
Journal of Object Technology | RESEARCH ARTICLE

Towards a Security Framework for Artifact-centric
Workflows Leveraging Runtime Enforcement

Gaurav Gupta∗, Saumya Shankar∗, and Srinivas Pinisetty∗
∗Indian Institute of Technology Bhubaneswar, India

ABSTRACT A business process is made up of a set of activities that are carried out to create products or services. This series
of activities is often analogous to the set of actions performed on an artifact (document). Aside from privacy (unauthorized
access should be avoided) and integrity (the document should not be tampered with), the document has “lifecycle" constraints
(modifications should be made in a predefined sequence). Any document manipulation that does not adhere to the lifecycle
constraints is considered invalid. So far, cryptographic, centralized, and static verification approaches have been exploited to
achieve compliance with the lifecycle, which have their respective limitations.

In this paper, we design and develop a framework, leveraging formal runtime enforcement approaches, to enforce the lifecycle
constraints of a document at runtime, preserving its integrity and privacy using cryptographic approaches alongside. The
lifecycle constraints are taken as the specification of the system, and the modification done to the document is taken as the
(possibly erroneous) input to be enforced. The enforcement mechanism detects any modification attempt made by an individual
into the document that is not following the set lifecycle constraints at runtime, and the document is safeguarded from such
invalid manipulations. We take examples of a collaborative project between an academic and a research institute and a loan
application process in the banking sector. We specify the necessary lifecycle constraints in these scenarios and construct
enforcement monitors out of them, which will prevent any unauthorized changes to the document, assuring the system’s safety.
The proposed framework has been implemented, and enforcement of constraints is demonstrated in the considered scenarios.

KEYWORDS Artifact Lifecycle, Runtime Enforcement, Cryptography, Business Process Models

1. Introduction

Among the business process models, artifact-centric workflow
models allow us to define artifacts (data records) and their life
cycles (evolution of data). These workflows are a series of
activities performed in coordination, to produce a product or
service. It takes into account both structural (i.e. the data) and
dynamic (i.e. the activities or tasks) dimensions of the process.
The series of activities in a business process can be mapped to

JOT reference format:
Gaurav Gupta, Saumya Shankar, and Srinivas Pinisetty. Towards a Security
Framework for Artifact-centric Workflows Leveraging Runtime Enforcement.
Journal of Object Technology. Vol. 23, No. 2, 2024. Licensed under
Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2024.23.2.a1

possible actions that can be performed on artifacts/documents
as it passes from one person to the other.

For example, considering the medical field, the document
assigned to the patient, when he visits a hospital, is modified
from person to person: first, the doctor prescribes drugs in
the document; then, the pharmacist writes the cost of drugs;
the insurance company writes approval of expenses into the
document; and the nurse writes the timestamps, she gave the
drug to the patient, etc.

Constraints on the document. However, sometimes there are cer-
tain constraints such as “integrity" constraints on the document,
ensuring that the document passed is genuine and has not been
manipulated/tampered with. For example, in the scenario con-
sidered above, one can have the following integrity constraints:

An AITO publication

http://dx.doi.org/10.5381/jot.2024.23.2.a1

“The pharmacist cannot write test results", or “The nurses can-
not prescribe drugs". So, the concerned document (prescription
note) will be discarded if unauthorized modifications are made
to it.

Similarly, there are constraints to protect the “privacy" of
the document. Privacy rights ensure that the peers have access
to any information in our data/document and any unauthorized
access is prohibited. For example, in the scenario considered
above, one can have privacy constraints as “Insurance com-
panies cannot access test results", or “Doctors cannot access
insurance policy numbers". Thus, giving complete control over
sensitive data.

Moreover, there are constraints on the “lifecycle" of the
document which is, the sequence of manipulations performed
in the document. By defining a lifecycle and complying with
it, an organization can standardize its processes throughout
and track each activity at every stage of the lifecycle, which
eases the process and makes it less prone to errors. Under
these constraints, all the manipulations not done in their
prescribed order are considered invalid. For example, in the
above scenario, if we consider a lifecycle constraint saying that,
“The pharmacists cannot change/write the cost of drugs once it
is approved by the insurance company", then, any out-of-order
activity (pharmacists trying to access the document after it has
been accessed by the insurance companies) is prohibited during
enforcement of the lifecycle constraints.

Cryptographic approaches for ensuring integrity and privacy
constraints. (Halle et al. 2016) discusses cryptographic ways
for ensuring the integrity and privacy of the document. 1) Peers
from one institution can be “grouped" together to establish
privacy boundaries. 2) Sequence of data entered by a peer
can be encrypted (to hide information from other groups), and
its “digest" (explained in Sect. 3) is computed. This digest
can be verified to detect any tampering with the document,
thus ensuring its integrity. Sect. 3 delves into details of the
cryptographic ways for ensuring integrity and privacy.

Runtime monitoring approaches for ensuring the lifecycle con-
straints. The lifecycle compliance can also be checked/ensured
by cryptographic approaches. Hallé et al. in (Halle et al. 2016)
do a series of modifications to the document which symbolized
the lifecycle of the document. The “digest" is computed after
each action (at runtime) and can be verified to detect any viola-
tion in the lifecycle compliance. Formal methods can also be
employed to achieve the same. For example, static verification
can be used (Gonzalez et al. 2012) to exhaustively search the
state space of the design to carefully investigate any possible
erroneous activity with respect to the lifecycle. However, it can-
not prevent invalid behaviors from occurring at runtime. This
paper proposes to use formal runtime monitoring approaches
for checking lifecycle compliance.

Runtime monitoring includes Runtime Verification (RV) and
Runtime Enforcement (RE) techniques. RV allows one to check
if a run of a system under observation complies with (or violates)
the specification. The RV monitor has the capacity to consume
events generated by a running system and emit verdicts depend-

ing on the history of events it has previously received and the
current satisfaction of the property. In most simple cases the
verdict would be either true or false. However, many runtime
verification systems use verdicts containing three or more values
to give a more fine-grained result. Moreover, it is beneficial
in some cases, to ensure that property violations are not only
detected but prevented, i.e., not just detecting errors or viola-
tions, but also taking proactive measures to prevent them from
occurring in the first place. By employing runtime enforcement
approaches, we can increase the reliability and robustness of a
system, leading to improved overall performance and reduced
risk of failure.

One way to check lifecycle compliance leveraging formal
runtime monitoring approaches is to schedule the offline run-
time verification process as a cron1 job to monitor the lifecycle
compliance. The manipulations / system events are recorded
as an execution trace and whenever a satisfactory number of
manipulations have been done/recorded, the collected execution
trace is forwarded to the offline monitor to check if the series
of manipulations are performed according to the lifecycle
or not. However, it would be preferable if the violations
were checked concurrently during the execution. This ne-
cessitates validating the lifecycle constraints online (at runtime).

Contribution. In this paper, we design and develop a frame-
work2 to enforce the lifecycle constraints of a document at
runtime using formal runtime monitoring approaches, along-
side preserving its integrity and privacy using cryptographic
approaches. Runtime Enforcement (RE) consists of checking
and ensuring that a run of a system complies with the (formal)
specification of the system. Here, the lifecycle constraints are
taken as the specification and the sequence of modifications
done to the document is taken as the trace to be verified against
the specification of the system. Any modification done by a peer
into the document, which is not complying with the lifecycle
constraints is checked at runtime and the document is protected
from such invalid manipulations.

To demonstrate the practicability of the proposed approach,
we consider two different scenarios. We specify some lifecycle
constraints in these scenarios and demonstrate the enforcement
of these lifecycles constraints.

Outline. Sect. 2 gives the overview of the proposed framework.
Sect. 3 discusses the cryptographic ways of complying with
obligatory constraints such as integrity and privacy constraints.
Sect. 4 discusses enforcing lifecycle constraints using runtime
enforcement approaches. Sect. 5 presents implementation and
discussions. Related literature is presented in Sect. 6 and Sect.
7 concludes the work.

1 Cron is a service running in the background that will execute commands (jobs)
at a specified time, or at a regular interval.

2 The framework is implemented and is available for download at
https://github.com/gg1711/Towards-a-Secure-Framework-for-Artifact-
centric-Workflows-Leveraging-Runtime-Enforcement

2 G. Gupta et al.

https://github.com/gg1711/Towards-a-Secure-Framework-for-Artifact-centric-Workflows-Leveraging-Runtime-Enforcement
https://github.com/gg1711/Towards-a-Secure-Framework-for-Artifact-centric-Workflows-Leveraging-Runtime-Enforcement

2. Overview of the proposed framework

In this section, we give an overview of the proposed framework.
In Fig. 1, we present the high-level framework, where Alice
is the peer who attempts to modify a document D or wants to
check the integrity of the document, to find out if it has been
tampered with or not. M is the enforcement monitor (synthe-
sized using RE approaches) composed out of the specifications
(i.e., lifecycle to be enforced), and V is the verifier block which
will look for tampering if any (synthesized using cryptographic
approaches). Action w(δ) denotes writing δ into D, v denotes
the peer’s will to verify the document, and r denotes reading the
document.

Figure 1 High level framework for verifying the constraints

In the framework, if a peer attempts to modify a document
(w(δ)), then the monitor checks if the peer’s access is consis-
tent with the lifecycle constraints. If it follows the constraints,
then the modification is done (w(δ′) = w(δ)), otherwise it is
prevented (w(δ′) = ϕ). Moreover, if a peer wants to verify the
document (v), then the verifier block will read (r) the document
D and check if any tampering is done to the document and thus,
will give 0 (not tampered) or 1 (tampered) as a response.

