
Journal of Object Technology | RESEARCH ARTICLE

Conflict-based Change Awareness for Collaborative
Model-driven Software Engineering

Edvin Herac∗, Luciano Marchezan∗, Wesley K. G. Assunção†, and Alexander Egyed∗
∗Institute of Software Systems Engineering, Johannes Kepler University, Austria

†Department of Computer Science, North Carolina State University, USA

ABSTRACT
Collaborative Model-driven Software Engineering (CoMDSE) involves multiple engineers working together on modifying domain-
specific models. This collaborative effort, however, can lead to conflicts during merges due to differing perspectives and goals
among engineers. Solutions primarily focus on resolving conflicts during merges, but these approaches can be cumbersome
and time-intensive. Thus, researchers also propose secondary strategies such as change awareness to notify engineers of
each other’s model changes mitigating conflicts before they happen. Change awareness strategies, however, often overwhelm
engineers with a bulk of change notifications, many of which are irrelevant to their immediate tasks. Additionally, they are
required to manually analyze these notifications for conflicts, which adds significant overhead, leading to decreased productivity
and increased frustration. Thus, in this paper, we propose a novel approach for conflict-based change awareness. It utilizes an
incremental growing operation tree data structure to promptly detect potential conflicts after a model change. It specifically
targets conflicts detectable through the analysis of changes in property-value-based models, such as syntactic conflicts. The
obtained results are utilized to filter corresponding change notifications, which are then sent to the engineers. This empowers
engineers to proactively identify and address conflicts before merging their work. Moreover, by filtering out irrelevant or
non-critical notifications, engineers can focus their attention on changes that are most relevant to their work, reducing cognitive
overload and improving efficiency, as demonstrated by related work. With this approach, we aim to enhance collaboration and
productivity in CoMDSE environments. We evaluate the completeness of our approach by applying it to a variety of conflict
scenarios, as defined by the EMFCompare completeness tests. We also apply our approach in a feasibility CoMDSE scenario
using Visio to test the conflict-based notifications. Lastly, we evaluate our approach’s performance evidencing that it can detect
a large number of conflicts in a reasonable time as it detected almost 20K conflicts in less than 20 seconds.

KEYWORDS model-driven development, collaborative modeling, change awareness, conflict prevention

1. Introduction
Collaborative Software Engineering (CoSE) relates to the prac-
tice of having multiple individuals working together to develop
large and complex software systems (Mistrík et al. 2010). This

JOT reference format:
Edvin Herac, Luciano Marchezan, Wesley K. G. Assunção, and Alexander
Egyed. Conflict-based Change Awareness for Collaborative Model-driven
Software Engineering. Journal of Object Technology. Vol. 23, No. 3, 2024.
Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2024.23.3.a7

development process entails the collaboration of stakeholders
from various domains to create and refine artifacts that repre-
sent different aspects of a software system (Tröls et al. 2022).
To ensure effective collaboration, it is crucial to establish a
shared understanding of each artifact throughout the develop-
ment process (Whitehead 2007). Thus, to support project work,
engineers have adopted various communication and collabora-
tion technologies. One of these technologies is model-based
collaboration tools (David et al. 2021; Di Ruscio et al. 2017).
These tools allow engineers to collaborate in the context of a
model-based software representation, such as UML models.

An AITO publication

http://dx.doi.org/10.5381/jot.2024.23.3.a7


Model-driven Software Engineering (MDSE) is a soft-
ware development approach that employs a model-centric
paradigm to manage complexities in software system devel-
opment (Hutchinson et al. 2011; Franzago et al. 2017). Collab-
orative Model-driven Software Engineering (CoMDSE) is an
extension of MDSE that involves artifacts represented as models.
CoMDSE enables the early detection of potential collaborative
issues during the development process, thereby reducing the
cost of fixing problems later on. The ability of CoMDSE to im-
prove efficiency, quality, and stakeholder satisfaction throughout
the development life cycle has made it an indispensable practice
in modern collaborative software engineering (Muccini et al.
2018).

Proper methods, tools, and standards are a major prerequi-
site for the widespread adoption of CoMDSE (Hutchinson et al.
2011; Franzago et al. 2017). In CoMDSE, process tasks can be
cumbersome and may result in such inevitable change conflicts
due to errors in communication and coordination (Young Bang
et al. 2018). Change conflicts (either syntactic or semantic,
definitions are detailed in (Sharbaf et al. 2022)) are challenges
associated with collaborative modeling that arise from multiple
engineers working concurrently at the same model (Muccini
et al. 2018). To resolve conflicts in CoMDSE, a well-defined
conflict-handling process needs to be in place. However, con-
flicts must be detected first.

Most approaches and tools detect conflicts during model
merging (David et al. 2023). There are, however, change aware-
ness approaches that aim at detecting conflicts and notifying
users of them as early as possible (Sarma et al. 2011; Guimarães
& Silva 2012; Y. Brun et al. 2013; Kanagasabai et al. 2018;
Sharbaf et al. 2022). These approaches, however, are either
domain-specific, i.e., focusing only on a subset of conflicts, or
rely on traditional change awareness, i.e., all changes made by
an engineer are notified to others. While the first strategy is
limited to specific tools and scenarios, the second is not ideal
because it can lead to the disturbance of the engineer’s work-
flow (Guimarães & Silva 2012; J. Y. Bang & Medvidovic 2015).
Moreover, notifying engineers about all changes performed by
their colleagues requires them to manually analyze these notifi-
cations for conflicts. This adds significant overhead considering
the large number of changes, leading to decreased productivity
and increased frustration.

In this paper, we propose a novel approach that uses poten-
tial syntactic conflicts as a means to filter change notifications
(i.e., change awareness). Our approach involves an incremental
growing operation tree data structure that enables the immediate
detection of potential conflicts after a change. This potential
conflict detection mechanism works among an arbitrary num-
ber of model versions within a reasonable time. The identified
potential conflicts are notified to the engineers immediately.
This allows them to decide what actions to take.1 Engineers
have then the opportunity to communicate or perform addi-
tional changes to prevent conflicts before merging their work
with other team members. This approach likely leads to more
effective decision-making and problem-solving during the mod-

1 A demonstration of our approach in use is presented in a video available
at (Herac et al. 2024).

eling process, rather than reacting to conflicts after designs are
finished (J. y. Bang et al. 2018).

For the evaluation of our approach, we implemented a proto-
type, analyzing it in three aspects. The first aspect assesses the
completeness of our approach, by determining if it is able to de-
tect the different types of conflicts that can appear when merging
model versions. To accomplish this, we apply our approach to
detect various conflict situations adopting the conflict categories
of the unit test suite of EMFCompare (C. Brun & Pierantonio
2008). The results show that our approach can be used to detect
all the conflicts that EMFCompare specifies, with the exception
of special cases that cannot be represented by our infrastructure.
The second aspect is a feasibility study, where we implement a
conflict-based change awareness scenario using Visio2 to show
how our approach can be applied in practice as Visio is used
in industry for software modeling purposes (Marchezan et al.
2023). The third aspect involves a performance evaluation of
our approach by showing that the potential conflicts are notified
in a reasonable amount of time after model modifications. For
example, to detect and notify almost 20k conflicts considering
multiple changes and users, our approach requires less than 20
seconds.

The main contributions of our approach are the following: (i)
Preventing frequent disruptions to engineers by filtering change
notifications using potential conflicts; (ii) Minimizing the work-
load involved in conflict resolution by providing immediate
potential conflict detection; (iii) Mitigating the occurrence of
cascading problems by identifying and notifying users about
potential conflicts. The remainder of this work is structured
as follows: Section 2 details the motivation and definitions of
this work by introducing a CoMDSE scenario. Section 3 de-
scribes our conflict-based change awareness approach. Section 4
presents the evaluations performed considering the aforemen-
tioned aspects. Section 5 discusses the results of the evaluation,
considering limitations and future work. Related work is pre-
sented in Section 6. Lastly, we conclude this work in Section 7.

2. Background & Motivation
In this section, we introduce an illustrative example of a
CoMDSE scenario that describes the problems that motivate
this work. Figure 1 presents the overall context of a software
project (Bug-Tracking-System) composed of both source code
and UML models.

