
Journal of Object Technology | RESEARCH ARTICLE

A Variance-Based Drift Metric for Inconsistency
Estimation in Model Variant Sets

Karl Kegel, Sebastian Götz, Ronny Marx, and Uwe Aßmann
Technische Universität Dresden, Germany

ABSTRACT
Nowadays, iterative development has become a state-of-the-art engineering process. The shared artifacts, i.e., models, must
be edited collaboratively to make iterative development work in large engineering teams. The typical non-real-time collaboration
workflow consists of three phases: The collaborators create copies of the model; Each collaborator edits their variant (copy) of
the model; The collaborators merge the edited models back into one. During the merge phase, conflicting changes become
apparent and must be resolved. This is a time and resource-intensive task. However, if potential merge conflicts can be detected
during the editing phase, the collaborators can take suitable measures in time. This work proposes an early warning system
for merge conflicts in model-based development projects. We introduce the novel metric Drift to quantify the inconsistency
between all co-existing variants of a model. An increase in Drift indicates an increase in potential merge conflicts. We evaluate
the correctness of the Drift for synthetical modeling projects and syntactical model differences. We develop an openly available
tool for calculating the Drift for arbitrary Git repositories.

KEYWORDS Software Metrics, Model Metrics, Model Evolution

1. Introduction
In today’s development processes, models are edited concur-
rently. This applies not only to software engineering but engi-
neering disciplines in general. A model can be any textual arti-
fact following a formal or (semi-)formal specification. UML di-
agrams (Object Management Group 2024) or Petri-Nets (Reisig
2012) are models in the sense of software engineering. However,
the civil engineer’s CAD file and the accountant’s EXCEL sheet
are models, too. In all domains of engineering, collaboration
is necessary to improve productivity. This naturally includes
collaborative work on models. In real-time collaboration, all
collaborators access a single instance of the model. Changes are
synchronized as soon as possible (Franzago et al. 2018). Google
Docs1 is a prominent example. The two main approaches for re-

JOT reference format:
Karl Kegel, Sebastian Götz, Ronny Marx, and Uwe Aßmann. A
Variance-Based Drift Metric for Inconsistency Estimation in Model Variant
Sets. Journal of Object Technology. Vol. 23, No. 3, 2024. Licensed under
Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2024.23.3.a2
1 https://www.google.com/docs/about/

alizing real-time collaboration are Conflict-free Replicated Data
Types (CRDT) (Shapiro et al. 2011) and Operational Trans-
formations (OT) (Ellis & Gibbs 1989). Although real-time
collaboration is often a desired technique, it is unsuitable for all
modeling tasks. For high-level models, real-time collaboration
enables the joint development of ideas and concepts. However,
for low-level models, modeling workflows become closer to
those known from programming. Programmers implement their
changes (features) individually before merging them with their
colleagues’ changes. This allows isolated implementation, test-
ing, and debugging without the interference of unstable changes
from other collaborators. Low-level models, e.g., executable
automatons or state machines, database schemata, or transforma-
tion models, require the same isolated feature-wise development.
For example, a robotics engineer must prove the safety of their
feature via model-checking before it can be included in the main
variant.

A collaborative, non-real-time development process starts
with a single model. In the remainder of this work, we call this
a fork-edit-merge workflow. After distributing tasks, each col-
laborator creates their variant (branch, fork) of the model. The

An AITO publication

http://dx.doi.org/10.5381/jot.2024.23.3.a2
https://www.google.com/docs/about/

single model becomes a set of variants. The phase of individual
editing can take from a few hours to multiple weeks. During this
time, each collaborator performs an individual model evolution
process. Lastly, the collaborators merge their changes back into
a common base model. Conflicts and unanticipated results have
become apparent and must be handled. Perry et al. conclude
that preventing and managing conflicts is both a technical and
an organizational challenge as it requires communication, clear
responsibilities, consensus building, and support by manage-
ment decisions (Perry et al. 2001). This makes merging, in
general, a labor- and resource-intensive task.

Generally speaking, manifested or potential merge conflicts
result from inconsistencies within the variant set. Vice versa, if
it is possible to count merge conflicts, their number is a measure
of inconsistency. From a practical standpoint, systematic incon-
sistencies are not introduced by a single action of a particular
collaborator. Instead, they build up gradually. Any reduction
in inconsistency during the editing phase leads to a decrease in
merge effort.

1.1. Problem Statement
We argue that reducing the complexity and frequency of merge
conflicts in model-based development is a relevant problem for
research and practice. Openly available model repositories are
rare and thus unsuitable for large-scale merge conflict analysis.
However, such works exist for Git repositories. The survey
of Zou et al. empirically underpins the relevance of branch-
based workflows in Git projects (Zou et al. 2019). Ghiotto et al.
conducted an automated analysis for merge conflicts in open-
source JAVA software development projects. They found that
2.6% of all Git merge attempts fail with conflicts (Ghiotto et al.
2020). The Git merge algorithm is textual and not considered
model merging. Merge algorithms that are aware of syntax
are called structured. However, we argue that surveys of code
merge conflicts are transferable to conflicts in modeling - at
least for such models for which the fork-edit-merge workflow
applies. We base this argument on studies comparing structured,
semi-structured, and unstructured merges. A structured merge
interprets code not as text but as an abstract syntax tree (AST).
Merging two ASTs is a syntactical model merge. Works from
Apel et al. and Cavalcanti et al. show that structured and semi-
structured differences result in fewer and more fine-grained
conflicts (Apel et al. 2012; Cavalcanti et al. 2019). However,
the problem of merge conflicts does not vanish. We conclude
that conflicting changes are an issue of any fork-edit-merge
workflow, independent of the merge algorithm.

1.2. Solution Approach
The earlier the team knows of inconsistencies in their variants,
the earlier they can act to prevent complex merge problems.
Even if conflicts cannot be prevented, knowing them allows
planning a sufficient amount of time to resolve them. In soft-
ware engineering, checking for inconsistencies is achieved by
consecutive merge attempts in the background (Guimarães &
Silva 2012). Conflicts are then found and reported to each
collaborator. This process can be applied to modeling as well.
However, a quantification of the resulting conflict potential is

not yet established. Thus, quantitatively monitoring the inconsis-
tency from a management perspective is impossible. It requires
gradual consistency metrics based on continuous consistency
checking to realize a feasible early warning system. During
surveying the literature and consulting with practitioners, we
noticed the absence of such metrics. We aim for a novel metric
for realizing an early warning system for inconsistency. Col-
laborators track the state of this metric during their work. The
engineering team can act in time to prevent complex merges
when the metric reaches a defined threshold or shows unantici-
pated behavior over time.

In machine learning, the continuous deviation of a model
away from its initial nature is called Concept Drift (Widmer
& Kubat 1996; Bayram et al. 2022). For example, by experi-
encing new data, a classifier changes its decision model - The
model drifts over time. In domains where models are used for
co-simulation and prediction, measures like correlation and vari-
ability are used to study similarities and causalities of model
sets. For example, variability-based measures are used in geo-
informatics to evaluate similarities in weather-forecast model
ensembles (Abramowitz & Gupta 2008). Coping with con-
sistency problems of individually evolved software instances
(clone-and-own) in software product line engineering, Tinnes
et al. coin the term Drift as the difference between an original
and a modified copy of a system. We propose Drift as a general
metric for describing the quantified inconsistency between all
the model variant sets’ variants. Each introduced inconsistency
leads to an increasing drift value. A removed inconsistency
leads to a decreasing drift value. The Drift is a leading met-
ric (Parker 2000) because it indicates inconsistencies before
their manifestation during the actual merge. The engineering
team can act if large increases or unexpected changes in the
drift metric happen, e.g., conduct a review, fix accidental issues,
or reschedule the merge.

