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ABSTRACT Low-Code Development Platforms (LCDPs) offer the benefit of rapid application development, but they sometimes
result in inconsistencies while the generated application is in operation. Such inconsistencies often occur despite passing
technical validations, indicating that the generated application functions properly without errors. However, issues arise due
to semantic discrepancies, leading to conflicting stakeholder perspectives on shared data. The inconsistencies can emerge
from model and data co-evolution, but existing inconsistency management techniques, e.g., in databases, multi-view and
multi-paradigm modeling, are not well suited to the particular challenges in LCDPs. These approaches are inadequate in this
context as they rely on relationships and adherence, such as conformance, which are not applicable in LCDPs. We present
a technique and formalization for detecting inconsistencies between various artifacts based on their corresponding rules in
low-code applications. We evaluate the correctness of our approach on a domain-specific low-code platform, and assess its
scalability, sensitivity to rule mapping complexity, and efficiency with experiments using synthetic data. The results show that
the proposed approach is capable of detecting inconsistencies while maintaining a desirable level of efficiency, scalability, and
sensitivity.
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1. Introduction
Low-Code Development Platforms (LCDPs) have become in-
creasingly popular as they provide an accessible graphical
interface for the rapid development of custom applications.
They allow non-technical users (“citizen developers”) to build
applications without needing extensive programming knowl-
edge (Di Ruscio et al. 2022). Creating software solutions with
LCDPs involves defining high-level specifications or models,
and then leveraging automation to generate and deploy applica-
tions that end-users can utilize. The generated solution encom-
passes various artifacts, including runtime data, metadata for
configuring the application (i.e., models), and source code.

In low-code development, inconsistencies can stem from the
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co-evolution of models and data at runtime within the platform,
or from the absence of well-defined relationships, such as con-
formance, between various components in LCDPs (Zaheri et
al. 2021). Furthermore, within a low-code environment, citizen
developers are actively involved in modifying functionalities
while the generated application is operational. This aspect distin-
guishes low-code development from other paradigms, as citizen
developers do not adhere to the same guidelines and develop-
ment practices as platform developers. Consequently, enforcing
built-in consistency mechanisms becomes challenging in this
context (Zaheri 2022).

Existing inconsistency management techniques, such as
those developed for database evolution (Lin & Neamtiu 2009),
round-trip engineering (Sendall & Küster 2004; Egyed 2011),
and model evolution (Khelladi et al. 2020), fall short of provid-
ing a comprehensive detection mechanism suitable for LCDPs.
Most of these techniques are only relevant during the design
phase, primarily focusing on identifying syntactic violations.
However, they may not effectively address non-syntactic issues
even when the syntax is correct. We provide further elaboration
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on this topic in Section 8. Instead of these methods, we need
inconsistency management techniques specific to the particu-
lar challenges of LCDPs (elaborated on in Section 3.2). Such
techniques are crucial for the long term success of low-code
applications (Di Ruscio et al. 2022). Inconsistency management
has also been extensively studied in model-driven engineer-
ing (Lucas et al. 2009), with the goal to repair inconsistent
model views using specialized “consistency rules” (Mens &
Van Der Straeten 2007).

We take the view of (Dávid 2019), where consistency is
defined based on the agreement of the evaluation of properties
in different views. In the context of LCDPs, these properties
are evaluated by technical and business rules that are encoded
in the platform and the generated application for data validation.
This consistency problem pertains to conflicting perspectives of
the roles involved in the development of a low-code application,
with respect to existing data.

In this paper, we aim to address the problem of consistency
management in data-centric LCDPs, their specifications, and
their generated artifacts, where inconsistencies can happen at
runtime due to model/data co-evolution. Such inconsistencies
emerge in the same or different levels of abstraction and, thus,
can have the form of horizontal or vertical inconsistency (Van-
herpen et al. 2016). We focus on the problem of inconsis-
tency detection in LCDPs, aiming to help administrators and
application developers detecting data inconsistencies and non-
compliance with business rules. Our emphasis is on identifying
inconsistencies, as opposed to resolving them, so that the citizen
developers and application users have the necessary informa-
tion to make informed choices with regards to the generated
application. The provision of feedback on the outcomes of their
decisions, as well as the resolution of inconsistencies, are topics
for future exploration.