The primary objective of the project is to specify and design
a Bug-Tracking-System, focusing on its structure and behavior.
This system will determine how bugs are tracked and resolved
within a specific IT project, with requirements including man-
aging bugs, identifying responsible engineers, and tracking bug
states. To achieve these objectives, stakeholders have agreed to
use the Unified Modeling Language (UML), resulting in design
models based on the UML metamodel and artifacts consisting
of UML state and class diagrams. The example illustrated in
Figure 1 demonstrates a scenario where engineers (Alice, Bob,
and Carol) collaborate on modifying a state & class diagram and
a corresponding implementation (in C#) of the Bug-Tracking-

2 https://www.microsoft.com/en-us/microsoft-365/visio/

2 Herac et al.

https://www.microsoft.com/en-us/microsoft-365/visio/


Component

Alice

C# Metamodel

based on

changesVisio

Bob

UML Metamodel

Carol

Visual Studio IDE

based on

ClassA.cs

ClassB.cs

changes

class.uml

Collaborative
Software

Engineering
System

state.uml

changes

changes

Figure 1 Running example: Bug-Tracking-System.

System. Their concurrent changes, however, can result in con-
flicts, emphasizing the challenges of collaborative modeling in
a real-world setting.

According to Sharbaf et al. (2022) there are two categories
of conflicts: syntactic and semantic. Syntactic conflicts are de-
tected when changes have an impact on the syntax of the model
(although this may not be true for all cases), i.e., conflicts where
two engineers change the name of the same element to different
values (Sharbaf et al. 2022). Semantic conflicts, however, refer
to conflicts that, while theoretically mergeable, result in a seman-
tically invalid model. For instance, if user A renames class C1
to C and simultaneously user B renames class C2 to C, it leads
to the creation of two classes with the same name, violating the
programming language syntax and rendering the code/model
invalid. These conflicts can be identified through various meth-
ods, such as mathematical bidirectional transformations (Diskin
et al. 2018), which analyze transformations between models
to pinpoint conflicts, or by employing straightforward model
views comparison (Reiter et al. 2007). In this paper, however,
we focus specifically on syntactic conflicts of property-value-
based metamodels (details in Section 5) detected by analyzing
changes made directly to the models (e.g., changes that can
not be merged or co-exist together in one model). Henceforth,
when we refer to “conflicts”, we are specifically addressing this
category.

The scenario depicted in Figure 1 represents a CoMDSE
environment, where multiple engineers work together on cre-
ating and updating domain-specific models. Without proper
coordination, however, conflicts can arise during merges due
to different views, goals, and understandings among engineers.
These conflicts not only interrupt engineers’ workflows during
conflict resolution but also lead to increased time consumption,
frustration, and potential errors (Nelson et al. 2019).

Version Control Systems (VCS) like Git or Subversion, how-
ever, have simplified this collaborative process by the use
of branching and merging mechanisms. Although such sys-
tems offer numerous benefits, they also introduce several chal-
lenges (Bird et al. 2009), such as issues related to merging and
integration (McKee et al. 2017).

Consider Alice and Bob, who concurrently modify the same
part of a state diagram that represents the different states during
the bug resolution process, as depicted in Figure 2.

They opt against real-time collaboration methods such as
Google Docs, which prevent conflicts altogether, as they prior-
itize leveraging the benefits of working on model features in
isolation. This approach allows them to focus on individual
aspects of the model without interference and merge their con-
tributions only when they are fully complete. Such a method
aligns with the workstyle preferences of engineers and offers
distinct advantages in terms of efficiency and workflow organiza-
tion (Jackson et al. 2024). This collaboration method, however,
can benefit from conflict-based change awareness to predict
future conflicts.

Alice’s task involves extending the state diagram of a Bu-
gReport by adding two states, namely In Progress and
Rejected, with corresponding transitions (these changes are
labeled as adds A1 and A2 in Figure 2). Additionally, Alice
decides to rename the close transition and Closed state to fix
and Fixed, respectively (labeled as renames R1 and R2).

Meanwhile, Bob independently initiates changes: renaming
the close transition and Closed state for clarity. However, Bob
goes a step further by deleting the Closed state and introducing
a new one named Resolved (delete D1 and add A3 in Figure 2).
Furthermore, Bob renames the close transition to resolve
(rename R3).

It is important to highlight Bob’s method for renaming the
final state: instead of merely renaming the element, he chooses
to delete it and then create a new one with a different name. This
approach is facilitated by the functionality of Visio tools, which
permits the creation of semantically incorrect diagrams during
the workflow. For instance, it allows transitions to remain after
shapes are deleted. This distinction is significant because it
affects the way conflicts are detected and categorized in model-
based approaches (e.g., element ID changes after a delete).

When they attempt to merge their state diagrams, a tradi-
tional VCS (e.g., Git) may struggle to determine which changes
to accept, resulting in textual conflicts. Resolving such con-
flicts manually can be a daunting and error-prone task, often
consuming significant time and resources (Nelson et al. 2019).
To mitigate the impact of merge conflicts and integration dif-
ficulties research has been carried out to prevent conflicts at
all. Strategies such as change awareness, i.e., notifying Alice of
changes performed by Bob and vice versa (Sarma et al. 2011;
Guimarães & Silva 2012; Y. Brun et al. 2013; Kanagasabai et al.
2018; Sharbaf et al. 2022) can be useful for detecting potential
conflicts before they happen (Estler et al. 2014).

The overall idea is that when engineers are notified of
changes, they will proactively engage in identifying and an-
alyzing these changes, thereby resolving or avoiding potential
conflicts early, while they remain manageable in size. Addition-
ally, the team would develop a deeper understanding of their
shared work, reducing frustration and the potential for conflicts
overall. The disadvantages of change awareness, however, are
that Alice and Bob can be overwhelmed by the constant stream
of incoming change notifications that are often irrelevant to their
work, e.g., Bob gets notified by the changes A1 and A2, which
do not cause conflicts with his work. Furthermore, they have to
analyze the notifications to see if there are any conflicts, which
is often highly time-consuming (Guimarães & Silva 2012).

Conflict-based Change Awareness for Collaborative Model-driven Software Engineering 3



VAVA VBVB

V - Version

A – Add

R – Rename

D – Delete

VOVO

OpenOpen

resolve

createOpenOpen In ProgressIn Progressassigncreate FixedFixedfix

RejectedRejected

rejectreopen

close

ResolvedResolved

ClosedClosed
R1

D1A1

A2

A3

R2

R3

OpenOpen ClosedClosedclosecreate Open Closedclosecreate

Alice Bob

Figure 2 Running example: a BugReport UML state-machine with Alice’s and Bob’s changes.

To avoid the aforementioned disadvantages of change aware-
ness, researchers proposed change awareness tools that are tai-
lored to notify engineers about filtered changes (e.g., filter-
ing by various features) to aid in analyzing potential conflicts.
For instance, proposed change notifications filters can vary
from line-based, dependency-based, or branch-based aware-
ness (Guimarães & Silva 2012; Sarma et al. 2007; Dewan &
Hegde 2007; Schümmer & Haake 2001) which are domain-
specific cases. Nevertheless, tools dedicated to preventing con-
flicts in collaborative model-driven software engineering are
still scarce and often customized for specific domains. More-
over, a mapping study on model-based conflict management
techniques conducted by (Sharbaf et al. 2022) revealed that
only one study by (Kanagasabai et al. 2018) offers model-based
change awareness for conflict prevention, which is currently
highly desired in the industry (David et al. 2023).

In summary, change awareness methods often overwhelm
engineers with a bulk of change notifications, many of which
are irrelevant to their immediate tasks. Furthermore, the need to
manually analyze these notifications for conflicts adds signifi-
cant overhead, leading to decreased productivity and increased
frustration. In the next section, we propose our approach of
conflict-based change awareness for CoMDSE, designed to
tackle the problem of change notifications overwhelming engi-
neers and the problem of domain-specific solutions for change
awareness.