1.3. Research Question
This work proposes the novel metric Drift for quantifying the
inconsistency in a model variant set. Therefore, we aim to
answer the following research questions:

RQ1 What is a definition of Drift as a metric for inconsistency
that is explainable, robust, and transferable to different
modeling paradigms?

RQ2 How can Drift be calculated for pairs and sets of models?
RQ3 Is the Drift metric applicable to branch-based software

development projects managed with Git?

We define robustness, transferability, and explainability as
follows: We define robustness as numerical stability. A nu-
merically stable relation maps similar inputs to similar outputs,
e.g., introducing a few conflicts leads to a small change in the
metric. “Small” and “similar” are, of course, relative and must
be discussed in the context of the concrete scenario. We define
explainability as the ability to interpret results intuitively. The
reason why the Drift has a certain value or trend must be under-
standable to the metric user. In consequence, the Drift metric
must not rely on a black-box algorithm. We define transferabil-
ity as the generality of the Drift definition and calculation to

2 Kegel et al.

apply to different modeling paradigms. Transferability particu-
larly includes language-agnosticism. We define applicable as
the (A) practical ability to be used and (B) the usefulness, i.e.,
plausibility, of the results.

1.4. Method and Contribution

This work employs an engineering-oriented method and defines
the drift metric using a constructive approach. We start with a
formal abstraction of the problem space in sec. 3 Abstraction.
We continue with building an intuitive metaphor for drift in sec.
4. Section 5 defines the drift based on the introduced formalism
and intuition. We evaluate our approach in the Evaluation in
sections 6 and 7. In 6, we use a configurable model generator to
simulate fork-edit workflows in variant sets. In 7, we evaluate
the transferability of the drift metric to software development
projects. Therefore, we develop the Driftool application for the
drift calculation of Git repositories. This work contributes the
novel Drift metric for model variant sets. Minor contributions
are the GraphGentool graph model generator and the Driftool
analysis tool.

2. Background

2.1. Model Merging and Differencing

Different classes of merge strategies are known in the literature
(Mens 2002; Apel et al. 2011). The construction of a merge
relies on the model differencing operation used. Selecting a
particular differencing strategy significantly impacts the exe-
cution time and quality of the detected conflicts (Apel et al.
2012; Cavalcanti et al. 2019). Textual differencing, as used
by Git, compares the textual representations of a model pair
line by line. It ignores syntax and semantics but allows the
comparison of arbitrary textual documents. Semi-structured and
structured differencing operations work on the abstract syntax
tree of the model. Semantic differencing includes the semantics
of the model. Showing the semantic identity of two models is
generally undecidable (Berzins 1986). Tools such as EMFCom-
pare (Brun & Pierantonio 2008) and UMLDiff (Xing & Stroulia
2005) use a structured difference. Some approaches extend
the AST comparison with simple semantic analysis, e.g., for
matching synonyms of identifiers. Important research areas are
model difference identification (matching) (Kolovos et al. 2009)
and difference representation (Cicchetti et al. 2007). Cicchetti
et al. propose the language-based representation and manage-
ment of model differences. They represent model differences as
difference models (Cicchetti et al. 2008). Model comparisons
can be advanced to suggest repair operations. Such techniques
are feasible for homogenous and heterogenous model sets, as
shown by Diskin and König (Diskin & König 2016; König &
Diskin 2017). Brindescu et al. show an AI method to predict
the difficulty of merges (Brindescu et al. 2020). Owhadi et al.
investigate using artificial intelligence to predict and resolve
merge conflicts (Owhadi-Kareshk et al. 2019). However, human
assistance is still required to resolve complex conflicts.

2.2. Metrics and Technical Debt
The number of potential merge conflicts in a modeling project
is a form of technical debt. Technical debt is a metaphor for
the number of deficiencies and shortcomings in an engineering
project that negatively influences its future quality (Seaman &
Guo 2011; Kruchten et al. 2012). Metrics are used to mea-
sure the technical debt of a project. Numerous metrics exist
for code-based software development (programming) projects,
as collected by Fenton and Bieman (Fenton & Bieman 2014).
Although model metrics are less prominent as code metrics,
state-of-the-art modeling tools also support similar metrics on
models. The IBM DevOps Model Architect2 can retrieve dif-
ferent metrics for UML models’ size, coupling, inheritance
structure, and visual representation. Berger and Guo propose
model metrics for analyzing variability models (Berger & Guo
2014). El-Sharkawy et al. survey model-based metrics for soft-
ware product lines (El-Sharkawy et al. 2019). Doan and Gogolla
show how to integrate model quality metrics at the metamodel
level to support quality assurance while modeling (Doan &
Gogolla 2019). One can use metrics to get information about
whole engineering projects besides single models and code files.
Yamamoto et al. investigate metrics based on meta-information,
e.g., the number of stars and issue number on Github, to estimate
the quality of a repository without an in-depth code analysis for
research purposes (Yamamoto et al. 2020). Furrer introduced
the concept of Managed Evolution (Furrer 2019). Managed evo-
lution aims to continuously improve the quality of a software
product according to several criteria like business value, change-
ability, and dependability. Therefore, metrics for measuring
these criteria are required. Liliental presents such metrics for
sustainable software architectures (Lilienthal 2019).

3. Abstraction
The target of the collaboration is a model m ∈ M. M denotes
the set of all valid models of a metamodel M. M contains the
empty model ϵ ∈ M. Each m denotes a set of model elements
itself. The model m edited by particular collaborator c ∈ C is
indexed mc. Collaborators evolve their models through atomic
changes δ : d1, d2, ..., dj with δ ∈ D. D is the set of all valid
modification sequences (delta sequences). A δ executed by a
specific collaborator is indexed δc. Conceptually, δ is a partially
ordered set of atomic change operations. Individual di within
a δ can be reordered as long as they are not dependent on each
other. This concept is known as a Delta Operation Sequence
(Clarke et al. 2010). We can use it to express incremental
model transformations δ : M → M. A further definition
of D depends on the nature of M. An evolution function α :
M×D → M applies a delta sequence to a model. We call an
evolution stable if |δ| << |m| with |_| as the size of contained
elements. In other words, a δ is stable if it only changes a “small”
subset of the model’s elements. A collaborator transforms their
initial model m0

c into the final model mτ
c by executing α(m0

c , δc).
There exist a number of intermediate models mi

c with 0 ≤ i ≤
τ, i ∈ N. An intermediate model mi

c is reached by applying a
δ up to its i-th element di to m0

c . We call mc a variant and mi
c

2 https://www.ibm.com/docs/en/dma

A Variance-Based Drift Metric for Inconsistency Estimation in Model Variant Sets 3

https://www.ibm.com/docs/en/dma

a version. The set of the latest version of each variant is called
Mτ with Mτ ⊆ M We simplify the abstract collaboration
scenario so that all m0

c are equal, i.e., all individual model copies
are created simultaneously. This does not impact the general
problem because all m ∈ M have a common infimum mroot in
M. It is at least mroot = ϵ. Each model m0

c is an evolution of
mroot with a specific δ from mroot to m0

c . In the case of identical
m0

c , this delta sequence is empty.
The function ∆ : M × M → R calculates a measure

of inconsistency between two models, e.g., the number of
merge conflicts. ∆ must calculate a measure of conflict grow-
ing monotonously with the conflict’s severity, i.e., it requires
“countable conflicts”. Additionally, ∆ must be bounded, i.e.,
its result must differ from ∞. For example, a semantic ∆ may
calculate the (possibly infinite) number of instances hat do not
match. Such a ∆ is either unsuitable in our context or must
be constrained. We allow additional implicit input parameters
for concrete implementations of ∆ for allowing, e.g., 3-way
comparisons or metamodel-aware comparisons.