In our previous work, we investigated the concept of con-
sistency in LCDPs, illustrating scenarios where artifacts were
technically correct but lacked business logic accuracy. We also
outlined a set of research challenges to guide further explo-
ration (Zaheri et al. 2021). Here, our focus shifts to addressing
the research challenges of identifying and detecting inconsisten-
cies in low-code setups, and we make the following contribu-
tions:

1. Explanation of the distinctive challenges for consistency
management in LCDPs;

2. Formalization of the consistency problem for LCDPs;

3. Novel approach to detect inconsistencies in LCDP applica-
tions.

We evaluate the effectiveness of the inconsistency detection
on a case study of a domain-specific low-code platform. We
also evaluate the performance of our approach with respect to
sensitivity, scalability, and efficiency on synthetic data.

The paper is organized as follows. First, we provide some
background on LCDPs in Section 2. In Section 3, we present
a detailed running example and explain a set of challenges for
consistency management in LCDPs. In Section 4, we provide a

formalization of consistency for LCDPs using first-order logic.
This formalization ensures clarity in the detection of inconsis-
tencies and enables the automation of the detection process. In
Section 5, we present a systematic method for detecting incon-
sistencies based on automated formal reasoning and modeling
techniques. In Section 6, we show that our approach is capable
of detecting inconsistencies in low-code applications. In Sec-
tion 7, we evaluate the sensitivity, scalability, and efficiency of
our approach using synthetic data. In Section 8, we discuss the
large body of related work on consistency detection, and put
forth the argument that it does not fully address the problem for
LCDPs. Finally, we conclude in Section 9.

2. Background on Low-Code Development Plat-
forms

According to Cabot’s informal definition (Cabot 2023), low-
code development is a subset of Model-Driven Engineering
(MDE) where models play a fundamental role and guide soft-
ware engineering tasks. Specifically, low-code development is
a style of MDE applied to the development of data-intensive
web/mobile applications.

In line with the definition by Di Ruscio et al., we define
LCDPs as platforms that aim to reduce the effort required
for developing and maintaining specific types of applications,
typically developed by “citizen developers” who create the
high-level specifications from which most artifacts are gen-
erated (Di Ruscio et al. 2022). The term “artifacts” is used
to refer to the various assets that make up the generated ap-
plication, LCDP, and any data created by end-users during its
operation. This may include code, schemas, interfaces, and
data. Citizen developers and system administrators may need to
occasionally manipulate and complete the generated artifacts.
All components, including the high-level specifications and gen-
erated artifacts, may evolve during the operation of the software
application, leading to potential inconsistencies among the var-
ious artifacts. Thus, it is important to consider the issue of
consistency during the operation of a low-code application.

We distinguish between general-purpose and domain-specific
LCDPs. General-purpose LCDPs, like OutSystems (OutSys-
tems 2023) and Mendix (Mendix 2023), are designed to create a
wide range of applications for various use cases and industries.
These platforms typically provide a visual development environ-
ment with drag-and-drop components, pre-built templates, and
integrated workflows to enable rapid application development
without extensive coding. In contrast, domain-specific LCDPs
are tailored to a particular domain or industry. These platforms
are designed with a narrower focus to create application variants
with a fixed set of workflows, business rules, and presentation
options. Tools like those found in SQLMaestro tool suite (SQL-
Maestro 2023) fall under this category as they allow generating
web applications based on a given SQL database.

