
Journal of Object Technology | RESEARCH ARTICLE

Toward Using Fuzzers and Lightweight Specifications
to Reveal Semantic Bugs

Amirfarhad Nilizadeh∗, Gary T. Leavens∗, and David R. Cok†

∗University of Central Florida, USA
†Safer Software Consulting, LLC, USA

ABSTRACT Although fuzzers have been successful in revealing semantic bugs that lead to crashes, they do not reveal semantic
bugs that do not lead to crashes. Furthermore, the inputs that lead to crashes may be invalid and invalid inputs do not reveal
semantic bugs at all, since they are outside the program’s intended input domain. On the other hand, runtime assertion checking
(RAC) may be used for revealing semantic bugs, although it needs input test data that can trigger these bugs.
In this idea paper, we propose the idea of combining different kinds of fuzzing tools and RAC in a complementary manner to
leverage their benefits and overcome these problems, along with a preliminary study. That is, a fuzzing tool will generate an
input test, and a RAC tool will make sure that the generated inputs are valid and check the results for semantic bugs.

KEYWORDS Software Testing, Fuzzing, Runtime Assertion Checking, Lightweight Specifications

1. Introduction and Motivation
Detecting software bugs is time-consuming and challenging.
Many techniques have been introduced for discovering input
tests that can reveal bugs early in a system’s development. Gen-
erating tests that can reveal bugs would also help other software
research domains like automatic bug localization (Wong et al.
2016), program synthesis (Alur et al. 2018; Peleg & Polikarpova
2020; A. Nilizadeh, Calvo, et al. 2022) and automated program
repair (Gazzola et al. 2018; Goues et al. 2019; A. Nilizadeh &
Leavens 2022; A. Nilizadeh et al. 2024).

Two practical approaches for automatically discovering
bugs in programs are fuzzing (Liang et al. 2018; Li et al.
2018; Boehme et al. 2021) and runtime assertion checking
(RAC) (Clarke & Rosenblum 2006; Leucker & Schallhart 2009;
Kosmatov et al. 2020; Taleb et al. 2021). Used alone, fuzzing
can only reveal program crashes as opposed to semantic bugs,
while RAC can reveal semantic bugs but needs valid inputs. Our
idea is to combine these two approaches to reveal semantic bugs
more effectively automatically; that is, the combination should

JOT reference format:
Amirfarhad Nilizadeh, Gary T. Leavens, and David R. Cok. Toward Using
Fuzzers and Lightweight Specifications : to Reveal Semantic Bugs . Journal
of Object Technology. Vol. 23, No. 2, 2024. Licensed under Attribution 4.0
International (CC BY 4.0) http://dx.doi.org/10.5381/jot.2024.23.2.a3

be more effective in that it reveals more bugs in a given amount
of time.

Fuzzing is the process of running a program repeatedly with
randomly generated inputs to reveal vulnerabilities or security
violations by monitoring crashes. This process is repeated until
a timeout is reached or fuzzing is stopped. Fuzzing is used
routinely by well-known companies like Google (Chang et al.
2017) and Microsoft (Godefroid et al. 2012; Microsoft Corp.
2015). Fuzzers can be classified into three groups: black-box,
gray-box, and white-box (Manès et al. 2019). In black-box
fuzzing, the source code and internal behavior of the program
under test (PUT) are not accessible. Thus, generating inputs
in a black-box fuzzer is entirely random. In white-box fuzzing,
the code is available, and fuzzing is not necessarily random,
as the fuzzer can explore the PUT’s state space; an example is
SAGE (Godefroid et al. 2012), which uses concolic execution
to generate inputs that follow specific paths. However, white-
box fuzzing needs program code to work, and its use of static
analysis can be slower than the random input generation in
black-box fuzzers. Gray-box fuzzing can see some internal
information of the PUT, but not all of it. Gray-box fuzzing uses
lightweight static analysis and/or gathers dynamic information
from the PUT’s execution, such as code coverage. Gray-box
fuzzing uses randomly generated inputs; however, it can use
some internal information to generate better test inputs.

An AITO publication

http://dx.doi.org/10.5381/jot.2024.23.2.a3


Fuzzers are designed to reveal bugs that lead to a program
crash; fuzzers cannot detect semantic bugs that do not cause
the PUT to crash, although it should be noted that assertion
violations (i.e., assertions that evaluate to false) typically lead to
a crash. Thus, if the program has assertions, fuzz testing can be
used to check for assertions that are violated. On the other hand,
some crashes are not interesting, because: (1) the inputs used
may be invalid (i.e., outside of the program’s input domain) or
(2) the crash may be intentional (e.g., a program may abort or
throw an exception to signal an invalid input).

RAC checks a lightweight formal specification while running
a test by evaluating assertions; when RAC detects a specification
violation, it reveals a semantic bug. However, like software test-
ing, RAC is incomplete. RAC can only reveal a bug when the
input test data covers a path that violates an assertion, and RAC
cannot guarantee that a program with no violations is correct
for all possible inputs. Thus, the effectiveness of RAC for re-
vealing bugs is dependent on the input test data. However, when
using RAC together with a specification language, such as JML
(Leavens et al. 2006, 2008, 2022) or Eiffel (Meyer 1997), one
does not provide the expected output for each input but instead
a lightweight specification for each method, consisting of a pre-
condition and a postcondition. A Precondition is an assertion
that describes what input states are valid, and a postcondition
describes the correct relation between input and output states.

If one has a formal specification for a program, then why use
input tests and RAC instead of static verification? The problem
is that writing a formal specification that allows successful
static verification is time-consuming, and many commonly used
libraries do not have such formal specifications. When using
such a library, the lack of formal specifications for the library’s
methods prevents verification of code that calls them.

By contrast, it is easier to write lightweight formal specifi-
cations to be used in RAC, because details like loop invariants
can be omitted, and one needs only to write pre- and post-
condition specifications for methods called (and perhaps some
assertions that describe assumed properties of data structures
(Hoare 1972)). Since RAC is not attempting to prove programs
correct, its lightweight specifications may not suffice for static
verification; however, they can still reveal semantic bugs.

The main idea of this paper is to discuss the prospect of
extending fuzzing to reveal semantic bugs by combining fuzzers
with RAC using lightweight specifications. Some potential ben-
efits are: (1) unit tests need not be written, (2) running the PUT
with valid input data by using RAC and the PUT’s precondition
and discarding invalid inputs1, (3) revealing semantic bugs by
observing contract violations, and (4) sending feedback to the
fuzzer to help it provide better coverage and/or reveal bugs.

2. Background
In this section, we discuss the background of coverage-guided
fuzzer tools and RAC, along with an introduction to the specifi-
cation language employed in our preliminary study.

1 A PUT’s precondition gives constraints on its input domain, which say what
top-level inputs (and states) are allowed. However, if an internal call within
the PUT causes a precondition failure, that is indicative of a program bug.

2.1. Coverage-Guided Fuzzers
Recall that fuzzing is the process of generating random inputs
to reveal bugs that lead to program crashes. However, modern
fuzzers do not work entirely randomly.

A coverage-guided fuzzer (CGF) uses feedback from pro-
gram execution to enhance code coverage. This is achieved by
diversifying the generated input tests, as exemplified by tools
such as AFL (Zalewski 2014), LibFuzze (Serebryany 2016),
VUzzer (Rawat et al. 2017) and Tensorfuzz (Odena et al. 2019).
These tools all follow the same general steps to test a program,
PUT. First, they have a pool of good inputs, namely those that
do not crash PUT or appear to send it into an infinite loop. Then,
they select a good input for the mutation process to generate
a new test. They then execute PUT with the newly generated
input. They monitor PUT to see if the new input increases code
coverage or discovers a crash (or apparent infinite loop) during
execution. The fuzzer reports the problems it discovers; further-
more, if the newly generated input increases code coverage, then
it is added to the pool of good inputs. This process is repeated
until a timeout is reached or fuzzing is stopped.