We define the Environment with Drift as a tuple E . In sum-
mary, E describes a set of individually evolving models based
on a common root model.

E = (C,M,Mτ ,D, α, ∆)

4. Euclidean Space Metaphor
This section introduces an intuition for drift based on E from
sec. 3. We use this intuition as the foundation for the drift
definition in sec. 5.

We use the Euclidean space as the space of variability. Points
represent models m. Here, we use the two-dimensional Eu-
clidean space. The metaphor can be transferred to any dimen-
sionality > 0, although this may no longer lead to an intuitive
visualization. The dimensions of the system are unitless and
have a linear scale. The pairwise Euclidean distance of two
points represents the number of inconsistencies (conflicts). An
empty model ϵ is located in the origin point. An environment E
can be represented in this metaphorical space as follows:

1. Each mτ ∈ Mτ becomes a (model-)point.

2. Use ∆ to calculate the distance for each point combination.

3. Align (embedd) the points so that their Euclidean distances
match their ∆-distances. If such an embedding is not pos-
sible, find the embedding with minimal error.

We call this representation a metaphor because it simplifies
the problem. First, the dimensions used for the variability space
do not have a defined unit. One can interpret them as a lin-
ear proportional scale regarding the amount of inconsistency.
However, there is no mathematically sound definition of their
unit. Second, a conflict-free embedding of Mτ is, in general,
not possible. The system contains a certain amount of error
(stress). Consequently, geometric points may violate the tri-
angle inequality under the ∆-distance. However, the stressed
geometric points fulfill the triangle inequality under the Eu-
clidean distance. Although the representation of Mτ as a point

cloud in the two-dimensional Euclidean space is a strong sim-
plification, it is intuitive to grasp and usable for visualization.
If the point cloud of Mτ is more scattered (large volume / low
density), it contains many inconsistencies. If the point cloud is
less scattered (small volume / high density), it contains fewer
inconsistencies. Outlier points with large distances to all other
points indicate model variants with many inconsistencies with
the remaining variants.

Figure 1 visualizes three different E after several changes.
The empty root model mϵ was evolved to the base model m0

by applying a sequence of changes δ0. Figure 1 (a) shows a
scenario with three collaborators, a, b, and c. Collaborator a
performs two delta operations, b performs three delta operations,
and c performs one. The m ∈ M are depicted as points. The
m ∈ Mτ have an additional blue coloring. Figures 1 (b) and
(c) do not show the individual delta operations. The ∆-distance
of mτ

a and mτ
b is depicted as an orange arrow. Figures 1 (a) and

(b) show an increasing inconsistency with each delta operation.
The points are drifting away from each other. Assuming that
a delta does not introduce new inconsistencies, the position of
the point remains the same. Assuming that a delta decreases
the inconsistency, the points move closer together. Figure 1
(b) represents a variant set with more inconsistencies as in
fig. (c). The scattering is a metaphor for the inconsistency
in a model variant set. A problem of the simplification is the
stressed position of m0. If we define ∆ as the number of merge
conflicts in a history-based merge, neither of the models in Mτ

have merge conflicts with their ancestor m0. This leads to each
distance ∆(mτ

x , m0) being 0. However, the points of mτ
a , mτ

b ,
and mτ

c have conflicts in between each other. As a result, m0

is placed somewhere in the center of the point cloud trying
to minimize the stress. The same applies to m0 and ϵ. If we
assume a history-based ∆, m0 and ϵ must be located in the same
position. The shown figures are correct for a ∆(m0, ϵ) > 0.

Figure 2 visualizes the evolution of the scenario from fig.
1 (a). In 2 (t=1), a and b applied a single delta operation rep-
sectively. Because of the stress reduction, m0 is located in the
center. In 2 (t=2), c created their variant and added a conflicting
delta. Now, the point cloud spans a 2D area, e.g., a triangle.
This process continues in fig. 2 (t=3), (t=4), and (t=5). The
triangle’s area grows. Figure 2 evolution shows all steps of the
model evolution process layered over each other.

This plot is our visual metaphor for an Environment with
Drift. For a set of model variants, we understand the drift
as a measure of the scatteredness of the point cloud of the
model embeddings into an Euclidean space. We call the visual
embedding of variants, as described in this section, a Drift Plot.

5. Drift Definition and Computation
This section proposes a bottom-up Drift definition based on the
metaphor in section 4.

5.1. Definition by Construction
In the following, we define a process that aims to represent the
intuition of sec. 4 closely. First, apply ∆ to all model pairs in
Mτ for constructing the distance matrix AMτ . Assume the

4 Kegel et al.

ϵ

𝒎!

𝒎𝒂
𝝉

𝒎𝒃
𝝉

𝛿%

𝛿&
𝛿!

Δ(𝑚&
' , 𝑚%

')

da0

da1

db2 db1 db0

(a)

dc0 𝛿(
𝒎𝒄
𝝉

10

100 ϵ

𝒎!

𝒎𝒂
𝝉

𝒎𝒃
𝝉

𝛿%

𝛿&
𝛿!

(b)

𝛿(
𝒎𝒄
𝝉

10

100 ϵ

𝒎!

𝒎𝒂
𝝉𝒎𝒃

𝝉

𝛿%𝛿&

𝛿!

(c)

𝛿(
𝒎𝒄
𝝉

10

100

Figure 1 Three different Environments with Drift visualized in the metaphorical drift space.

models in Mτ form a fully connected system. We write β for
the computation function of the distance matrix β(Mτ , ∆) =
AMτ . Second, choose a Multi-dimensional Scaling (MDS)
function ω : A → R3. MDS stands for a group of algorithms
for dimensionality reduction. Different MDS algorithms are
suitable for different domains (Borg & Groenen 2005). We
embed the models into the R3. The embedding error (stress) of
the MDS decreases with increasing dimensionality. However,
a dimensionality higher than the R3 breaks our intuition of a
visualizable point cloud. Third, apply ω on AMτ . This results
in a set of 3D points PMτ := ω(AMτ). Fourth, let the drift γ be
0 if |PMτ | < 2 because they are trivial cases. Let the drift be the
mean absolute median deviation (MAD) d̃0,5 of PMτ otherwise.
The MAD is a statistical measure of data points’ variability
(scatteredness) around their median (Toutenburg & Heumann
2008). The MAD of a dataset {x1, x2, ..., xn} is defined as

d̃0,5(x, . . . , xn) :=
1
n

n

∑
i=1

|xi − x̃|

This leads to the drift definition:

γ(Mτ , ∆, ω) :=

 0 if |Mτ | < 2

d̃0,5(ω(β(Mτ , ∆)) if |Mτ | ≥ 2

A fixed ∆ and ω shortens the notation.

γ(Mτ) = γ(Mτ , ∆, ω)

5.2. Drift Trend
Let {Mτ

1 ,Mτ
2 , ...Mτ

n} be the set of Mτ at different points in
time, i.e., let it be the history of Mτ . Let < be a strict total
ordering relation based on the timestamp (lower index) of Mτ

t .
We define the Drift Trend Γ as the application of γ on each
version of Mτ

t . Γ defines a strict, totally ordered set.

Γ := ({γ(Mτ
1), γ(Mτ

2), ...γ(Mτ
n)},<)

5.3. Drift Workflow
The practical drift-aware modeling workflow using the above
definition looks as follows:

1. Find a suitable ∆. The ∆ can be Git for line-based, EMF-
Compare for Ecore syntax, tool-specific, a custom imple-
mentation, etc.

2. (Automatically) Calculate the adjacency matrix AMτ us-
ing ∆ on a project-dependent regular basis, e.g., hourly,
daily, weekly, or on change in the build process. For Git,
we provide full tool support (sec. 7).