3. Proposed Approach
In response to the challenges posed by overwhelming change
notifications and the lack of non domain-specific solutions for
change awareness in CoMDSE, we introduce a novel approach
called conflict-based change awareness. Our approach focuses
on leveraging potential conflicts as indicators of changes that
require attention. By using possible conflicts to filter changes
during the engineering process, engineers can proactively ad-
dress them before they escalate into larger, more challenging
problems. Moreover, our approach incorporates a conflict fil-
tering mechanism to streamline the notification process. By
filtering out irrelevant or non-critical notifications, engineers
can focus their attention on changes that are most relevant to
their work and potential conflicts, reducing cognitive overload

Communication

Alice

Bob

model

 merge 

 m
erge 

change

Design
time i

Design
time i+1

Merge
time i+3

Design
time i+2

change

change'

change'

Filter change
notifications

by potential conflicts

C
on

fli
ct

-b
as

ed
 c

ha
ng

e
aw

ar
en

es
s

Figure 3 Conflict-based change awareness workflow: Filter-
ing change notifications for engineers with potential conflicts
detected through an incremental change analysis.

and improving efficiency (Guimarães & Silva 2012; J. Y. Bang
& Medvidovic 2015).

In the following sections, we delve into the principles of
our conflict-based change awareness approach, emphasizing its
benefits and potential impact on improving collaboration and
productivity in CoMDSE environments.

3.1. Workflow
The proposed approach, referred to as the Conflict-based
Change Awareness and illustrated in Figure 3, works in the fol-
lowing manner: Consider Alice and Bob, who are independently
working on their own versions of the same model. At Design
time i, Alice modifies the transition name from close to
fix. This change goes unnoticed by Bob, as the conflict de-
tection filter does not identify any potential issues and filters
out all change notifications. However, at Design time i+1,
Bob changes the transition name from close to resolve. This
alteration is recognized as a conflict, triggering the change noti-
fication where the filter allows both Alice and Bob’s changes to
pass (i.e., Alice is notified about Bob’s rename, and vice versa).

Subsequently, at Design time i+2, Alice and Bob have
the opportunity to discuss their respective changes, allowing
them to reconcile their differences and agree on a unified ap-
proach. This step could be crucial to avoid future merge conflicts
and potential complexities, such as when the transition name
is used in other models. Finally, by Design time i+3, Alice
and Bob are able to merge their models without any conflicts

4 Herac et al.



0..*
supertypes

<<enumeration>>
Cardinality
COLLECTION

SINGLE

O
pe

ra
tio

n 
M

od
el

st
re

am
lin

ed
 M

O
F

Property
name: string
value: object

InstanceType
PropertyType

<<enumeration>>
Category

VALUE
REF

Element
id: UUID

Instance

0..*
subtypes

instanceOf

instances
0..*

1

ElementCreate

ElementDelete

ElementUpdate

PropertyCreate

PropertyUpdate

PropertyDelete

Add

Delete

Set

0..*1

1

category
1

re
pr

es
en

ts

cardinality

properties

TreeNode

0..10..*
children parent1

0..*

0..1
parentElement

childrenElement
0..*

0..1
parentProperty

childrenProperty

operation
1

Operation
data: string

ModelHIstoryTree

root
Tr

ee
 M

od
el

m
an

ag
es

Figure 4 Data model used by our approach, based on (Herac
et al. 2023).

due to the preventive resolution of potential conflicts. In the
following section, we describe how each step of this workflow
is supported by our approach.

3.2. Collaboration mechanism & Data model
Our approach uses our previous work (Herac et al. 2023) as
the basis for the collaboration infrastructure. The infrastructure
defines a Workspace for the collaborative mechanism to give
the engineers Alice and Bob their own replicated model locally
where models can be modified, pushed, and pulled to a common
Public Workspace. A Workspace provides a replicated iso-
lated model from the other engineers. Hence, while a model is
being modified inside a Workspace no other engineers can see
its state until it is pushed. Thus, each Workspace can have its
own metamodels and models that can be shared through pushes
and pulls to or from a public workspace, forming a star topology
with the Public Workspace in its center. This kind of collab-
oration mechanism permits parallel/concurrent work on models
and avoids turn-taking, while requiring conflict management
(e.g., detection and resolution). In this approach, we are mainly
focusing on raising awareness about changes to prevent conflicts
during future merges, thus engineers can decide how to tackle
conflict management itself.

Similar to the generic infrastructure on which we base our
approach on (Herac et al. 2023), we rely on the streamlined
MOF for our datamodels, as illustrated in Figure 4. This stream-
lined MOF enables the creation, modification, or deletion of
metamodels and models, instantiating corresponding models
within a private Workspace. For our research purposes, this
streamlined MOF can be used to represent the necessary meta-
models and models required by our approach. Additionally,
it offers a simpler and more generic way to represent various
models than more complex solutions such as EMF (Steinberg et
al. 2008). This results in fewer distinct operation types, making
conflict detection easier to perform.

The approach uses a history of operations, that conforms to
our operation model (center part of Figure 4). These operations

can represent changes made to the metamodels and their cor-
responding models generated from the streamlined MOF. This
technique is commonly referred to as change-based persistence
(CBP) (Yohannis et al. 2017). Unlike state-based persistence
approaches, such as EMF, which stores the current state of
the model, CBP records all changes as a finite sequence of
operations. Operations are atomic changes that represent as a
sequence the data model state. CBP offers rapid change de-
tection as demonstrated in (Ráth et al. 2012; Ogunyomi et al.
2015; Yohannis et al. 2019). However, CBP has the potential
drawback of accumulating extensive and ever-growing change
history files. This accumulation can lead to longer loading times
and require a complex reconstruction of the current model state
from the model history (Yohannis et al. 2017).

Our defined operations are displayed in the Operation
Model section of Figure 4). They include ElementUpdate,
Create, or Delete and PropertyUpdate, Create or Delete.
PropertyUpdate can be of types Add (for collections only) and
Set or Delete (for both collections and single properties). The
aforementioned history of operations is managed in a tree-like
data structure called Model History Tree, described in the
following section.

3.3. Model History Tree & Conflict Detection
We use an infrastructure implementation of CBP that employs a
history of change operations to represent the state of the entire
model, including metamodels of all versions (i.e., branches).
However, simple lists do not suffice for illustrating competing
versions since concurrent changes on the same model cannot
be persisted. To address this limitation, we used incremental
sequences of operations in a tree-like structure to represent
diverging model versions, represented as an Operation Tree
(see Figure 5).

Each node within the Operation Tree encapsulates an op-
eration, with regular edges indicating the historically preceding
change operation node, ultimately tracing back to the root node,
which represents the initial change. A branch delineates a se-
quence in the model’s history, with each gray dotted circle
surrounding a node denoting a model state token of the labeled
workspace. A branch is created through a new change on a
predecessor node, independent of other branching nodes. The
exact build-up algorithm of the operation tree is explained in
more detail in our prior work (Herac et al. 2023).

For the purpose of finding change operations of correspond-
ing elements or properties faster, we added additional edges to
the Operation Tree. These are edges for element operations
and edges for property operations, shown as associations in
the Tree Model section of Figure 4. Following those edges
from the roots to the leaves, we only get a list of operations
that represent a specific element or a specific property of an
element. Thus, an element operation sequence is a sub-list of a
whole model history. Henceforth, a sequence of property opera-
tions is a sub-list of a sequence of element operations. Those
sequences, however, can also diverge to a tree and represent
different branches of element versions or property versions. The
Element Tree is illustrated in Figure 5 for the specific ele-
ment x and the Property Tree for a specific property y of an

Conflict-based Change Awareness for Collaborative Model-driven Software Engineering 5



32

6

previous
element

operations

Element Tree (Element x)

EBx

ECx

5

7

3
previous
property

operations

Property Tree (Property y)

PBy

PCy

5

6

1 32previous
operations

Model History Tree (Element x, Property y)

WC

4

876

WB,EBx,PBy

5

PCy ECx

1 32

6

previous
operations

WB

WC

4 5

7 8

WA

9 10

WP

Operation Tree State of a specific
workspace

1

EPx

1

PPy

WA

9 10

Property state for a specific
element and workspace

Element state for a
specific workspace

Figure 5 Operation Tree, Element Tree and Property Tree en-
coded together in the Model History Tree. This figure shows
a segment of the Tree, concealing prior operations that lead to
the root node due to space limitations.

1 32previous
operations

Model History Tree - add new change

4

876

WB,EBx,PBy

5

11

WC,ECx,PCy

1 32previous
operations

Model History Tree - proactive conflict detection

4

876

5

11

EBx != ECx

PPy != PCy

PCy

PBy

WA

9 10

WA

9 10

WC,ECx,PCy

WB,EBx,PBy

State of a specific
workspace

Element state for a
specific workspace
Property state for a specific

element and workspace

Potential conflict state

Figure 6 Model History Tree with a potential conflict.

element x. Encoding all the mentioned trees into one tree, gives
us the Model History Tree, with the corresponding states
of all workspaces, elements, and properties as tokens. This is
illustrated at the bottom part of Figure 5, for the workspaces P
(Public), A, B, and C, as well as for their corresponding element
x and property y.