For using a CGF, a tester needs to provide a driver (usually
written manually) to translate the input data generated by the
fuzzer into PUT’s argument types. Writing a driver increases the
probability of generating valid inputs for complex arguments to
PUT by generating arguments of the expected types that should
be valid. However, there is no guarantee that a driver will only
call PUT with valid inputs as the driver may generate data that
does not satisfy PUT’s precondition.

Some CGF tools allow the user to provide feedback on a
second metric (in addition to code coverage). Such a fuzzer
saves inputs that increase this user-defined metric; these fuzzers
also save inputs that increase code coverage or reveal a crash.
For example, DifFuzz (S. Nilizadeh et al. 2019) saves an input
test that increases the time or space used by the PUT while
searching for side-channel vulnerabilities in a (cryptographic)
program.

When using a CGF, the tester must provide at least one good
input to seed the pool of good inputs. Research shows that good
initial input(s) will help CGF tools to generate good inputs in
a shorter time (Yue et al. 2019). The idea of a hybrid fuzzer
is to provide high-quality initial test data by using symbolic
execution. Research shows the effectiveness of symbolic exe-
cution techniques for generating such input test data (Clarke
1976; Cadar et al. 2008; Braione et al. 2017). In hybrid fuzzing,
symbolic execution generates good inputs and adds these to
the pool of good test inputs to help guide fuzzers to generate
better input tests; examples include Mayhem (Cha et al. 2012),
Driller (Stephens et al. 2016), Badger (Noller et al. 2018) and
HyDiff (Noller et al. 2020).

2.2. Runtime Assertion Checking
Runtime assertion checking (RAC) has intermediate benefits for
program correctness—between formal methods and software
testing. RAC has intermediate effectiveness because it checks
formal specifications by running input tests to find violations of
specified assertions (Clarke & Rosenblum 2006; Kosmatov et al.
2020; Filliâtre & Pascutto 2021). Thus RAC cannot guarantee



the correctness of a program, but using assertions is effective
for revealing semantic bugs. RAC can also provide information
about bug locations, even for program bugs that do not lead
to crashes or failures. However, when using RAC, one must
provide preconditions and postconditions for the PUT’s methods
(or functions). In addition, inline assertions can be added to the
PUT to check other program points, which is helpful for fault
localization purposes if any such assertion is violated.

Observing assertion violations shows the existence of a bug
only if the input data passed to the PUT’s entry method2 were
valid (Peters & Parnas 1994; Cheon & Leavens 2002); that is,
these input data must satisfy PUT’s precondition, otherise a con-
tract violation encountered while running PUT has no meaning.
Similarly, if a RAC tool does not show any postcondition vio-
lation, it only means that PUT works correctly on the provided
input data. It may still be that there is a bug in the program that
these inputs do not reveal or that RAC the specifications may be
incomplete or not amenable to RAC; thus, running RAC without
finding an assertion violation does not guarantee correctness for
all possible inputs.

2.3. Java Modeling Language

The Java Modeling Language (JML) (Leavens et al. 2006, 2008,
2022) is a well-known Hoare-style formal behavioral interface
specification language specifically designed for Java. Serving as
a deductive specification language, JML describes the expected
behavior of Java methods, classes, and interfaces using precon-
ditions and postconditions. Furthermore, it offers annotations
that allow for the crafting of inline assertions and loop invariants.
JML specifications are integrated into Java code as formatted
comments. These can be placed in-line after a comment start-
ing with //@ or between the special comment tags /*@ and */.
Thus Java interprets JML annotations as comments.

Preconditions are assertions that must be satisfied before
invoking a method or constructor. Conversely, postconditions
are assertions that need to be fulfilled at the termination point
of a method or constructor. Inline assertions amidst the code’s
statements must be satisfied when the execution reaches them.
Additionally, loop invariants, a type of inline assertion, must be
maintained at the beginning of every loop iteration.

A variety of tools, like OpenJML (Chalin et al. 2006; Cok
2010, 2011, 2021), and KeY (Ahrendt et al. 2014, 2016), lever-
age JML. While KeY exclusively supports static verification,
OpenJML offers both static verification and RAC functionali-
ties. OpenJML’s RAC merely requires method specifications
for the method under test; however, it can use inline assertions
to monitor test executions for assertion violations.

Figure 1 shows an example of a Java class named
PrimeCheck from the Java+JML dataset.3 This class contains
two methods, each annotated with JML pre- and postconditions.

2 The entry method of a program is the method called to start the program’s
execution.

3 The programs in our Java+JML dataset have complete specifications; that
is each has specifications sufficient to allow formal verification. However,
for this work, we only used method pre- and postconditions, excluding inner
assertions and loop invariants; although those could also be checked by RAC,
our experiments did not use inner assertions and loop invariants.

1 class PrimeCheck {
2 /*@ requires d != 0;
3 @ ensures \result == n%d; @*/
4 public /*@ pure @*/ static int
5 div(int n, int d) { return n%d; }
6

7 /*@ requires 1 < a;
8 @ ensures \result <==> (\forall int k;
9 1 < k && k <= a/2; div(a, k) != 0); @*/

10 public boolean isPrime(int a) {
11 int i = 2;
12 int mid = a/2;
13 while (i <= mid) {
14 if (div(a,i) == 0) { return false; }
15 i++;
16 }
17 return true;
18 }
19 }

Figure 1 Java Code Example using pre- and postconditions in
JML.

The first method, div, takes two parameters: the dividend
(n) and divisor (d), and returns the remainder. The precondition
(following requires) stipulates that d must not be zero. The
postcondition (following ensures), on the other hand, checks
that the return value matches n%d. The pure clause says that
this method has no side effects, and allows it to be used in
assertions.

The second method, isPrime, determines if the input value
is prime. The precondition specifies that the input (a) must be
strictly greater than 1. The postcondition says that the result is
true just when the argument (a) is not divisible by any integer
greater than one and less than or equal to a/2, so a is prime.
In the postcondition, \result denotes the method’s return
value, <==> means “if and only if”, and \forall is used for
universal quantification. In a universally quantified expression,
the type of the quantified variable (k in this case) is declared, and
each value of that variable that satisfies the range condition (in
this case 1 < k && k <= a/2) must satisfy the condition
given in the body of the quantifier (i.e., div(a,k) != 0).

With RAC, a contract violation happens if an input argument
fails the precondition or the postcondition. If an input argument
does not satisfy the precondition, the input is considered invalid,
meaning an issue with the input data. When the input is valid,
then a failure in a postcondition or an internal assertion indicates
a program bug. Recognizing these differences, RAC can be
effectively used to distinguish between input data errors and
internal bugs, improving the bug detection process.

3. Approach
This section discusses our plans to solve the problem of reveal-
ing semantic bugs. Then, we discuss the application of RAC to
different kinds of fuzzers, which involves the advantages, dis-



advantages, and potential areas of improvement when merging
RAC with these different kinds of fuzzing tools.

3.1. A High-Level Solution

Our main idea is to combine fuzzing and RAC, using RAC to
reveal semantic bugs and using a fuzzer to generate input data
for RAC. Recall that a fuzzer can only reveal semantic bugs
that lead to a crash, and RAC can only reveal semantic bugs if
it is provided with suitable input test data. Notice that a RAC
only needs input test data and not a test suite with inputs and
their expected outputs. Thus, our idea is to use a fuzzer and a
RAC in tandem to leverage their benefits and overcome their
weaknesses to reveal semantic bugs effectively.