3. (Automatically) Calculate the drift value and plot from the
matrix using the MDS. Given a CSV matrix, we provide
full tool-support.

4. The team observes the drift value and plot and reacts to
unanticipated changes, e.g., sudden drift increase. Possible
reactions are an early merge, review, bugfix, rollback, or
revision.

5.4. Conclusion
This section fulfills RQ2 by giving a formal algorithm for the
drift calculation for pairs and sets of models. The drift definition
fulfills RQ1, as stated below.

5.4.1. Explainability The drift metric is explainable as it
relies on the visual metaphor from sec. 4. Additionally, the drift
computation produces the drift plot (Euclidean point cloud) as
an intermediate result. Changes in the drift can be traced back
to changes in the drift plot. Individual variants can be identi-
fied. Consequently, the drift definition fulfills the explainability
requirement of RQ1.

5.4.2. Robustness The drift metric is robust because its
calculation is based on numerically stable measures. The d̃0,5

is a measure of variability. d̃0,5 is numerically stable because
it is not prone to large fluctuations by outliers as it (A) uses
the median as a reference point and (B) uses linear average dis-
tances. Consequently, the drift definition fulfills the robustness
requirement of RQ1.

5.4.3. Transferability The drift definition is not dependent
on a concrete ∆. This makes the drift definition transferable to
different modeling languages, i.e., language-agnostic. The only
requirement to transfer the drift metric to a specific language is
the existence of a suitable ∆. The internals of a concrete imple-
mentation of ∆ do not change the conceptual properties of the

A Variance-Based Drift Metric for Inconsistency Estimation in Model Variant Sets 5

ϵ

𝒎!
𝒎𝒂
𝝉𝒎𝒃

𝝉

𝛿!

da0db0

(t=1)

10

100

ϵ

𝒎𝒂
𝝉

𝒎𝒃
𝝉

𝛿!

da0
db1 db0

(t=4)

dc0

𝒎𝒄
𝝉

10

100

ϵ

𝒎𝒂
𝝉

𝒎𝒃
𝝉

𝛿!

(t=2)

𝒎𝒄
𝝉

10

100

ϵ

𝒎𝒂
𝝉

𝒎𝒃
𝝉

𝛿!

da0
db2 db1 db0

(t=5)

dc0

𝒎𝒄
𝝉

10

100 ϵ

𝒎!

𝒎𝒂
𝝉

𝒎𝒃
𝝉

𝛿!

(evolution)

𝒎𝒄
𝝉

10

100

ϵ

𝒎𝒂
𝝉

𝒎𝒃
𝝉

da0

db1 db0

(t=3)

dc0 𝛿&
𝒎𝒄
𝝉

10

100

db0
da0

𝒎!

dc0

𝒎!

da1

𝒎! 𝒎!

da1

Figure 2 Visualization of the step-wise drift increase in the metaphorical drift space.

drift metric. It changes their absolute values. A different ∆ may
change the interpretation of the concrete drift values because
different ∆ could weigh merge problems differently or use differ-
ent merge approaches. It can be syntactical or semantic as long
as the requirements of the Environment with Drift are met. For
a concrete project, the ∆ has to be determined by experienced
modelers. Denoting or communicating a concrete drift value,
one must always name the ∆ function used. Consequently, the
drift definition fulfills the transferability requirement of RQ1.

6. Drift Trend Analysis of Synthetic Model Vari-
ant Sets

This section evaluates the drift metric’s correctness experimen-
tally using a general example. We developed the model genera-
tor GraphGentool as an evaluation tool and a minor contribution
to this work. We provide a reproduction package for this eval-
uation (Kegel 2024) containing a copy of the developed tools
and automation scripts.

6.1. Evaluation Goal
In this evaluation, we aim to validate the correctness of the
proposed mathematical drift definition experimentally, i.e., does
the drift metric behave as expected for known inputs? The
drift metric is, per definition, language-agnostic, i.e., it needs
to be instantiated for a particular language. It is impossible to
experimentally evaluate the metric on the infinite number of
possible modeling languages and ∆-functions. Therefore, we
decided to select a representative language and ∆. We use an
Ecore metamodel of a hierarchical labeled graph as the language
because it abstracts common modeling languages. The fact that

Ecore is used on M2 does not influence the results, i.e., the used
graph language could be designed in any other metamodeling
framework. However, Ecore comes with EMFCompare (Brun
& Pierantonio 2008) - a well-established syntactical model com-
parison tool. We argue that the experimental results from such
an abstract metamodel and syntactical ∆ are generalizable to a
large class of practical modeling scenarios.

We investigate the behavior of the drift metric compared to
the following list of hypotheses.

H1 The consecutive editing of the model variants leads to an
increasing drift over time.

H2 A higher number of variants leads to a higher amount of
drift in the variant set. We assume that each variant receives
equally many deltas.

H3 Randomly distributed edits in each model variant lead to
more drift than edits focusing on disjoint subsets of the
models. In other words: if the collaborators make their
edits randomly all over their models, many inconsistencies
occur. If the collaborators make their edits in structurally
distinguished regions of their models only, a few inconsis-
tencies occur..

H4 With an increasing amount of structural separation (mod-
ules, hierarchies) in the models, the effects of H3 are am-
plified.

We found these hypotheses in discussions with practitioners
from research and practice. We use the experiments presented in
the following to collect empirical evidence and, consequently, to
either reject or accept the hypotheses. If the drift metric behaves
as expected in the hypotheses, we consider it correct.

6 Kegel et al.

6.2. Tooling: Synthetic Graph Generation
For conducting this evaluation, we require exemplary model
variant sets with specific properties, e.g., varying number of
variants, specific model sizes, different model modularities, etc.
The properties need to be configurable to check against the
different hypotheses. Using real-world modeling projects is
not feasible because we need full control of the variant set’s
parameters to investigate cases of interest in isolation. As a
result, we developed a configurable generator for model variant
sets. The generator, called GraphGentool3 is openly available.

The GraphGentool uses a custom Ecore metamodel. The
metamodel is shown in fig. 3. The root element is the Graph.
The Edge has no direction but a fixed order of the Nodes. Each
Node has a unique name. A Region contains a Graph. Thus, it
is the structuring element that builds up hierarchies. We defined
the following implicit rules which are not visible in the meta-
model diagram: An Edge is located in the Graph where the first
Node is located. The composition structure of the Regions must
form a tree. As a result, the composition structure of the Graph
is cycle-free. However, the Edge structure allows cycles. The
metamodel is purposefully designed to be a simple and abstract
representation of many modeling languages, e.g., UML class
diagrams, Statecharts, or Petri-Nets. Such a general-purpose
metamodel reduces the evaluation bias toward the specifics of
a particular modeling language. The concretely chosen names
of the metamodel elements are transferable to other domains.
For example, Graph could be called ClassDiagram, SimpleN-
ode could be called Class, and Region could be called Package.
Such renamings have no impact on this experiment’s results.
The Label enum provides the SimpleNode with a type. We use
colors for simplicity, but semantic types could be used instead.
For example, a green SimpleNode could have the semantics of a
hyper-edge. We further discuss generality concerns in sec. 6.5.

The GraphGentool works in two phases. The first phase is
the generation of a base model m0. It is saved as an XMI file.
Several properties can be configured:

– Model size as the sum of Nodes and Edges.
– Average ratio of Edges per Node.
– Ratio of Edges that connect Nodes of the same Region and

Edges that connect Nodes of different Regions.
– Ratio of SimpleNodes and Regions (structuredness).
– Random seed.

An important aspect of the graph generation algorithm is the
distribution of Regions. The composition structure of Regions
forms a tree. During construction, Regions are added to the
composition tree iteratively. Each iteration adds a new Region
to a random Region already present in the tree. Consequently,
the average number of sub-Regions per Regions decreases the
farther away from the root.

