
Journal of Object Technology | RESEARCH ARTICLE

VSMoN: Runtime Monitoring Based Data-driven Remote
Vital Sign Monitoring System

Rahul Bharadwaj Pendyala∗, Abhinandan panda∗, and Srinivas Pinisetty∗
∗Indian Institute of Technology Bhubaneswar, India

ABSTRACT It is reported that many health diseases leading to critical conditions (and deaths) could have been avoided or
prevented with regular health monitoring that can enable early detection. With the alarming global health threat, better medical
assistance may be possible if vital signs are monitored on a regular basis. In this regard, the proposed informal methods lack
formal soundness and guarantee when used in health monitoring systems. Moreover, the ability of domain/healthcare experts
to express the healthcare policies to be monitored is one of the most important inputs in developing such a system. Thus, we
propose a domain-specific language (DSL) that can be used by experts to describe healthcare policies. Since the application is
related to healthcare, the correctness of the monitoring system built from the policies is of utmost importance. We thus rely on
formal monitoring approaches to synthesize monitoring code from policies, which necessitates translating policies expressed in
our DSL to the Timed Automata formalism. To illustrate the feasibility of the proposed approach, a prototype implementation of
a client-server-based mobile application has been developed. We examine preliminary performance assessments using the
prototype developed, finding that the response time for monitoring sufficiently large amounts of data is reasonable.

KEYWORDS Domain-Specific Language, Timed Automata, Client-Server Architecture, Formal Runtime Monitors, Remote Health Monitoring.

1. Introduction

According to a survey by the World Health Organization (WHO),
about 1.7 million people under the age of 75 died in the Euro-
pean Union (EU) in 2013. Nearly 34% of those deaths could
have been prevented if the patients had received better medi-
cal treatment (Burkeil n.d.). Heart attacks and strokes account
for around half of all preventable fatalities. Diabetes and hy-
pertension have grown increasingly frequent, owing to hectic
lifestyles, poor dietary habits, etc (Agarwal & Lau 2010). As a
result, there is a need to find a solution for such illnesses that
may lead to costly medications for a long time by identifying
the diseases at their onsets. Traditional periodic manual vital
sign monitoring risks unknown patient health deteriorating due
to the limited frequency of monitoring. In the case of ischemic

JOT reference format:
Rahul Bharadwaj Pendyala, Abhinandan panda, and Srinivas Pinisetty.
VSMoN: Runtime Monitoring Based Data-driven Remote Vital Sign
Monitoring System. Journal of Object Technology. Vol. 23, No. 2, 2024.
Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2024.23.2.a4

stroke therapy, the affected person’s neurological symptoms like
speech problems and vital signs consisting of blood coagulation
index ought to be monitored in real-time after the administration
of recommended tissue plasminogen activator (rt-PA) (Lansberg
et al. 2012). If any vital signs are out of range, the stroke crew
will issue corresponding remedy orders. In case of any delay in
making such time-bounded decisions may lead to unavoidable
consequences. Therefore, in such scenarios, the conventional
health center, and doctor-targeted health monitoring paradigm
now seem ineffective in safely coping with the growing variety
of patients and sicknesses (Kakria et al. 2015).

Fortunately, advances in technology have the potential to help
provide a variety of solutions in response to the growing demand
for medical assistance. Using wearable sensors to monitor
real-time vital signs in a patient, such as an electrocardiogram
(ECG), photoplethysmography (PPG), and blood pressure (BP),
presents a new problem because it generates a huge volume of
data that must be monitored. It becomes difficult for medical
practitioners to examine and monitor such enormous amounts
of data in order to diagnose complex illness patterns and give
proper medical care. Hence, there is a need for automatic

An AITO publication

http://dx.doi.org/10.5381/jot.2024.23.2.a4

analysis of large samples of vital signs-related data.
In this setting, the current decision support systems rely on

staff observation-based simulations and semi-automated infor-
mal methods based on the Internet of Things (IoT) (Ghosh et
al. 2016; Khoi et al. 2015), artificial intelligence (Gondalia et al.
2018; Hijazi et al. 2016) that can coordinate with health work-
ers to enhance the affected person’s healthcare. The primary
concern in using such informal approaches based on artificial
intelligence and machine learning lies in their credibility when
operating in safety-critical medical care scenarios.

Runtime verification (RV) (Francalanza et al. 2017; Bartocci
et al. 2018) is a dynamic approach of monitoring to ensure that a
run of a system under inspection satisfies or violates a particular
desired policy (φ) during execution. In the formal method-
based RV approaches, such as (Bauer et al. 2011; Falcone et
al. 2009), an RV monitor is synthesized automatically from
a formal high-level specification of a set of policies that is
correct by construction. The generated RV monitors are used
to verify a stored execution of a system (offline verification) or
the current live execution of a system (online) with respect to
the desired correctness policy φ. Formal RV approaches have
been proposed for the automated identification of vital signs
from physiological signals such as ECG and PPG (panda et al.
2021b,a; Panda et al. 2022). However, there is no specific setup
proposed for how these results can be utilized to build a vital
sign monitoring system. Moreover, medical/domain experts
may also want to specify policies for remote/continuous health
monitoring. It may not be possible for them to describe the
intended policies in formalisms such as Timed Automata (TA)
used in these works. As a result, the challenge is to derive a
monitoring code from the vital sign policies that are specified
by domain experts that are correct by construction.