To demonstrate the adaptable use of the proposed approach,
we consider two scenarios: the first scenario is of sanctioning
of a collaborative research project, and; the second scenario is
of a loan application process in the banking sector.

Collaborative project: Consider the scenario of a collaborative
research project between an academic and a research institute,
as shown in Fig 2. Consider that the academic institute consists
of peers such as students, faculty, and research lead/advisor
and the research institute consists of peers such as research
lead/advisor, data scientist, and research director. So whenever
a joint project proposal is put forward then the supporting doc-
umentation is modified/approved from person to person: first,
the student (from the academic institute) will write the project
proposal and the project budget; then its feasibility is validated
by his faculty in charge and the research lead of his institute; the
data scientist (of the research institute) will analyze the project
proposal and will offer better insights on the best solutions for
the project within the budget, and then the document is sent to
the research director for sanctioning of the project.

Figure 2 Scenario 1: Collaborative project

For illustration, we consider the following grouping of the
peers and the lifecycle constraints (listed below) for the unified
project: Peers student (A), faculty (B), and research lead (C) be
grouped in group G1 and peers research lead (C), data scientist
(D), and research director (E) be grouped in group G2. Thus, we
have peers P = {A, B, C, D, E} and two groups G = {G1, G2}
for academic and research institutes respectively, where G1 =
{A, B, C} and G2 = {C, D, E}.

1. A student can undertake a research project only after it is
approved by the faculty and the research lead.

2. Research director can initiate the funding process only
after the data scientist has approved.

3. Faculties can use data for experiments only after it has
been prepared and released by the data scientist.

Loan application process: Consider the scenario of a loan
application process in banking sectors, as shown in Fig 3. Let
us consider peers borrower, loan officer, underwriter, credit
officer, and loan closer involved in the loan sanctioning process.
So, whenever a borrower wants a loan to be sanctioned then,
the supporting documentation is modified/approved again from
person to person: first, the borrower submits a loan application
to the bank; then the loan officer will provide all information
needed to prequalify the loan request and will refinance exist-
ing debt if required; the underwriter verifies and analyzes the
submitted documents; then, it goes to the credit officer who ulti-
mately approves or rejects the loan request, and will write the
final decision i.e., approval or rejection (mentioning the reason
behind the rejection) of the loan into the document; lastly the
loan closer will review the documents and move the loan into
the last phase of closing the loan.

Figure 3 Scenario 2: Loan application process

Towards a Security Framework for Artifact-centric Workflows 3

For illustration, we consider the following grouping of the
peers and the lifecycle constraints (listed below) for the sanc-
tioning of the loan: Peer borrower (A) be grouped in group
G1, loan officer (B) be grouped in group G2, underwriter
(C) be grouped in group G3, credit officer (D) be grouped in
group G4, and loan closer (E) be grouped in group G5. Thus,
we have the peers set P = {A, B, C, D, E} and five groups
G = {G1, G2, G3, G4, G5}, where G1 = {A}, G2 = {B},
G3 = {C}, G4 = {D}, G5 = {E}.

1. In case of rejection3 of the loan, the loan closer4 can
only write if the credit officer has written twice5 into the
document, and any successive attempts by any of the peer
is not allowed.

2. The borrower can only write once into the document, as
changing the loan amount, mortgage, etc. in the loan appli-
cation will have to restart the loan sanctioning process.

Note: The constraints are specified in plain language here for
easy understanding and are later written into easy-rte policy
format to be converted into respective monitors (see below
sections 5.2 and 5.3).

Enforcing lifecycle constraints: These lifecycle constraints
are taken as the specifications of the scenario, that we want to
monitor, and are used to construct the enforcement monitor. So,
whenever a system event (modification done to the document)
occurs, the monitor will examine if it complies with the lifecy-
cle constraints. If it complies, then the modification is done,
otherwise, it is prevented by the monitor and the monitor waits
for the next event.

We used approaches proposed in (Pearce et al.
2020)(Pinisetty et al. 2017b) to synthesize the enforce-
ment monitor, as these approaches synthesize the monitoring
code directly from the specification provided. The generated
monitor from the specified approaches also ensures correctness.
It uses Valued Discrete Timed Automaton (VDTA) (Pearce
et al. 2020) to formally define the specifications. VDTA
is an automaton with a finite set of locations and discrete
clocks (clocks are used to represent the evolution of time).
It also has external input-output channels for system data
and internal variables for internal computations. The use of

3 Currently in the paper only the constraint about “rejecting” the loan has been
considered. One can have similar constraints about “accepting” the loan, and
the user can choose any of the constraints as per the requirement.

4 The loan closer would document the detailed reasons for the rejection in the
loan file. This could include reasons such as insufficient income or assets,
a low credit score, or a high debt-to-income ratio. The loan closer may
also include any additional information or documentation that supports the
decision to reject the loan. Additionally, the loan closer may need to notify the
borrower of the loan rejection and provide them with a written explanation of
why the loan was not approved. The loan closer may include this explanation
in the loan document or provide it separately to the borrower. This writing
of the reasons is important to ensure that all parties involved understand the
reasons for the loan rejection and the next steps to take.

5 We considered the scenario that, when a loan is rejected, the credit officer
will do two things: 1.) write the annexure number of the rejection from the
guidelines/rulebook and 2.) Signature to indicate that they have reviewed the
application and made a decision. Thus, he will be writing twice into different
sections of the document, in case of rejection of the loan.

clocks to account for the time between events and the use
of the input-output channels to carry data values to/from the
monitored system along with the event helps make a step
towards practical RE.

Enforcing integrity and privacy constraints: We also enforced
the integrity and privacy constraints on the document using
cryptographic approaches. Integrity constraints ensure that the
document has not been tampered with. Following (Halle et al.
2016), we also compute digest from the sequence of data entered
by a peer and check it to see if there is any evidence of tampering.
Privacy constraints make certain that we have access to the
information in the document and any unauthorized access is
prohibited. To create privacy borders, peers are grouped as per
our requirements. The flowchart in Fig. 4 depicts our entire
strategy.

In the flowchart in Fig. 4, whenever a peer Pi of a group
Gi comes forward to access a document6, it is presented the
option to first find out if the document is tampered with or not
by verifying the digest. If the peer proceeds, the veri f y_digest
function is invoked, which takes the document D and checks
the same. If the document has been tampered with, the process
exits (necessary actions are taken), otherwise the document is
read (read_action) by the peer after giving its details (group ID,
peer ID, etc.). The peer is further asked its will to write into
the document D. If the peer wants to write into the document,
then the data to be written is read and this action sequence is
sent to the monitor which will verify if the action sequence is
violating the lifecycle constraints or not. If it is not violating the
constraints, the action is performed i.e., the document is fetched
and updated. Otherwise, the action is suppressed/prevented and
the process repeats. This way the modifications on the document
always comply with the constraints. The flowchart is divided
into two major sections/modules: the first module employing
cryptographic approaches to comply with integrity and privacy
constraints and the second module employing runtime enforce-
ment (enclosed within dotted lines) to comply with the lifecycle
constraints.

In the coming sections, we will discuss various approaches
to enforce the needed constraints on the document.

3. Enforcing integrity and privacy constraints
using cryptographic approaches

In this section, we first discuss different ways of enforcing
integrity and privacy constraints e.g., centralized workflow
approaches, decentralized workflow approaches, cryptographic
approaches, etc. We then discuss the approach followed in our
framework (i.e., cryptographic approaches), and the general
steps followed in the considered approach.

To enforce the integrity and privacy constraints discussed in
Sect. 2, one can adopt the following:

1. Mutual trust: One can rely on mutual trust, meaning each
party trusts the other. Thus, anytime a document goes

6 Note that the document can be accessed by any number of peer simultaneously.

4 G. Gupta et al.

https://github.com/PRETgroup/easy-rte

Figure 4 Process flow diagram

through a particular peer, they only access/change the part
of the document they are permitted to change. This solution
can only be used when the consequences of tampering with
a document are not that severe, which is impossible in the
real world. In the real world, we have so many business
transactions through documents and we cannot blindly trust
each other and assume that they will not forge or tamper
with the document.

2. Centralised workflow approaches: These approaches con-
sider all access and modifications controlled by the central
server (Zhao et al. 2009). These systems always have a sin-
gle point of failure, making them less reliable. Moreover,
when multiple parties are involved in business artifacts,
these systems are not trusted by everyone.

3. Decentralised workflow approaches: One can also check
the enforcement of the lifecycle on documents at runtime
and raise exceptions accordingly. Ouafi et al. (Ouafi and
Vaudenay 2009) used this concept for the lifecycle enforce-
ment of RFID tags. Runtime enforcement can also be em-
ployed for the same (discussed in Sect. 4). However, these
approaches suffer from the problem of man-in-the-middle
attacks as messages are not encrypted and the receiver
cannot verify the sender’s identity.

4. Cryptographic approaches: These approaches focus
mainly on protecting the privacy and integrity of docu-
ments. The sequence of modifications done to the docu-
ment is encrypted using cryptographic approaches which
can only be decrypted by the receiver, thus, preventing the
man-in-the-middle attacks. Document tampering can be
detected by verifying the digest (explained below) com-

puted from the sequence of data entered by the peer. The
lifecycle enforcement, on the other hand, still rely on trust
between the peers involved (Halle et al. 2016). Thus, limit-
ing the overall functioning.

The below subsection discusses the cryptographic ap-
proaches to ensure the privacy and integrity of the document in
our framework.
The cryptographic approach in our framework
In order to preserve the integrity of the document, metadata
related to its history is attached to it, as discussed by Hallé et
al. in (Halle et al. 2016). It allows any peer to retrieve the
document, check the metadata, and verify if any tampering is
done with it at any point in time.