Sahay et al. devised a taxonomy of LCDPs by categorizing
a set of distinct features. They analyzed eight prevalent LCDPs
to identify their similarities and differences (Sahay et al. 2020).
Subsequently, Gurcan et al. used the taxonomy and a report
by Gartner (Wong et al. 2023) to choose three market-leading
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LCDPs for testing and evaluating two development scenarios.
The selected platforms, OutSystems, Microsoft PowerApps, and
Mendix, possess various attributes such as prebuilt components,
easy application building and publishing, integration of multiple
services, responsive mobile and web application building, se-
curity measures, and real-time dashboards (Gurcan & Taentzer
2021).

Both models at runtime and code generation techniques are
employed in creating LCDPs, each with its own set of advan-
tages and disadvantages (Sahay et al. 2020; Khorram et al. 2020;
Bloomberg 2018). In models at runtime research, high-level
specifications (models) are interpreted to manage the applica-
tion’s execution during operation. However, modifying them,
especially if the changes break compatibility, can lead to data
loss. For instance, in Mendix, which uses models at runtime,
modifications to models (such as altering the maximum length
of a field) that cannot accommodate existing data may result
in data truncation by the interpreter. On the other hand, code
generation-based platforms like OutSystems proactively prevent
regeneration of the application in such scenarios.

The challenges outlined in Section 3.2 are relevant for data-
centric LCDPs irrespective of whether they use code generation
or models at runtime. Currently, LCDPs primarily rely on con-
ventional syntactic validation and prevention mechanisms or
opt for simplistic solutions, such as adjusting data to new con-
straints. In our study, we aim to demonstrate that relying solely
on such conventional validation mechanisms and technical rules
is insufficient. There are scenarios where artifacts fail to meet
the business requirements of stakeholders even though they pass
these validations and are technically correct.

After evaluating the previous works, the authors chose Out-
Systems (OutSystems 2023) for their study due to its code
generation mechanism that allows for the exploration of the
co-evolution of specifications and computation logic, as well
as its active forum and community. These traits facilitated the
implementation of our prototype, demonstrating the proof of
concept of our approach and enabling its evaluation.

We justify our study by considering a hypothetical general-
purpose LCDP, highlighting that our approach and formalization
are not tied to any specific LCDP. We assess the validity of our
approach using a domain-specific low-code platform with real
data. For performance evaluations, we focus on OutSystems
since there is insufficient data available for our domain-specific
LCDP. Furthermore, we can evaluate our approach with both
domain-specific and general-purpose LCDPs, as elaborated in
the subsequent sections.

3. Motivation

We introduce a running example that presents a typical scenario
of inconsistency with LCDP-based solutions. This illustrative
scenario enhances comprehension of the complexities involved
and offers a tangible context for the conceptual discussions in
the paper’s subsequent sections. We then outline distinctive
challenges encountered in managing consistency in LCDPs.
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Software System

Specific System

Assignments

Task Assignments

Task assignment 
process

Metadata

Data

Logic

generates

Components of low-code platform
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Figure 1 Components of the target low-code platforms

3.1. Running example
LCDP development involves multiple stakeholders, with differ-
ent roles, goals, and agendas. To better illustrate and clarify
them, as well as to motivate and explain our approach, we in-
troduce a running example of SimplePM, a data-centric project
management application developed using a hypothetical general-
purpose LCDP, called LoCo. In our running example, our aim
is to demonstrate scenarios where artifacts are considered tech-
nically correct, meeting all syntactic and technical requirements.
However, they may not align with the intended business logic.

We emphasize that our approach and formalization is inde-
pendent of any specific LCDP. The LoCo example is meant to
be a stand-in for any data-centric LCDP.

Figure 1 illustrates a pertinent segment of the artifacts in-
volved in the low-code application generation process. The
low-code platform we target initiates with a user-defined spec-
ification, serving as the foundation for generating a software
system. Notably, not all components of the system undergo gen-
eration. Therefore, we distinguish between elements common
to any application produced by the platform and those specific
to the given specification. Certain parts of the system, which
include the structure of the apps generated by low-code systems,
are referred to as the common system. The specific system is
the part of the eventual application that is generated based on
the high-level specifications in the LCDP. The white rectangles
depicted in the figure represent items from our running example,
aimed at enhancing clarity within the figure.