The inputs in our approach are a program, PUT, and its
lightweight formal specification S in the Hoare style (Hoare
1969; Meyer 1997; Apt & Olderog 2019); that is, for the PUT’s
entry method, there is a contract consisting of a precondition and
a postcondition; optionally, one can also specify other methods
(and it is often convenient to add some invariants that describe
data structures (Hoare 1972)). Then, a fuzzer will generate input
tests, and a RAC tool will check the inputs to PUT and only
pass along those that are valid, and then it will check S while
running PUT to reveal contract violations. The output of this
combination is two pools of test data: (a) those that pass S and
(b) those that reveal semantic bugs (i.e., that violate the contracts
in S). In other words, the high-level solution is to develop a
fuzzing tool for running PUT with only valid input and detecting
bugs if a contract is violated. Recall that generating valid inputs
refers to providing inputs that satisfy the constraints of top-level
inputs for PUT’s entry method. If there are other specifications,
for example for other methods, then a failure in one of these
indicates a program bug.

3.2. Using RAC to Check for Valid Inputs

The first step for combining a fuzzer with RAC is generating
valid input data. When the input argument is invalid based on
the input domain (precondition), RAC cannot detect potential
semantic bugs in the program. Thus, one of the main conditions
for using a RAC with a fuzzer is having a (lightweight) specifi-
cation for the program’s entry method. This precondition allows
the RAC tool to check that the input is valid before running the
program. Checking this precondition will guarantee that the
program will only execute with valid inputs. In this case, after
generating input test data with a fuzzer, the RAC will check
the PUT’s entry method precondition. If the generated input
test does not satisfy the entry method’s precondition, then the
PUT will not be run; instead, the process will be repeated with
the fuzzer generating new input data. Only when the input data
satisfies the entry method’s precondition will the entire PUT be
run.

3.3. Benefits With Each Kind of Fuzzer

A variety of different fuzzing techniques can be used with RAC.
In the following, we will discuss the benefits and limitations of
each kind of fuzzing tool.

3.3.1. Black-Box Fuzzing In black-box fuzzing, a fuzzer
generates input tests randomly, and the fuzzer has no infor-
mation about how the PUT is implemented. Thus, having a
lightweight specification that is suitable for black-box fuzzing
only requires pre- and postconditions for the PUT’s entry
method; detailed specifications for other methods, loops and
data structures are not needed. Since black-box fuzzers generate
input data randomly, they may generate invalid input data (i.e.,
data that do not satisfy the PUT’s entry precondition). Invalid
inputs are more likely to be a problem if the PUT has more
complex types of input data or more constrained input domains.
Thus, if the input data are not checked for validity, then black-
box fuzzing may run the PUT with much invalid input data,
which is both time-consuming4 and a waste of time, as such
inputs cannot reveal semantic bugs.

A RAC tool can help to solve some of these limitations of
black-box fuzzing. First, checking preconditions will ignore
invalid input data and save time by only running a PUT with
valid inputs. Furthermore, by running a PUT with valid input
data, a RAC tool can reveal semantic bugs by checking for
postcondition violations; since then, any postcondition violation
shows the existence of a semantic bug. In sum, in combination
with black-box fuzzing, the RAC tool can ignore invalid input
data by checking the PUT’s overall precondition and revealing
semantic bugs using the PUT’s overall postcondition (and any
other contracts that are available).

3.3.2. CGF In coverage-guided fuzzing (CGF), the fuzzer
can access some information in the PUT. Consequently, when
integrated with RAC, a CGF tool retains all the benefits associ-
ated with black-box fuzzing. Additionally, by combining CGF
tool with RAC, such a tool leverages its insight into the PUT to:
(1) improve bug localization and (2) find semantic bugs more
efficiently, as a CGF tool generates inputs by a process that at-
tempts to maximize code coverage, instead of being completely
random as in the black-box approach.

Furthermore, a RAC can improve bug localization if it is
supplied with assertions internal to the PUT (e.g., contracts for
some internally used methods). In this case, assertion violations
can help to detect bugs during the PUT’s execution instead of at
the end of the PUT’s execution (Barner et al. 2005).

Finally, the combination of a RAC with a CGF can ensure
that the PUT is only run with valid input tests. This will be more
efficient than using random inputs because the pool of good test
data that a CGF mutates to generate new tests will only contain
valid inputs (since the RAC checks the overall precondition of
the PUT); such valid inputs are more likely to be mutated into
other valid inputs and these can be tested more efficiently than
invalid inputs.

3.3.3. Hybrid Fuzzing The distinction between guided and
hybrid fuzzing lies in the input generation. In hybrid fuzzing, in-
puts are derived both from the fuzzer and symbolic (or concolic)
execution (Jiang et al. 2023), with the latter being responsible
for producing the initial inputs. Thus the symbolic execution

4 Invalid inputs may consume much time because such inputs can lead to
semantic errors, crashes, and infinite loops.



engine may seed the pool of quality inputs with inputs that
cover many of the PUT’s branches. Afterward, the fuzzer can
mutate these inputs to create new ones. When combined with
RAC, each input is checked for validity. Therefore, when hy-
brid fuzzing works with RAC, it harnesses the advantages of
both CGF and RAC tools. This synergy can further enhance
the efficiency of generating valid test data, especially since the
initial seed inputs are also valid.

3.3.4. CGF with User-Defined Rewards In some CGF
tools like Kelinci-WCA (Noller et al. 2018; S. Nilizadeh et al.
2019), a tester can define a measure5 that the fuzzer attempts to
increase while it also attempts to increase code coverage. The
main advantage of combining RAC with such a fuzzer is that
the runtime assertion checker can send direct feedback signals
to the fuzzer, allowing the fuzzer to find valid input test data
that reveal semantic bugs more efficiently.

A combined RAC and fuzzer tool can prioritize revealing
semantic bugs by having RAC directly reward the fuzzer when
its input test data reveals a semantic bug. Alternatively, such a
combined tool can prioritize finding valid inputs by rewarding
the fuzzer when it generates valid input test data6. Fig. 2 shows
a high-level diagram of this approach. In this diagram, first, a
CGF tool generates input data. Then, a driver converts input
data to the PUT’s arguments. After that, a RAC validates each
test’s inputs using the PUT’s precondition. If RAC validates
the input tests, then the PUT will be run, while RAC checks
the PUT for any assertion violations. RAC will send a signal to
the CGF tool if it reveals a semantic bug in the PUT using the
generated test, and such input test data are saved. Further, the
CGF actively monitors the PUT, seeking to generate tests that
cover new, previously unexplored branches within the PUT.

4. Preliminary Study
We performed a preliminary study of our approach, comparing
JMLKelinci, which is a CGF tool that uses JML’s RAC to check
input validity, using our approach. This study found that, our
approach could detect bugs in 78 out of 84 buggy programs.

JMLKelinci (A. Nilizadeh, Leavens, & Păsăreanu 2021) uses
a RAC tool (OpenJML (Cok 2010, 2011, 2021)) with a CGF
(Kelinci (Kersten et al. 2017)) to provide valid inputs for Java
programs. JMLKelinci obtains the benefits of using precon-
ditions written in JML (Leavens et al. 2006, 2008, 2022) to
cover branches with only valid inputs to provide the opportu-
nity of using postconditions for revealing potential semantic
bugs. JMLKelinci only uses the first step of this paper’s idea by
using formal preconditions for generating valid inputs; the JM-
LKelinci tool has not yet been adapted to investigate checking
postconditions or to send feedback to the fuzzer regarding the
presence of semantic bugs.

5 The measure was called a “cost” in the paper about Kelinci-WCA (Noller et
al. 2018; S. Nilizadeh et al. 2019), where the goal was to find the worst-case
execution time of code in order to discover side-channels (Le et al. 2021).
Using the measure in the opposite sense allows it to be used as a reward that
is maximized.

6 It may not be necessary for RAC to give a reward when input is valid; if the
RAC uses the same code to reject an invalid input each time, then a CGF will
try to avoid invalid inputs while attempting to cover more code.