In this paper, we address a few of the above challenges by
proposing a complete end-to-end setup for the vital sign remote
health monitoring system using runtime monitoring approaches
that guarantee formal soundness.
The key contributions of the paper are:
• Design of DSL and translating into TA formalism: We pro-

pose a DSL to specify time-intervened safety-critical policies
for a medical care scenario and also an algorithm to translate
a given timed policy expressed using DSL into its correspond-
ing timed automaton from which monitoring code can be
generated.
• Setup/architecture of the system: Because healthcare policies

change over time, and updating them on all local systems can
be inconvenient, we propose a complete end-to-end client-
server architecture-based setup in which RV Monitors are
generated on the server rather than having a standalone appli-
cation that runs all the systems locally.
• Prototype and performance evaluation: We develop a proto-

type of the proposed setup, including all the modules, such as
a DSL parser and TA generation from DSL. Also, a mobile
application based on client-server architecture as a proof-
of-concept that facilitates the above contributions and also
examines preliminary performance assessments using the
prototype developed, finding that the response time for mon-
itoring sufficiently large amounts of data is acceptable. By

sufficiently large amounts of data, we mean that we tested our
prototype with 1GB traces, whereas a normal trace collected
over a duration of one minute would be around 1KB.
This paper is organized as follows: Section 2 presents an

outline of our proposed approach. Section 3 briefly presents
some of the preliminaries related to timed automata and runtime
verification via some examples. An overview of the software
architecture of our monitoring system is discussed in Section
4. In Section 5, we present the DSL framework and discuss the
translation of policies to TA. Finally, we discuss implementation
details in Section 6.

2. Overview of the proposed approach
In this section, we present a high-level overview of the proposed
approach that facilitates the real-time health tracking of a per-
son’s vital signs associated data, immediate feedback of health
data, and timely intervention of medical assistance. The struc-
tural overview of our proposed monitoring system is presented
in Fig. 1.

Figure 1 Structural outline of our model

In this context, a key component in developing such a system
is knowing which healthcare policies to monitor. There are
approaches for the identification of vital signs from physiolog-
ical signals like ECG and PPG (panda et al. 2021b,a). More-
over, based on such inferences or their knowledge of clinical
guidelines, domain/healthcare experts may want to describe the
policies to be monitored. Hence, there is a need for a DSL that
has all the relevant constructs so the domain expert can easily
understand and describe those healthcare policies. As shown in
Fig. 1 we propose a DSL that allows domain experts to describe
healthcare policies. The data instrumentation component of
the system collects all relevant vital sign data such as blood
pressure, heart rate, temperature, and so on from the wearable
sensors. This data is fed to the RV Monitor, which checks for
violations of safety policies of interest.

We can manually implement the monitors once we have all
of the healthcare policies that need to be monitored. However,
the correctness of the monitoring code itself is uncertain. There
are tools and frameworks to automatically generate monitor-
ing code that is correct by construction using formal runtime
monitoring approaches (Bauer & Falcone 2012; Barringer et al.
2004; Colombo et al. 2009; Chen & Roşu 2007). However, to

2 Bharadwaj et al.

utilize these frameworks, we need to translate these policies in
DSL into formal models/specifications required to synthesize
the monitoring code using formal monitoring frameworks. In
this work, we leverage runtime monitor generation approaches
proposed in (Pinisetty et al. 2017), which require the policies
specified as timed automata to be given as input. Thus, we pro-
pose an algorithm for automatically translating the intuitive DSL
policies into the TA formalism as shown in the timed automata
synthesis module of Fig. 1.

The policies in the TA formalism can be used by the runtime
monitor generation tool to synthesize monitors to check for
policy violation, as shown in the RV Monitor module of Fig. 1.

To demonstrate our framework, we use the following illus-
trative example policies that can be considered for monitoring.

Policy φ1: Event HeartRate cannot be high for throughout 10-
time units.1

Policy φ2: Event BloodPressure cannot be high within 20-time
units after an Event low HeartRate.

Policy φ3: Event BloodPressure cannot be high within 10-time
units after an Event high HeartRate.

In later sections, we elaborate on the different modules de-
scribed in Fig. 1 and we will use these key policies as examples
to demonstrate the approach.

3. Preliminaries and Background
In this work, we utilize a formal runtime verification monitoring
approach (Pinisetty et al. 2017) to generate monitors from high-
level policies. The monitor is usually automatically extracted
from the policy φ (which the monitor should verify). The
RV approach (Pinisetty et al. 2017) requires the policy to be
monitored to be formalized as TA. In this section, we will recall
the TA formalism briefly via an example. We also briefly recall
the approach that we apply to generate monitors from policies
described as TA.

Timed Automata: We consider timed policies as languages
that can be described by deterministic timed automata in this
work. A timed automaton is a finite-state automaton (a graph
with a finite number of nodes and a finite set of labeled edges)
with timing constraints imposed by a finite number of real-
valued clock variables. Here we omit the details of the formal
syntax and semantics of TA (Alur & Dill 1994). We discuss the
well-known TA model via an example.

Example 1 (Timed automaton) The TA in Fig. 2 represents
policy φ1 (i.e, Event HeartRate cannot be high for throughout
10-time units). In the TA in Fig. 2, the set of locations is
L = {q0, q1, q2}, where q0 is the initial location, and Σ ={HR-
low, HR-high, HR-normal, BP-low, BP-high, BP-normal, Temp-
low, Temp-high, Temp-normal } is the set of events. The set
of real-valued clocks is X = {t}. Transitions occur between
locations depending on events. On the transitions, there are
guards with constraints on clock values such as t ≤ 10, and

1 Time duration mentioned in the policy is only for illustration purposes.

resets of clocks. When the first event HR-high occurs, the TA
moves to q1 from q0, and the clock t is reset to 0. If the event
HR-high occurs while the TA is in location q1 and t ≤ 10, the
TA remains in location q1; otherwise, it moves to location q2.
The location q2 (non-accepting) should never be reached for the
policy φ1 to be satisfied over the runs.

q0 q1 q2
HR-high

t := 0

Σ \ {HR− high}
HR− low | HR− normal,

t := 0

HR-high, t <= 10 |
Σ \ {HR− high, HR− low, HR− normal}

HR-high

t > 10

Σ

Figure 2 Timed automaton defining policy φ1

Runtime verification monitors from policies defined as TA:
There are approaches proposed for obtaining runtime monitors
for timed policies, form the specification of the policies in the
form of TA (Bauer et al. 2011; Pinisetty et al. 2017).