To get a specific model state, all operations of the corre-
sponding workspace from the root to its state node have to be
executed. For example, let us consider the tree at the top of
Figure 5, the current model for workspace B (i.e., WB) operation
sequence would be (1, 2, 3, 4, 5). For the workspace A (i.e.,
WA), the operation sequence would be (1, 9, 10). The same
algorithm applies for elements and properties, but following
their corresponding edges.

The creation of a new change adds a new child node with the
corresponding operation to the current workspace’s state node.
A workspace state is depicted as a token (i.e., gray circle around
a node) on a node in the Model History Tree. Additionally,
an edge for element and an edge for property changes are added
to the new operation node, to connect their last state to the next
change. The operation tree enables the support of branches
and merging of branches (i.e., merging of model versions) by
reattaching the branches to other leaf nodes. However, our
work focuses solely on providing an approach for conflict-based
change awareness to prevent conflicts before merges occur. The
process of merging and conflict resolution is beyond the scope
of this work.

In summary, when elements or properties are changed, a new
node is added to the Model History Tree with three distinct

6 Herac et al.



edges attached to the leaf state of the corresponding workspace,
element, and property, as depicted in the top part of Figure 6.
This mechanism is utilized to detect potential conflicts after
every change. It is achieved by comparing the leaf nodes of
each workspace of the modified element or property. If the leaf
node is not the same (e.g., not the common branching node), it
can be inferred that a potential conflict has been created (e.g.,
new change node was added). Subsequently, we compare the
modified property leaf node, to detect if the element or one of its
properties was changed. In the case of different property nodes,
we can conclude that a potential conflict has been created on the
changed property, illustrated in the bottom part of Figure 6.

Once a potential conflict is detected due to overwritten
change nodes, we take the corresponding changes (e.g., fil-
tered changes by a potential conflict) and notify the engineers
of those. The engineers receiving the notifications retain their
autonomy to determine their responses. They may choose to
promptly make changes to preempt conflicts, engage in commu-
nication with the colleague responsible for the potential conflict,
or delay conflict resolution for a later time. Alternatively, the
implementation can be customized to deactivate messages for
specific users or refrain from detecting conflicts for certain users
altogether, if deemed necessary. However, these implementation
details fall outside the scope of this research paper.

3.4. Filtered Change Awareness
The proposed approach detects conflicts on each new change
incrementally (e.g., just comparing the workspace element
nodes, where the element was changed), leaving out noncon-
flicting changes. Figure 7 summarizes the process of conflict-
based change awareness. Alice and Bob are changing a state
model through an arbitrary tool (e.g., Visio). The tool gener-
ates change operations and sends them to the Model History
Tree, which persists the new change and checks for potential
conflicts, as formerly illustrated in Figure 6. In a conflict, the
change notifications are sent to the engineers to make them
aware. Alice and Bob can now communicate on a common
resolution during design time before the conflict emerges and
prevent it. Here it is also important to state that the filtering
mechanisms can be exchanged by different mechanisms for
change-awareness (e.g., filter changes by a certain user, or by
a certain element). Moreover, our approach does not focus on
ways to detect conflicts, but on how to detect them during design
time before they happen during a merge.

Finally, after Alice and Bob are notified, their tools can
decide what to do with the new awareness data. For example,
Alice’s and Bob’s state model gets a highlighted transition label,
marked as N1, as exemplified in Figure 8. This indication occurs
because Alice changed the transition name to fix, which was
subsequently altered to resolve by Bob. The changed values,
for instance, can be seen as tooltips inside the tool. Furthermore,
Alice’s last state Fixed was highlighted too, marked as N2.
It was deleted by Bob, because he created a new state and
named it Resolved, see Figure 2. The filter, however, was
implemented to neglect renamed elements that were deleted
by Bob. Thus, no notification N2 was displayed to Bob. This
is one possibility of how the final change awareness could be

visualized. It depends on the implementation of the tool and
how it reacts to the conflict-based change notifications. In
the following section, we present a feasibility evaluation that
demonstrates one example of visualization using Visio.

4. Evaluation
We evaluated our approach based on three aspects. The first as-
pect assessed the completeness of our approach by determining
its ability to detect different types of potential conflicts that can
occur when engineers work concurrently. The second aspect
is related to our approach’s performance, aiming at measuring
if it can notify potential conflicts in a reasonable amount of
time across multiple workspaces. The last aspect is related
to the feasibility of the approach. Hence, we implemented a
proof-of-concept version of our approach as a server. We then
implemented a plugin for MS Visio that connects to the server,
demonstrating how immediate conflict awareness could be uti-
lized in the industry. In the following sections, we detail each
aspect of the evaluation.

4.1. Prototype Implementation
To evaluate our approach, we implemented a prototype tool in
Java as a server that supports a generic infrastructure established
by prior work (Herac et al. 2023). Further implementation de-
tails can be found in that publication for a more in-depth under-
standing. This infrastructure allows the connection of different
engineering tools by implementing tool plugins that transform
artifacts created in these tools to a model representation based
on the data model presented in Figure 4. Although multiple
artifact types are supported by the server in this evaluation we
only adapted a Visio plugin (see Section 4.3) to receive and
display potential conflict notifications.3 The specifications for
the execution environment of our evaluation are an Intel Core
i7-7700 CPU @3.6GHz with 16GB (8GB available for the tool)
RAM and Windows 10 x64-based. The generated results are
available at our online repository (Herac et al. 2024).

4.2. Completeness
For completeness, we adopt a strategy similar to the evaluation
by (de la Vega & Kolovos 2022). They utilized the external
test suite of the EMFCompare framework to verify the com-
pleteness of their conflict detection approach, which comprises
60 unit test cases. Those tests detect conflicts that could oc-
cur while merging EMF models. The difficulty of adapting
their completeness evaluation lies in the difference between
the EMF model and our data model (Figure 4). This is the
case because EMFCompare uses XMI files4 to load models for
three-way merge (Lindholm 2004) conflict detection. Thus, we
implemented a parser to transform the XMI models from the
EMFCompare test suite and use them with our streamlined MOF
data model. For instance, we used our instances (Instance)
instead of XMI nodes, and instance properties (Property) in-
stead of node attributes. Consequently, we mapped attribute

3 Details about the implementation are available at https://isse.jku.at/
designspace.

4 https://git.eclipse.org/c/emfcompare/org.eclipse.emf.compare.git/

Conflict-based Change Awareness for Collaborative Model-driven Software Engineering 7

https://isse.jku.at/designspace
https://isse.jku.at/designspace
https://git.eclipse.org/c/emfcompare/org.eclipse.emf.compare.git/


Alice

Bob

Models

changes

operations

Model History Tree

changes

conflict detection
notify

an
al

yz
e 

ch
an

ge
s 

& 
pr

ev
en

t c
on

fli
ct

s
filter change notifications

by results conflict results

Figure 7 Conflict-based change awareness approach with the model history tree.

VAVA VBVB

N - Notification

VOVO

OpenOpen resolvecreateOpenOpen In ProgressIn Progressassigncreate FixedFixedfix

RejectedRejected

rejectreopen

ResolvedResolved

OpenOpen ClosedClosedclosecreate Open Closedclosecreate

Alice Bob

N1
N2 N1

N2

Figure 8 Running example: BugReport UML state-machine with filtered change notifications for Alice and Bob.

deletions to property deletions, and so on. After transforming
54 out of the 60 EMFCompare unit tests, we were able to detect
all those conflicts.

Table 1 summarizes the results of the 54 tests grouped into
11 categories. As can be seen, all 54 tests passed, showing
that our approach can detect all the same types of conflicts that
EMFCompare supports. Furthermore, our approach detected
even more conflicts than EMFCompare in some cases, as we an-
alyzed fine-grained atomic changes of our data model, resulting
in a higher resolution of changes during conflict detection.