Notations. The following notations are used throughout the
paper: E[M, K] denotes encryption of message M with key K.
Similarly, D[M, K] denotes decryption of message M with key
K. M[p, g] is the predicate which indicates if the peer p belongs
to group g. We will also use the hash function h̄ having output
values in the set H. P is the set of peers and each peer p ∈ P
has a pair of public key Kp,u and private key Kp,v. G is the
set of groups based on the classical access control permissions.
Peers can be members of more than one group. Each group
member has access to its shared key Sg, which is shared only
between group members.

The general approach (Halle et al. 2016) contains the follow-
ing steps:

3.1. Encrypting a sequence
Each peer can take action on behalf of their group. Thus, peers
encrypt actions using shared group key Sg as E[a, Sg]. Since
non-group members do not have access to the group key, they

Towards a Security Framework for Artifact-centric Workflows 5

can only know that some action is performed on the document
but cannot decrypt what “exact" action is taken. They can see
the peer-action sequence < E[a, Sg], p, g, h >, which means
peer p has performed an action E[a, Sg] on behalf of the group
g and its digest h is computed.

3.2. Computing the digest
To detect tampering with the document, we compute a digest
which is calculated using the complete history of the peer-action
sequences done from the documents’ initial state. It is calculated
using the below equation:

Let s̄∗ =
(

pa∗1 , . . . , pa∗n
)

be an encrypted peer-action se-
quence of length n, and let s′

∗
=

(
pa∗1 , . . . , pa∗n−1

)
be the

same sequence without its last peer-action pair, and pa∗i =〈
a∗i , pi, gi, hi

〉
for i ∈ [0, n]. The digest of s̄∗, noted ∇ (s̄∗), is

defined as follows:

∇ (s̄∗) ≜

 0 if n = 0

E
[

h̄
(
∇

(
s′
∗) · a∗n · gn

)
, Kpn ,v

]
otherwise

(1)
To compute the current digest, we have peer pn performing

the last action an on behalf of group gn. a∗n is its encrypted
action i.e., E[an, Sgn]. We take the hash of a concatenated

string of last digest (i.e., ∇
(

s′
∗)

), a∗n and gn. We encrypt this
hash with the private key of peer Kpn ,v.

The hash function ensures that concatenated string is of fixed
length always. Digest ∇ (s̄∗) includes details of peer name,
group name, and encrypted action so that the peer (verifier) can
detect any tampering with the action sequence.

3.3. Checking the digest
The document should contain data along with peer-action se-
quences (i.e., < E[a, Sg], p, g, h >). The peer can detect doc-
ument tampering by verifying the digest using the peer name,
group membership, and hashes for each peer-action sequence.

Given an encrypted peer-action sequence s̄∗ =(
pa∗1 , . . . , pa∗n

)
of length n and the computed digest d of last

action. Let s′
∗
=

(
pa∗1 , . . . , pa∗n−1

)
be the same sequence

without its last peer-action pair, and pa∗i =
〈

a∗i , pi, gi, hi
〉

for
i ∈ [0, n] The sequence s̄∗ verifies d if and only if ∇−1 (s̄∗, d)
where:

∇−1 (s̄∗, d) ≜

M (pn, gn) ∧ ∃ ⟨h, a∗, g⟩ : if n > 0

D
[
d, Kpn,u

]
= h̄ (h · a∗ · g)

∧a∗ = a∗n
∧g = gn

∧hn = h̄ (h · a∗ · g)

∧∇−1
(

s′, h
)

⊤ otherwise

Verifier peer can verify that for any given peer-action, only peer
pn has executed the action and it belongs to group gn.

3.4. Decrypting a sequence
Before starting the decryption of a sequence, the peer first
verifies the digest to ensure that the document’s integrity is
not compromised. Depending upon its group membership, the
peer can decrypt the sequence on behalf of its group. In the
case where the peer is a member of the group, the last action is
decrypted using the group key (D[a∗n, Sgn]), and the performed
action is included. Otherwise, when the peer does not belong to
the group, the entire peer-action sequence is discarded7.

Summary. Thus, we have handled preserving integrity and pri-
vacy constraints using this approach. 1) We have protected the
integrity of the document with the help of the digest, calculated
using the complete history of the document. If a peer tampers
the document, it can be easily detected. 2) We have protected
the document’s privacy by dividing our peers into several groups.
Although all peers can see that some action is performed, only
group members can decrypt the actual action performed. Group
division of peers will help to set read-write permissions accord-
ingly. The next section discusses enforcing lifecycle constraints
by runtime enforcement approaches.

4. Enforcing lifecycle constraints using run-
time enforcement

As discussed in Sect. 2, in this work, we employ RE approaches
to enforce the lifecycle constraints of a document at runtime.
We take the lifecycle constraints as the specifications of the
system which we want to enforce and synthesize an enforce-
ment monitor out of it using approaches proposed in (Pearce
et al. 2020)(Pinisetty et al. 2017b). As mentioned in Sect. 2,
these approaches synthesize the monitoring code directly from
the specification. The generated monitor is sound (the output
must comply with the specification), transparent (a correct input
should be unchanged), and instantaneous (the output should be
produced immediately) and thus, ensures correctness and safe
behaviour in systems. Also, they use VDTA for characteriz-
ing the specification which helps in writing better enforcement
specifications, thus ensuring compatibility with the real-world
cyber-physical and industrial systems.

VDTA for defining the lifecycle constraints. VDTA is an au-
tomaton with a finite set of locations, a finite set of discrete
clocks, external input-output channels, and internal variables.
Here, we omit the details of the formal syntax and semantics of
VDTA (Pinisetty et al. 2017b). We discuss the syntax of VDTA
briefly via example specifications from collaborative project
and loan application process scenarios.

Example 1 (Collaborative project scenario) We consider the
collaborative project system to have as many (Boolean) input
channels8 as there are peers in all groups i.e., |G1|+ |G2|, re-
quired as per the considered constraints to identify the peer

7 Discard here means that, since the artifact is shared, the action that the member
wanted to do was not allowed to be executed on it.

8 Outputs channels are not required in this framework, since we consider a
uni-directional enforcer here, where, as illustrated in Fig. 4, the enforcer
(monitor) takes the action sequence as input and authorizes/approves it w.r.t.
the lifecycle constraints.

6 G. Gupta et al.

l0start l1

l2

AG1 and (b1 and c1) :
a1 = 1

BG1 : b1 = 1
CG1 : c1 = 1

Σ \ {AG1 , BG1 , CG1}

AG1 and (!b1 or !c1):
AG1 = 0;

AG1

(BG1 : BG1 = 0) or
(CG1 : CG1 = 0)

Σ \ {AG1 , BG1 , CG1}

Σ

Figure 5 VDTA specifying the constraint: “Peer A can under-
take a research project only after it has been approved by peer
{B, C}".

performing an operation. We denote input channels by I. So,
I = {AG1 , BG1 , CG1 , CG2 , DG2 , EG2}, where each peer PGi de-
notes peer P is a member of group Gi. The alphabet Σ is
Σ = ΣI = 2I . Also, each constraint makes use of a set of
internal variables V where, V = {a1, b1, c1, c2, d2, e2}. These
variables will be set to 1 whenever its corresponding peer has
executed its modification. This will be used to track the order of
modifications done by the peers. The first constraint, defined in
Sect. 2, says that the student (A) can execute his modifications
into the document after faculty (B) and research lead (C) have
executed. We have modeled our constraint such that peer B or
C should not perform an action after peer A has executed its
action. It can be modeled as VDTA as shown in Fig. 5.

In Fig. 5, locations {l0, l1, l2} is the set of finite locations
in which location l0 is the initial location. Location {l0, l1}
are accepting locations and location l2 is the violating location.
According to the constraint, from initial location l0 upon input
BG1 (indicating that peer B of group G1 has taken the action) or
CG1(indicating that peer C of group G1 has taken the action),
the VDTA remains at location l0 and sets its internal variable
b1 and c1 to 1 (true) respectively. Whereas, it goes to violating
location l2 on the reception of input AG1 when b1 or c1 (or
both) is 0 (false), indicating peer BG1 or CG1 (or both) has not
performed their actions yet. It sets AG1 of its input channel to
0, in this case, to discard this violating action.

Upon input AG1 (indicating that peer A of group G1 has
taken the action) and when the Boolean internal variables b1
and c1 are 1 (true), the VDTA takes a transition to location l1
and sets its internal variable a1 to 1 (true). The VDTA remains
in the same location on reception of input AG1 and moves to
the violating location l2 on the reception of input BG1 or CG1

setting BG1 or CG1 of its input channel to 0 (false)9.

Example 2 (Loan application process scenario) Similar to
the collaborative project system, the loan application system
will have |G1| + |G2| + |G3| + |G4| + |G5| (Boolean) input
channels. So, I = {AG1 , BG2 , CG3 , DG4 , EG5}. The alphabet

9 We assume in constraint 1 that all the actions, performed by peers {B, C} after
peer A has executed his actions, are violating actions.

l0

start

l1 l2

l3

DG4

Σ \ {DG4 , EG5}

EG5

Σ \ {DG4 , EG5}

DG4

EG5

EG5

Σ \ {EG5}

Σ

l0

start

l1

l2

Σ \ {AG1}

AG1

Σ \ {AG1}

AG1

Σ

Figure 6 VDTA specifying the constraint: “In case of rejec-
tion of the loan, peer E can only write/approve if peer D has
written twice into the document" (top), “Peer A can only write
once into the document" (bottom).

