steps
in Phase 1 (Section 3), which enables its selection in the product
line. Then, to integrate it in existing DT architectures, we simply
alter the respective DT architecture configuration models and
re-generate the DT architectures. For example, the emergence
of a new DT platform such as Eclipse Ditto can require us to
replace the Azure DT module with a new Eclipse Ditto module.
Therefore, we just replace the respective modules in all DT
architecture variants created for Scenario 1.B. The compatibility
with existing modules is already ensured by the respective RAD.
In the MAPE-only approach, we also replace the Azure DT
with the new Eclipse Ditto module, but only for the subset of
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12 out of 30 DT architectures that we were able to create using
this approach in Scenario 1.B.
To perform this Scenario in the module-only approach, we
would need to manually exchange the Azure DT module with
Eclipse Ditto in all 15 DT architectures from Scenario 1.B that
use the Azure DT module, asserting the compatibility of Ditto
with all other modules in each DT architecture.

Lessons Learned To include a new tool to replace an exist-
ing one, the template-based approach only requires the
definition of the new module and regeneration of the required
DT architectures. In the MAPE-only approach, we also per-
form this replacement by defining the new module, but as
mentioned before, less than half of all DT architectures are
supported. In the module-only approach, instead, we have
to manually integrate the new module with all existing mod-
ules of each DT architecture.

5.3.2. Scenario 2.B: Add new functionality to existing
RADs To extend the functionality of existing RADs, in the
template-based approach, we need to first define a template
that describes this new functionality via its interface, and inte-
grate it into the existing RADs. This change in the DT RAD
model implies that all existing DT architecture configuration
models that use this RAD need to be extended accordingly. For
example, we could extend the MAPE RAD by connecting the de-
viation checker and planner with the integrator template. Then,
for each of the existing MAPE DT architecture configuration
models from Scenario 1.B, we have to select two specific mod-
ules for the DTPlatform and one for the Integrator templates.
After these adaptations, we can regenerate the DT architectures
to include the newly added functionality.
The MAPE-only approach does not support this scenario, as
the imposed MAPE RAD cannot be altered in this approach.
Realizing this example evolution in the module-only
approach would mean to manually “glue” the DTPlatform to
the Integrator module, and the Integrator to the existing modules
for each MAPE-based DT architecture from Scenario 1.B.

Lessons Learned When adding new functionality to existing
RAD in the template-based approach, only the connec-
tions between the added template and existing templates of
the considered DT RAD model need to be defined. In the
module-only approach, the new functionality needs to be
integrated with the existing modules of each DT architecture
that uses the considered RAD. The MAPE-only approach
does not allow altering the RAD at all.

5.4. Discussion
In the following, we discuss the answer to the research question
posed at the beginning of this section, based on the evaluation
results presented above. By implementing the scenarios from
Section 2 using the method proposed in this paper, and com-
paring the resulting realization with two baseline approaches,
we found that the definition of modules and templates evidently
comes with a price. Especially for “one-off” developments
that aim at the creation of a single DT architecture, this effort

might not be worthwhile. Nonetheless, our template-based ar-
chitecture modeling method can be used to flexibly generate
DT architecture variants based on a wide range of RADs. Espe-
cially when several similar DT architectures need to be built, the
amount of glue code required remains manageable, compared
to the exponentially growing amount of glue code required for
manual integration of modules.
We also see that the added effort of creating templates pays
off as soon as the architectures have to be extended to include
additional functionality. Our method also provides complete
flexibility to compose templates into any RAD. This evolution
of RADs, for instance, is clearly not foreseen in previous ap-
proaches (Pfeiffer et al. 2023) or leads to significant overhead
when performed on the individual module level, as done in (Dal-
ibor, Heithoff, et al. 2022).

5.5. Limitations
One major limitation of the evaluation presented in this pa-
per is that it is based on scenarios from one industry partner.
However, we provide an open-source implementation of the pro-
posed method7 that can be used by peers to apply the presented
approach to their own case studies.
We also note that the technologies used to create the prototyp-
ical implementation of our method used for evaluation, i.e.,
MontiArc and SCOLaR, impose certain limitations. MontiArc
generates Java code for integrating software components, which
implies that these components need to either be written in Java
or provide a compatible interface. The SCOLaR framework
is developed in the MontiCore workbench, thus the languages
used for the language components in our method also require a
compatible definition in MontiCore.