However, it is challenging to determine whether these results
are beneficial or not because we did not compare the types of
conflicts, as EMFCompare only uses definitions such as real or
pseudo conflicts, whereas we implemented overwrite, order and
delete conflict types for this evaluation. The types of conflicts
should be adapted to the requirements of the scenario. At this
point, finding a common ground truth for the conflict types be-
comes increasingly difficult. The modeling community lacks of
a consensus on a possible generalization of conflicts in version-
ing (Altmanninger & Pierantonio 2011). Initial approaches for
categorizing conflicts in versioning cannot be fully applied to
model artifacts (Mens 2002). Moreover, it is often challenging
to categorize conflicts into specific categories (Altmanninger et
al. 2009). Thus, we plan to investigate this in future work as
detailed in Section 5.

4.3. Feasibility
We conducted a feasibility evaluation of our approach by im-
plementing a two-tier client/server system. The server acts as a

centralized node responsible for managing all workspaces and
changes, while clients are connected through our software devel-
opment kit (SDK). To ensure the necessary data modifications,
our solution includes a connection handler and a synchroniza-
tion layer of our streamlined MOF. The model history tree has
been integrated into the server, operating according to the work-
flow depicted in Figure 7. In addition, we developed a plugin
for Visio that connects to our system through the client SDK
and receives the potential conflict notifications. This plugin
also defines a metamodel for Visio shapes, generated from the
streamlined MOF (Figure 4).

In our feasibility scenario, visible in Figure 9, three engi-
neers, namely Alice, Bob, and Carol, collaborate on a brain-
storming diagram.5 In this scenario, Bob starts by renaming
the element Management to Control (on the left side of Fig-
ure 9a). Then, Alice renames the same element (notice that
at this point, Alice does not see Bob’s change) to Lead. Once
Alice’s change is applied, a potential conflict is immediately
detected because both Bob and Alice changed the same element
to different values but have not pushed or pulled any changes.
Once this happens, both Bob’s and Alice’s Visio are notified
of the changes from our approach. The implemented plugin
can now decide how the notifications should be displayed. In
this example, we implemented the Visio plugin to highlight the
conflicting elements (e.g. yellow for simple overwrite conflicts
and orange for delete conflicts), additionally adding a message
from the conflict notification as a shape comment. This is one

5 This scenario is demonstrated in a video available at (Herac et al. 2024).

8 Herac et al.



(a) Initial state of the diagram. (b) Example of visible notifications of potential conflicts.

Figure 9 Collaboration between three instances of Visio working with a brainstorm diagram.

example of how tools could handle change notifications about
potential conflicts. Nevertheless, different stakeholders may
want to handle them differently. Thus, the visualization of the
notifications here serves only as an illustrative example and is
part of future work.

Next, Bob renames element Rules to Links while Carol
deletes that element. This creates a conflict on Bob’s side since
the element he just modified has been deleted by another engi-
neer. A notification is sent to Bob telling exactly who caused
the conflict and why. We decided, for simplicity and prefer-
ence reasons, to not notify Carol if there is a conflict with her
deleted element. At this point, Carol changes Management to
Handling producing two conflicts for everyone (displayed in
Carol’s Visio window as a comment of the shapes in Figure 9b).
Now the problem cascaded, and they decided to meet in person
and find a common problem-solution. After communication,
they decide to go with the name Handling. Then, they all
change Handling until the conflict disappears. They decided
to leave the deletion conflict to be handled for the conflict reso-
lution during the merge (delaying the resolution). Their aware-
ness process could foster a deeper understanding of each other’s
work and decisions, likely resulting in a positive influence on
all subsequent model designs they produced. In summary, our
approach gives engineers the autonomy to determine how to
handle predicted conflict changes. We have intentionally de-
signed it to be minimally intrusive, allowing plugins to respond
to change messages as needed.

4.4. Performance

To evaluate the performance of our approach, we aim to measure
the time required to detect potential conflicts using a varied
number of changes, properties, and workspaces. For that, we
relied on a random change generator where we simulated a
scenario to collect the results. Unique values for the changes are
created with a UUID generator. We run through diverse settings
to measure the conflict detection time via our model history
tree. For example, if we use 40 workspaces, 5 instances, 50

properties, and 50 changes, we have 40 times 5 instances with
50 properties overall in the system. That means that we have
250 unique properties encoded in our model history tree. We
also generate, for each workspace and each property, 50 changes
to random UUIDs. This creates an overall of 250 conflicts in
between every workspace leading to a total of 9,750 conflicts.
When we generate the last workspace changes, we measure
the time from the last change until all potential conflicts are
identified and notified. In this example, the notification consists
of 9,750 conflicts and takes 4.3 seconds to be analyzed.

A summary of the runtime results is presented in Figure 10,
demonstrating that even with 40 workspaces, 100 changes, 50 in-
stances, and 10 properties (leading to 19,500 conflicts detected)
the calculation time remains under 20 seconds. This indicates
that the runtime grows linearly. This efficiency is particularly
good considering the typical scenarios in traditional CoMDSE.
Furthermore, the results were collected using a prototype im-
plementation of the approach (i.e., they can be improved when
implementing a professional version). Generally, the number
of changes and the quantity of workspaces being concurrently
modified are lower than those tested in our performance sce-
nario (Aldndni et al. 2023; Brindescu et al. 2020; Dias et al.
2020). In addition to that, (Yohannis et al. 2019) demonstrated
that the use of change-based comparison of operation sequences
is a highly efficient method for detecting conflicts.

5. Discussion & Limitations
While it is essential to note that a streamlined MOF (Figure 4)
may lack certain advanced features and capabilities found in
more sophisticated solutions (e.g., EMF), it is equally important
to recognize that this could curtail the expressiveness of the
models that can be created, potentially limiting their flexibility
and richness. Additionally, the simplified nature of streamlined
MOF may introduce constraints on the complexity and size of
models that can be effectively managed, with large-scale or
intricate models potentially encountering performance issues or
becoming unwieldy to handle. Nevertheless, our approach can

Conflict-based Change Awareness for Collaborative Model-driven Software Engineering 9



Figure 10 Runtime (s) required to detect potential conflicts in different configurations of changes, instances, and workspaces.

theoretically be applied to more complex MOFs using a broader
range of operation types. In this paper, however, we focus on
presenting the concept of utilizing a history tree and operations
to find simple property-value-based conflicts in almost real-time
to filter changes for users.

Evaluating the correctness of change awareness approaches
is a challenge mainly because of the lack of a proper baseline for
comparison in the CoMDSE field. As known, conflict detection
(especially resolution) research and practice has mainly focused
on source-code/textual artifacts that rely on traditional VCS
for merging (Costa & Murta 2013). Thus, change awareness
considering conflicts is either delayed or not possible. Recent
mapping studies reported approaches for conflict detection that
support change awareness (Sharbaf et al. 2022). Among these
approaches, only one is not designed specifically for a subset of
conflicts (Brosch et al. 2011). Their approach, however, is not
evaluated as only an illustrative application scenario (similar
to our feasibility study) is used. Thus, the correctness of our
approach is argued in terms of completeness. Considering the
completeness, however, we must clarify that in this work we
have focused on one category of conflict only, i.e., syntactic
conflicts (Sharbaf et al. 2022). As mentioned in Section 2, there
are still semantic conflicts.

Furthermore, the streamlined MOF (Figure 4) may lack cer-
tain advanced features needed to express complex models fully.
The six missing EMF-specific conflict cases fell into this cat-
egory, as our streamlined MOF could not accommodate them
without significant technical implementations. Nonetheless,
our approach focuses on detecting property-value-based con-
flicts by the help of model changes and forwarding the filtered
changes to the user. While we acknowledge that our approach
may not cover all possible conflicts, especially those beyond
property-value definitions, it effectively predicts conflicts arising
from merges involving properties defined within our streamlined
MOF (e.g., the 54 conflicts of EMFCompare). Moreover, it is

important to clarify that the streamlined MOF provided is not
the primary contribution of this work. Our primary objective is
to efficiently address a broad spectrum of property-value-based
conflicts, which are common in model merging scenarios. This
focus ensures a high degree of utility in typical use cases, albeit
with some limitations in special cases.

We plan to extend the current approach to also identify se-
mantic conflicts. These conflicts, however, require semantic
knowledge of the models (as their name suggests). Related
work on this topic, relies on rules (e.g., defined in OCL 6)
to analyze the models semantically and detect these possible
conflicts (J. Y. Bang et al. 2017; Tröls et al. 2022). Thus, we
plan to make use of OCL-based rules to evaluate changes that
cause potential conflicts. We had proposed similar approaches
using rules for consistency checking, showing prominent re-
sults (Tröls et al. 2022; Marchezan et al. 2022, 2023). Adapting
these approaches to support our conflict-based change aware-
ness remains future work.