Σ = 2I . The first constraint, defined in Sect. 2, says that the
loan closer (E) can only write/approve if the credit officer (D)
has written twice into the document, in case of rejection of the
loan. It can be modeled as VDTA as shown in Fig. 6 (top).

In Fig. 6 (top), locations {l0, l1, l2, l3} is the set of finite
locations in which location l0 is the initial location. Location
{l0, l1, l2} are accepting locations and location l3 is the violating
location. According to the constraint, from initial location
l0 upon input DG4 , the VDTA makes a transition to location
l1 (indicating peer D has modified once). Whereas, goes to
violating location l3 on reception of input EG5 . It remains
at the same location l0 on reception of other inputs. From
location l1 upon input DG4 , the VDTA makes a transition to
location l2 (indicating peer D has modified twice) and goes to
violating location l3 on reception of input EG5 . It remains at
the same location l1 on reception of other inputs. On reception
of input EG5 , from location l2, the VDTA remains at the same
safe location and goes to the violating location l3 when input
Σ \ {EG5} is received.

The same syntax works for Fig. 6 (bottom).

In Sect. 5, we will see the input traces getting enforced10

according to the example constraints and will discuss the imple-
mentation details of the framework.

10 We omit the details of the edit functions of VDTA framework to edit an
erroneous input. It can be seen in (Pinisetty et al. 2017b).

Towards a Security Framework for Artifact-centric Workflows 7

5. Implementation and discussions
Implementation Structure: We have developed a Client-Server
framework that will facilitate multiple clients to authenticate
themselves and modify the document. The implementation is
contained in two directories: socket and erte (as shown in Fig.
7).

The directory socket contains two Python files, server.py and
client.py. The server.py implements the server socket (node) and
client.py implements the client socket (node). First, the listener
server socket listens on a particular port at an IP. It stores the list
of registered peers (peer name and group name) in a dictionary.

registered_peers ={’A’:’G1’,
’B’:’G1’,
’C’:’G1’,
’C’:’G2’,
’D’:’G2’,
’E’:’G2 ’}

Then, the client socket tries to reach out to the server to form
a connection. If the client is validated (by checking the IP
address of the client and port number 11), then the connection is
established between the client and server, and they are ready
to communicate: first, the client authenticates itself with peer
name and group name, which the server matches with the
dictionary containing stored registered peers; if the client is
validated, then it is asked to enter an action to be executed.

The erte directory contains files required for implementing
the cryptographic and RE approaches. The constraints/policies
are specified in erte file contained in subdirectories inside
the Example directory, which is converted12 into an enforcer
(written in C). The actions entered by the client are saved in
actions.txt file (sample action.txt file is shown in Fig. 8). The
Python file key_generation_peers.py contains the functions
required to generate keys. The functions required to create a
document, write into it, verify the digest, etc. are contained in
Python file document_lifecycle.py.

5.1. Implementation
As our framework is divided into two modules (as depicted
in the flowchart in Fig. 4), the implementation is also
facilitated in the same way: the first module is associated
with implementing the cryptographic approaches and the sec-
ond module is associated with implementing the RE approaches.

Cryptography module. We have used the Python RSA library
to generate the private-public keys (as shown in Fig. 9). These
will be generated for each peer and group. Each peer can only
access keys related to him (peer’s personal key + groups key
from which the peer belongs). The hashlib module in Python

11 We assume here simple validation and authentication approaches: the client
is validated by an approach called “IP Address Filtering”, where a server
can validate the client’s IP address against a whitelist of trusted IP addresses.
However there can be various ways to validate/authenticate the client’s iden-
tity. Here are a few common methods: Authentication, Digital Certificates,
Challenge-Response Authentication, etc.

12 The enforcer is automatically synthesized from the VDTA using the ap-
proaches in (Pearce et al. 2020)(Pinisetty et al. 2017b).

Implementation Structure

socket

client.py

server.py

erte

easy-rte-master

Example

...

erte

enforcer_main.c

actions.txt

key_generation_peers.py

document_lifecycle.py
...

Figure 7 Implementation structure

Figure 8 Samples of write operations specified in action.txt
files for collaborative project scenario (top) and loan applica-
tion process scenario (bottom)

8 G. Gupta et al.

Figure 9 Generated sample private key (top) and public key
(bottom) for collaborative project scenario

is utilized to calculate the digest, which uses the SHA-256
algorithm to hash data.

Peers can perform digest verification at any moment to
detect any tampering with the document. If the document has
been tampered with, it will be discarded and necessary actions
will be taken. Peers can also perform read operations on behalf
of a particular group into the document, to see the actions
performed by the members of its group.

Runtime monitoring module. Peers can perform actions (write
operations) on a shared document accessible to all the peers.
Peers also need to specify “on behalf of" which group they are
performing the action. The implementation will fetch the write
action from the peer and will pass it to the monitor to detect any
violation. If the action is validated by the monitor, the system
will make the necessary modifications to the document as per
the peer.

To detect violation of the constraints by an action performed
by a peer, a monitor is constructed out of the specifications
(lifecycle constraints) provided. It will take the system event and
give an enforced output which will always satisfy the constraints.
As discussed in Sect. 4, the followed approach uses VDTA for
specifying the constraints which are written in their intended
format.

The required peer-action sequence will be generated from
the cryptographic module and stored in the shared document. A
digest will be calculated based on the last action digest, group
name, and the current action and the system will add this digest
along with other necessary details to the action sequence.

5.2. Experimentation: Collaborative project scenario
We take the first constraint of the collaborative project scenario,
defined in Sect. 2, modeled as VDTA as shown in Fig. 5 and
listing 1, which says,

“The student (A) can execute his modifications into the doc-
ument after faculty (B) and research lead (C) have executed”.

According to the framework, any (write) action which does
not obey the constraint is omitted (the modification is not
performed in the document). Tab. 1 shows the incoming write

Table 1 Incoming input and enforced input for the constraint
1 in Fig. 5

SI MI M′
I q En f Act SO

1 w(DG1 , δ) (0,0,0,0,1,0) (0,0,0,0,1,0) l0 fwdI Dnew = Dold + pa∗

2 w(BG1 , δ) (0,1,0,0,0,0) (0,1,0,0,0,0) l0 fwdI Dnew = Dold + pa∗

3 w(AG1 , δ) (1,0,0,0,0,0) (0,0,0,0,0,0) l0 edtI Dnew = Dold

4 w(CG1 , δ) (0,0,1,0,0,0) (0,0,1,0,0,0) l0 fwdI Dnew = Dold + pa∗

5 w(AG1 , δ) (1,0,0,0,0,0) (1,0,0,0,0,0) l1 fwdI Dnew = Dold + pa∗

6 w(AG1 , δ) (1,0,0,0,0,0) (1,0,0,0,0,0) l1 fwdI Dnew = Dold + pa∗

7 w(BG1 , δ) (0,1,0,0,0,0) (0,0,0,0,0,0) l1 edtI Dnew = Dold

actions into the document by the peers and the enforced actions.

1 interface of lifecycle_enforcer {
2 in int16_t W_A_G1 , W_B_G1 , W_C_G1 , W_C_G2 ,

W_D_G2 , W_E_G2;
3 out int16_t is_p1_violated :=0;
4 }
5 policy p1 of lifecycle_enforcer {
6 internals{
7 int16_t A_G1_p1 := 0 ;
8 int16_t B_G1_p1 := 0 ;
9 int16_t C_G1_p1 := 0 ;

10 }
11 states {
12 s0 {
13 −> s1 on (W_A_G1 and B_G1_p1 =1 and

C_G1_p1 =1):
14 A_G1_p1 := 1;
15 −> s0 on (W_B_G1): B_G1_p1 := 1;
16 −> s0 on (W_C_G1): C_G1_p1 := 1;
17 −> violation on (W_A_G1 and
18 (B_G1_p1 =0 or C_G1_p1 =0))
19 recover is_p1_violated := 1;
20 }
21 s1 {
22 −> s1 on (W_A_G1);
23 −> violation on (W_B_G1 or W_C_G1)
24 recover is_p1_violated := 1;
25 }
26 }}

Listing 1 VDTA specifying the constraint : “A can execute
his modifications into the document after faculty B and C
have executed".

In the table, SI and SO denote system input and output re-
spectively and MI and M′

I denote input coming to the monitor
and input enforced by the monitor respectively. q denotes the
location reached in the automaton (in Fig. 5) of constraint 1 and
En f Act denotes the enforced action by the monitor on the input
channel. fwdI denotes forwarding the input by the monitor when
the input complies with the constraint; whereas edtI denotes
editing the input by the monitor when the input does not comply
with the constraint. w(DG1 , δ) under column SI , denotes writ-
ing δ into the document by peer D of group G1. It is the input
received by the system from its peer. The tuples under column
MI hold the indexes of the peers from their respective groups
who is carrying out the write action. It is the input forwarded
by the system to the monitor. The mapping is done this way:

Towards a Security Framework for Artifact-centric Workflows 9

(AG1 : 0, BG1 : 1, CG1 : 2, CG2 : 3, DG2 : 4, EG2 : 5). Thus,
(0, 0, 0, 0, 1, 0) ≡ (AG1 : 0, BG1 : 0, CG1 : 0, CG2 : 0, DG2 :
1, EG2 : 0), for example, denotes peer D of group 2 carrying out
the write action. Only a peer-group mapping index is required
by the monitor to check the specified lifecycle constraints in our
case. The tuples under M′

I denote the indexes of the peers from
their respective groups whose action will be performed. It is
the enforced input by the monitor to the system. For example,
the enforced input (0, 0, 0, 0, 0, 0) against input (1, 0, 0, 0, 0, 0),
under column M′

I in row 3 indicates that the corresponding peer
is restrained from performing an action. Column SO gives the
modifications performed on the document.