The second phase is the generation of a variant set. The
GraphGentool takes the base model and creates a specified num-
ber of copies (variants). The variants are edited by iteratively ap-
plying delta operations of a generated delta operation sequence.
The edit selection is configured with a probability per edit. As

3 https://github.com/convidev-tud/emf-graph-gen

Figure 3 Ecore graph metamodel used by the GraphGentool

a consequence of editing a variant, the graph configuration
can be violated, e.g., the ratio of model elements changes. The
delta metamodel contains the operations: AddNode, DeleteNode,
MoveNode, ChangLabel, AddEdge, DeleteEdge, and MoveEdge.
The delta operations DeleteNode and MoveNode have impli-
cation associations to other move and delete operations. This
models the required subsequent operations to transform the
model into a valid state after an initial edit.

This second phase also has an input configuration:

– The number of variants.
– The number of edits.
– The way of counting the edits. Atomic counting considers

each performed delta operation as one step. Non-atomic
counting considers an atomic edit and the minimal number
of implied atomic edits to reach a valid model as one step.

– The edit focus. A focus of 0.0 leads to randomly selecting
the element for editing in the whole graph. An increasing
focus up to 1.0 increases the probability that the next edit
happens in the same Region as the last edit. However, an
edit that moves an element can lead to changing the Region
even if the focus is 1.0

– The selection probability for each edit operation.

If required, an indexed version of the edited variant is saved
as an XMI after each non-atomic edit step. The delta model
representing the executed edits is also stored as an XMI file.

6.3. Environment & Process
We developed two experiments to evaluate the stated hypotheses
H1-H4. Therefore, we analyzed different model variant set
configurations (runs). For exp. (1), we repeated each run for

A Variance-Based Drift Metric for Inconsistency Estimation in Model Variant Sets 7

https://github.com/convidev-tud/emf-graph-gen

11 different seeds. For exp. (2), we repeated each run for 5
different seeds.

1. Use the GraphGentool to generate the model variant set
for each configuration of interest.

2. Calculate the ∆-distance matrix A after each evolution step
of each variant set. We used the EMFCompare three-way
merge conflict count as ∆ function.

3. Use the Driftool (sec. 7) to calculate the drift value of each
matrix.

4. Collect and group all drift values and export the result as a
CSV table.

5. Parse the CSV file for analysis and visualization of the
results.

Table 1 Main experiment (1) configuration for H1, H3, H4
Parameter Values

Non-atomic deltas 30

Number of variants (5), (9), 13

Model Size 100, 500, 1000

Region Probability 0.05 (shallow), 0.2 (deep)

Edit Focus 0 (none), 0.8, 1 (max.)

Table 2 Experiment (2) configuration for H2
Parameter Values

Non-atomic deltas 16

Number of variants 3, 5, 7, ..., 25

Model Size 200

Region Probability 0.15, 0.1, 0.05

Edit Focus 0.0, 0.5, 0.75, 1.0

Table 3 Experiment edit probabilities
Delta Probability

Add SimpleNode 0.15

Add Region 0.05

Delete Node 0.05

Move Node 0.05

Change Label 0.25

Add Edge 0.25

Delete Edge 0.2

The used model variant set configurations are depicted in
table 1 and 2. We conducted a separate experiment for H2 with
a single model size to achieve a feasible computation time with
many branches. Analyzing the drift for different variant set
configurations over time (over increasing edits) evaluates H1.
We analyze specific parameter configurations to evaluate the
drift metric against H1-H4. Varying the number of variants for a
fixed model size evaluates H2. Varying the edit focus for a fixed
combination of the remaining parameters evaluates H3. Varying

the hierarchy depth for each edit focus and a fixed combination
of the remaining parameters evaluates H4. We choose 4, 8,
and 12 as realistic numbers of variants, i.e., the number of
collaborators. Because the base variant is also part of the variant
set, the resulting numbers are 5, 9 and 13 variants. We choose
three models sizes up to 1000 elements (Nodes + Edges) for the
main experiment. EMFCompare performed too slow to conduct
experiments with larger models in a feasible timeframe. We
choose 0.05 as a suitable Region-probability for shallow models
and 0.2 for deep models. Assuming a shallow model with 100
Nodes, it contains 5 Regions with, on average, 20 Nodes each.
Assuming a deep model with 100 Nodes, it contains 20 Regions
with on average 5 Nodes each. We choose an edit-focus of 0
for simulating random edits, 0.8 for simulating a realistic high
but not optimal focus, and 1.0 for simulating a maximum focus.
We choose 30 as a reasonable number of non-atomic deltas.
The number of 30 non-atomic deltas is applied per variant. For
each configuration, we observe the whole drift trend so that
all edit counts smaller than 30 are covered as well. We argue
that larger delta counts are potentially unstable for the chosen
model size of 100. In this case, the drift may stagnate at a high
level because a maximum number of conflicts (inconsistency)
is reached. We do not consider this case because it indicates
not a limitation of the drift metric but of the overall modeling
workflow. Changes made by a single collaborator in a single
variant must not change major parts of a model. The used delta
operation probabilities for editing the models are depicted in
table 3. Notably, these probabilities are only used to edit the
variants and not generate the base model m0. We argue that
these probabilities reflect a practical edit process.

6.4. Results
Figures 5, 4, and 6 show the results of the experiment runs. We
show the drift value for each second delta. Notably, this number
of deltas is applied per model of a variant set, except m0. We
explain upper outliers with the occurrence of “unlucky” delta
sequences. Examples are: One collaborator deletes a Region
containing many other model elements, which are deleted recur-
sively. Each edit targeting a model element another collaborator
has deleted leads to a conflict; Two collaborators with a high
edit focus choose the same Region for editing. The GraphGen-
tool does not prevent these cases. We conducted no systematic
time measurements during our experiments. The runtime of the
drift metric grows quadratically with the number of variants.
Observed runtimes are of a magnitude from a few seconds for
smaller models and variant numbers to a few minutes for larger
models and variant numbers. The runtime of the comparison al-
gorithm, in this case, EMFCompare depends on the model size.
EMFCompare has a very high time and memory consumption
for large models. Depending on the metamodel and computing
power, EMFCompare could be unfeasible for large models.

Figure 4 shows the results of the experiment for evaluating
H1. The plots E1-E3 show the drift trend for 13 branches
and fixed model sizes. The remaining variables vary in their
range. The results provide support for hypothesis H1, as each
plot shows a clear drift increase with an increasing number
of deltas. The variance notably increases with the model size.

8 Kegel et al.

Figure 4 Experiment results for analyzing the drift for an increasing amount of edit operations for different model sizes and a
fixed number of branches. The horizontal axis shows the amount of non-atomic edits that were performed. The vertical axis shows
the drift. s is the model size in Nodes + Edges. b is the number of variants (branches).

Figure 5 Experiment results for analyzing the drift for an
increasing number of branches with constant model sizes and
varying graph configurations. The horizontal axis shows the
number of variants per set. The vertical axis shows the drift.

We explain this with an increasing influence of the variables
depth and focus on the drift with increasing model size. Figure
5 shows the the results of the experiment for evaluating H2.
Plot E4 shows the drift for an increasing number of branches.
The remaining variables vary in their range. The results do
support H2 for smaller variant sets (< 10 variants). The results
do not support hypothesis H2 for larger variant sets because an
increasing number of variants only slightly impacts the drift.
Figure 6 shows the experiment results for evaluating H3 and
H4. We selected a fixed number of 13 branches and a fixed
model size of 500. For evaluating H3, we compare the median
drift after 30 non-atomic deltas for variant sets of the same
modularity. The drift of shallow models with a min. edit focus
is 4.42 points higher then the max. edit focus as shown in E5-E7.
The drift of highly modular models with a min. edit focus is
8.03 points higher than the max. edit focus as shown in E8-E10.
In consequence, the drift metric fulfills hypothesis H3. The drift

decrease for deep models is 1.83 times that for shallow models.
In consequence, the experiment provides clear support for H4.
The experiment also matches the experience that well-organized
(focused) edits in a well-structured (hierarchical) model lead
to the least amount of merge conflicts. Notably, the worst-case
scenario is random edits on well-structured models. We explain
this with the high risk of accidentally changing (or removing)
many important structural elements in this scenario. The results
in fig. 6 show an increasing drift trend with more deltas, which
again supports for H1.