6. Related Work
In the following, we discuss related work concerning the pre-
sented contributions of this paper.

Model-based Tool Integration. In this paper, we aim to in-
tegrate different tools into reference architectures to realize
enhanced DTs. Several approaches have been defined in the
past that tackle the challenge of integrating different model-
ing tools (Tratt 2005). For example, the Model BUS frame-
work (Blanc et al. 2005) proposes a dedicated model exchange
type describing the interface of a modeling service to ensure
compatibility between inputs and outputs of different services
and provide entry points for invocation of modeling services.
The ModelCVS project (Kappel et al. 2006) also provided tech-
niques to integrate different tools by realizing model exchange
by model transformations. Another approach uses model trans-
formations between file formats to realize information exchange
between tools (Platenius-Mohr et al. 2020).
Whereas all of these approaches focus on tool integration during
design time, i.e., one-time data exchange of design models,
to solve the challenges presented in this paper, we need to
orchestrate tools at runtime to have continuous data exchange
between the different tools. This orchestration is achieved with
the presented method by providing explicit modeling support
for the architecture that a system uses during its runtime.
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Tool Interoperability through Standardization. An alternative
to tool integration as described in the previous paragraph is the
standardization of communication interfaces and protocols be-
tween different tools. This is, e.g., successfully implemented for
simulation tools with the Functional Mock-up Interface (Block-
witz et al. 2012). Another example is the standardized com-
munication between industrial assets using standards such as
OPC-UA9 or MTConnect10. The Asset Administration Shell
(AAS) (Arm et al. 2021; Tantik & Anderl 2017) or digital
twin definition language by Microsoft11 are also attempting
to achieve similar standardization in the context of DTs. How-
ever, currently, available standards for managing the complexity
of DTs are insufficient for most DT applications, as they only
provide a structural representation of physical assets (Pfeiffer et
al. 2022), and do not allow for natively extending the available
modeling languages, as these standards lack an explicit meta-
modeling level (Atkinson & Kühne 2021). Previous work shows
how different modeling languages can be summarized into a
homogeneous exchange format on the data level with UML pro-
files for class diagrams (Pfeiffer et al. 2022), ontologies (Vila et
al. 2021) or conceptual models (Becker et al. 2021). In addition,
there are approaches towards homogenization of digital (twin)
architectures, e.g., ontologies for digital platforms (Derave et al.
2020) aim at summarizing the functionalities and requirements
of three different types of digital platforms.
The existing related work aims to integrate different DT ser-
vices by standardizing the communication between software
services, e.g., OPC-UA, MTConnect, or AAS, and the integra-
tion of DT languages by providing UML profiles or ontologies.
However, none of these approaches is sufficient to solve the
integration challenges on both the software and language levels.
In our work, we achieve this integration by encapsulating both
software and languages into modules. Different modules are
abstracted into templates to overcome heterogeneity through
common interfaces. For the integration between software ser-
vices, we leverage a component & connector ADL and model
transformations to convert incompatible types between their in-
terfaces. For language integration, we employ the two language
composition operators: inheritance and aggregation.

7. Summary and Future Work

This paper presents a method to facilitate the specification, re-
alization, and evolution of DT architectures by lifting the in-
tegration of different components to the reference architecture
modeling level. This is achieved by abstracting DT services
into templates, which provide a common interface for a set of
services. This reduces the manual effort for integrating new DT
services. As templates are abstractions of particular services,
the integration space is drastically reduced compared to inte-
grating services directly. By providing a transformation from
reference architectures to product lines already equipped with
code generation facilities, we can derive the necessary glue code

9 https://opcfoundation.org/about/opc-technologies/opc-ua
10 https://www.mtconnect.org
11 https://github .com/Azure/opendigitaltwins -dtdl/blob/master/DTDL/v2/

dtdlv2.md

for integrating heterogeneous services into concrete architec-
tures. Our evaluation showed that, although our method implies
some overhead through the definition of reference architectures
and templates, it provides high scalability for integrating DT
architectures that use a variety of functionality.
We currently work towards further applications of our prototype
with our industrial partner, where we plan to study how to im-
plement a set of templates and modules in a more diverse set
of real-world industry settings. In the future, we aim to further
investigate the generalizability of these scenarios for other in-
dustrial partners, thereby extending our scope to domains other
than the automotive area that we investigated in the context of
the presented SofDCar project. Studying generalizability also
includes the consideration of different reference architectures
and services to implement these reference architectures that are
commonly used by organizations in these domains.
Acknowledgments
This work has been supported by the German Federal Min-
istry of Economic Affairs and Climate Action (BMWK, Bun-
desministerium für Wirtschaft und Klimaschutz) under grant no.
19S21002L and by the Austrian Federal Ministry for Digital and
Economic Affairs and the National Foundation for Research,
Technology and Development (CDG).

References
Arendt, T., Biermann, E., Jurack, S., Krause, C., & Taentzer, G.

(2010). Henshin: Advanced concepts and tools for in-place
EMF model transformations. In International Conference on
Model Driven Engineering Languages and Systems (MOD-
ELS) (pp. 121–135). Springer.