The specification typically includes a configuration, similar
to the configuration panel of an LCDP. In our case, we refer
to the hypothetical panel of LoCo. The configuration section
includes all the modeling and specifications performed by the
citizen developer (i.e., the application developer in our context)
to generate the application. The generated system encompasses
metadata, responsible for storing and encoding information
derived directly from the configuration. This may include el-
ements like the schema and the definition of the Assignments
table, which is an instance of JuncTable. The user-generated
data is stored within the application and conforms to metadata.
An example of that involves task assignments to employees, that
are user-generated data that comply with the constraints of the
Assignments table which is an instance of JuncTable.

Moreover, other aspects of the application are generated
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to enforce computational logic, accompanied by diverse user
processes represented as Logic. These processes include, for
instance, the task assignment procedure in SimplePM.

LoCo has a typical LCDP structure. LoCo involves four
distinct roles depicted in Figure 2:

– The LCDP developer is responsible for building and main-
taining the LoCo platform.

– The application developer is a citizen developer who uses
LoCo to build and maintain SimplePM.

– The application user is the target user of SimplePM who
performs data entry and various project management tasks.
In this case, users are project managers.

– The administrator is another user of SimplePM with ad-
ditional administrative privileges to configure SimplePM.

The first two roles operate in the Development (Dev) domain,
while the other two are in the Operations (Ops) domain.

In our example, the application developer uses LoCo to build
SimplePM because it provides a functionality to easily define
many-to-many data relationships and imposition of data rules
(noted as JuncTable in Figure 2). This LoCo functionality estab-
lishes a relationship between two tables with a JuncTable, and
each record from one table can be associated with up to 1 024
records from the other table, because of technical constraints
of the database. We denote this restriction as rule r1, which is
a technical rule. By technical rules, we mean guidelines and
restrictions related to the technical aspects of the development
process and architecture provided by the LCDP developer. The
application developer, gives the administrator elevated privi-
leges with which they can configure SimplePM by modifying
some of its logic and metadata at runtime. However, the adminis-
trator cannot regenerate and redeploy SimplePM. Similarly, the
application developer of SimplePM does not control the LoCo
platform, which is used to develop many other applications.

To meet specific business requirements, application develop-
ers, such as the application developer of SimplePM, can instan-
tiate and customize the JuncTable and its accompanying rule r1,
which are provided by LoCo. For instance, SimplePM includes
a data model with tables for employees (noted as d1 in Figure 2),
tasks (noted as c1 in Figure 2), and assignments (noted as a1 in
Figure 2). The assignments table stores the relationship between
employees and tasks, and has another view or representation for
the Ops domain (noted as b1 in Figure 2). At the beginning of
our illustrative scenario, the SimplePM application developer
enforces two business rules in LoCo. First, a task must be as-
signed to exactly three employees (r2). Second, out of the three
employees assigned to a task, two must be junior and one must
be senior (r3). These rules are business rules or statements that
define or constrain some aspect of a business, and adhere to
LoCo’s constraint for defining junction tables (r1). The appli-
cation developer also grants the administrator access privileges
to modify these rules from inside the SimplePM application.
This way, the administrator can adapt SimplePM to evolving
business requirements without redeploying the software.

As data is an integral component of all LoCo apps, the LCDP
vendor provides some default consistency management mech-
anisms. These mechanisms may not sufficiently address the

specific concerns in the generated application and end-user con-
tent, leading to potential challenges to the overall health of the
system. Inconsistencies may arise from the co-evolution of the
model and data, leading to unexpected behavior and incorrect
results. In our example, upper management of the company
using SimplePM decided to manage resources more efficiently.
Consequently, the administrator changes rule r2 to reduce the
number of employees that can be assigned to two. However,
this change can result in inconsistent data, as some tasks already
stored in SimplePM have more than two employees assigned
to them. In other words, the data already stored in SimplePM
(Assignment records) may violate the new rule (noted as r′2 Fig-
ure 2). For example, the project manager had already assigned
the Triumph task to John Junior, Jane Junior, and Sam Senior.
Additionally, this change causes rule r3 to be violated, as the
administrator can no longer assign exactly two juniors and one
senior to a task.