Given a timed policy denoted as φ defined as TA Aφ, it is
straightforward to generate an RV monitor (denoted as Mφ) for
the timed policy φ using the approaches discussed in (Bauer et
al. 2011; Pinisetty et al. 2017).

Figure 3 Runtime monitor

The monitoring algorithm proposed in (Pinisetty et al. 2017)
requires the policy φ defined in the timed automaton format and
relies on operations on timed automata to check whether the
observed input stream satisfies the policy φ or not. In this work,
we consider the system being monitored as a black-box as usual
in RV approaches (Bauer et al. 2011; Falcone et al. 2009).

The system execution is not influenced or changed by a
verification monitor. Given a finite timed word σ over the
alphabet Σ (where a timed word is a stream of timed events,
where each event contains information about the event and the
timestamp) denoting the current observation, the RV monitor
emits verdicts true (T), and false (F) (conclusive) and currently
true (CT), and currently false (CF) (inconclusive verdicts).

The RV monitor for φ denoted as Mφ returns verdict T if
for any continuation σ satisfies φ. It returns verdict F if any
continuation of σ falsifies φ. Monitor Mφ returns inconclusive
verdict CT if σ satisfies φ, and not all continuations of σ satisfy
φ. It returns an inconclusive verdict CF if σ falsifies φ, and
there is a continuation of σ that satisfies φ.

We use an example to provide some insight into the expected
behaviour of RV monitors (see (Pinisetty et al. 2017; Bauer et
al. 2011) for formal details).

Example 2 (Example illustrating behaviour of an RV monitor)
Consider policy φ1, defined formally by the TA in Fig. 2.

VSMoN: Runtime Monitoring Based Data-driven Remote Vital Sign Monitoring System 3

Table 1 Example behavior of RV monitor for policy φ1 illus-
trated in Fig. 2

σ Mφ(σ)

(HR-high, 1) CT

(HR-high, 1) · (BP-low, 3) CT

(HR-high, 1) · (BP-low, 3) · (BP-low, 5) CT

(HR-high, 1) · (BP-low, 3) · (BP-low, 5) · (HR-high, 14) F

Consider an input timed word σ = (HR-high, 1) · (BP-
low, 3) · (BP-low, 5) · (HR-high, 14). The step-wise behavior
of the monitor for policy φ1 is shown in Table 1. At t = 1, when
the current observed input is σ = (HR-high, 1), σ satisfies the
policy φ1 (the automaton in Fig. 2 moves to location q1), so
the monitor provides verdict CT in the first step. Similarly, the
verdict provided by the monitor is CT in the next two steps at
t = 3 and at t = 5, since the event in these two steps is BP-low,
and the automaton will remain in location q1. At t = 14, after
observing the event (HR-high, 14) (i.e., when the current
observed input is σ = (HR-high, 1) · (BP-low, 3) · (BP-
low, 5) · (HR-high, 14), the policy φ1 is falsified by σ and for
any extension of σ falsifies the policy φ1. In the automaton, the
location reached will be q2, from which there is no path to any
accepting location. Thus, the monitor provides a conclusive
verdict (false).

Remark 1 To monitor multiple policies, one possibility is to
combine all the TAs using the TA product construction (Alur
& Dill 1994) and to synthesize one monitor for the resulting
policy. Alternatively, we can also synthesize one monitor per
policy and execute all the monitors simultaneously (by feeding
input to all the monitors in parallel) and the individual verdicts
of a policy can be reported.

4. Proposed system: Architecture
In this section, we discuss the software architecture of the pro-
posed monitoring model. The solution should be designed in
such a way that it can be easily adapted to simple devices like
smartphones or wearable devices. In general, standalone appli-
cations in which all modules are run locally on the device are not
suitable for our model because healthcare policies can evolve
and are frequently updated. As a result, whenever there is a
new policy update, we must update the local machines, which is
inconvenient. We thus consider a client-server architecture for
the proposed system that can accommodate evolving/changing
policies to be monitored on the server side. For such a soft-
ware toolchain to be feasible, we must address the following
modules.
• A front-end that allows administrators to express safety-

critical policies using the proposed formal specification lan-
guage.
• A front-end that provides functionalities that enable users

to initiate remote online or offline runtime monitoring and
receive results on the client side.

Figure 4 Architecture and setup

• A common backend server that processes requests, and gen-
erates runtime monitors for the policies specified by domain
experts.

Architecture: The software architecture of our model is pre-
sented in Fig. 4. Wearable device sensors, such as a blood
pressure sensor, an ECG sensor, and a temperature sensor, are
worn by a patient. The data from those sensors is intercepted
and sent via Bluetooth to the mobile software. This information
is saved in a cloud database and will be available for future
offline monitoring. In the proposed client-server architecture,
only small or low computational tasks are implemented in client
modules with limited hardware capacity. Users can access the
client module, which allows them to start or stop data monitor-
ing and view the results of previous monitoring requests. As
per the setup, request validation and input would be handled
from the client side. The server will be responsible for process-
ing the client’s request and returning the result. In the server
module, the admin can input the safety-critical policies that
are consistent with our DSL. All the heavy computations like
data parsing and monitoring take place in the server module.
After monitoring, the monitoring verdicts are logged into the
database.

Remark 2 We have not examined any load-balancing strategies
as of yet, but it would be helpful to utilise a load-balancer that
distributes the traffic load among the servers, which would
increase the application’s performance.