The feasibility and the performance evaluations can be used
to better understand how our approach can be applied in a
real scenario. While we can extend the approach to work in
additional tools, the Visio plugin is a good example of the gen-
eralization of our data model (Figure 4) as Visio itself supports
multiple types of models (UML, BPMN, Requirements). As
mentioned, we use a generic infrastructure for collaborative
work (Herac et al. 2023) as the basis for our conflict-based
awareness approach. Thus, extending our approach is straight-
forward as the infrastructure was designed and evaluated to be
applied with different tools and models. We thus argue that
our approach can be extended to a variety of models, allow-
ing conflict-based change awareness to be adapted by different
tools. Moreover, unlike domain-specific tools that cater to spe-
cific types of changes or models, our conflict-based change

6 https://www.omg.org/spec/OCL/

10 Herac et al.

https://www.omg.org/spec/OCL/


Table 1 EMFCompare conflicts test results, grouped by cate-
gories.

Cat. Conflict Description (Left ⇔ Right) # of
tests/passing

a change single value ⇔ delete element 6/6

b change single value ⇔ change same single value 13/13

c change values of collection ⇔ deletes containing
element.

10/10

d change values of collection ⇔ change same
collection in a conflicting way

12/12

e add reference to deleted element ⇔ delete
element

3/3

f change containment feature to two features ⇔
change containment feature to different two
features

1/1

g change containment feature to two features ⇔
change containment feature to two distinct
features

1/1

h change container of element ⇔ delete container 2/2

i delete a set of elements ⇔ delete a different set
of elements

1/1

j change multiple features ⇔ delete its containing
element

1/1

k add elements ⇔ add elements, some of them
have the same id as left

4/4

awareness method is applicable across various domains and
modeling contexts, making it a versatile solution for CoMDSE
projects and highlighting the novelty of our work. Still, im-
plementing such extensions requires effort and is restricted to
models/tools that can be represented in a property-value manner.
Details about these requirements are discussed in our previous
work (Herac et al. 2023).

Despite the benefits that the evaluation performed in this
work brings to understanding our approach’s applicability, they
are still limited in terms of being a real environment. Thus, a
limitation that we plan to address in future work is conducting
an empirical evaluation with engineers. This evaluation would
allow us to analyze how the potential conflict notifications can
be fine-tuned, e.g., communicated to the engineers. Although
not evaluating with engineers, however, our approach still con-
tributes to the CoMDSE field. As evidenced by literature (Nel-
son et al. 2019; Vale et al. 2022) conflict awareness can bring
different benefits for engineers, as the more conflict detection
is delayed, the more effort and costs are required for the reso-
lution. Hence, our conflict-based change awareness can bring
practical benefits such as: (i) Avoiding frequent disruptions to
engineers by filtering change notifications based on potential
conflicts; (ii) Reducing the workload associated with conflict
resolution through instant detection of potential conflicts; (iii)
Mitigating the occurrence of cascading problems by identifying
and promptly notifying users about potential conflicts.

Lastly, our approach focuses on the use of conflicts to filter
change notifications and only send to users those changes that

can cause potential conflicts. Our approach, however, can be
extended to incorporate other types of filters besides conflicts.
For example, we can modify the filtering mechanism to consider
the engineer’s role in the company, e.g., a manager is notified of
the changes from their subordinates, or based on types of model
elements, e.g., a change in a state is notified but not a change in
a transition. Thus, in the future, we plan to employ our change
awareness approach for other contexts that are not necessarily
conflict-related.

6. Related Work

As mentioned in Section 2, despite the importance of potential
conflict detection and change awareness for CoMDSE, there
have been only a few approaches proposed to address these
issues. This lack of existing support for detecting potential con-
flicts before they happen is highlighted in the studies of (Sharbaf
et al. 2022), (Franzago et al. 2017), (David et al. 2021, 2023),
and (Kanagasabai et al. 2018).

Furthermore, there are many sophisticated collaborative
approaches like MONDO (Debreceni et al. 2017) or var-
iED (Kuiter et al. 2021) that only provide reactive conflict
handling techniques. However, (Kanagasabai et al. 2018) pro-
pose a form of change awareness for multi-view modeling in
a UML environment. As part of their work, they utilize UML
metamodels to visualize changes made by remote engineers in
a multi-view modeling environment. Their algorithm highlights
the elements that are affected by the change. In contrast, we
propose a change-based approach that produces fine-grained
change notifications that are filtered by conflicts. Our proposed
technique enables end-users to use the notifications in any way
they deem appropriate to enhance their understanding of their
work, such as highlighting artifacts that contain potential con-
flicts.

J. y. Bang et al. (2018) propose a similar approach for de-
tecting potential conflicts, called FLAME. FLAME uses an
event-based version control system and existing modeling and
analysis tools to perform proactive conflict detection. It is
built on top of the Generic Modeling Environment (Ledeczi
et al. 2001) and the XTEAM architecture modeling and anal-
ysis framework (Edwards & Medvidovic 2008). FLAME also
tracks every operation and detects conflicts after each operation,
similar to our approach. In FLAME, however, each received
operation is first executed on its local model before the conflict
detection is invoked automatically between the final state mod-
els by simulating merges. This strategy of executing changes in
a local model is called speculative merging (Owhadi-Kareshk et
al. 2019) and is very performance intensive. FLAME distributes
the conflict detection to multiple engines, each maintaining an
internal copy of the model, to improve performance. In con-
trast to FLAME, we do not execute the operations on local
models for conflict detection. Instead, we propose a conflict
detection approach based on operations orderly managed in
a tree structure, enabling us to detect conflicts with high per-
formance, as evidenced by related work on operation-based
comparisons (Yohannis et al. 2019). Numerous approaches ex-
ist for potential conflict detection (Y. Brun et al. 2011, 2013;

Conflict-based Change Awareness for Collaborative Model-driven Software Engineering 11



Guimarães & Silva 2012). These, however, are domain-specific,
primarily implemented with text-based VCS such as Git or
Subversion. Our approach is model-based and works with any
metamodel that can be represented with our data model.

Our approach stands out from existing solutions by offering
a unified and domain-agnostic model-based approach to change
awareness with a change notifications filter that detects poten-
tial conflicts before they happen. Furthermore, it does not use
speculative merges (e.g., checking for conflicts by simulating
merges). This increases the performance as we do not need
to simulate possible merges to identify potential conflicts. In
addition, the filtering mechanism can be adapted to other sce-
narios, that are not related to conflicts. For example, filtering
notifications based on user roles. This allows our approach to be
extended to other CoMDSE applications not necessarily related
to conflict management.

7. Conclusion & Future Work
In this paper, we investigate the use of conflict information as
a mechanism to filter change notifications sent to engineers
of CoMDSE. This opportunity is used to define our conflict-
based change awareness approach. We rely on the use of a
model history tree that analyzes operations created by engineer
changes to identify conflicting ones. Since these changes were
not merged yet, our approach is able to identify potential con-
flicts in real-time, triggering notifications to the engineers that
can be affected by these potential conflicts. Engineers can then
reason about the potential conflict, deciding to communicate
with their colleagues or perform changes to prevent the conflict
from becoming concrete.

We argue that the approach can be used to improve the con-
flict management process, by allowing engineers to foresee
conflicts and thus immediately deal with them (if they decide to
do so). We implemented a prototype version of the approach to
perform an evaluation considering the completeness, feasibil-
ity, and performance. The completeness evaluation shows that
our approach is able to detect all the possible conflict types of
the used baseline (EMFCompare). The other category of con-
flicts, i.e., semantic conflicts (Sharbaf et al. 2022), is not part
of this work and will be investigated in future research. Con-
sidering the feasibility, we implemented a plugin for Visio that
is connected to our approach prototype implementation using
a client/server architecture. This plugin is able to listen to the
filtered change awareness notifications, i.e., potential conflicts,
and display them to the users.