We have introduced administrators to show how cross-level
rule consistency might appear in LCDPs. Our objective is to
illustrate the concept of cross-level consistency, where each
level must adhere to the rules and constraints of the preceding
level, while also possessing specific rules within their own
level and domain. Although this concept is well-established in
other domains, such as programming languages, it necessitates
further exploration in the context of LCDPs and their resultant
applications. For instance, in Python 2.x, the maximum integer
value is contingent upon the execution environment, thereby
imposing constraints on all integer-related rules within a Python
program. In our example, we introduce the “administrator” role
to demonstrate how rules at one level can interact with the
constraints of the preceding level. Specifically, we assume that
LoCo restricts the number of records in junction tables to a
maximum of 1024 in generated applications. This technical rule
is known by the app developer, who defines the business rule
r2, stipulating that each task must be assigned to 3 employees.
The app developer is restricted to defining business rules that
comply with the technical rules and limitations of the LCDP.
In our scenario, r2 is a specialization of r1. Similar to the app
developer, the administrator oversees assignments and has the
authority to adjust business rules. Hence, the administrator must
also adhere to this technical rule.

This scenario illustrates an interesting consistency manage-
ment challenge. The runtime data and the application are tech-
nically correct in the Dev domain, as they adhere to the require-
ments of a correct many-to-many relationships according to
rule r1. However, they are not correct from the standpoint of
the administrator, because their particular business rules are
violated. We highlight that inconsistency stems from differ-
ing points of view regarding the existing data. More explicitly,
all data in the example appear valid from the point of view of
the platform’s technical rules. However, when viewed through
the lens of business rules, a problem emerges. The problem
arises not from previously created data failing to meet business
rules but from a discrepancy between the evaluation results
of the technical and business rules. We identify inconsistent
perspectives by examining conflicting evaluation results of tech-
nical and business rules linked with artifacts. When we refer to
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Figure 2 Roles involved in the development and operation of SimplePM, a low-code app using the LoCo LCDP

“rules”, we specifically mean technical or business rules in the
platform and the application, not the consistency rules used in
model consistency management approaches (Reder & Egyed
2012) (Lucas et al. 2009). Such approaches define specialized
consistency rules that are evaluated whenever changes occur in
development artifacts. Our approach does not depend on the
creation of additional, specialized consistency rules. Instead
we rely on observing inconsistencies in the evaluation of rules
already encoded in the LCDP and low-code applications.

Our target inconsistencies cannot be resolved by taking the
system offline, as the live and operational SimplePM cannot
be taken offline by the administrator, and LoCo, which may
have multiple live applications, including SimplePM, cannot
be taken offline by the application developer. Moreover, it may
not always be desirable for the SimplePM developer to update
the high-level specifications and regenerate the application, as
this might cause data loss or corruption. Finally, the LCDP
developer has good reasons to be conservative about changing
the LoCo platform (e.g., by adding verification checks) to avoid
impacting other applications running on LoCo.

Two primary approaches exist for managing inconsistencies:
preventive and allow-and-recover (Dávid 2019). Preventing
the emergence of inconsistencies has its own advantages and
disadvantages. If LCDP developers could have prevented such
issues, they would have incorporated them into their (techni-
cal) validation rules. However, research suggests that allowing
inconsistencies to surface and managing, tolerating, and flag-
ging them for user attention, rather than immediately enforcing
correction or prevention, can be beneficial (Balzer 1991; Finkel-
stein 2000). For instance, it can help prevent premature com-
mitment to design choices. Also, some of these inconsistencies
could be workarounds that LCDP users incorporate to address
actual LCDP limitations, potentially resulting in missing fea-
tures. Therefore, detecting these inconsistencies and, in our

future research, understanding and addressing the uncertainties
before resolving them can uncover valuable insights for both
the LCDP developer and the app developer and administrator.