Data Collection from device sensors: In recent times, wear-
able sensors have attracted great interest because of their ability
to offer continuous, real-time physiological data. We employ
accessibility technologies like Bluetooth to capture sensor data
automatically. Sensor data is saved in JSON format, along with
a reading and a timestamp. To reduce the load on the server,
we read the sensor data every 10 seconds (this interval can be
configurable) and push it to the server. NoSQL database is used
to store this data for later analysis. Because wearable sensors
cannot store data indefinitely, the mobile application saves the
data collected from sensors locally first, then periodically up-
loads it to the central server, as shown in Fig. 5. If the mobile
application is not connected to the server, it can still take new
measurements, but it will only be synchronized with the server
once connectivity is established. This method of updating data
at regular intervals allows the client to keep the application run-
ning even if there is no Internet connection. We also consider

4 Bharadwaj et al.

that the wearable device is secure and is not programmable
wirelessly, and thus an attacker cannot access it.

Figure 5 Data collection

5. Methodology
In this section, we present the DSL that can be used by domain
experts for specifying vital sign policies to be monitored (in
Section 5.1). Later in Section 5.2, we present an approach
for the translation of policies expressed in DSL into the TA
formalism. Once we have the policies to be monitored in TA
format, the monitoring code can be synthesized using the formal
RV approaches recalled in Section 3.

5.1. DSL for Specifying Policies
A DSL is a language that is designed to be used in the context
of a given domain. Our scenario does not involve engineers
specifying all the monitoring requirements; instead, healthcare
practitioners or domain experts may be able to define the poli-
cies to be monitored. Medical practitioners may find it challeng-
ing to express healthcare policies in formalisms such as timed
automata.

The domain expert should be able to dynamically remove,
add new policies, or update existing policies to be monitored. As
a result, it is not like traditional development, where healthcare
practitioners informally specify policies, and developers work
to develop monitors that reflect those policies. Thus, to make
our approach more tangible, we propose a language with simple,
intuitive constructs that domain experts can easily relate to and
understand to describe healthcare policies to be monitored. In
real life, there are times when the decisions we make, determine
what should be done next. Similar situations arise in defining
time-intervened healthcare policies. A healthcare policy should
be written in such a way that it can inform us what action or set
of actions we should take if event X occurs at a specific point
in time. It’s possible that, depending on these decisions, we’ll
want to pay attention to the next event, Y, to decide whether
or not to take any action. We thus need language constructs
that can be used to define which decisions should be made
when a series of events occur. We intend to draw parallels with
well-known programming languages such as C, where decision-
making expressions such as if-else statements determine the
direction of the program execution flow. Hence, we want to
design a DSL that provides constructs that are comparable to
decision statements in C but with a few customizations through
which our timed policies can be specified.

Our DSL is specified in the form of context-free grammar.
Every word labeled within < .. > is a non-terminal and a

Domain-Specific Language

<start> → begin := <dsl> end;

<dsl> → <matched− stmt>

| <unmatched− stmt>

<matched− stmt> → if <conditional-stmt>then

<matched− stmt> else

<matched− stmt> endif ;

| return <result>

<unmatched−stmt> → if <conditional-stmt> then

<unmatched−prime>

| return <result>;

<unmatched−prime> → <dsl> endif;

| <matched−stmt> else

<unmatched-stmt> endif;

<conditional−stmt> → (<event> = <condition>,

<timestamp>)

<timestamp> → time <relop> intnum

<event> → HR

| BP

| TEMP

<condition> → high <condition-prime>

| low<condition-prime>

| normal<condition-prime>

<condition-prime> → /<condition>

| δ

<relop> → <=

| >=

| ==

| <

| >

<result> → safe

| unsafe

Table 2 DSL for specifying healthcare policies

VSMoN: Runtime Monitoring Based Data-driven Remote Vital Sign Monitoring System 5

terminal otherwise. The structure of DSL is presented in Table-
2. Let us briefly look into the constructs provided by our DSL.
• A <matched-stmt> is either an if-then-else statement con-

taining no unmatched statements or any statement which is
not an if-then-else statement and not an if-then statement.
• A <unmatched-stmt> is an if-then statement (with no else-

part) or an if-then-else statement where unmatched statements
are allowed in the else-part (but not in the then-part) which is
comparable to context-free grammar of if-else statements.2

• The construct <conditional-stmt> can be used to specify the
occurrence of an event at a specific point in time.
• The construct <event> is used to specify on what event we

are defining the condition like heart rate (HR), blood pressure
(BP) or temperature (TEMP).

• The construct <condition> is used to define whether the
event’s condition is high, low, or normal.
• The <condition-prime> construct is used to indicate the

condition of the event <blood pressure>, as it accepts values
such as high/low or low/high. δ rule is similar to the epsilon
rule in Context-Free grammar i.e. it is a rule defined with the
empty string.
• The construct <result>, which takes the values safe or un-

safe, is used to specify the final decision of the policy after
observing a set of events.
• The construct <relop> provides relational operators that can

be used to provide timing relations between a set of events.
Now, let us consider the policies mentioned in Section 2 and

see how they can be expressed using the proposed DSL.

Example 3 (Policies specified using the DSL) Let us con-
sider Policy φ1 from Section 2 which states that if the event
heart rate is high at time t=0 and if even after time t=10, the
condition of the event heart rate is high, then it must lead to an
unsafe state (In medical terms this policy concerns with Tachy-
cardia). In Fig. 6 we illustrate how it is specified using the
proposed DSL.

Policy φ2 from Section 2 states that if the event heart rate
is low at time t=0 and the condition of event blood pressure
continues to be high for more than 20-time units, then it must
lead to an unsafe state (In medical terms this policy concerns
with Bradycardia). In Fig. 6 we illustrate how it is specified
using the proposed DSL.