In Tab. 1, initially the document was D. Peer D performs the
write operation and the monitor finds it satisfying the lifecycle
constraints. Thus, the monitor does not modify the input chan-
nels (M′

I = MI and En f Act = fwdI) and the corresponding
peer is allowed to perform its action. The document D (Dold) is
updated (i.e., Dnew = Dold + pa∗) by appending peer-action
sequence pa∗, which is < E[δ, S2], DG2 , G2,∇ (s̄∗) > into it,
as can be seen from the first row of Tab. 1. In the third row,
when peer A performs a write operation into the document
Dold, the monitor finds the action violating constraint 1, thus,
setting the index of the corresponding peer to 0 and enforcing
(En f Act = edtI) the input M′

I = (0, 0, 0, 0, 0, 0) which indi-
cates the action by the peer is restrained. It is because A has
performed an action before B and C both have performed. Thus,
it prevents this write operation into the document (document D
remains unchanged i.e., Dnew = Dold). This way the monitor
intervenes every time and checks the violating modifications to
the document to guarantee safe behaviour.

5.3. Experimentation: Loan application process sce-
nario

We take both the constraints of the loan application process
scenario, defined in Sect. 2, modeled as VDTA as shown in Fig.
6 and listing 2, which says,

“In case of rejection of the loan, the loan closer (E) can
only write if the credit officer (D) has written twice into the
document”, and

“The borrower (A) can only write once into the document,
as changing the loan amount, mortgage, etc. in the loan
application will have to restart the loan sanctioning process”.

According to the framework, any (write) action which does
not obey both constraints is omitted (the modification is not
performed in the document). Tab. 2 shows the incoming write
actions into the document by the peers and the enforced actions.

1 interface of loan {
2 in int16_t A, B, C, D, E;
3 out int16_t is_p1_violated :=0;
4 out int16_t is_p2_violated :=0;
5 }
6

7 policy p1 of loan {
8 internals{
9 int16_t d := 0 ;

10 }

Table 2 Incoming input and enforced input for the constraints
in Fig. 6

SI MI M′
I q En f Act SO

1 w(AG1 , δ) (1,0,0,0,0) (1,0,0,0,0) l0l1 fwdI Dnew = Dold + pa∗

2 w(BG2 , δ) (0,1,0,0,0) (0,1,0,0,0) l0l1 fwdI Dnew = Dold + pa∗

3 w(CG3 , δ) (0,0,1,0,0) (0,0,1,0,0) l0l1 fwdI Dnew = Dold + pa∗

4 w(DG4 , δ) (0,0,0,1,0) (0,0,0,1,0) l1l1 fwdI Dnew = Dold + pa∗

5 w(EG5 , δ) (0,0,0,0,1) (0,0,0,0,0) l1l1 edtI Dnew = Dold

6 w(DG4 , δ) (0,0,0,1,0) (0,0,0,1,0) l2l1 fwdI Dnew = Dold + pa∗

7 w(AG1 , δ) (1,0,0,0,0) (0,0,0,0,0) l2l1 edtI Dnew = Dold

8 w(EG5 , δ) (0,0,0,0,1) (0,0,0,0,1) l2l1 fwdI Dnew = Dold + pa∗

11

12 states {
13 s0 {
14 −> s1 on D: d := 1;
15 }
16 s1 {
17 −> s1 on D: d := 2;
18 −> s1 on (E and d=2);
19 −> violation on (E and d<2) recover

is_p1_violated :=1;
20 }
21 }}
22

23

24 policy p2 of loan {
25 states {
26 s0 {
27 −> s1 on A;
28 }
29 s1 {
30 −> violation on A recover is_p2_violated

:=1;
31 }
32 }}

Listing 2 VDTA specifying the constraints : “E can execute
his modifications into the document after D have executed
twice", and “A can only write once into the document".

In table 2, q denotes the location reached in the product
automaton of automata (in Fig. 6) of constraint 1. The mapping
is done this way: (AG1 : 0, BG2 : 1, CG3 : 2, , DG4 : 3, EG5 : 4).
In Tab. 1, initially, the document was D. Peer A performs the
write operation and the monitor finds it satisfying the lifecycle
constraints. Thus, the monitor does not modify the input chan-
nels (M′

I = MI and En f Act = fwdI) and the corresponding
peer is allowed to perform its action. The document D (Dold) is
updated (i.e., Dnew = Dold + pa∗) by appending peer-action
sequence pa∗, which is < E[δ, S1], AG1 , G1,∇ (s̄∗) > into it,
as can be seen from the first row of Tab. 1. In the fifth row,
when peer E performs a write operation into the document Dold,
the monitor finds the action violating constraint 1 (the product
automaton of automata in Fig. 6, going to violating location
l3l1), thus, setting the index of the corresponding peer to 0
and enforcing (En f Act = edtI) the input M′

I = (0, 0, 0, 0, 0)
which indicates the action by the peer is restrained. It is because

10 G. Gupta et al.

E has performed an action before D has written twice. Thus,
it prevents this write operation into the document (document
D remains unchanged i.e., Dnew = Dold). Similarly, this way
the monitor intervenes every time and checks the violating
modifications to the document to guarantee safe behaviour.

The framework is implemented and is available for download
at https://github.com/gg1711/Towards-a-Secure-Framework-for-
Artifact-centric-Workflows-Leveraging-Runtime-Enforcement.

5.4. Discussions
Here, we discuss various points related to our framework and
see how it can be utilized more efficiently.

1. Scalability: In our current approach, VDTA creates a prod-
uct automaton of all the constraints together and traverses
it (change its state), based on the input actions. This system
works well and enforces the considered constraints within
10µs in our architecture,13 which is reasonable. In the case
of very complex (or more) constraints/specifications, one
can avoid creating a product automaton and keep separate
monitors for each constraint (Pinisetty and Tripakis 2016).
In that case, the input action needs to be fed to each of the
monitors simultaneously and if none of the constraints gets
violated (all the monitors allow the input to go through),
then that action can be performed, otherwise prevented.
Thus, our framework can be scaled up efficiently even for
substantially complex lifecycle constraints.

For example, in Sect. 5.2, in order to enforce two con-
straints, first, the product automaton of automata in Fig. 6
(with the number of locations 4 and 3 respectively in their
corresponding automaton) is computed. The final product
automaton will have 12 locations, resulting in an increase
in complexity. The further increase in the number of au-
tomata or the number of locations in an automaton of the
constraints will increase the complexity of enforcement.
However, compositional techniques can avoid this.

2. Adaptability: We only monitor the lifecycle constraints in-
stead of the complete lifecycle, meaning, we specify what
should not be done rather than specifying everything that
peers should do in the document. This makes our frame-
work more adaptable to many real-life scenarios. Also,
writing constraints in our framework is relatively easier as
the enforcement monitoring framework, based on VDTA,
that we use provides many functionalities. The guards on
internal variables, external variables and, clocks help to
specify more realistic constraints. In this work, however,
we have not realized its entire potential (to write more
expressive policies). For example, complex constraints
can be formulated, like, “A and B cannot write simultane-
ously", “A or B must write within 5 ticks after C or D have
written", etc.

3. Security: The security strength of our framework depends
upon the encryption-decryption algorithms used. If the

13 Our architecture/machine is Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz
with Quadro RTX 4000 and 8GB Graphics RAM / GPU.

artifact owner wants to use some other cryptographic algo-
rithm other than RSA, they can easily do so by generating
keys using that algorithm. Some state-of-the-art crypto-
graphic algorithm includes e.g., Elliptic Curve Cryptog-
raphy (ECC), EdDSA (Edwards-curve Digital Signature
Algorithm), Diffie-Hellman key exchange, etc. The choice
of the algorithm depends on various factors such as the
level of security required, the size of the key, the speed of
the algorithm, and the computing resources available.

4. Decentralisation: Any peer can check the tampering of the
document by verifying the digest. Multiple peers can also
read simultaneously into the document. Any peer can per-
form (write) actions in the document if it does not violate
any of the lifecycle constraints. Currently, we have one
monitor to verify the actions (and enforce them). In our fu-
ture work, we plan to explore the possibility of using more
than one instance of the same monitor simultaneously or
having a decentralized migration algorithm (El-Hokayem
and Falcone 2017) (where the migration algorithm will
assign a monitor per component and the information is
passed throughout the components to eventually verify the
specification).

6. Related Work
Artifact-centric business process. Over the last decade,
business process modeling utilizing an artifact-centric approach
has gained a lot of attention. Combining both data and
process aspects makes it a valuable tool for effective business
processing modeling. Nigam et al. (Nigam and Caswell
2003) introduced the concept of artifact-centric approaches
related to workflow modeling. IBM tested his approach
internally and found it robust and simple for workflow
management. Later, a new set of requirements evolved that
their procedural artifact-centric model (Nigam and Caswell
2003) could not solve. There are many frameworks that
were proposed following the four-dimensional framework.
Business Artifacts, Lifecycles, Services, and Associations
(BALSA) is a four-dimensional framework that describes the
artifact-centric modeling methodology (Bhattacharya et al.
2009) (Hull 2008). Multiple artifact-centric business process
models with various characteristics can be generated by altering
the model and constructs involved in each dimension. ArtiNets
(Kucukoguz and Su 2010), ACP-i (Yongchareon et al. 2011),
AXML (Abiteboul et al. 2009), GSM (Hull et al. 2010), and
BPMN Extensions (Lohmann and Nyolt 2011) are examples of
concrete artifact-centric modeling approaches.