4.1. Experimental Details
The experiment used three versions of 28 programs from the
Buggy Java+JML dataset (A. Nilizadeh 2021a; A. Nilizadeh,
Leavens, Le, et al. 2021; A. Nilizadeh et al. 2024), for a total of
84 programs.7 Each buggy program in this dataset is a version
of a correct program that has been proven correct using JML’s
tools. For each of the 28 correct programs, JMLKelinci was
able to cover all branches with valid inputs.

In our experimental procedure, we used JMLKelinci, which
effectively covers the branches of the buggy programs by gen-
erating valid inputs. It is worth mentioning that JMLKelinci
saves the first input that either triggers a crash or explores a new
branch within the code. Following the generation of these cru-
cial inputs, we proceeded to apply OpenJML’s RAC manually.
This step was integral in our process as it allowed us to uncover
and understand the presence of semantic bugs within the set of
valid inputs that were saved previously.

4.2. Results
Table 1 shows the results of running both JMLKelinci alone and
using JMLKelinci and RAC to check postconditions on these
84 buggy programs. In Table 1, the “JK” stands for JMLKelinci
and “JKP” stands for JMLKelinci plus postcondition checking
on the saved valid inputs. Also, ”miss” means that the bug was
not revealed with the generated inputs, and “detect” means that
the bug was detected with valid inputs.

Our preliminary study indicates that using postcondition
checking with RAC has a significant advantage in bug detec-
tion, revealing 78 out of 84 bugs when applied to the saved,
valid inputs. On the contrary, the standalone use of the fuzzer
JMLKelinci revealed only 26 bugs, which all caused program
crashes. Therefore, incorporating postconditions and RAC in
the process offers a superior approach to discovering semantic
bugs, compared to relying only on a fuzzer.

Figure 3 shows a buggy variant of the PrimeCheck class, dis-
cussed in §2.3. This figure corresponds to the dataset’s second
buggy version. A bug is introduced at line 12, where the code is
changed to int mid = a*2;. JMLKelinci, only validating
preconditions, enables valid inputs to execute the program and
stores those that cover a new branch or trigger a crash in the
PUT. Even though the program displayed in Fig 3 has a bug,
JMLKelinci fails to identify it as a bug because no input can
lead the buggy program to crash during execution. Our prelim-
inary study used RAC, and when it received a valid input (a
six-digit number) generated by JMLKelinci, the tool saved this
input, since it covered a new branch. RAC then confirmed the
bug’s presence within the program by indicating a postcondition
violation.

Moreover, out of the 84 buggy programs, six cases failed to
reveal the bug despite having a valid input covering the faulty
branch. A more comprehensive approach involving automatic
postcondition checking via RAC for all generated valid inputs
- not just the first valid input that traverses a branch and is
subsequently saved (as done in this study) - could potentially
reveal these undetected bugs.

7 We used buggy versions 1, 2, and 3 of each correct program. All programs in
this dataset all have JML specifications.



Figure 2 Architecture of CGF with user-defined rewards using RAC.

1 class PrimeCheck {
2 /*@ requires d != 0;
3 @ ensures \result == n%d; @*/
4 public /*@ pure @*/ static int
5 div(int n, int d) { return n%d; }
6

7 /*@ requires 1 < a;
8 @ ensures \result <==> (\forall int k;
9 1 < k && k <= a/2; div(a, k) != 0); @*/

10 public boolean isPrime(int a) {
11 int i = 2;
12 int mid = a*2; // bug on this line!
13 while (i <= mid) {
14 if (div(a,i) == 0)
15 return false;
16 i++;
17 }
18 return true;
19 }
20 }

Figure 3 A buggy version of the PrimCheck program with
JML annotations.

Figure 4 shows the buggy part of one of the six problematic
programs from our set, specifically, the first faulty iteration of
CombinationPermutation from the Java+JML dataset. This
program aims to compute the number of combinations of two
input parameters, n and r. In the correct version, line seven
should read as follows.

7 combin = fac.factorial(n) / (fac.
factorial(r) * fac.factorial(n-r));

Notably, the Factorial program, also annotated with JML, is
called within this computation. Execution with JMLKelinci, an
approach developed to identify crashes and achieve complete
branch coverage, reveals no crash, since this bug does not gen-
erate crashes. Afterward, we used RAC using the generated
inputs and postconditions to cover contract violations. However,
the generated inputs that resulted in branch coverage were n
== 0 and r == 0, which do not lead to contract violations in
this buggy program. Recall that JMLKelinci saves inputs when
they cover a previously unexplored branch, as these values did.
Therefore, even if JMLKelinci runs this program’s branch with
other inputs, those inputs are not saved because they do not
cover a new branch in the program. This scenario stresses the
potential value of a tool capable of automatically checking post-
conditions for all valid inputs, which could effectively reveal
bugs like this one.

The results in Table 1 indicate that when JMLKelinci de-
tected a bug, JMLKelinci with postconditions could also detect
it. Also, when JMLKelinci with postconditions could not reveal
a bug, JMLKelinci alone could not reveal the bug either. The to-
tal number of detected buggy programs using JMLKelinci alone
and JMLKelinci with postconditions (by using the same driver)



Table 1 JMLKelinci (JK) and JMLKelinci + Postcondition (JKP) results on programs from the Buggy Java+JML Dataset.

Name Bug1 Bug1 Bug2 Bug2 Bug3 Bug3

JK JKP JK JKP JK JKP

Absolute miss detect miss detect miss detect

AddLoop miss detect miss detect miss detect

Alphabet miss detect miss detect miss detect

BankAccount miss detect miss detect miss detect

BinarySearch miss detect detect detect detect detect

BubbleSort detect detect miss detect miss detect

Calculator miss detect miss miss detect detect

CombinaPerm miss miss detect detect miss detect

CopyArray miss detect detect detect detect detect

Factorial miss detect miss detect miss detect

Fibonacci detect detect detect detect detect detect

FindFirstSorted miss miss miss detect detect detect

FindFirstZero miss detect detect detect detect detect

FindInArray miss detect miss miss miss miss

FindInSorted miss detect miss detect detect detect

GCD miss detect miss detect miss detect

Inverse miss detect detect detect miss detect

LCM miss detect miss detect miss detect

LeapYear miss detect miss detect miss miss

LinearSearch detect detect miss detect miss detect

OddEven miss detect miss detect miss detect

Perimeter miss detect miss detect miss detect

PrimeCheck miss detect miss detect miss detect

Smallest miss detect detect detect detect detect

StrPalindrome miss detect detect detect detect detect

StudentEnrollment detect detect detect detect detect detect

Time detect detect miss detect miss detect

TransposeMatrix miss detect detect detect detect detect



1 //@ requires 0<=n && n<=20 && 0<=r && r<=n;
2 //@ old Factorial fac_spec = new Factorial();
3 //@ ensures \result == fac_spec.spec_factorial

(n) / (fac_spec.spec_factorial(r) *
fac_spec.spec_factorial(n-r));

4 private /* pure @*/ long comb(int n, int r) {
5 Factorial fac = new Factorial();
6 long combin;
7 combin = fac.factorial(n) / (fac.factorial

(r) * fac.factorial(n+r));
8 return combin;
9 }

Figure 4 Buggy Java program with JML annotations that
RAC did not detect the bug.

for each buggy program is shown in Table 2. These results show
that JMLKelinci alone could reveal about 31% of bugs in these
programs, while using RAC for checking postcondition using
saved generated inputs could reveal about 93% of bugs.

Table 2 Summary of bug detection results for JMLKelinci
(JK) and JMLKelinci + Postconditions (JKP) on programs
from the Buggy Java+JML Dataset.