In summary, the drift metric behaves correctly for measur-
ing the inconsistency in model variant sets as our experiments
showed clear support for hypotheses H1, H3 and H4. We haven’t
found clear support for H2 in our experiments, but we could see
that a weaker hypothesis is supported. Namely, the hypothesis
that with an increasing number of branches, the rate of increase
of the drift metric decreases.

6.5. Threats to Validity
Our experimental evaluation contains potential threats to valid-
ity. Any experimental evaluation only allows conclusions within
the observed boundaries. Our experimental setup contains a
single metamodel with limited configuration parameters (e.g.,
the edit focus). This limitation threatens to cause the results to
miss relevant cases and be biased toward the specific metamodel.
We argue against this threat.

First, we claim that the used metamodel is a suitable represen-
tative example because it is abstract and general. Hierarchical
labeled graphs are the foundation for many practical modeling
languages. A metamodel different from the one presented would
naturally change the absolute drift values. However, the relative
tendencies in the drift trends are preserved for the same ∆. This
also includes the consideration of the model’s concrete syntax,
e.g., diagrammatic representation. In our experiment, we only
considered the abstract syntax of the models. If one defines a
conflict counter for the concrete syntax, it can be incorporated
in the ∆ function. Although this adds a factor to the the drift,
the monotony of the trends is preserved.

A Variance-Based Drift Metric for Inconsistency Estimation in Model Variant Sets 9

Figure 6 Experiment results for analyzing the drift for different amounts of edit focus and structuredness for 13 branches and a
model size of 500 Nodes + Edges. The horizontal axis shows the amount of non-atomic edits that were performed. The vertical
axis shows the drift. f is the probability to perform the next edit in the same Region as the last one. d is the parameter for hierar-
chy depth. d = 0.5 says that 50% of the nodes contain sub-graphs.

Second, we claim that the chosen ∆ is representative as well.
The syntactical model differencing of EMFCompare is state-
of-the art tooling. Using a different ∆ does not change the
monotony of the drift trends. The ∆ we used is a linear measure.
The trend’s shape will change if a different ∆ reports conflicts
using a logarithmic measure. However, the monotony require-
ment of the ∆ function generally leads to the same monotony
of the drift trends as observed in the experiments. Different ∆
only impact the interpretation of the drift values, e.g., using a
syntactical ∆ shows a syntactic drift, and using a semantic ∆
results in a semantic drift.

Third, we claim that the used configuration parameters and
selected configurations are suitable to represent typical edit
processes. Used configurations cover shallow and highly struc-
tured models, unstructured and well-structured edit operations,
different model sizes, and different variant numbers. Varying
configuration parameters did not influence the drift trend apart
from linear factors. The only exception is an overly high proba-
bility for deletions. This leads to degenerated cases because the
model size decreases towards the empty model ϵ.

We do not claim that an Environment with Drift can be con-
structed for every modeling scenario. The second part of the
evaluation in sec. 7 is an addition for countering both threats.

Although this does not eliminate the threat that observed trends
might break for specific parameters, we show that the drift is
explainable for real-world data.

7. Drift Analysis of Software Development
Projects

This section evaluates if the drift metric applies to Git projects.
To conduct this evaluation, we developed the Driftool. The
reproduction package (Kegel 2024) contains all artifacts of this
evaluation.

7.1. Evaluation Goal
The evaluation goal is to answer RQ1, i.e., if the drift metric is
applicable for Git projects. In particular, the goal is to evaluate
if it is (A) practically possible to calculate the drift for such
projects and (B) investigate the usefulness, i.e., plausability, of
the results.

7.2. Environment & Process
We adhere to the following process for reaching the evaluation
goals:

1. Design and implement a tool for calculating the drift metric.

10 Kegel et al.

The tool must be able to use a ∆-function that is feasible
for Git repositories. The tool must provide visual feedback
to the user to ensure the explainability of the results.

2. Use the tool to calculate the drift metric for different open-
source software repositories from Github4.

3. Analyze the results regarding their plausibility. Find expla-
nations for the calculated drift.

The drift values of different development projects are not com-
parable because of the different languages, file structures, etc..
However they are still usable for analysis as they show infor-
mation on variant clusters and outliers. We aim to explain the
observations in the plots with information derived from the
repository metadata on GitHub.

7.3. The Driftool

We developed the Driftool5 as a tool for automatic drift com-
putation and visualization. The tool is implemented in Python
and available under an open-source license. The Driftool is pri-
marily designed to calculate the drift of Git repositories. Users
can customize the analysis using a configuration file. Important
configurable arguments are the exclusion of certain branches
(RegEx), exclusion of certain files (RegEx), only inclusion of
certain files (RegEx), The Driftool performs exactly one analy-
sis per run, i.e., terminates after completing the analysis. Given
a configuration, the analysis process is realized as follows.

1. Create a local copy of the input Git repository.
2. Go through each branch and apply the blacklist and

whitelist rules. Create a commit to make the changes
visible to Git.

3. Create the list of branches to analyze.
4. For each branch pair, calculate the ∆-distance. We use

the count of conflicting lines as the distance. We attempt
to merge and parse the conflict reports to get this number.
This leads to A.

5. Calculate the 3D embedding of A. We use the MDS algo-
rithm provided by sklearn6.

6. Calculate the drift as defined in 5.
7. Generate visual and textual reports.

We realized a “bypass” feature for using the visualization and
reporting abilities of the Driftool for use-cases apart from Git
repositories. The user can input a precomputed distance matrix
A represented as a CSV file. We used this feature for the
experiment in sec. 6. Figure 7 shows an example screenshot
of the interactive report created by the Driftool. This report
shows the drift of a real-world project which we analyzed in
the following sec. 7.4. If an HTML report is not required, the
Driftool exports a simple scatterplot, as shown in fig. 8.

7.4. Results
We created a Driftool configuration for each analyzed project.
It ignores common file formats that “bloat” up repositories and

4 https://github.com/
5 https://github.com/convidev-tud/driftool
6 https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS

.html

are of low interest for the analysis, such as PDFs or precompiled
JAR libraries. We ignored branches that contained past versions
for maintenance or branches that exist purely for documentation.
The presented numbers are based on the repository state of the
15th February 2024.

Figure 7 shows the drift plot of the Vitruv7 repository. Vit-
ruv is a research prototype developed at Karlsruhe Institute of
Technology. The analysis covered 6 branches. The plot shows 2
comparably close points in the right area of the plot. One point
has a medium distance to these two, and 2 points are further
away. One of the 2 close points in the right area is doubled. This
indicates no merge conflicts between the two branches. The
four closer-located branches all received commits within the
last 9 months. The three branches located further away received
their last commits more than 2 years ago and thus are more
outdated. This is supported by the large amount of commits
these 3 branches are behind the main branch.

Figure 8 shows the drift plot of the taiga-front8 repository.
Taiga is a project management tool for agile development pro-
cesses. The analysis covered 14 branches. 13 branches form
a dense cluster, and 1 branch is a far outlier. We investigated
the repository activity and reproduced merges to evaluate the
plausibility of the results. The repository has a low activity, and
most commits are made directly on the main branch. The scat-
tered branches are feature implementations. 10 of them were
already merged into the main in the past. We assume they still
exist for feature maintenance purposes. Further investigation
of the outlier branch found a larger number of merge conflicts
compared to the other branches. Most of them resulted from
syntax refactorings in CoffeeScript files.