Enforcement of artifact lifecycle by centralized and static
verification approaches. There are various ways of enforcing a
lifecycle on the artifacts of a business process. For example,
Zhao et al. proposed, in (Zhao et al. 2009), a centralized
approach for constructing business processes that included
declarative and procedural methods. Ataullah et al. (Ataullah
and Tompa 2011) proposed a method for converting finite state
machine-based business policies into database triggers. In this
approach, any modification in business objects result in multiple

Towards a Security Framework for Artifact-centric Workflows 11

https://github.com/gg1711/Towards-a-Secure-Framework-for-Artifact-centric-Workflows-Leveraging-Runtime-Enforcement
https://github.com/gg1711/Towards-a-Secure-Framework-for-Artifact-centric-Workflows-Leveraging-Runtime-Enforcement

transactions being done on a (central) database. There are works
to statically analyze the lifecycle constraints. In (Bhattacharya
et al. 2007), the authors present a formal model for artifact-
centric business processes and discuss the static analysis of
different practical concerns. Gerede et al. (Gerede and Su 2007)
propose ABSL specification language for artifact lifecycle
behaviours based on computation tree logic. Determining when
the verification problem is decidable is also a study area. (Cal-
vanese et al. 2014) identifies sufficient conditions which ensure
that generated UML-based methodology models can be verified.

Runtime Monitoring. Artifact-centric business process. Over
the last decade, business process modeling utilizing an artifact-
centric approach has gained a lot of attention. Combining both
data and process aspects makes it a valuable tool for effec-
tive business processing modeling. Nigam et al. (Nigam and
Caswell 2003) introduced the concept of artifact-centric ap-
proaches related to workflow modeling. IBM tested his ap-
proach internally and found it robust and simple for workflow
management. Later, a new set of requirements evolved that their
procedural artifact-centric model (Nigam and Caswell 2003)
could not solve. There are many frameworks that were pro-
posed following the four-dimensional framework. Business
Artifacts, Lifecycles, Services, and Associations (BALSA) is a
four-dimensional framework that describes the artifact-centric
modeling methodology (Bhattacharya et al. 2009) (Hull 2008).
Multiple artifact-centric business process models with various
characteristics can be generated by altering the model and con-
structs involved in each dimension. ArtiNets (Kucukoguz and
Su 2010), ACP-i (Yongchareon et al. 2011), AXML (Abiteboul
et al. 2009), GSM (Hull et al. 2010), and BPMN Extensions
(Lohmann and Nyolt 2011) are examples of concrete artifact-
centric modeling approaches.

Enforcement of artifact lifecycle by centralized and static ver-
ification approaches. There are various ways of enforcing a life-
cycle on the artifacts of a business process. For example, Zhao
et al. proposed, in (Zhao et al. 2009), a centralized approach for
constructing business processes that included declarative and
procedural methods. Ataullah et al. (Ataullah and Tompa 2011)
proposed a method for converting finite state machine-based
business policies into database triggers. In this approach, any
modification in business objects results in multiple transactions
being done on a (central) database. There are works to statically
analyze the lifecycle constraints. In (Bhattacharya et al. 2007),
the authors present a formal model for artifact-centric business
processes and discuss the static analysis of different practical
concerns. Gerede et al. (Gerede and Su 2007) propose ABSL
specification language for artifact lifecycle behaviours based
on computation tree logic. Determining when the verification
problem is decidable is also a study area. (Calvanese et al.
2014) identifies sufficient conditions which ensure that gener-
ated UML-based methodology models can be verified. Runtime
Monitoring. Runtime monitoring encompasses lightweight and
dynamic (as compared with static monitoring approaches), veri-
fication and enforcement techniques that allow one to check (or
enforce) if a run of a system under observation complies with
(or violates) the specification. The specifications can be written

using temporal logic (Bauer et al. 2011) or using high-level
formalisms such as automata (Pinisetty et al. 2017a)(Pinisetty
et al. 2014b). It employs a monitor which checks (one) current
execution/trace of the system, thus a formal model of the system
is not required and the system can be considered as a black box.
Moreover, since it scales with the trace rather than the system
model, issues like state explosion are avoided. The Runtime
Verification (RV) monitor only examines if the system’s actual
execution is meeting or violating the specifications, whereas the
RE monitor prevents the violation if it occurs by performing cer-
tain evasive actions. Blocking the execution, changing the input
sequence by suppressing and/or adding events, and buffering
input events until a future time when they could be forwarded
are all examples of evasive actions.

In many systems, when an occasional malfunction happens
there is a need to react instantaneously. The reaction can be
shutting the system down or editing the system requests to en-
sure that the combined system complies with the specification.
This is when RE (Pinisetty et al. 2013)(Pinisetty et al. 2014a)
is needed. RE is an extension of RV aiming to circumvent
property violations. Various enforcement frameworks differ
from one another based on the enforcement mechanism (eva-
sive actions) it employs and the language it uses to model the
specifications of the system. (Schneider 2000) employs security
automaton, a variant of Buchi automaton, to specify the security
policies which are enforceable with mechanisms that work by
monitoring system execution. (Ligatti et al. 2005)(Ligatti et al.
2009) employ edit automaton to specify the policies enforce-
able by monitoring the runtime behaviors of programs. An edit
automaton combines the powers of suppression and insertion au-
tomaton. It can truncate action sequences and insert or suppress
security-relevant actions at will. (Dolzhenko et al. 2015) em-
ploys mandatory results automaton which is obligated to return
a result to the target application before seeing the next action
it wishes to execute. Works in (Pearce et al. 2020)(Pinisetty et
al. 2017b) deal with RE in reactive systems and cyber-physical
systems. They allow altering the input events and use VDTA to
specify the policies.

Enforcement of artifact lifecycle by runtime monitoring.
(Halle et al. 2016) discusses some approaches (Bauer and Fal-
cone 2011) (Colombo and Falcone 2016) which can reuse con-
cepts from decentralized runtime monitoring. Checking if a run
of a given system satisfies the formal specification of the system
is termed runtime monitoring. These approaches do monitoring
via progressing LTL- i.e., the monitor rewrites the formula to
account for the new modifications starting with the LTL speci-
fication which makes the LTL formula very long. (Halle et al.
2016) further adds the limitations of these approaches. When
document storage space is limited and the length of the sequence
is long, it becomes difficult to store the new formula. (Halle et al.
2016) enforces lifecycle where the lifecycle is taken as the spec-
ification and the sequence of document modifications is taken
as the trace to be verified. However, they do not implement
policy-based runtime enforcement. The below comparison table
3 summarizes the notable works to enforce lifecycle constraints
with their contributions and limitations. - The work by (Zhao
et al. 2009), considers all access and modifications controlled

12 G. Gupta et al.

by the central server. Thus, the functionalities required to en-
force lifecycle constraints can be implemented directly at this
central location. However, these systems always have a single
point of failure, making them less reliable. Moreover, when
multiple parties are involved in business artifacts, these systems
are not trusted by everyone. - The works by (Bhattacharya et
al. 2007) and (Gonzalez et al. 2012) present a formal model for
artifact-centric business processes and discuss the static anal-
ysis of different practical concerns. Static verification can be
used to exhaustively search the state space of the design to care-
fully investigate any possible erroneous activity with respect
to the lifecycle. However, it cannot prevent invalid behaviors
from occurring at runtime. The works by (Ouafi and Vaudenay
2009) used decentralized workflow approaches to check the
enforcement of the lifecycle on documents at runtime and raise
exceptions accordingly. They used this concept for the lifecycle
enforcement of RFID tags. However, these approaches suffer
from the problem of man-in-the-middle attacks as messages are
not encrypted and the receiver cannot verify the sender’s iden-
tity. The works by (Halle et al. 2016) used digest computation
to ensure enforcement of artifact lifecycles. They do a series of
modifications to the document which symbolized the lifecycle
of the document. The “digest" is computed after each action
(at runtime) and can be verified to detect any violation in the
lifecycle compliance. However, it assumes that the series of
modifications are done according to the order. Our framework
employs RE to develop a framework for enforcing the lifecycle
constraints on the document. We use an automata-based runtime
enforcement approach. We successfully enforce the lifecycle
“constraints" into the document and ensure safe behaviour of
the system. Runtime monitoring encompasses, lightweight and
dynamic (as compared with static monitoring approaches), veri-
fication and enforcement techniques that allows one to check (or
enforce) if a run of a system under observation complies with
(or violates) the specification. The specifications can be written
using temporal logic (Bauer et al. 2011) or using high-level
formalisms such as automata (Pinisetty et al. 2017a)(Pinisetty
et al. 2014b). It employs a monitor which checks (one) current
execution/trace of the system, thus a formal model of the system
is not required and the system can be considered as a black box.
Moreover, since it scales with the trace rather than the system
model, so issues like state explosion are avoided. The Runtime
Verification (RV) monitor only examines if the system’s actual
execution is meeting or violating the specifications, whereas the
RE monitor prevents the violation if it occurs by performing cer-
tain evasive actions. Blocking the execution, changing the input
sequence by suppressing and/or adding events, and buffering
input events until a future time when they could be forwarded
are all examples of evasive actions.

In many systems, when an occasional malfunction happens
there is a need to react instantaneously. The reaction can be
shutting the system down or editing the system requests to
ensure that the combined system complies with the specification.
This is when RE (Pinisetty et al. 2013)(Pinisetty et al. 2014a) is
needed. RE is an extension of RV aiming to circumvent property
violations.