Arm, J., Benesl, T., Marcon, P., Bradac, Z., Schröder, T.,
Belyaev, A., . . . others (2021). Automated Design and
Integration of Asset Administration Shells in Components of
Industry 4.0. Sensors, 21(6).

Atkinson, C., & Kühne, T. (2021). Taming the Complexity of
Digital Twins. IEEE Software, 39(2), 27–32.

Becker, F., Bibow, P., Dalibor, M., Gannouni, A., Hahn, V., Hop-
mann, C., . . . others (2021). A Conceptual Model for Digital
Shadows in Industry and Its Application. In International
Conference on Conceptual Modeling (ER) (pp. 271–281).

Bill, R., Fleck, M., Troya, J., Mayerhofer, T., & Wimmer, M.
(2019). A local and global tour on MOMoT. International
Journal on Software and Systems Modeling (SoSyM), 18,
1017–1046.

Blanc, X., Gervais, M.-P., & Sriplakich, P. (2005). Model Bus:
Towards the Interoperability of Modelling Tools. In Model
Driven Architecture: Foundations and Applications (MDAFA)
(pp. 17–32).

Blockwitz, T., Otter, M., Akesson, J., Arnold, M., Clauss, C.,
Elmqvist, H., . . . others (2012). Functional Mockup Inter-
face 2.0: The Standard for Tool independent Exchange of
Simulation Models. In International Modelica Conference.

Butting, A., Kautz, O., Rumpe, B., & Wortmann, A. (2017,
May). Architectural Programming with MontiArcAutoma-
ton. In International Conference on Software Engineering
Advances (ICSEA) (pp. 213–218).

Template-based Digital Twin Architecture Modeling 13

https://opcfoundation.org/about/opc-technologies/opc-ua
https://www.mtconnect.org
https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v2/dtdlv2.md
https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v2/dtdlv2.md


Butting, A., Pfeiffer, J., Rumpe, B., & Wortmann, A. (2020).
A Compositional Framework for Systematic Modeling Lan-
guage Reuse. In International Conference on Model Driven
Engineering Languages and Systems (MODELS) (pp. 35–46).
ACM.

Dalibor, M., Heithoff, M., Michael, J., Netz, L., Pfeiffer, J.,
Rumpe, B., . . . Wortmann, A. (2022). Generating customized
low-code development platforms for digital twins. Journal of
Computer Languages (CoLa), 70, 101-117.

Dalibor, M., Jansen, N., Rumpe, B., Schmalzing, D., Wacht-
meister, L., Wimmer, M., & Wortmann, A. (2022). A Cross-
Domain Systematic Mapping Study on Software Engineering
for Digital Twins. Journal of Systems and Software (JSS),
193.

Derave, T., Sales, T. P., Gailly, F., & Poels, G. (2020). Towards
a Reference Ontology for Digital Platforms. In International
Conference on Conceptual Modeling (ER) (pp. 289–302).

Eisenberg, M., Lehner, D., Sindelar, R., & Wimmer, M. (2022).
Towards Reactive Planning with Digital Twins and Model-
Driven Optimization. In International Symposium on Lever-
aging Applications of Formal Methods, Verification and Vali-
dation (ISOLA) (pp. 54–70).

Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T.,
Retschitzegger, W., . . . Wimmer, M. (2006). Lifting Meta-
models to Ontologies: A Step to the Semantic Integration of
Modeling Languages. In International Conference on Model
Driven Engineering Languages and Systems (MODELS) (pp.
528–542).

Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic
computing. IEEE Computer, 36(1), 41–50.

Krahn, H., Rumpe, B., & Völkel, S. (2010, September). Monti-
Core: a Framework for Compositional Development of Do-
main Specific Languages. International Journal on Software
Tools for Technology Transfer (STTT), 12(5), 353–372.

Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W.
(2018). Digital Twin in manufacturing: A categorical liter-
ature review and classification. Ifac-PapersOnline, 51(11),
1016–1022.

Lehner, D., Pfeiffer, J., Tinsel, E., Strljic, M. M., Sint, S., Vier-
hauser, M., . . . Wimmer, M. (2022). Digital twin platforms:
Requirements, capabilities, and future prospects. IEEE Soft-
ware, 39(2), 53–61.

Pfeiffer, J., Lehner, D., Wortmann, A., & Wimmer, M. (2022).
Modeling Capabilities of Digital Twin Platforms - Old Wine
in New Bottles? Journal of Object Technology (JOT), 21(3),
3:1–14.

Pfeiffer, J., Lehner, D., Wortmann, A., & Wimmer, M. (2023).
Towards a Product Line Architecture for Digital Twins. In In-
ternational Conference of Software Architecture - Companion
(ICSA-C) (pp. 187–190). IEEE.