Bug Detected by JK Detected by JKP

Num. Percent Num. Percent

Version1 5 18% 26 93%

Version2 10 36% 26 93%

Version3 11 39% 26 93%

Total 26 31% 78 93%

4.3. Threats to Validity
An important threat to validity is that the programs in our initial
experiments were fairly small and not drawn from real-world
examples; thus they may not be a good guide to techniques
for finding bugs in more complex, real-world programs. How-
ever, each of the 84 programs, although small, exhibits substan-
tial complexity. This threat highlights an area for future work.
Specifically, to enhance the robustness of our experiments, it
is important to extend the evaluation to larger, more real-world
programs in the future.

5. Related Work
Many approaches have been used for generating tests to reveal
bugs. However, there is not much research on combining a
fuzzer and a RAC tool in software testing. The work of Pe-
ters and Parnas (Peters & Parnas 1994) explained how to use
a RAC in testing, but their work, and the work of Cheon and

Leavens (Cheon & Leavens 2002, 2004), Zimmerman and Nag-
moti (Zimmerman & Nagmoti 2010), and Xu and Yang (Xu &
Yang 2003), did not use a fuzzer and so requires the user to cre-
ate input test data. Some of the above works can automatically
provide a small number of tests; however, a user must manually
provide better input data to reveal semantic bugs. Thus, the
effectiveness of RAC for detecting bugs in the above works
depends on the quality of the input data provided. Without
appropriate input data, a RAC tool might not reveal some bugs.
In contrast, in our approach a fuzzer automatically supplies test
data, and when used with a CGF our approach can also provide
better coverage.

Several tools use model checking and symbolic execution
to generate input tests and discover semantic bugs (Visser et al.
2004; Chipounov et al. 2009; Cadar et al. 2011; Nayrolles et
al. 2015, 2017; F. Nilizadeh et al. 2023). However, the execu-
tion time of these techniques depends on the size of the PUT;
thus, they have limited scalability in comparison to fuzzing
techniques (Ognawala et al. 2018).

Korat (Boyapati et al. 2002; Milicevic et al. 2007) uses for-
mal specifications to generate test data and decide whether tests
pass. However, Korat does not try to improve code coverage.

EvoSuite (Fraser & Arcuri 2011, 2013), Randoop (Pacheco
et al. 2007), and TSTL (Groce et al. 2015; Holmes et al. 2018)
are other tools that can provide unit tests for a program using
its code and assertions. However, they do not guarantee that the
inputs to the PUT are valid.

Property-based testing (PBT) (Fink & Bishop 1997;
Paraskevopoulou et al. 2015) is a different technique that seeks
to identify property violations by generating random test cases.
A special implementation of PBT is QuickCheck in Haskell
(Claessen & Hughes 2000). The PBT method uses randomness
in test case generation without giving feedback to the random
test generator. Thus, it is similar to using black-box fuzzing
with RAC to reveal semantic bugs. However, it does not try to
optimize code coverage in the PUT, as would be the case in our
approach with a CGF tool.

One of the closest works to our study is JMLKe-
linci (A. Nilizadeh, Leavens, & Păsăreanu 2021), which uses
RAC to help a CGF tool generate valid inputs to cover branches
for Java programs. However, JMLKelinci did not use postcondi-
tions to reveal semantic bugs or send feedback to help the fuzzer.
This paper shows how the idea of tools like JMLKelinci can be
extended to reveal semantic bugs.

The work most analogous to our concept is JMLKe-
linci+ (A. Nilizadeh et al. 2023). In that work, the first idea of
our paper has been developed for Java programs. The approach
employed a CGF tool for input generation. Subsequently, a RAC
tool was used to filter out invalid inputs based on preconditions,
and after that, it checks postconditions and internal assertions to
reveal semantic bugs. Nonetheless, the other ideas of integrat-
ing RAC with hybrid fuzzers and CGF with user-defined costs
remain unexplored.

Our approach of using a RAC to check for valid inputs is
inspired by what some programs do when sanitizing inputs (e.g.,
to prevent code injection attacks) (Wang et al. 2013; Serebryany
2016; Österlund et al. 2020). As in that approach, assertion



checking is more automatic than standard input/output testing,
and it has better reusability and maintainability. The main
difference between our approach and sanitizer approaches is
that the PUT will only execute with valid inputs in our approach;
thus, when a postcondition violation is detected, the tool has
truly found a semantic bug. Furthermore, an assertion violation
in sanitizer leads to a program crash. However, in our approach,
the input that causes an assertion violation is saved as an input
test.

Another related work is the Universal Verification Methodol-
ogy (UVM) (Height 2010; Mehta 2018), an IEEE standard for
hardware testing (design verification). UVM is a mature method-
ology that is supported by industry tools, and semiconductor
companies use UVM as one of the main steps for detecting
bugs in hardware designs. UVM generates random input tests
based on the preconditions (known as Constrained Random Ver-
ification), and then it monitors the behavior of the design using
checkers (which are similar to the code that RAC generates to
check inner and postconditions assertions). The core concept
presented in this idea paper is reminiscent of UVM. However, it
is important to note that UVM is primarily used for detecting
anomalies and bugs in hardware designs that are articulated
through hardware description languages, rather than revealing
bugs within software.

6. Patch Correctness Assessment for APR

Automated program repair (APR) has promising results for re-
pairing buggy programs. In the absence of formal verification,
most software APR tools use test suites to detect bugs and vali-
date candidate patches’ correctness. Due to the incompleteness
of test suites, repairs generated by APR tools can be incorrect
based on the expected behavior of the correct program. This
issue is referred to as “test overfitting” in APR (Smith et al.
2015; Le et al. 2018; A. Nilizadeh, Leavens, Le, et al. 2021;
A. Nilizadeh 2022). Thus, it is necessary to evaluate the correct-
ness of the generated patches.

One recent approach in APR is generating many repaired
programs, all of which pass the program’s test suite. This gives
developers more options to compare patches and select the best
one. However, sometimes APR tools generate thousands of can-
didate patches (Yuan & Banzhaf 2018), which makes it tedious
to pick the best patches manually. A potential solution to this
problem could be the application of fuzzing techniques aimed
at automatically discarding overfitted patches. On the other
hand, this problem may justify the cost of adding lightweight
pre- and postconditions to programs, as then one can use our
approach to eliminate overfitted patches automatically. Also,
RAC violations show a weakness in the input test suite that the
absence of that test leads to generating test overfitted patches by
APR. Adding those generated input tests to the input test suite
can cover those weaknesses. Then, by running the APR, they
can generate more reliable patches (A. Nilizadeh, Calvo, et al.
2021; Huang & Meyer 2022; A. Nilizadeh 2021b).

Additionally, the concept we discussed regarding APR patch
correctness could also be applied to automated reasoning re-
pair (A. Nilizadeh, Leavens, & Cok 2022; Ringer et al. 2018);

this is particularly feasible given that the specification is readily
available.

7. Limitations of Our Approach
The main limitation of combining RAC and fuzzing is the need
for lightweight formal specifications. If there are no formal
specifications, then lightweight specifications, at least for the en-
try method of the PUT, must be written. However, for programs
that already have such formal specifications, such as critical
systems and security protocol implementations, our approach
could be easily implemented.

Another limitation of our approach is that the specifications
may not be adequate; the pre- and postcondition specified for the
PUT’s entry method might be inadequate, or they might not be
able to be evaluated with RAC. If the precondition of the PUT’s
entry method is too strong, then it might prevent some inputs
that should be allowed from being used in tests. Conversely,
if the postcondition is too weak or cannot be fully evaluated
using RAC, then it might miss some bugs that it should catch.
In both cases, a tool using our approach might not be able to
reveal semantic bugs in the PUT.

In short our approach depends on having accurate pre- and
postconditions for the PUT’s entry method that can be evaluated
by RAC.