Various enforcement frameworks differ from one another

based on the enforcement mechanism (evasive actions) it
employs and the language it uses to model the specifications
of the system. (Schneider 2000) employs security automa-
ton, a variant of Buchi automaton, to specify the security
policies which are enforceable with mechanisms that work
by monitoring system execution. (Ligatti et al. 2005)(Ligatti
et al. 2009) employ edit automaton to specify the policies
enforceable by monitoring the runtime behaviors of programs.
An edit automaton combines the powers of suppression and
insertion automaton. It can truncate action sequences and
insert or suppress security-relevant actions at will. (Dolzhenko
et al. 2015) employs mandatory results automaton which are
obligated to return a result to the target application before
seeing the next action it wishes to execute. Works in (Pearce
et al. 2020)(Pinisetty et al. 2017b) deals with RE in reactive
systems and cyber-physical systems. They allow altering the
input events and use VDTA to specify the policies.

Enforcement of artifact lifecycle by runtime monitoring. (Halle
et al. 2016) discusses some approaches (Bauer and Falcone
2011) (Colombo and Falcone 2016) which can reuse concepts
from decentralized runtime monitoring. Checking if a run of a
given system satisfies the formal specification of the system is
termed runtime monitoring. These approaches does monitoring
via progressing LTL- i.e., the monitor rewrites the formula to
account for the new modifications starting with the LTL speci-
fication which makes the LTL formula very long. (Halle et al.
2016) further adds the limitations of these approaches. When
document storage space is limited and the length of the sequence
is long, it becomes difficult to store the new formula. (Halle et al.
2016) enforces lifecycle where the lifecycle is taken as the spec-
ification and the sequence of document modifications is taken
as the trace to be verified. However, they do not implement
policy-based runtime enforcement.

The below comparison table 3 summarizes the notable works
to enforce lifecycle constraints with their contributions and
limitations.

- The work by (Zhao et al. 2009), considers all access and
modifications controlled by the central server. Thus, the
functionalities required to enforce lifecycle constraints can
be implemented directly at this central location. However,
these systems always have a single point of failure, making
them less reliable. Moreover, when multiple parties are
involved in business artifacts, these systems are not trusted
by everyone.

- The works by (Bhattacharya et al. 2007) and (Gonzalez
et al. 2012) present a formal model for artifact-centric busi-
ness processes and discuss the static analysis of different
practical concerns. Static verification can be used to ex-
haustively search the state space of the design to carefully
investigate any possible erroneous activity with respect to
the lifecycle. However, it cannot prevent invalid behaviors
from occurring at runtime.

- The works by (Ouafi and Vaudenay 2009) used decentral-
ized workflow approaches to check the enforcement of
lifecycle on documents at runtime and raise exceptions

Towards a Security Framework for Artifact-centric Workflows 13

Work Contribution Limitations

(Zhao et al. 2009) Central server Single point of failure, less reliable.

(Gonzalez et al. 2012) and (Bhattacharya et al. 2007) Static verification
Cannot prevent invalid

behaviors from occurring at runtime

(Ouafi and Vaudenay 2009) Decentralized approaches Man-in-the-middle attacks

(Halle et al. 2016) Digest computation
Assumption on the series of modification

is done according to the order.

Table 3 Comparison table with similar approaches.

accordingly. They used this concept for the lifecycle en-
forcement of RFID tags. However, these approaches suffer
from the problem of man-in-the-middle attacks as mes-
sages are not encrypted and the receiver cannot verify the
sender’s identity.

- The works by (Halle et al. 2016) used digest computation to
ensure enforcement of artifact lifecycles. They do a series
of modifications to the document which symbolized the
lifecycle of the document. The “digest" is computed after
each action (at runtime) and can be verified to detect any
violation in the lifecycle compliance. However, it assumes
that the series of modifications are done according to the
order.

Our framework employs RE to develop a framework for en-
forcing the lifecycle constraints on the document. We use an
automata-based runtime enforcement approach. We success-
fully enforce the lifecycle “constraints" into the document and
ensure the safe behaviour of the system.

7. Conclusion
This paper presents a complete framework for enforcing the life-
cycle constraints on the document while maintaining its privacy
and integrity by employing runtime enforcement and crypto-
graphic approaches. In this approach, the lifecycle constraints
are specified and are taken as the specification of the system.
The monitor is constructed from it. The modification done to the
document is taken as the input to be verified. Any modification
done by a peer on the document is according to the preferred
order or not is checked at runtime. This way the document is
protected from any invalid manipulation.

We considered scenarios of a collaborative project between
an academic and a research institute and loan application pro-
cess in banking sectors. We specified lifecycle constraints in
these scenarios that should be followed while modifying the
exchanging document. We constructed respective monitors out
of these constraints which will prevent any violating modifi-
cation to the document, thus ensuring safe behaviour in these
systems. We implemented the framework and demonstrated the
enforcement of constraints in the considered scenarios.

Acknowledgments
We would like to thank the reviewers and editors for their help-
ful comments and contributions. This work has been partially
supported by The Ministry of Human Resource Development,
Government of India (SPARC P#701), IIT Bhubaneswar Seed
Grant (SP093).

References
Serge Abiteboul, Pierre Bourhis, Alban Galland, and Bogdan

Marinoiu. The axml artifact model. In 2009 16th Interna-
tional Symposium on Temporal Representation and Reason-
ing, pages 11–17, 2009. doi: 10.1109/TIME.2009.9. URL
https://ieeexplore.ieee.org/document/5368565.

Ahmed Ataullah and Frank Tompa. Business policy modeling
and enforcement in databases. PVLDB, 4:921–931, 08 2011.
doi: 10.14778/3402707.3402730. URL https://dl.acm.org/
doi/10.14778/3402707.3402730.

Andreas Bauer and Ylies Falcone. Decentralised ltl monitor-
ing, 2011. URL https://link.springer.com/chapter/10.1007/
978-3-642-32759-9_10.

Andreas Bauer, Martin Leucker, and Christian Schallhart. Run-
time verification for ltl and tltl. ACM Trans. Softw. Eng.
Methodol., 20:14, 09 2011. doi: 10.1145/2000799.2000800.
URL https://dl.acm.org/doi/10.1145/2000799.2000800.

Kamal Bhattacharya, Cagdas Gerede, Richard Hull, Rong Liu,
and Jianwen Su. Towards formal analysis of artifact-centric
business process models. volume 4714, pages 288–304, 09
2007. ISBN 978-3-540-75182-3. URL https://link.springer.
com/chapter/10.1007/978-3-540-75183-0_21.

Kamal Bhattacharya, Richard Hull, and Jianwen Su. A Data-
Centric Design Methodology for Business Processes. 01 2009.
doi: 10.4018/9781605662886.ch023. URL https://sites.cs.
ucsb.edu/~su/papers/2008/BPM-handbook-chapter.pdf.

Diego Calvanese, Marco Montali, Montserrat Estañol, and
Ernest Teniente. Verifiable UML artifact-centric business pro-
cess models. In Proceedings of the 23rd ACM International
Conference on Information and Knowledge Management.
ACM, nov 2014. URL https://doi.org/10.1145%2F2661829.
2662050.

Christian Colombo and Ylies Falcone. Organising ltl moni-

14 G. Gupta et al.

https://ieeexplore.ieee.org/document/5368565
https://dl.acm.org/doi/10.14778/3402707.3402730
https://dl.acm.org/doi/10.14778/3402707.3402730
https://link.springer.com/chapter/10.1007/978-3-642-32759-9_10
https://link.springer.com/chapter/10.1007/978-3-642-32759-9_10
https://dl.acm.org/doi/10.1145/2000799.2000800
https://link.springer.com/chapter/10.1007/978-3-540-75183-0_21
https://link.springer.com/chapter/10.1007/978-3-540-75183-0_21
https://sites.cs.ucsb.edu/~su/papers/2008/BPM-handbook-chapter.pdf
https://sites.cs.ucsb.edu/~su/papers/2008/BPM-handbook-chapter.pdf
https://doi.org/10.1145%2F2661829.2662050
https://doi.org/10.1145%2F2661829.2662050

tors over distributed systems with a global clock. Formal
Methods in System Design, 49, 10 2016. doi: 10.1007/
s10703-016-0251-x. URL https://link.springer.com/chapter/
10.1007/978-3-319-11164-3_12.

Egor Dolzhenko, Jay Ligatti, and Srikar Reddy. Modeling
runtime enforcement with mandatory results automata. Int. J.
Inf. Sec., 14(1):47–60, 2015. URL https://doi.org/10.1007/
s10207-014-0239-8.

Antoine El-Hokayem and Yliès Falcone. Themis: A tool for de-
centralized monitoring algorithms. In Proceedings of the 26th
ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2017, page 372–375, New York, NY,
USA, 2017. Association for Computing Machinery. ISBN
9781450350761. doi: 10.1145/3092703.3098224. URL
https://doi.org/10.1145/3092703.3098224.

Cagdas Gerede and Jianwen Su. Specification and verification
of artifact behaviors in business process models. pages 181–
192, 09 2007. ISBN 978-3-540-74973-8. URL https://link.
springer.com/chapter/10.1007/978-3-540-74974-5_15.

Pavel Gonzalez, Andreas Griesmayer, and Alessio Lomuscio.
Verifying gsm-based business artifacts. In 2012 IEEE 19th In-
ternational Conference on Web Services, pages 25–32, 2012.
doi: 10.1109/ICWS.2012.31. URL https://ieeexplore.ieee.
org/document/6257786.

Sylvain Halle, Raphael Khoury, Antoine El-Hokayem, and Ylies
Falcone. Decentralized enforcement of artifact lifecycles. In
2016 IEEE 20th International Enterprise Distributed Object
Computing Conference (EDOC), pages 1–10, Sep. 2016. doi:
10.1109/EDOC.2016.7579380. URL https://ieeexplore.ieee.
org/document/7579380.