Figure 9 shows the drift plot of the semantic-kernel9 repos-
itory. The semantic-kernel is an automation tool suite from
Microsoft to work with large language models. The analysis
covered 57 branches. The drift plot shows a dense central clus-
ter of points with a decreasing density with increasing distance
from this central region. Outliers are located all around the
dense center. The overall drift of 224.10 is high compared to the
previous examples. We explain this drift plot and drift with the
size and activity in the repository. 11 branches received modifi-
cations within the last month, and 218 people have contributed
to the overall project. By experience, this leads to less control
over the branches, explaining the high scattering in the drift plot.
However, the majority of branches only contain small feature
implementations. This is the reason for the dense central cluster
in spite of the high activity.

The experiment results clearly indicate that the drift metric
can be applied to branch-based software development projects.
We consider the concrete drift value error-prone due to the
line-based differencing algorithm Git uses. However, the 3D
embeddings, as an intermediate result of the drift computation,
provide useful and explainable insights.

7 https://github.com/vitruv-tools/Vitruv
8 https://github.com/kaleidos-ventures/taiga-front
9 https://github.com/microsoft/semantic-kernel

A Variance-Based Drift Metric for Inconsistency Estimation in Model Variant Sets 11

https://github.com/
https://github.com/convidev-tud/driftool
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
https://github.com/vitruv-tools/Vitruv
https://github.com/kaleidos-ventures/taiga-front
https://github.com/microsoft/semantic-kernel

Figure 7 Screenshot of the Driftool’s interactive HTML report. The shown drift plot results from an analysis of the Vitruv reposi-
tory, presented in sec. 7.4

Figure 8 Drift plot of the taiga-front repository (drift=13.33).

7.5. Threats to Validity

We presented 3 examples of drift calculations for real-world
software development projects. This poses the threat that the
results are biased towards the analyzed repositories. To address
this threat, we analyzed 16 repositories with the Driftool. Al-
though this analysis was smaller than for the repositories in this
section, we repeatedly found similar patterns in the drift plot
and repository metadata. The interactive drift reports of the
additional samples are provided in the reproduction package
(Kegel 2024). A second threat is the potentially low accuracy
of the drift due to Git’s line-based differencing. This has not
influenced the explainability of the analyzed results. In practice,
a repository expert must configure the Driftool using in-depth
project knowledge.

Figure 9 Drift plot of the semantic-kernel repository
(drift=224.10).

8. Conclusion

8.1. Summary
This work proposes the novel drift metric as an estimator for
the inconsistency in a model variant set. We envision the drift
to become a metric for measuring the conflict potential during
collaborative modeling. Consequently, the engineering team
can take suitable measures to reduce costly merge conflicts
early on. We started this work with an abstract problem de-
scription. We continued with an intuitive drift definition and
a formal constructive definition. In this process, we proposed
answers to the research questions RQ1 and RQ2. We conducted
a twofold evaluation. First, we evaluated the correctness of the
drift metric. The experiments showed that the metric’s results
align with a list of hypotheses. Second, we evaluated the feasi-
bility of the drift metric from a tool-builder’s perspective. We
developed the Driftool to calculate and visualize Git repositories

12 Kegel et al.

to answer RQ3. Conducting the evaluation, we validated the
proposed answers for RQ1 and RQ2. In particular, we showed
transferability by calculating drift based on the two different
∆-distances: EMFCompare conflict count for models, and Git
merge conflict counts for arbitrary text files.

In summary, we assess the proposed drift metric as an ex-
plainable, robust, and transferable metric to detect inconsisten-
cies during collaborative modeling early on. It is based on an
intuitive definition and can be implemented in practical analysis
tools. The drift computation is compatible with state-of-the-art
comparison tools such as EMFCompare and Git.

8.2. Future Work
This work proposes the drift as a gradual inconsistency measure
for model variant sets. This is a restricted case of a homoge-
neous model set. However, we consider the drift metric trans-
ferable to general homogeneous and heterogeneous model sets.
Investigations of suitable ∆ for these scenarios are a target for
future work. A promising application for heterogeneous drift
metric is the Virtual Single Underlying Model, where so-called
Consistency Relations relate heterogeneous models (Klare et al.
2021). The number of violated consistency relations may be a
suitable ∆ for a heterogenous model set. Furthermore, we aim
to extend the Driftool to support different ∆ concurrently. We
assess this as a requirement for analyzing real-world develop-
ment projects with different file formats. AI-based approches
as presented in (Brindescu et al. 2020) could provide support
for classical differencing algorithms. Lastly, future work has
to investigate the drift metric in real-world usecases over an
extended period of time.

9. Verifiability
The developed evaluation tools GraphGentool and Driftool are
openly available on Github. A reproduction package is provided
in (Kegel 2024). It contains a copy of the used version of the
tools, the automation scripts used to conduct the evaluation, the
raw evaluation results, and a set example Driftool reports of
open-source projects.

Acknowledgments
Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) - SFB 1608 - 501798263

References
Abramowitz, G., & Gupta, H. (2008). Toward a model space and

model independence metric. Geophysical Research Letters,
35(5). doi: 10.1029/2007GL032834

Apel, S., Leßenich, O., & Lengauer, C. (2012). Structured
merge with auto-tuning: balancing precision and perfor-
mance. In Proceedings of the 27th ieee/acm international
conference on automated software engineering (p. 120-129).
New York, NY, USA: Association for Computing Machinery.
doi: 10.1145/2351676.2351694

Apel, S., Liebig, J., Brandl, B., Lengauer, C., & Kästner,
C. (2011). Semistructured merge: rethinking merge in
revision control systems. In Proceedings of the 19th acm

sigsoft symposium and the 13th european conference on
foundations of software engineering (p. 190-200). New
York, NY, USA: Association for Computing Machinery. doi:
10.1145/2025113.2025141

Bayram, F., Ahmed, B. S., & Kassler, A. (2022). From concept
drift to model degradation: An overview on performance-
aware drift detectors. Knowledge-Based Systems, 245,
108632. doi: 10.1016/j.knosys.2022.108632

Berger, T., & Guo, J. (2014). Towards system analysis with vari-
ability model metrics. In Proceedings of the 8th international
workshop on variability modelling of software-intensive sys-
tems. New York, NY, USA: Association for Computing
Machinery. doi: 10.1145/2556624.2556641

Berzins, V. (1986). On merging software extensions. Acta
Informatica, 23, 607–619.

Borg, I., & Groenen, P. J. (2005). Modern multidimensional
scaling: Theory and applications. Springer Science & Busi-
ness Media.

Brindescu, C., Ahmed, I., Leano, R., & Sarma, A. (2020).
Planning for untangling: predicting the difficulty of merge
conflicts. In Proceedings of the acm/ieee 42nd international
conference on software engineering. ACM. doi: 10.1145/
3377811.3380344

Brun, C., & Pierantonio, A. (2008). Model differences in the
eclipse modeling framework. UPGRADE, The European
Journal for the Informatics Professional, 9(2), 29–34.

Cavalcanti, G., Borba, P., Seibt, G., & Apel, S. (2019). The
impact of structure on software merging: Semistructured
versus structured merge. In 2019 34th ieee/acm international
conference on automated software engineering (ase) (p. 1002-
1013). doi: 10.1109/ASE.2019.00097

Cicchetti, A., Di Ruscio, D., & Pierantonio, A. (2008). Man-
aging model conflicts in distributed development. In Model
driven engineering languages and systems: 11th interna-
tional conference, models 2008, toulouse, france, september
28-october 3, 2008. proceedings 11 (pp. 311–325).