8. Conclusions
We have proposed the idea of combining modern fuzzing tools
with lightweight specifications checked by runtime assertion
checking (RAC) tools; this combination can help to reveal po-
tential semantic bugs automatically. Fuzzing alone would only
generate inputs (perhaps invalid) that lead to a program crash,
but the combination of a fuzzer and RAC can generate and
check for valid inputs (using preconditions) and then check for
semantic bugs (using postconditions).

We have also discussed how a modern coverage-guided
fuzzer (CGF) can best be combined with RAC. RAC can check
preconditions to ensure that the PUT is only run with valid in-
puts, which saves testing time. Checking postconditions with
RAC can help guide a CGF, helping it generate better inputs for
testing. Our preliminary study on 84 buggy programs shows
that combining a fuzzer and and RAC can lead to effective tools
for revealing semantic bugs; this study showed that this combi-
nation discovered bugs in 78 of 84 buggy programs (93%). In
contrast, fuzzing with valid inputs (obtained by checking inputs
against the PUT’s preconditions using RAC) could only reveal
26 bugs in 84 programs (31%).

Acknowledgments
We extend our sincere appreciation to Corina Păsăreanu, Yannic
Noller, and Shirin Nilizadeh for their valuable insights and
discussions.

References
Ahrendt, W., Beckert, B., Bruns, D., Bubel, R., Gladisch, C.,

Grebing, S., . . . others (2014). The key platform for verifi-
cation and analysis of java programs. In Verified software:



Theories, tools and experiments: 6th international confer-
ence, vstte 2014, vienna, austria, july 17-18, 2014, revised
selected papers 6 (pp. 55–71).

Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P. H.,
& Ulbrich, M. (2016). Deductive software verification-the
KeY book. Lecture notes in computer science, 10001.

Alur, R., Singh, R., Fisman, D., & Solar-Lezama, A. (2018).
Search-based program synthesis. Communications of the
ACM, 61(12), 84–93.

Apt, K. R., & Olderog, E.-R. (2019). Fifty years of Hoare’s
logic. Formal Aspects of Computing, 31(6), 751–807.

Barner, S., Glazberg, Z., & Rabinovitz, I. (2005). Wolf–bug
hunter for concurrent software using formal methods. In
International Conference on Computer Aided Verification
(pp. 153–157).

Boehme, M., Cadar, C., & Roychoudhury, A. (2021). Fuzzing:
Challenges and reflections. IEEE Softw., 38(3), 79–86.

Boyapati, C., Khurshid, S., & Marinov, D. (2002). Korat:
Automated testing based on Java predicates. ACM SIGSOFT
Software Engineering Notes, 27(4), 123–133.

Braione, P., Denaro, G., Mattavelli, A., & Pezzè, M. (2017).
Combining symbolic execution and search-based testing for
programs with complex heap inputs. In Proceedings of the
26th ACM SIGSOFT International Symposium on Software
Testing and Analysis (pp. 90–101).

Cadar, C., Dunbar, D., Engler, D. R., et al. (2008). KLEE:
unassisted and automatic generation of high-coverage tests
for complex systems programs. In OSDI (Vol. 8, pp. 209–
224).

Cadar, C., Godefroid, P., Khurshid, S., Pasareanu, C. S., Sen,
K., Tillmann, N., & Visser, W. (2011). Symbolic execution
for software testing in practice: preliminary assessment. In
2011 33rd International Conference on Software Engineering
(ICSE) (pp. 1066–1071).

Cha, S. K., Avgerinos, T., Rebert, A., & Brumley, D. (2012).
Unleashing Mayhem on binary code. In Proceedings of the
2012 IEEE Symposium on Security and Privacy (p. 380–394).
USA: IEEE Computer Society.

Chalin, P., Kiniry, J. R., Leavens, G. T., & Poll, E. (2006).
Beyond assertions: Advanced specification and verification
with JML and ESC/Java2. In Formal methods for components
and objects (fmco) 2005, revised lectures (Vol. 4111, p. 342-
363). Berlin: Springer-Verlag. Retrieved from https://
tinyurl.com/3z2vk55n

Chang, O., Arya, A., Serebryany, K., & Armour, J. (2017,
May). Oss-fuzz: Five months later, and rewarding projects.
https://testing.googleblog.com/2017/
05/oss-fuzz-five-months-later-and.html.
(Accessed: 2023-03-15)

Cheon, Y., & Leavens, G. T. (2002, June). A simple and
practical approach to unit testing: The JML and JUnit way.
In B. Magnusson (Ed.), ECOOP 2002 — Object-Oriented
Programming, 16th European Conference, Máalaga, Spain,
proceedings (Vol. 2374, p. 231-255). Berlin: Springer-Verlag.
Retrieved from https://tinyurl.com/4tk2nzzd

Cheon, Y., & Leavens, G. T. (2004). The JML and JUnit way
of unit testing and its implementation. Technical Report TR#

04-02a, Department of Computer Science.
Chipounov, V., Georgescu, V., Zamfir, C., & Candea, G. (2009).

Selective symbolic execution. In Proceedings of the 5th
Workshop on Hot Topics in System Dependability (HotDep).

Claessen, K., & Hughes, J. (2000). QuickCheck: a lightweight
tool for random testing of Haskell programs. In Proceedings
of the fifth acm sigplan international conference on functional
programming (pp. 268–279).

Clarke, L. A. (1976). A system to generate test data and sym-
bolically execute programs. IEEE Transactions on Software
Engineering(3), 215–222.

Clarke, L. A., & Rosenblum, D. S. (2006). A historical perspec-
tive on runtime assertion checking in software development.
ACM SIGSOFT Software Engineering Notes, 31(3), 25–37.

Cok, D. R. (2010). Improved usability and performance of SMT
solvers for debugging specifications. International Journal
on Software Tools for Technology Transfer, 12(6), 467–481.

Cok, D. R. (2011). OpenJML: JML for Java 7 by extending
OpenJDK. In NASA Formal Methods Symposium (pp. 472–
479).

Cok, D. R. (2021). JML and OpenJML for Java 16. In Pro-
ceedings of the 23rd acm international workshop on formal
techniques for java-like programs (p. 65–67). New York, NY,
USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/3464971.3468417

Filliâtre, J.-C., & Pascutto, C. (2021). Ortac: Runtime assertion
checking for OCaml (tool paper). In International Conference
on Runtime Verification (pp. 244–253).

Fink, G., & Bishop, M. (1997). Property-based testing: a new
approach to testing for assurance. ACM SIGSOFT Software
Engineering Notes, 22(4), 74–80.

Fraser, G., & Arcuri, A. (2011). EvoSuite: automatic test suite
generation for object-oriented software. In Proceedings of
the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering (pp. 416–
419).

Fraser, G., & Arcuri, A. (2013). EvoSuite: On the challenges
of test case generation in the real world. In 2013 IEEE Sixth
International Conference on Software Testing, Verification
and Validation (pp. 362–369).

Gazzola, L., Micucci, D., & Mariani, L. (2018). Automatic
software repair: A survey. In Proceedings of the 40th Interna-
tional Conference on Software Engineering (pp. 1219–1219).

Godefroid, P., Levin, M. Y., & Molnar, D. (2012). SAGE:
whitebox fuzzing for security testing. Queue, 10(1), 20–27.

Goues, C. L., Pradel, M., & Roychoudhury, A. (2019). Auto-
mated program repair. Communications of the ACM, 62(12),
56–65.

Groce, A., Pinto, J., Azimi, P., & Mittal, P. (2015). TSTL: a
language and tool for testing. In Proceedings of the 2015
International Symposium on Software Testing and Analysis
(pp. 414–417).

Height, H. (2010). A practical guide to adopting the universal
verification methodology (UVM). Lulu. com.