Pfeiffer, J., & Wortmann, A. (2021). Towards the Black-Box Ag-
gregation of Language Components. In International Confer-
ence on Model Driven Engineering Languages and Systems -
Companion (MODELS-C) (pp. 576–585). IEEE.

Pfeiffer, J., & Wortmann, A. (2023). A Low-Code Platform for
Systematic Component-Oriented Language Composition. In
International Conference on Software Language Engineering

(SLE) (pp. 208–213). ACM.
Platenius-Mohr, M., Malakuti, S., Grüner, S., Schmitt, J., &

Goldschmidt, T. (2020). File- and API-based interoperability
of digital twins by model transformation: An IIoT case study
using asset administration shell. Future Generation Computer
Systems, 113, 94–105.

Steinberg, D., Budinsky, F., Merks, E., & Paternostro, M. (2008).
EMF: eclipse modeling framework. Addison-Wesley.

Tantik, E., & Anderl, R. (2017). Integrated data model and
structure for the asset administration shell in Industrie 4.0.
Procedia Cirp, 60, 86–91.

Tratt, L. (2005). Model transformations and tool integration.
Journal on Software and Systems Modeling (SoSyM), 4(2),
112–122.

Vila, M., Sancho, M.-R., Teniente, E., & Vilajosana, X. (2021).
Semantics for Connectivity Management in IoT Sensing. In
International Conference on Conceptual Modeling (ER) (pp.
297–311).

About the authors
Daniel Lehner is a PhD candidate at the Institute of Business
Informatics - Software Engineering at Johannes Kepler Uni-
versity Linz. His research interests include applying Model-
Driven Engineering techniques and practices to Digital Twins.
You can contact the author at daniel.lehner@jku.at or visit
https://se.jku.at/daniel-lehner.

Jérôme Pfeiffer is a research assistant at the Institute for Control
Engineering of Machine Tools and Manufacturing Units (ISW)
of the University of Stuttgart. His research interests include
Software Language Engineering techniques and applied Model-
Driven Engineering with a focus on digital twins and Industry
4.0. You can contact the author at jerome.pfeiffer@isw.uni-
stuttgart.de or visit https://www.isw.uni-stuttgart.de/en/institute/
team/Pfeiffer-00005/.

Stefan Klikovits is a university assistant at the Institute of Busi-
ness Informatics - Software Engineering at Johannes Kepler
University Linz. His current research interests include model-
driven systems engineering, autonomous driving system verifi-
cation, and quantum computation. You can contact the author
at stefan.klikovits@jku.at or visit https://klikovits.net.

Andreas Wortmann is a Full Professor at the Institute for Con-
trol Engineering of Machine Tools and Manufacturing Units
(ISW) of the University of Stuttgart where he conducts re-
search on model-driven engineering, software language en-
gineering, and systems engineering with a focus on Indus-
try 4.0 and digital twins. You can contact the author at
andreas.wortmann@isw.uni-stuttgart.de or visit www.wortmann
.ac.

Manuel Wimmer is Full Professor and Head of the Institute
of Business Informatics – Software Engineering at Johannes
Kepler University Linz. His research interests include Software
Engineering, Model-Driven Engineering, and Cyber-Physical
Systems. You can contact the author at manuel.wimmer@jku.at
or visit https://www.se.jku.at/manuel-wimmer.

14 Lehner et al.

mailto:daniel.lehner@jku.at?subject=Your paper "A Method for Template-based Architecture Modeling\ and its Application to Digital Twins"
https://se.jku.at/daniel-lehner
mailto:jerome.pfeiffer@isw.uni-stuttgart.de?subject=Your paper "A Method for Template-based Architecture Modeling\ and its Application to Digital Twins"
mailto:jerome.pfeiffer@isw.uni-stuttgart.de?subject=Your paper "A Method for Template-based Architecture Modeling\ and its Application to Digital Twins"
https://www.isw.uni-stuttgart.de/en/institute/team/Pfeiffer-00005/
https://www.isw.uni-stuttgart.de/en/institute/team/Pfeiffer-00005/
mailto:stefan.klikovits@jku.at?subject=Your paper "A Method for Template-based Architecture Modeling\ and its Application to Digital Twins"
https://klikovits.net
mailto:andreas.wortmann@isw.uni-stuttgart.de?subject=Your paper "A Method for Template-based Architecture Modeling\ and its Application to Digital Twins"
www.wortmann.ac
www.wortmann.ac
mailto:manuel.wimmer@jku.at?subject=Your paper "A Method for Template-based Architecture Modeling\ and its Application to Digital Twins"
https://www.se.jku.at/manuel-wimmer