Cicchetti, A., Di Ruscio, D., Pierantonio, A., et al. (2007). A
metamodel independent approach to difference representa-
tion. Journal of Object Technology, 6(9), 165–185.

Clarke, D., Helvensteijn, M., & Schaefer, I. (2010). Abstract
delta modeling. ACM Sigplan Notices, 46(2), 13–22.

Diskin, Z., & König, H. (2016). Incremental consistency check-
ing of heterogeneous multimodels. In P. Milazzo, D. Varró, &
M. Wimmer (Eds.), Software technologies: Applications and
foundations (pp. 274–288). Cham: Springer International
Publishing.

Doan, K.-H., & Gogolla, M. (2019). Quality improvement
for uml and ocl models through bad smell and metrics defi-
nition. In 2019 acm/ieee 22nd international conference on
model driven engineering languages and systems companion
(models-c). IEEE. doi: 10.1109/models-c.2019.00121

Ellis, C. A., & Gibbs, S. J. (1989). Concurrency control in
groupware systems. In Proceedings of the 1989 acm sigmod
international conference on management of data (pp. 399–
407).

El-Sharkawy, S., Yamagishi-Eichler, N., & Schmid, K. (2019).
Metrics for analyzing variability and its implementation in

A Variance-Based Drift Metric for Inconsistency Estimation in Model Variant Sets 13

software product lines: A systematic literature review. Infor-
mation and Software Technology, 106, 1-30. doi: 10.1016/
j.infsof.2018.08.015

Fenton, N., & Bieman, J. (2014). Software metrics: a rigorous
and practical approach. CRC press.

Franzago, M., Ruscio, D. D., Malavolta, I., & Muccini, H.
(2018). Collaborative model-driven software engineering: A
classification framework and a research map. IEEE Trans-
actions on Software Engineering, 44(12), 1146-1175. doi:
10.1109/TSE.2017.2755039

Furrer, F. J. (2019). Future-proof software-systems. Springer
Vieweg. doi: 10.1007/978-3-658-19938-8

Ghiotto, G., Murta, L., Barros, M., & van der Hoek, A. (2020).
On the nature of merge conflicts: A study of 2,731 open
source java projects hosted by github. IEEE Transactions
on Software Engineering, 46(8), 892-915. doi: 10.1109/
TSE.2018.2871083

Guimarães, M. L., & Silva, A. R. (2012). Improving early detec-
tion of software merge conflicts. In 2012 34th international
conference on software engineering (icse) (p. 342-352). doi:
10.1109/ICSE.2012.6227180

Kegel, K. (2024). Model drift experiment reproduction package.
Zenodo. doi: 10.5281/zenodo.10687311

Klare, H., Kramer, M. E., Langhammer, M., Werle, D., Burger,
E., & Reussner, R. (2021). Enabling consistency in view-
based system development — the vitruvius approach. Journal
of Systems and Software, 171, 110815.

Kolovos, D. S., Di Ruscio, D., Pierantonio, A., & Paige, R. F.
(2009). Different models for model matching: An analysis
of approaches to support model differencing. In 2009 icse
workshop on comparison and versioning of software models.
doi: 10.1109/CVSM.2009.5071714

König, H., & Diskin, Z. (2017). Efficient consistency check-
ing of interrelated models. In A. Anjorin & H. Espinoza
(Eds.), Modelling foundations and applications (pp. 161–
178). Cham: Springer International Publishing.

Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical debt:
From metaphor to theory and practice. IEEE Software, 29(6),
18-21. doi: 10.1109/MS.2012.167

Lilienthal, C. (2019). Sustainable software architecture.
dpunkt.verlag.

Mens, T. (2002). A state-of-the-art survey on software merging.
IEEE Transactions on Software Engineering, 28(5), 449-462.
doi: 10.1109/TSE.2002.1000449

Object Management Group. (2024). Unified modeling language
uml reference documentation 2.5.1.

Owhadi-Kareshk, M., Nadi, S., & Rubin, J. (2019). Predicting
merge conflicts in collaborative software development. CoRR,
abs/1907.06274.

Parker, C. (2000). Performance measurement. Work study,
49(2), 63–66.

Perry, D. E., Siy, H. P., & Votta, L. G. (2001). Parallel changes
in large-scale software development: an observational case
study. ACM Transactions on Software Engineering and
Methodology (TOSEM), 10(3), 308–337.

Reisig, W. (2012). Petri nets: An introduction (Vol. 4). Springer
Science & Business Media.

Seaman, C., & Guo, Y. (2011). Measuring and monitoring
technical debt. In Advances in computers (Vol. 82, pp. 25–
46). Elsevier.

Shapiro, M., Preguiça, N., Baquero, C., & Zawirski, M. (2011).
Conflict-free replicated data types. In Stabilization, safety,
and security of distributed systems: 13th international sym-
posium, sss 2011, grenoble, france, october 10-12, 2011.
proceedings 13 (pp. 386–400).

Toutenburg, H., & Heumann, C. (2008). Deskriptive statistik:
eine einführung in methoden und anwendungen mit r und
spss. Springer-Verlag.

Widmer, G., & Kubat, M. (1996). Learning in the presence of
concept drift and hidden contexts. Machine Learning, 23(1),
69–101. doi: 10.1023/A:1018046501280

Xing, Z., & Stroulia, E. (2005). Umldiff: An algorithm for
object-oriented design differencing. In Proceedings of the
20th ieee/acm international conference on automated soft-
ware engineering. ACM. doi: 10.1145/1101908.1101919

Yamamoto, K., Kondo, M., Nishiura, K., & Mizuno, O. (2020).
Which metrics should researchers use to collect repositories:
An empirical study. In 2020 ieee 20th international confer-
ence on software quality, reliability and security (qrs). IEEE.
doi: 10.1109/qrs51102.2020.00065

Zou, W., Zhang, W., Xia, X., Holmes, R., & Chen, Z. (2019).
Branch use in practice: A large-scale empirical study of 2,923
projects on github. In 2019 ieee 19th international conference
on software quality, reliability and security (qrs) (p. 306-317).
doi: 10.1109/QRS.2019.00047

About the authors
Karl Kegel is a doctoral researcher at the Chair of Software
Engineering, Technische Universität Dresden. His research in-
terests are long-living software, software- and model evolution,
and software quality assurance. You can contact the author at
karl.kegel@tu-dresden.de.

Sebastian Götz is a tenured senior researcher at the Chair of
Software Engineering, Technische Universität Dresden. You can
contact the author at sebastian.goetz@acm.org or visit https://
st.inf.tu-dresden.de/sgoetz.

Ronny Marx is a doctoral researcher at the Chair of Software
Engineering, Technische Universität Dresden. You can contact
the author at ronny.marx@tu-dresden.de.

Uwe Aßmann is professor of the Chair of Software Engineering,
Technische Universität Dresden. You can contact the author at
uwe.assmann@tu-dresden.de.

14 Kegel et al.

mailto:karl.kegel@tu-dresden.de?subject=Your paper "A Variance-Based Drift Metric for Inconsistency Estimation in Model Variant Sets"
mailto:sebastian.goetz@acm.org?subject=Your paper "A Variance-Based Drift Metric for Inconsistency Estimation in Model Variant Sets"
https://st.inf.tu-dresden.de/sgoetz
https://st.inf.tu-dresden.de/sgoetz
mailto:ronny.marx@tu-dresden.de?subject=Your paper "A Variance-Based Drift Metric for Inconsistency Estimation in Model Variant Sets"
mailto:uwe.assmann@tu-dresden.de?subject=Your paper "A Variance-Based Drift Metric for Inconsistency Estimation in Model Variant Sets"