Richard Hull. Artifact-centric business process models:
Brief survey of research results and challenges. vol-
ume 5332, pages 1152–1163, 11 2008. ISBN 978-3-540-
88872-7. URL https://link.springer.com/chapter/10.1007/
978-3-540-88873-4_17#citeas.

Richard Hull, Elio Damaggio, Fabiana Fournier, Manmohan
Gupta, Fenno Heath, Stacy Hobson, Mark Linehan, Sridhar
Maradugu, Anil Nigam, Noi Sukaviriya, and Roman Vac-
ulin. Introducing the guard-stage-milestone approach for
specifying business entity lifecycles. volume 6551, pages
1–24, 09 2010. URL https://link.springer.com/chapter/10.
1007/978-3-642-19589-1_1.

Esra Kucukoguz and Jianwen Su. On lifecycle constraints of
artifact-centric workflows. volume 6551, pages 71–85, 09
2010. ISBN 978-3-642-19588-4. URL https://link.springer.
com/chapter/10.1007/978-3-642-19589-1_5.

Jay Ligatti, Lujo Bauer, and David Walker. Edit automata:
Enforcement mechanisms for run-time security policies. In-
ternational Journal of Information Security, 4:2–16, 02 2005.
doi: 10.1007/s10207-004-0046-8. URL https://link.springer.
com/article/10.1007/s10207-004-0046-8.

Jay Ligatti, Lujo Bauer, and David Walker. Run-time enforce-
ment of nonsafety policies. ACM Trans. Inf. Syst. Secur.,
jan 2009. ISSN 1094-9224. URL https://doi.org/10.1145/
1455526.1455532.

Niels Lohmann and Martin Nyolt. Artifact-centric modeling
using bpmn. In ICSOC Workshops, 2011. URL https://link.

springer.com/chapter/10.1007/978-3-642-31875-7_7.
A. Nigam and N. S. Caswell. Business artifacts: An approach

to operational specification. IBM Systems Journal, 42(3):428–
445, 2003. doi: 10.1147/sj.423.0428. URL https://ieeexplore.
ieee.org/document/5386806.

Khaled Ouafi and Serge Vaudenay. Pathchecker: An rfid appli-
cation for tracing products in supply-chains. Technical report,
2009.

Hammond Pearce, Srinivas Pinisetty, Partha S. Roop, Matthew
M. Y. Kuo, and Abhisek Ukil. Smart i/o modules for
mitigating cyber-physical attacks on industrial control sys-
tems. IEEE Transactions on Industrial Informatics, 16(7):
4659–4669, 2020. doi: 10.1109/TII.2019.2945520. URL
https://ieeexplore.ieee.org/document/8859335.

Srinivas Pinisetty and Stavros Tripakis. Compositional runtime
enforcement. pages 82–99, 06 2016. ISBN 978-3-319-40647-
3. doi: 10.1007/978-3-319-40648-0_7. URL https://dl.acm.
org/doi/10.1007/978-3-319-40648-0_7.

Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, Hervé Marc-
hand, Antoine Rollet, and Omer Landry Nguena Timo. Run-
time enforcement of timed properties. In Shaz Qadeer and
Serdar Tasiran, editors, Runtime Verification, pages 229–
244. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-
35632-2. URL https://link.springer.com/chapter/10.1007/
978-3-642-35632-2_23.

Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, and Hervé
Marchand. Runtime enforcement of regular timed prop-
erties. In Proceedings of the 29th Annual ACM Sympo-
sium on Applied Computing, SAC ’14, page 1279–1286,
New York, NY, USA, 2014a. ISBN 9781450324694. URL
https://doi.org/10.1145/2554850.2554967.

Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, Hervé Marc-
hand, Antoine Rollet, and Omer Nguena Timo. Runtime
enforcement of timed properties revisited. Form. Methods
Syst. Des., 45(3):381–422, dec 2014b. ISSN 0925-9856. URL
https://doi.org/10.1007/s10703-014-0215-y.

Srinivas Pinisetty, Viorel Preoteasa, Stavros Tripakis, Thierry
Jéron, Yliès Falcone, and Hervé Marchand. Predictive run-
time enforcement. Formal Methods in System Design, 51,
08 2017a. doi: 10.1007/s10703-017-0271-1. URL https:
//link.springer.com/article/10.1007/s10703-017-0271-1.

Srinivas Pinisetty, Partha S. Roop, Steven Smyth, Nathan Allen,
Stavros Tripakis, and Reinhard Von Hanxleden. Runtime
enforcement of cyber-physical systems. ACM Trans. Embed.
Comput. Syst., 16(5s), sep 2017b. ISSN 1539-9087. URL
https://doi.org/10.1145/3126500.

Fred B. Schneider. Enforceable security policies. ACM Trans.
Inf. Syst. Secur., 3(1):30–50, feb 2000. ISSN 1094-9224.
URL https://doi.org/10.1145/353323.353382.

Sira Yongchareon, Chengfei Liu, and Xiaohui Zhao. An artifact-
centric view-based approach to modeling inter-organizational
business processes. pages 273–281, 01 2011. ISBN 978-
3-642-24433-9. URL https://link.springer.com/chapter/10.
1007/978-3-642-24434-6_22.

Xiangpeng Zhao, Jianwen Su, Hongli Yang, and Zongyan Qiu.
Enforcing constraints on life cycles of business artifacts. In
2009 Third IEEE International Symposium on TASE, pages

Towards a Security Framework for Artifact-centric Workflows 15

https://link.springer.com/chapter/10.1007/978-3-319-11164-3_12
https://link.springer.com/chapter/10.1007/978-3-319-11164-3_12
https://doi.org/10.1007/s10207-014-0239-8
https://doi.org/10.1007/s10207-014-0239-8
https://doi.org/10.1145/3092703.3098224
https://link.springer.com/chapter/10.1007/978-3-540-74974-5_15
https://link.springer.com/chapter/10.1007/978-3-540-74974-5_15
https://ieeexplore.ieee.org/document/6257786
https://ieeexplore.ieee.org/document/6257786
https://ieeexplore.ieee.org/document/7579380
https://ieeexplore.ieee.org/document/7579380
https://link.springer.com/chapter/10.1007/978-3-540-88873-4_17#citeas
https://link.springer.com/chapter/10.1007/978-3-540-88873-4_17#citeas
https://link.springer.com/chapter/10.1007/978-3-642-19589-1_1
https://link.springer.com/chapter/10.1007/978-3-642-19589-1_1
https://link.springer.com/chapter/10.1007/978-3-642-19589-1_5
https://link.springer.com/chapter/10.1007/978-3-642-19589-1_5
https://link.springer.com/article/10.1007/s10207-004-0046-8
https://link.springer.com/article/10.1007/s10207-004-0046-8
https://doi.org/10.1145/1455526.1455532
https://doi.org/10.1145/1455526.1455532
https://link.springer.com/chapter/10.1007/978-3-642-31875-7_7
https://link.springer.com/chapter/10.1007/978-3-642-31875-7_7
https://ieeexplore.ieee.org/document/5386806
https://ieeexplore.ieee.org/document/5386806
https://ieeexplore.ieee.org/document/8859335
https://dl.acm.org/doi/10.1007/978-3-319-40648-0_7
https://dl.acm.org/doi/10.1007/978-3-319-40648-0_7
https://link.springer.com/chapter/10.1007/978-3-642-35632-2_23
https://link.springer.com/chapter/10.1007/978-3-642-35632-2_23
https://doi.org/10.1145/2554850.2554967
https://doi.org/10.1007/s10703-014-0215-y
https://link.springer.com/article/10.1007/s10703-017-0271-1
https://link.springer.com/article/10.1007/s10703-017-0271-1
https://doi.org/10.1145/3126500
https://doi.org/10.1145/353323.353382
https://link.springer.com/chapter/10.1007/978-3-642-24434-6_22
https://link.springer.com/chapter/10.1007/978-3-642-24434-6_22

111–118, July 2009. doi: 10.1109/TASE.2009.46. URL
https://ieeexplore.ieee.org/document/5198493.

About the authors
Gaurav Gupta received B.Tech. + M.Tech. degree in com-
puter science and engineering from Indian Institute of Tech-
nology Bhubaneswar, India. You can contact the author at
gg13@iitbbs.ac.in.

Saumya Shankar is a research scholar at School of Electrical
Sciences, Indian Institute of Technology Bhubaneswar, India.
You can contact the author at ss117@iitbbs.ac.in or visit https:
//www.iitbbs.ac.in/school-people-scholars.php?code=es.

Srinivas Pinisetty is an assistant professor at School of Elec-
trical Sciences, Indian Institute of Technology Bhubaneswar,
India. You can contact the author at spinisetty@iitbbs.ac.in or
visit https://www.iitbbs.ac.in/profile.php/srinivaspinisetty/.

16 G. Gupta et al.

https://ieeexplore.ieee.org/document/5198493
mailto:gg13@iitbbs.ac.in?subject=Your paper "Towards a Security Framework for Artifact-centric Workflows Leveraging Runtime Enforcement"
mailto:ss117@iitbbs.ac.in?subject=Your paper "Towards a Security Framework for Artifact-centric Workflows Leveraging Runtime Enforcement"
https://www.iitbbs.ac.in/school-people-scholars.php?code=es
https://www.iitbbs.ac.in/school-people-scholars.php?code=es
mailto:spinisetty@iitbbs.ac.in?subject=Your paper "Towards a Security Framework for Artifact-centric Workflows Leveraging Runtime Enforcement"
https://www.iitbbs.ac.in/profile.php/srinivaspinisetty/