Lastly, we simulated a variety of CoMDSE scenarios with a
variety of changes, workspaces (i.e., engineers), and potential
conflicts. This simulation allowed us to measure the perfor-
mance of our approach, which only required around 20 seconds
to detect and notify almost 20k conflicting changes. This shows
that the approach can be applied in practice as this amount of
conflicts is much larger than the expected possible conflicts that
would happen in a 20-second interval of a CoMDSE workflow.

For future work, besides investigating the detection of seman-
tic conflicts, we also plan to evaluate the approach in scenarios
with real engineers. The main goal of this evaluation is to under-

stand how the potential conflicts’ visualization can be fine-tuned
for specific tools or types of users. Another plan for future work
is to implement additional plugins to extend the prototype im-
plementation of the approach to additional tools (e.g., Papyrus,
Visual Studio, IntelliJ). In addition, we plan to extend our filter-
ing mechanism to support different heuristics besides conflicts,
e.g., filtering notifications based on user roles or model element
types.

Acknowledgement

This research was funded in part by the Austrian Science Fund
(FWF) [10.55776/P34805], the LIT Secure and Correct System
Lab funded by the State of Upper Austria, and the FFG-COMET-
K1 Center “Pro2Future” (Products and Production Systems of
the Future), Contract No. 881844.

References

Aldndni, W., Meng, N., & Servant, F. (2023). Automatic
prediction of developers’ resolutions for software merge con-
flicts. Journal of Systems and Software, 206, 111836. doi:
https://doi.org/10.1016/j.jss.2023.111836

Altmanninger, K., Brosch, P., Kappel, G., Langer, P., Seidl, M.,
Wieland, K., & Wimmer, M. (2009). Why model versioning
research is needed!? an experience report. In Modse-mccm
2009 workshop @ models (Vol. 9, pp. 1–12).

Altmanninger, K., & Pierantonio, A. (2011). A categorization
for conflicts in model versioning. e & i Elektrotechnik und
Informationstechnik, 11(128), 421–426.

Bang, J. Y., Brun, Y., & Medvidovic, N. (2017). Continuous
analysis of collaborative design. In 2017 ieee international
conference on software architecture (icsa) (p. 97-106). doi:
10.1109/ICSA.2017.45

Bang, J. y., Brun, Y., & Medvidović, N. (2018). Collaborative-
design conflicts: Costs and solutions. IEEE Software, 35(6),
25-31. doi: 10.1109/MS.2018.290110057

Bang, J. Y., & Medvidovic, N. (2015). Proactive detection
of higher-order software design conflicts. In 12th working
ieee/ifip conference on software architecture (p. 155-164).
doi: 10.1109/WICSA.2015.15

Bird, C., Rigby, P. C., Barr, E. T., Hamilton, D. J., German,
D. M., & Devanbu, P. (2009). The promises and perils of
mining git. In 2009 6th ieee international working conference
on mining software repositories (pp. 1–10).

Brindescu, C., Ahmed, I., Jensen, C., & Sarma, A. (2020). An
empirical investigation into merge conflicts and their effect
on software quality. Empirical Software Engineering, 25,
562–590. doi: 10.1007/s10664-019-09735-4

Brosch, P., Egly, U., Gabmeyer, S., Kappel, G., Seidl, M., Tom-
pits, H., . . . Wimmer, M. (2011). Towards semantics-aware
merge support in optimistic model versioning. In Interna-
tional conference on model driven engineering languages
and systems (pp. 246–256).

Brun, C., & Pierantonio, A. (2008). Model differences in the
eclipse modeling framework. UPGRADE, The European
Journal for the Informatics Professional, 9(2), 29–34.

12 Herac et al.



Brun, Y., Holmes, R., Ernst, M. D., & Notkin, D. (2011).
Proactive detection of collaboration conflicts. In 19th acm
sigsoft symposium and the 13th european conference on
foundations of software engineering (p. 168–178). New
York, NY, USA: Association for Computing Machinery. doi:
10.1145/2025113.2025139

Brun, Y., Holmes, R., Ernst, M. D., & Notkin, D. (2013).
Early detection of collaboration conflicts and risks. IEEE
Transactions on Software Engineering, 39(10), 1358-1375.
doi: 10.1109/TSE.2013.28

Costa, C., & Murta, L. (2013). Version control in distributed
software development: A systematic mapping study. In 2013
ieee 8th international conference on global software engi-
neering (pp. 90–99).

David, I., Aslam, K., Faridmoayer, S., Malavolta, I., Syriani,
E., & Lago, P. (2021). Collaborative model-driven soft-
ware engineering: a systematic update. In 2021 acm/ieee
24th international conference on model driven engineer-
ing languages and systems (models) (pp. 273–284). doi:
10.1109/MODELS50736.2021.00035

David, I., Aslam, K., Malavolta, I., & Lago, P. (2023). Col-
laborative model-driven software engineering—a systematic
survey of practices and needs in industry. Journal of Systems
and Software, 199, 111626. doi: 10.1016/j.jss.2023.111626

Debreceni, C., Bergmann, G., Búr, M., Ráth, I., & Varró, D.
(2017). The mondo collaboration framework: Secure collab-
orative modeling over existing version control systems. In
2017 11th joint meeting on foundations of software engineer-
ing (p. 984–988). Association for Computing Machinery. doi:
10.1145/3106237.3122829

de la Vega, A., & Kolovos, D. (2022). An efficient line-based
approach for resolving merge conflicts in xmi-based models.
Software and Systems Modeling, 21(6), 2461–2487. doi:
10.1007/s10270-022-00976-4

Dewan, P., & Hegde, R. (2007). Semi-synchronous conflict
detection and resolution in asynchronous software develop-
ment. In 10th european conference on computer-supported
cooperative work (pp. 159–178). doi: 10.1007/978-1-84800
-031-5_9

Dias, K., Borba, P., & Barreto, M. (2020). Understanding
predictive factors for merge conflicts. Information and Soft-
ware Technology, 121, 106256. doi: https://doi.org/10.1016/
j.infsof.2020.106256

Di Ruscio, D., Franzago, M., Malavolta, I., & Muccini, H.
(2017). Envisioning the future of collaborative model-driven
software engineering. In 2017 ieee/acm 39th international
conference on software engineering companion (pp. 219–
221). doi: 10.1109/ICSE-C.2017.143

Diskin, Z., König, H., & Lawford, M. (2018). Multiple model
synchronization with multiary delta lenses. In A. Russo
& A. Schürr (Eds.), Fundamental approaches to software
engineering (pp. 21–37). doi: 10.1007/978-3-319-89363-1
_2

Edwards, G., & Medvidovic, N. (2008). A methodology and
framework for creating domain-specific development infras-
tructures. In 2008 23rd ieee/acm international conference on
automated software engineering (pp. 168–177).

Estler, H. C., Nordio, M., Furia, C. A., & Meyer, B. (2014).
Awareness and merge conflicts in distributed software de-
velopment. In 2014 ieee 9th international conference on
global software engineering (p. 26-35). doi: 10.1109/
ICGSE.2014.17

Franzago, M., Di Ruscio, D., Malavolta, I., & Muccini, H.
(2017). Collaborative model-driven software engineering: a
classification framework and a research map. IEEE Trans-
actions on Software Engineering, 44(12), 1146–1175. doi:
10.1109/TSE.2017.2755039

Guimarães, M. L., & Silva, A. R. (2012). Improving early detec-
tion of software merge conflicts. In 2012 34th international
conference on software engineering (icse) (p. 342-352). doi:
10.1109/ICSE.2012.6227180

Herac, E., Assunção, W. K. G., Marchezan, L., Haas, R., &
Egyed, A. (2023, July). A flexible operation-based infrastruc-
ture for collaborative model-driven engineering. Journal of
Object Technology, 22(2), 2:1-14. (The 19th European Con-
ference on Modelling Foundations and Applications (ECMFA
2023)) doi: 10.5381/jot.2023.22.2.a5

Herac, E., Marchezan, L., Assunção, W., & Egyed, A. (2024,
February). Conflict-based Change Awareness for Collabora-
tive Model-driven Software Engineering (Evaluation Data).
Zenodo. doi: 10.5281/zenodo.10699447

Hutchinson, J., Rouncefield, M., & Whittle, J. (2011). Model-
driven engineering practices in industry. In 33rd international
conference on software engineering (pp. 633–642).