5.2. DSL to Timed Automata Translation
The idea for translating a policy into its corresponding TA is
based on the notion of constructing a control flow graph from
a given code segment. We shall use a stack-based algorithm to
construct a TA from a given timed policy specified using the pro-
posed DSL. The proposed approach is illustrated in Algorithm
1. A healthcare policy described using the DSL proposed in
subsection 5.1 that is syntactically valid is provided as input
in a text document. The output of this algorithm is a graph-
like structure that matches the timed automaton syntax. This

2 The constructs matched-stmt and unmatched-stmt are used to eliminate ambi-
guity in the grammar.

Policy φ1: Warning for Tachycardia

1: begin:=
2: if (HR = HIGH , TIME = 0) then
3: if (HR = HIGH , TIME > 10) then
4: return unsafe;
5: else
6: return safe;

;
7: else
8: return safe;

;
9: end;

Policy φ2: Warning for Bradycardia

1: begin:=
2: if (HR = LOW , TIME = 0) then
3: if (BP = LOW , TIME >= 20) then
4: return safe;
5: else
6: return unsafe;

;
7: else
8: return safe;

;
9: end;

Figure 6 Policy φ1 and Policy φ2 mentioned in Section 2
expressed using the DSL

output is further processed to make it suitable for our subsequent
modules. The algorithm reads the input text file in a linear
fashion. The typical if-else block starts with an if statement
then moves on to the else part, and finally ends with the end-if
keyword. To ensure a correct mapping with respective if-else
blocks, we use these keywords to decide what should be pushed
onto the stack and what should be popped. The basic idea
is that whenever an if keyword is encountered, we push the
corresponding conditional if statement into the stack, as shown
in line 8. When we encounter an else statement, we only pop
once if the top element is an if statement; otherwise, the else
statement is pushed to the top of the stack as shown in lines[13-
21]. Whenever an element is popped from the stack, we create
a new state in our final automaton and make the current stack
top element the parent of this newly created state. Furthermore,
if end-if is encountered, we begin popping elements until a
start state(q0) is reached. As a result, for each pop operation,
we create a new state and make its parent the current stack top
element after this element is popped and also add a self-loop to
the parent for events related to the event in the condition and
reset the clock, as shown in lines[23-31]. When we encounter a
return statement, we mark the current stack top as an accepting
location if the value associated with the return keyword is safe,
and the non-accepting location otherwise as shown in lines[32-
39]. Finally, for every state in the TA add self-transitions for
missing (don’t care) events as shown in lines[46-48].

Let us now further discuss how the elements generated by the
proposed algorithm are mapped to the syntax of timed automata.
Each conditional statement (if/else) creates a new location in
the automaton. So, each time an if or else statement is popped
from the stack, a new Node is created (a location in the corre-

6 Bharadwaj et al.

Algorithm 1 TA generation from a policy in DSL

Input: A text file containing timed policy as specified in the
policy φ1 using the DSL proposed in 5.1

1: Initialise start Node← q0
2: AcceptingStates = [], NonAcceptingStates=[]
3: stateList=[q0]
4: eventsMap←Map[EventName]ListOfRelatedEvents
5: Initialise Stack stack
6: stack.push(q0)
7: Read lines in text file using a buffered reader
8: while (line ∈ lines)! = null do
9: if line.startsWith(if) then

10: stack.push("if condition") ;
11: stateList.add(makeNode(stack.top()));
12: stateList.add(makeNode(!stack.top()));
13: else if line.startsWith(else) then
14: if stack.top() == if then
15: condition← stack.top().condition;
16: Node← stack.pop();
17: Node.parent← stack.top();
18: transition← [Node.parent,Node, condition];
19: Node.addTransition(transition);
20: stack.push(else condition);
21: else
22: stack.push(else condition);
23: else if line.startsWith(endif) then
24: while stack.top() ! = q0 do
25: condition← stack.top().condition;
26: Node← stack.pop();
27: Node.parent← stack.top();
28: transition← [Node.parent, Node, condition];
29: Node.addTransition(transition);
30: selfLoopEvents← eventsMap[condition.event]
31: stack.top().addTransition([Node.parent,

Node.parent, parentConditions, resetClock])
32: else if line.startsWith(return) then
33: if line.split[’ ’][1] == safe then
34: stack.top().isAccepting← true;
35: AcceptingStates.append(stack.top()) ;
36: else
37: NonAcceptingStates.append(stack.top());
38: transition← [stack.top(), stack.top(), Σevents] ;
39: stack.top().addTransition(transition);
40: else
41: continue;
42: for Node s: AcceptingStates do
43: s.addTransition([s, s.parent, Σ events]);
44: s.parent.isAccepting← true)
45: for Node s: stateList do
46: events← [Σ events \ {events in transitions of state}]
47: s.addTransition([s, s, events]);
48: return startNode q0

q0start

qsa f e

q1 qunsa f e

qsa f e

HR = high

t = 0

Σ
\
(H

R
=

hi
gh

)

t
=

0

{HR-low | HR-normal , t:=0}

HR = high

t > 10

(HR = high, t <= 10)

ΣEvents

Σ
E

ventsΣ
E

ve
nt

s

Figure 7 TA corresponding to Policy φ1 mentioned in
Fig.6 obtained from the proposed Algorithm.

For readability, we have omitted transitions for
Σ \ {HR− high, HR− low, HR− normal}

sponding TA). Each State or Node has attributes like locationId,
isAccepting, ParentNode, List<Transition>. Each Transition
object consists of attributes like sourceNode, destinationNode,
condition, and clockResetFlag that includes action and guard
constraint similar to TA semantics. Each time a State Ni is
created using the makeNode() function with a locationId, a tran-
sition T or edge is created between State Ni and StateNp (parent
State) associated with stack top. A transition from Ni to Np
consists of action and guard.

As per our DSL, every conditional statement is associ-
ated with the following elements (<event> = <condition>
,<timestamp>). From this, <event> = <condition> con-
struct corresponds to action associated with the transition T
and <timestamp> which is essentially time <relop> intnum,
corresponds to guard constraint associated with that Transition
T and intnum is an integer describing clock value. The TA
corresponding to policy φ1 that is obtained by following this
algorithm is presented in Fig. 7.