Hoare, C. A. R. (1969, October). An axiomatic basis for com-
puter programming. Communications of the ACM, 12(10),
576–580,583. Retrieved from http://doi.acm.org/

https://tinyurl.com/3z2vk55n
https://tinyurl.com/3z2vk55n
https://testing.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://testing.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://tinyurl.com/4tk2nzzd
https://doi.org/10.1145/3464971.3468417
http://doi.acm.org/10.1145/363235.363259


10.1145/363235.363259
Hoare, C. A. R. (1972). Proof of correctness of data represen-

tations. Acta Informatica, 1(4), 271-281. Retrieved from
http://dx.doi.org/10.1007/BF00289507

Holmes, J., Groce, A., Pinto, J., Mittal, P., Azimi, P., Kellar,
K., & O’Brien, J. (2018). TSTL: the template scripting
testing language. International Journal on Software Tools for
Technology Transfer, 20(1), 57–78.

Huang, L., & Meyer, B. (2022). A failed proof can yield a
useful test. arXiv preprint arXiv:2208.09873.

Jiang, L., Yuan, H., Wu, M., Zhang, L., & Zhang, Y.
(2023). Evaluating and improving hybrid fuzzing. In 2023
IEEE/ACM 45th international conference on software engi-
neering (ICSE) (pp. 410–422).

Kersten, R., Luckow, K., & Păsăreanu, C. S. (2017). Poster:
AFL-based Fuzzing for Java with Kelinci. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (pp. 2511–2513).

Kosmatov, N., Maurica, F., & Signoles, J. (2020). Efficient
runtime assertion checking for properties over mathematical
numbers. In International Conference on Runtime Verifica-
tion (pp. 310–322).

Le, X.-B. D., Pasareanu, C., Padhye, R., Lo, D., Visser, W., &
Sen, K. (2021). Saffron: Adaptive grammar-based fuzzing for
worst-case analysis. ACM SIGSOFT Software Engineering
Notes, 44(4), 14–14.

Le, X.-B. D., Thung, F., Lo, D., & Goues, C. L. (2018). Over-
fitting in semantics-based automated program repair. In Pro-
ceedings of the 40th International Conference on Software
Engineering (pp. 163–163).

Leavens, G. T., Baker, A. L., & Ruby, C. (2006, March). Prelim-
inary design of JML: A behavioral interface specification lan-
guage for Java. ACM SIGSOFT Software Engineering Notes,
31(3), 1-38. Retrieved from http://doi.acm.org/
10.1145/1127878.1127884

Leavens, G. T., Cok, D. R., & Nilizadeh, A. (2022). Further
lessons from the JML project. In The Logic of Software. A
Tasting Menu of Formal Methods (pp. 313–349). Springer.

Leavens, G. T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok,
D. R., . . . Zimmerman, D. M. (2008, May). JML Refer-
ence Manual. (Available from http://www.jmlspecs
.org)

Leucker, M., & Schallhart, C. (2009). A brief account of
runtime verification. The Journal of Logic and Algebraic
Programming, 78(5), 293–303.

Li, J., Zhao, B., & Zhang, C. (2018). Fuzzing: a survey.
Cybersecurity, 1(1), 6.

Liang, H., Pei, X., Jia, X., Shen, W., & Zhang, J. (2018).
Fuzzing: State of the art. IEEE Transactions on Reliability,
67(3), 1199–1218.

Manès, V. J. M., Han, H., Han, C., Cha, S. K., Egele, M.,
Schwartz, E. J., & Woo, M. (2019). The art, science, and
engineering of fuzzing: A survey. IEEE Transactions on
Software Engineering.

Mehta, A. B. (2018). UVM (Universal Verification Method-
ology). In ASIC/SoC Functional Design Verification (pp.
17–64). Springer.

Meyer, B. (1997). Object-oriented software construction (sec-
ond ed.). New York, NY: Prentice Hall.

Microsoft Corp. (2015, January). Microsoft security risk
detection. https://www.microsoft.com/en-us/
security-risk-detection/. (Accessed: 2023-03-
15)

Milicevic, A., Misailovic, S., Marinov, D., & Khurshid, S.
(2007). Korat: A tool for generating structurally complex
test inputs. In 29th International Conference on Software
Engineering (ICSE’07) (pp. 771–774).

Nayrolles, M., Hamou-Lhadj, A., Tahar, S., & Larsson, A.
(2015). JCHARMING: A bug reproduction approach using
crash traces and directed model checking. In 2015 IEEE 22nd
International Conference on Software Analysis, Evolution,
and Reengineering (SANER) (pp. 101–110).

Nayrolles, M., Hamou-Lhadj, A., Tahar, S., & Larsson, A.
(2017). A bug reproduction approach based on directed model
checking and crash traces. Journal of Software: Evolution
and Process, 29(3), e1789.

Nilizadeh, A. (2021a). BuggyJavaJML . https://github
.com/Amirfarhad-Nilizadeh/BuggyJavaJML.
(Accessed: 2023-03-15)

Nilizadeh, A. (2021b). Test overfitting: Challenges, ap-
proaches, and measurements (Tech. Rep.). University of
Central Florida, Computer Science.

Nilizadeh, A. (2022). Automated program repair and test over-
fitting: Measurements and approaches using formal methods.
In 2022 IEEE Conference on Software Testing, Verification
and Validation (ICST) (pp. 480–482).

Nilizadeh, A., Calvo, M., Leavens, G. T., & Cok, D. R. (2022).
Generating counterexamples in the form of unit tests from
Hoare-style verification attempts. In Proceedings of the
IEEE/ACM 10th International Conference on Formal Meth-
ods in Software Engineering (pp. 124–128).

Nilizadeh, A., Calvo, M., Leavens, G. T., & Le, X.-B. D. (2021).
More reliable test suites for dynamic APR by using coun-
terexamples. In 2021 IEEE 32nd International Symposium
on Software Reliability Engineering (ISSRE) (p. 208-219).
IEEE.

Nilizadeh, A., & Leavens, G. T. (2022). Be realistic: Automated
program repair is a combination of undecidable problems.
In 2022 IEEE/ACM International Workshop on Automated
Program Repair (APR) (pp. 31–32).

Nilizadeh, A., Leavens, G. T., & Cok, D. R. (2022). Automated
reasoning repair. In Proceedings of the 24th acm international
workshop on formal techniques for java-like programs (pp.
11–14).

Nilizadeh, A., Leavens, G. T., Le, X.-B. D., Păsăreanu, C. S., &
Cok, D. R. (2021). Exploring true test overfitting in dynamic
automated program repair using formal methods. In 2021
14th IEEE Conference on Software Testing, Verification and
Validation (ICST) (pp. 229–240).

Nilizadeh, A., Leavens, G. T., & Păsăreanu, C. S. (2021). Using
a guided fuzzer and preconditions to achieve branch coverage
with valid inputs. In International Conference on Tests and
Proofs (pp. 72–84).

Nilizadeh, A., Leavens, G. T., Păsăreanu, C. S., Le, X.-B. D.,

http://doi.acm.org/10.1145/363235.363259
http://dx.doi.org/10.1007/BF00289507
http://doi.acm.org/10.1145/1127878.1127884
http://doi.acm.org/10.1145/1127878.1127884
http://www.jmlspecs.org
http://www.jmlspecs.org
https://www.microsoft.com/en-us/security-risk-detection/
https://www.microsoft.com/en-us/security-risk-detection/
https://github.com/Amirfarhad-Nilizadeh/BuggyJavaJML
https://github.com/Amirfarhad-Nilizadeh/BuggyJavaJML


& Cok, D. R. (2024). Does going beyond branch coverage
make program repair tools more reliable? In 2024 17th IEEE
Conference on Software Testing, Verification and Validation
(ICST) (In Press). IEEE.