Jackson, V., Prikladnicki, R., & van der Hoek, A. (2024). Co-
creation in fully remote software teams. In 46th ieee/acm
international conference on software engineering (pp. 1–12).
doi: 10.1145/3597503.3623297

Kanagasabai, N., Alam, O., & Kienzle, J. (2018). Towards
online collaborative multi-view modelling. In System analysis
and modeling. languages, methods, and tools for systems
engineering: 10th international conference (pp. 202–218).
doi: 10.1007/978-3-030-01042-3_12

Kuiter, E., Krieter, S., Krüger, J., Saake, G., & Leich, T. (2021).
varied: an editor for collaborative, real-time feature modeling.
Empirical Software Engineering, 26, 1–47. doi: 10.1007/
s10664-020-09892-x

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J.,
Thomason, C., . . . Volgyesi, P. (2001). The generic modeling
environment. In Workshop on intelligent signal processing
(Vol. 17, p. 2001).

Lindholm, T. (2004). A three-way merge for xml documents.
In 2004 acm symposium on document engineering (p. 1–10).
New York, NY, USA: Association for Computing Machinery.
doi: 10.1145/1030397.1030399

Marchezan, L., Assunção, W. K. G., Herac, E., Keplinger, F.,
Egyed, A., & Lauwerys, C. (2023). Fulfilling industrial
needs for consistency among engineering artifacts. In 45th
international conference on software engineering - software
engineering in practice (pp. 1–12).

Marchezan, L., Kretschmer, R., Assunção, W. K., Reder, A., &
Egyed, A. (2022). Generating repairs for inconsistent models.
Software and Systems Modeling, 1–33.

McKee, S., Nelson, N., Sarma, A., & Dig, D. (2017). Software

Conflict-based Change Awareness for Collaborative Model-driven Software Engineering 13



practitioner perspectives on merge conflicts and resolutions.
In 2017 ieee international conference on software mainte-
nance and evolution (icsme) (pp. 467–478).

Mens, T. (2002). A state-of-the-art survey on software merging.
IEEE transactions on software engineering, 28(5), 449–462.

Mistrík, I., Grundy, J., Van der Hoek, A., & Whitehead, J.
(2010). Collaborative software engineering: challenges and
prospects. Springer.

Muccini, H., Bosch, J., & van der Hoek, A. (2018). Collabora-
tive modeling in software engineering. IEEE Software, 35(6),
20–24.

Nelson, N., Brindescu, C., McKee, S., Sarma, A., & Dig, D.
(2019). The life-cycle of merge conflicts: processes, barriers,
and strategies. Empirical Software Engineering, 24, 2863–
2906.

Ogunyomi, B., Rose, L. M., & Kolovos, D. S. (2015). Property
access traces for source incremental model-to-text transfor-
mation. In European conference on modelling foundations
and applications (pp. 187–202).

Owhadi-Kareshk, M., Nadi, S., & Rubin, J. (2019). Predicting
merge conflicts in collaborative software development. In
2019 acm/ieee international symposium on empirical soft-
ware engineering and measurement (pp. 1–11).

Ráth, I., Hegedüs, Á., & Varró, D. (2012). Derived features
for emf by integrating advanced model queries. In European
conference on modelling foundations and applications (pp.
102–117).

Reiter, T., Altmanninger, K., Bergmayr, A., Schwinger, W., &
Kotsis, G. (2007). Models in conflict-detection of semantic
conflicts in model-based development. In International work-
shop on model-driven enterprise information systems (Vol. 7,
pp. 29–40).

Sarma, A., Bortis, G., & Van Der Hoek, A. (2007). Towards
supporting awareness of indirect conflicts across software
configuration management workspaces. In 22nd ieee/acm
international conference on automated software engineering
(pp. 94–103).

Sarma, A., Redmiles, D. F., & Van Der Hoek, A. (2011). Palan-
tir: Early detection of development conflicts arising from
parallel code changes. IEEE Transactions on Software Engi-
neering, 38(4), 889–908.

Schümmer, T., & Haake, J. M. (2001). Supporting distributed
software development by modes of collaboration. In Sev-
enth european conference on computer supported cooperative
work (pp. 79–98).

Sharbaf, M., Zamani, B., & Sunyé, G. (2022). Conflict manage-
ment techniques for model merging: a systematic mapping
review. Software and Systems Modeling, 1–49.

Steinberg, D., Budinsky, F., Merks, E., & Paternostro, M. (2008).
Emf: eclipse modeling framework. Pearson Education.

Tröls, M. A., Marchezan, L., Mashkoor, A., & Egyed, A. (2022).
Instant and global consistency checking during collaborative
engineering. Software and Systems Modeling, 21(6), 2489–
2515.

Vale, G., Hunsen, C., Figueiredo, E., & Apel, S. (2022). Chal-
lenges of resolving merge conflicts: A mining and survey
study. IEEE Transactions on Software Engineering, 48(12),

4964-4985. doi: 10.1109/TSE.2021.3130098
Whitehead, J. (2007). Collaboration in software engineering:

A roadmap. In Future of software engineering (fose ’07)
(p. 214-225). doi: 10.1109/FOSE.2007.4

Yohannis, A., Kolovos, D., & Polack, F. (2017). Turning
models inside out. In Ceur workshop proceedings 1403 (pp.
430–434).

Yohannis, A., Rodriguez, H. H., Polack, F., & Kolovos, D.
(2019). Towards efficient comparison of change-based mod-
els. Journal of Object Technology, 1–21.

Young Bang, J., Brun, Y., & Medvidović, N. (2018).
Collaborative-design conflicts: Costs and solutions. IEEE
Software, 35(6), 25–31.

About the authors
Edvin Herac is a PhD student at the Institute of Software Sys-
tems Engineering (ISSE) at the Johannes Kepler University
Austria, supervised by Prof. Dr. Alexander Egyed. He ob-
tained his master degree in Computer Science from the Jo-
hannes Kepler University Linz (JKU). His research focuses
on Model-based Software Engineering, particularly on Model-
based Conflict Management. You can contact the author at
edvin.herac@outlook.com or visit https://edvher.github.io/.

Luciano Marchezan is currently a University Assistant at the In-
stitute of Software Systems Engineering (ISSE) at the Johannes
Kepler University Austria. He has completed his Ph.D. in Com-
puter Science (2023) at the Johannes Kepler University (JKU),
Austria. During the research of his thesis, he investigated how to
improve the consistency maintenance process of a collaborative
software system engineering environment, investigating, design-
ing, and evaluating solutions that support automated consistency
checking and the generation of repair recommendations. His
research interests include Collaborative Model-Driven Software
Engineering, Software Reuse and Empirical Software Engineer-
ing. You can contact the author at lucianomarchp@gmail.com
or visit https://lucianomarchezan.github.io/.

Wesley Klewerton Guez Assunção is an Associate Professor
with the Department of Computer Science at North Carolina
State University. Wesley received his M.Sc. in Informat-
ics (2012) and Ph.D. in Computer Science (2017) both from
Federal University of Paraná (UFPR) - Brazil. His areas
of interest are Software Modernization, Variability Manage-
ment, Collaborative Engineering of Complex Systems, Soft-
ware Testing, and Search Based Software Engineering. You
can contact the author at wguezas@ncsu.edu or visit https://
wesleyklewerton.github.io/.

Alexander Egyed is a Full Professor for Software-Intensive
Systems at the Johannes Kepler University, Austria. He received
his Doctorate from the University of Southern California, USA
and worked in industry for many years. He is most recognized
for his work on software and systems design – particularly on
variability,consistency, and traceability. You can contact the
author at alexander.egyed@jku.at or visit http://www.alexander
-egyed.com/.

14 Herac et al.

mailto:edvin.herac@outlook.com?subject=Your paper "Conflict-based Change Awareness for Collaborative Model-driven Software Engineering"
https://edvher.github.io/
mailto:lucianomarchp@gmail.com?subject=Your paper "Conflict-based Change Awareness for Collaborative Model-driven Software Engineering"
https://lucianomarchezan.github.io/
mailto:wguezas@ncsu.edu?subject=Your paper "Conflict-based Change Awareness for Collaborative Model-driven Software Engineering"
https://wesleyklewerton.github.io/
https://wesleyklewerton.github.io/
mailto:alexander.egyed@jku.at?subject=Your paper "Conflict-based Change Awareness for Collaborative Model-driven Software Engineering"
http://www.alexander-egyed.com/
http://www.alexander-egyed.com/