The source code along with a further detailed explanation
of Algorithm 1 is available at: github.com/rahulpr22/taAlgo
and also discussed in Appendix A. Once we have policies ex-
pressed as TA, we can use established RV monitoring algo-
rithms (Pinisetty et al. 2017) that generate monitoring code that
is correct by construction.
Remark 3 Any policy that can be described using a timed au-
tomaton with a single clock can be expressed using our DSL. A
user can specify multiple policies, each corresponding to a TA
with a single clock. All policies can be monitored concurrently
(by generating a monitor for each policy and executing them
concurrently) or by automatically composing all of the TAs
using TA product construction.(Alur & Dill 1994; Bengtsson
& Yi 2003). Further optimization steps can be added to the
TA generation procedure to reduce the number of states in the
resulting automaton. For example, locations qsa f e in Fig. 7 can
be merged into a single state, and self-loop can be added to
state q1 eliminating the transitions to state qsa f e.

Since every line of the policy stated in the text document will
be pushed and removed from the stack only once, the runtime
complexity of this algorithm is O(n).

Remark 4 (RV monitor from the policy as timed automaton)

VSMoN: Runtime Monitoring Based Data-driven Remote Vital Sign Monitoring System 7

https://github.com/rahulpr22/Runtime-Health-Monitoring-System/tree/master/taAlgo

(a)Client Dashboard (b)Data Generation (c)Request monitoring (d)View Results
Figure 8 Client Interfaces

As discussed in Section 3, we use the RV monitoring ap-
proach/framework provided in (Pinisetty et al. 2017) to obtain
the RV monitor from the policy in the TA format. How the
monitor obtained using the approach in (Pinisetty et al. 2017)
behaves is illustrated via an example (Example 2 in Section 3.)

Remark 5 (Discussion on the translation approach) Let us
consider a policy φ specified using the DSL in Table-2 that is
fed into our TA generation algorithm.
Input validation: If the input policy φ is not as per the DSL
syntax, our parsing algorithm will raise an error and will exit.
Termination: If the input policy specified is valid and properly
formatted, the algorithm reads each line in the policy and
processes the conditions, and returns statements until all the
lines of policy are evaluated, and finally terminates.
State and Transition Creation: The algorithm creates states and
transitions based on the input policy. For each "if" statement
encountered, it creates a new state in the Nodes map and a
corresponding state object in the TA stack. It also creates
transitions between states based on the conditions and stack
operations.
Parent-Child Relationships: The algorithm establishes
parent-child relationships between states as follows. When an
"else" statement is encountered, it pops a state from TA and
sets its parent as the previous state in the stack. This ensures
the correct hierarchical structure of states.
Accepting and Non-Accepting States: The algorithm identifies
and categorizes accepting and non-accepting states as follows.
When a "return" statement is encountered, it checks the
return value and sets the accepting status of the current state
accordingly. Accepting states are added to the accepting list,
and non-accepting states are added to the non-accepting list.
Transition Connections: The algorithm establishes transitions
between states based on the conditions and stack operations.
Transitions are created from the parent state to the current state
with the condition obtained from the stack. Additionally, if a
state is accepting, a transition from the state to its parent with
the condition Σ events is created.

Based on the above analysis, the algorithm satisfies the prop-
erties of soundness. It processes the input policy, creates states
and transitions, establishes parent-child relationships, identi-
fies accepting and non-accepting states, connects transitions
between states, and generates the expected output.

6. Implementation and Evaluation
In order to demonstrate the practicality of the proposed ap-
proach, we developed a prototype that shows how formal run-
time monitoring techniques can be integrated with the design
and development of a software application. The application con-
sists of two modules, client and server, as described in Section
4.

Figure 9 Admin Interfaces

The client module is written in JAVA and focuses on the ap-
plication’s basic capabilities, such as user interfaces and their
functionality. The application includes two types of users: nor-
mal users and admin users (also known as application managers).
The online registration portal, user login page, and user dash-
board are some of the client-side application’s features. The

8 Bharadwaj et al.

Fig. 10(a)
Fig. 10(b)

Figure 10 Fig.(a) depicts performance variation with increase in size of the data and Fig.(b) depicts performance variation with
increase in number of policies.

normal user can utilize the user dashboard activity to start the
data-gathering process, initiate remote health monitoring, and
access or see their prior monitoring findings. The user dash-
board page of the application is presented in Fig. 8(a).

The data collection module takes vital sign sensor data and
parses it into a format that may be used to identify events. This
data is then utilized to evaluate various Boolean formulas for
generating associated events, which are then stored in a cloud-
based NoSQL database along with their timestamps. To test the
validity of our approach with real-time data, we used pseudoran-
dom generators that mimicked sensor data. The implementation
of the interface for data generation is presented in Fig. 8(b).
The client can send a request to the backend server to initiate
monitoring, and the user can specify from what time to what
time the data should be monitored; the implementation of the
interface to request for monitoring is shown in Fig. 8(c). The
client can also access previously computed reports based on
their date of creation, and the implementation of the interface
for the same is present in Fig. 8(d).

The admin user can specify the healthcare policies that are
syntactically correct with respect to the proposed DSL. The
implementation of the same is presented in Fig. 9. The interface
also includes a backend written in JAVA to assist in validating the
syntax correctness of policies specified. For the DSL proposed
in 5.1 we implement a predictive top-down LL(1) parser(Lasser
et al. 2019) in order to check the syntactic correctness of policies
specified using the DSL.