Nilizadeh, A., Leavens, G. T., Păsăreanu, C. S., & Noller, Y.
(2023). JMLKelinci+: Detecting semantic bugs and covering
branches with valid inputs using coverage-guided fuzzing and
runtime assertion checking. Formal Aspects of Computing.

Nilizadeh, F., Dashtbani, H., & Mouzarani, M. (2023). Param-
eterized search heuristic prediction for concolic execution.
In 2023 30th Asia-Pacific Software Engineering Conference
(APSEC) (In Press). IEEE.

Nilizadeh, S., Noller, Y., & Pasareanu, C. S. (2019). Dif-
Fuzz: differential fuzzing for side-channel analysis. In 2019
IEEE/ACM 41st International Conference on Software Engi-
neering (ICSE) (pp. 176–187).

Noller, Y., Kersten, R., & Păsăreanu, C. S. (2018). Badger:
complexity analysis with fuzzing and symbolic execution.
In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis (pp. 322–332).

Noller, Y., Păsăreanu, C. S., Böhme, M., Sun, Y., Nguyen, H. L.,
& Grunske, L. (2020). Hydiff: Hybrid differential software
analysis. In 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE) (pp. 1273–1285).

Odena, A., Olsson, C., Andersen, D., & Goodfellow, I. (2019).
Tensorfuzz: Debugging neural networks with coverage-
guided fuzzing. In International Conference on Machine
Learning (pp. 4901–4911).

Ognawala, S., Hutzelmann, T., Psallida, E., & Pretschner, A.
(2018). Improving function coverage with munch: a hybrid
fuzzing and directed symbolic execution approach. In Pro-
ceedings of the 33rd Annual ACM Symposium on Applied
Computing (pp. 1475–1482).

Österlund, S., Razavi, K., Bos, H., & Giuffrida, C. (2020).
Parmesan: Sanitizer-guided greybox fuzzing. In 29th
USENIX Security Symposium (USENIX Security 20) (pp.
2289–2306).

Pacheco, C., Lahiri, S. K., Ernst, M. D., & Ball, T. (2007).
Feedback-directed random test generation. In 29th Interna-
tional Conference on Software Engineering (ICSE’07) (pp.
75–84).

Paraskevopoulou, Z., Hriţcu, C., Dénès, M., Lampropoulos, L.,
& Pierce, B. C. (2015). Foundational property-based testing.
In International conference on interactive theorem proving
(pp. 325–343).

Peleg, H., & Polikarpova, N. (2020). Perfect is the enemy of
good: Best-effort program synthesis. Leibniz International
Proceedings in Informatics, 166.

Peters, D., & Parnas, D. L. (1994, August). Generating a
test oracle from program documentation. In Proceedings
of ISSTA 94, seattle, washington, august, 1994 (pp. 58–65).
ACM Press.

Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., &
Bos, H. (2017). VUzzer: Application-aware evolutionary
fuzzing. In NDSS (Vol. 17, pp. 1–14).

Ringer, T., Yazdani, N., Leo, J., & Grossman, D. (2018). Adapt-
ing proof automation to adapt proofs. In Proceedings of the

7th acm sigplan international conference on certified pro-
grams and proofs (pp. 115–129).

Serebryany, K. (2016). Continuous fuzzing with libfuzzer and
addresssanitizer. In 2016 IEEE Cybersecurity Development
(SecDev) (pp. 157–157).

Smith, E. K., Barr, E. T., Le Goues, C., & Brun, Y. (2015). Is
the cure worse than the disease? Overfitting in automated pro-
gram repair. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering (pp. 532–543).

Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Cor-
betta, J., . . . Vigna, G. (2016). Driller: Augmenting fuzzing
through selective symbolic execution. In NDSS (Vol. 16, pp.
1–16).

Taleb, R., Khoury, R., & Hallé, S. (2021). Runtime verifi-
cation under access restrictions. In Proceedings of the 9th
International Conference on Formal Methods in Software
Engineering.

Visser, W., Pǎsǎreanu, C. S., & Khurshid, S. (2004). Test input
generation with Java PathFinder. In Proceedings of the 2004
ACM SIGSOFT international symposium on Software testing
and analysis (pp. 97–107).

Wang, X., Zeldovich, N., Kaashoek, M. F., & Solar-Lezama, A.
(2013). Towards optimization-safe systems: Analyzing the
impact of undefined behavior. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles
(pp. 260–275).

Wong, W. E., Gao, R., Li, Y., Abreu, R., & Wotawa, F. (2016).
A survey on software fault localization. IEEE Transactions
on Software Engineering, 42(8), 707–740.

Xu, G., & Yang, Z. (2003). JMLAutoTest: A novel automated
testing framework based on JML and JUnit. In International
workshop on Formal Approaches to Software Testing (pp.
70–85).

Yuan, Y., & Banzhaf, W. (2018). Arja: Automated repair of java
programs via multi-objective genetic programming. IEEE
Transactions on software engineering, 46(10), 1040–1067.

Yue, T., Tang, Y., Yu, B., Wang, P., & Wang, E. (2019). Lear-
nAFL: Greybox fuzzing with knowledge enhancement. IEEE
Access, 7, 117029–117043.

Zalewski, M. (2014). Technical" whitepaper" for afl-fuzz. URl:
http://lcamtuf. coredump. cx/afl/technical_details.txt.

Zimmerman, D. M., & Nagmoti, R. (2010). Jmlunit: The
next generation. In International Conference on Formal
Verification of Object-Oriented Software (pp. 183–197).

About the authors
Amirfarhad Nilizadeh has been working at the Advanced Micro
Devices (AMD) formal verification team as a member of techni-
cal staff since January 2022. He earned his Ph.D. in Computer
Science from the University of Central Florida (UCF) in De-
cember 2021, where he accumulated his research and teaching
skills over a period of five years. His primary areas of interest
encompass formal verification for both hardware designs and
software programs, testing, automated program repair, and cy-
bersecurity. In pursuit of applied experience, he completed an
internship at AMD in the fall of 2021 and participated in the



Google Summer of Code later that summer. Additionally, in
2018, he accomplished a research position at the formal verifi-
cation group of CyLab Security & Privacy Institute at Carnegie
Mellon University. Before starting his Ph.D., he worked as a
university lecturer at Azad University from 2014 to 2016, com-
plementing his research with valuable teaching experience. You
can contact the author at amirfarhad.nilizadeh@gmail.com.

Gary T. Leavens is a professor and former chair of the depart-
ment of Computer Science at the University of Central Florida
(UCF). Before joining UCF in fall 2007, he was a professor
of Computer Science at Iowa State University in Ames, Iowa,
where he started in January 1989, after receiving his Ph.D. from
MIT. Before his graduate studies at MIT, he worked at Bell
Telephone Laboratories in Denver Colorado as a member of
technical staff. You can contact the author at Leavens@ucf.edu
or visit https://www.cs.ucf.edu/~leavens/.

David R. Cok is a researcher in deductive reasoning, having con-
tributed to the development and application of JML, OpenJML,
Dafny, ACSL, Frama-C/C++, and SPARK for Ada. He previ-
ously was a researcher on digital imaging and automated reason-
ing at Kodak Research Laboratories and on program analysis
at GrammaTech. He has a Ph.D. in Physics from Harvard Uni-
versity. You can contact the author at david.r.cok@gmail.com.

mailto:amirfarhad.nilizadeh@gmail.com?subject=Your paper "Toward Using Fuzzers and Lightweight Specifications \ to Reveal Semantic Bugs "
mailto:Leavens@ucf.edu?subject=Your paper "Toward Using Fuzzers and Lightweight Specifications \ to Reveal Semantic Bugs "
https://www.cs.ucf.edu/~leavens/
mailto:david.r.cok@gmail.com?subject=Your paper "Toward Using Fuzzers and Lightweight Specifications \ to Reveal Semantic Bugs "