The backend server uses runtime monitoring libraries/im-
plementation provided in (Pinisetty et al. 2017) that generates
runtime monitors by taking policies specified as TA (stored in
XML format) as input. The backend monitoring algorithms
are written in Python with 550 lines of code. When it comes
to the proposed client-server architecture, the client and server
are both completely independent of one another. The client
component will act as a bridge between the application and
the backend server, defining how the two interact. The client
and the service’s backend interact or communicate using Rest
APIs as the front-end component. The client will be in charge
of invoking specific URL endpoints with provided parameters
such as start and end times and returning the incoming JSON

responses parsed as a JSON object to the application in order to
update its UI Components. Fig. 1 depicts the overall structure
of the implementation details.

This mobile application was tested on a Google Pixel 4 An-
droid 11 phone with 8GB of RAM. The server end of REST
is stateless, which means that the server doesn’t have to store
anything across requests, i.e., no data is stored on the server
while request transfers are being processed, so the session is
saved on the client’s end. This means that there doesn’t have to
be much communication between servers, making it horizon-
tally scalable. To assess the efficiency and scalability of our
proposed vital sign monitoring system, using a set of example
policies (policies φ1, φ2, φ3 discussed earlier), we did some
preliminary performance assessment, as shown in Fig. 10.

We observed that for trace sizes under 100KB, performance
is nearly identical, but after that, computational performance
grows approximately linearly with data size, as shown in Fig.
10(a). However, it was observed that 1GB of trace data could
be verified in less than a minute, which is regarded acceptable
given that the size of a trace collected over a one-minute period
is approximately 1KB. We have also observed that performance
varies almost linearly with the number of policies to be verified
and is consistent across different sizes of trace, such as 50KB,
100KB, and 500KB, as shown in Fig. 10(b). Because all of the
heavy computations are done on the server side, our application
performs consistently on almost all high-end and low-end de-
vices. The source code for all the modules that are implemented
can be found at github.com/rahulpr22.

7. Conclusion and Future work
We have designed and developed a setup for data-driven re-
mote vital sign monitoring that makes use of formal runtime
monitoring approaches. We proposed a domain-specific lan-
guage that can be used to specify safety-critical policies for a
medical care scenario. We proposed a technique to translate
a given timed policy into its corresponding timed automaton
from which monitoring code can be generated. We developed a
mobile application as a proof-of-concept to test the feasibility of
our approach. The preliminary performance evaluations using
the prototype revealed that the response time for monitoring

VSMoN: Runtime Monitoring Based Data-driven Remote Vital Sign Monitoring System 9

https://github.com/rahulpr22/Runtime-Health-Monitoring-System

sufficiently large amounts of data is quite reasonable.
We are currently working on ways to complete our approach

by focusing on privacy-preserving aspects of the proposed archi-
tecture, which includes securing healthcare data and controlling
access to healthcare policies using attribute-based encryption
techniques. We would also like to run a user study and see
whether healthcare workers find the DSL usable and, if not,
what aspects of the DSL they struggle with. We would also like
to customize this application to the patient’s condition so that
only those healthcare policies relevant to a patient’s medical
condition are set to be monitored.

References

Agarwal, S., & Lau, C. T. (2010). Remote health monitoring
using mobile phones and web services. Telemedicine and
e-Health, 16(5), 603–607.

Alur, R., & Dill, D. L. (1994). A theory of timed automata.
Theoretical computer science, 126(2), 183–235.

Barringer, H., Goldberg, A., Havelund, K., & Sen, K. (2004).
Rule-based runtime verification. In International workshop
on verification, model checking, and abstract interpretation
(pp. 44–57).

Bartocci, E., Falcone, Y., Francalanza, A., & Reger, G. (2018).
Introduction to runtime verification. In E. Bartocci & Y. Fal-
cone (Eds.), Lectures on runtime verification - introductory
and advanced topics (Vol. 10457, pp. 1–33). Springer. doi:
10.1007/978-3-319-75632-5_1

Bauer, A., & Falcone, Y. (2012). Decentralised ltl monitoring.
formal methods, lncs# 7436. Springer.

Bauer, A., Leucker, M., & Schallhart, C. (2011). Runtime
verification for ltl and tltl. ACM Transactions on Software
Engineering and Methodology (TOSEM), 20(4), 1–64.

Bengtsson, J., & Yi, W. (2003). Timed automata: Semantics,
algorithms and tools. In Advanced course on petri nets (pp.
87–124).

Burkeil. (n.d.). Eurostat. eu report on amenable
and preventable deaths statistics. Retrieved from
https://ec.europa.eu/eurostat/statistics-explained/
index.php?title=Amenable_and_preventable_deaths
_statistics&direction=next&oldid=337528

Chen, F., & Roşu, G. (2007). Mop: an efficient and generic
runtime verification framework. In Proceedings of the 22nd
annual acm sigplan conference on object-oriented program-
ming systems, languages and applications (pp. 569–588).

Colombo, C., Pace, G. J., & Schneider, G. (2009). Larva—safer
monitoring of real-time java programs (tool paper). In 2009
seventh ieee international conference on software engineer-
ing and formal methods (pp. 33–37).

Falcone, Y., Fernandez, J.-C., & Mounier, L. (2009). Runtime
verification of safety-progress properties. In International
workshop on runtime verification (pp. 40–59).

Francalanza, A., Aceto, L., Achilleos, A., Attard, D. P., Cassar,
I., Monica, D. D., & Ingólfsdóttir, A. (2017). A foundation
for runtime monitoring. In Runtime verification - 17th inter-
national conference, RV 2017, seattle, wa, usa, september

13-16, 2017, proceedings (Vol. 10548, pp. 8–29). Springer.
doi: 10.1007/978-3-319-67531-2_2

Ghosh, A. M., Halder, D., & Hossain, S. A. (2016). Remote
health monitoring system through iot. In 2016 5th inter-
national conference on informatics, electronics and vision
(iciev) (pp. 921–926).

Gondalia, A., Dixit, D., Parashar, S., Raghava, V., Sengupta, A.,
& Sarobin, V. R. (2018). Iot-based healthcare monitoring
system for war soldiers using machine learning. Procedia
computer science, 133, 1005–1013.

Hijazi, S., Page, A., Kantarci, B., & Soyata, T. (2016). Machine
learning in cardiac health monitoring and decision support.
Computer, 49(11), 38–48.

Kakria, P., Tripathi, N., & Kitipawang, P. (2015). A real-time
health monitoring system for remote cardiac patients using
smartphone and wearable sensors. International journal of
telemedicine and applications, 2015.

Khoi, N. M., Saguna, S., Mitra, K., & hlund, C. (2015). Irehmo:
An efficient iot-based remote health monitoring system for
smart regions. In 2015 17th international conference on e-
health networking, application & services (healthcom) (pp.
563–568).

Lansberg, M. G., O’Donnell, M. J., Khatri, P., Lang, E. S.,
Nguyen-Huynh, M. N., Schwartz, N. E., . . . others (2012).
Antithrombotic and thrombolytic therapy for ischemic stroke:
antithrombotic therapy and prevention of thrombosis: Ameri-
can college of chest physicians evidence-based clinical prac-
tice guidelines. Chest, 141(2), e601S–e636S.

Lasser, S., Casinghino, C., Fisher, K., & Roux, C. (2019). A
verified ll(1) parser generator. In Itp.

panda, A., Pinisetty, S., & Roop, P. (2021a). Runtime verifi-
cation of implantable medical devices using multiple phys-
iological signals. In Proceedings of the 36th annual acm
symposium on applied computing (pp. 1837–1840).

panda, A., Pinisetty, S., & Roop, P. (2021b). A secure insulin
infusion system using verification monitors. In Proceedings
of the 19th acm-ieee international conference on formal meth-
ods and models for system design (pp. 56–65).

Panda, A., Pinisetty, S., & Roop, P. (2022). Policy-based
diabetes detection using formal runtime verification monitors.
In 2022 ieee 35th international symposium on computer-
based medical systems (cbms) (pp. 333–338).

Pinisetty, S., Jéron, T., Tripakis, S., Falcone, Y., Marchand,
H., & Preoteasa, V. (2017). Predictive runtime verification
of timed properties. Journal of Systems and Software, 132,
353–365.

A. Appendix

The Algorithm for constructing TA for a given timed policy
expressed using DSL is presented in Section 5.2. The brief
explanation of the algorithm is presented here via an example.
Let us consider policy φ1 presented in Section 5.1 The initial
state of the algorithm is as follows:

10 Bharadwaj et al.

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Amenable_and_preventable_deaths_statistics&direction=next&oldid=337528
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Amenable_and_preventable_deaths_statistics&direction=next&oldid=337528
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Amenable_and_preventable_deaths_statistics&direction=next&oldid=337528

Figure 11 Initial state

1. Initially a start state q0 is pushed int the stack following
line-5 of the algorithm.

2. When a line starting with if statement is encountered push
that line into stack following line-8 of the algorithm as
shown in Fig. 13.

3. When a line starting with if statement is encountered push
that line into stack following line-8 of the algorithm as
shown in Fig. 14.

Figure 12 Step-1

Figure 13 Step-2

Figure 14 Step-3

4. When a line starting with return unsafe statement is en-
countered mark the state corresponding to the stack top as
non-accepting, following line-36 of the algorithm.

Figure 15 Step-4

5. When a line starting with else statement is encountered, if
the current stack top is a line starting with if statement we
pop the current stack top and make the next stack top as is
parent and then we push the else statement into the stack,
following lines-[13-19] of the algorithm.

Figure 16 Step-5

6. When a line starting with return safe statement is encoun-
tered mark the state corresponding to the stack top as non-
accepting, following line-33 of the algorithm.

Figure 17 Step-6

VSMoN: Runtime Monitoring Based Data-driven Remote Vital Sign Monitoring System 11

7. When a line starting with an endif statement is encountered,
we pop the current stack top and make its parent as the
next stack top. Continue this step until the stack top is start
node q0, following lines-[23-31] of the algorithm. Also,
add events related to HR-high, i.e., HR-low, HR-normal to
a self-transition to the parent and reset the clock.

Figure 18 Step-7(a)

Figure 19 Step-7(b)
8. When a line starting with the else statement is encountered,

and the current stack top is not an if statement, push the else
statement into the stack, following line-21 of the algorithm.

Figure 20 Step-8
9. When a line starting with return safe statement is encoun-

tered mark the state corresponding to the stack top as ac-
cepting, following line-33 of the algorithm.

Figure 21 Step-9
10. When a line starting with endif statement is encountered,

we pop the current stack top and make its parent as next

stack top. Continue this step until the stack top is start
node q0, following lines-[23-30] of the algorithm.

Figure 22 Step-10

About the authors
Rahul Bharadwaj Pendyala has completed M.Tech in computer
sciences at the Indian Institute of Technology Bhubaneswar,
India. You can contact the author at pr22@iitbbs.ac.in.

Abhinandan panda is pursuing PhD. at the Indian Institute of
Technology Bhubaneswar, India. You can contact the author at
ap53@iitbbs.ac.in.

Srinivas Pinisetty is an assistant professor at School of Elec-
trical Sciences, Indian Institute of Technology Bhubaneswar,
India. You can contact the author at spinisetty@iitbbs.ac.in.

12 Bharadwaj et al.

mailto:pr22@iitbbs.ac.in?subject=Your paper "VSMoN: Runtime Monitoring Based Data-driven Remote Vital Sign Monitoring System"
mailto:ap53@iitbbs.ac.in?subject=Your paper "VSMoN: Runtime Monitoring Based Data-driven Remote Vital Sign Monitoring System"
mailto:spinisetty@iitbbs.ac.in?subject=Your paper "VSMoN: Runtime Monitoring Based Data-driven Remote Vital Sign Monitoring System"