This shows the necessity for a systematic approach to detect
inconsistencies in systems where technical rules are passed, pre-
venting system failures, while some business rules are violated.

3.2. Consistency challenges specific to LCDP
LCDPs provide various ways for defining the high-level specifi-
cations from which the eventual application is generated. These
high-level specifications can be regarded as models for generat-
ing the application, similar to MDE practices. Unlike traditional
modeling approaches, LCDPs store almost everything as data,
presenting unique challenges in data consistency. Not all data
in LCDPs are equal, warranting specialized consistency tech-
niques. Additionally, LCDPs face distinctive pressures such
as the absence of metalevel separation and the requirement for
online functionality. Consequently, consistency checking in
LCDPs must focus on the data-centric aspect. From our experi-
ences in developing applications with different LCDPs such as,
OutSystems, Mendix, and Microsoft PowerApps, we identify
the following consistency challenges in LCDPs:

C1) LCDP stakeholders often have conflicting points of view
on what inconsistency is and how it can be managed.
For example, a change instigated by the administrator of
an application causes inconsistencies from the project man-
ager’s standpoint but not from the application developer’s
point of view.

C2) In contrast to MDE, LCDPs do not mandate models
conforming to explicitly defined languages or metamod-
els. The LCDP vendor provides functionalities to the ap-
plication developers. The developers, in turn, possess the
capability to permit administrators to configure segments
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of logic and metadata while the system is in operation. Typ-
ically, there exists no conformance relationship between
the high-level specifications and the generated application.
Consequently, any modifications administrators make are
accommodated, whereas the high-level specifications and
the generated application do not represent identical con-
cepts.

C3) Business rules can be stored as (meta)data and can be
modified during the operation of the application. Like
in our example, the application developer may grant the
administrator privileges to modify the business rules from
within the generated application. Given C2, if not managed
properly, this can result in inconsistencies that are hard to
detect and manage.

C4) Regenerating artifacts from updated specifications in
LCDPs may result in loss of data or system state. In
our example, even if the application developer decides to
update the SimplePM specifications and regenerate the
application, there is no guarantee that data already entered
in the system will not be lost or corrupted. If data loss
were not a concern, regenerating the application might be
a simple solution to inconsistencies.

We emphasize that challenges C1 and C3, although demon-
strated using the administrator role in our example, extend be-
yond this role. The focus of these challenges lies in the cross-
level consistency phenomenon discussed in Section 3.1. Here,
a modification at one level leads to cross-level inconsistency
with respect to existing data, indicating conflicting perspectives
among roles from different levels. Furthermore, as described in
challenge C3, rule specifications in LCDPs are often stored as
metadata, which can result in scenarios where during evolution,
certain data components deviate from their initial specifications.
Consequently, within the low-code environment, co-evolution
of specifications and data can occur while the generated appli-
cation remains operational.

In addition to these four challenges, we highlight the im-
portance of efficiency as a requirement. We aim to develop
an approach that introduces little overhead to existing LCDP
consistency management mechanisms, while ensuring accurate
and reliable inconsistency detection. In a low-code development
setup, administrators may frequently modify rules over the ap-
plication’s lifespan. These changes usually happen in real-time:
an administrator may edit and save a rule, potentially introduc-
ing inconsistencies, while application users continue using the
system, and without observing any obvious application failure.
If an inconsistency detection layer is integrated into the LCDP,
it must be able to provide stakeholders accurate feedback, while
avoiding the introduction of resource consumption overhead
that might cause a degradation of the quality of service.

In this paper, we present an approach to efficiently tackle the
four challenges by identifying inconsistencies that could emerge
due to modifications in the application specification, metadata,
or data.

… …
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A1

A2

Ak

LCDP and app-level 
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i.e., specialization

Manual (assisted) 
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Figure 3 LCDP-level and app-level rules

4. Formalization of Consistency

We now formalize system-level inconsistency in LCDPs where
a runtime application is generated from some high-level spec-
ification. Artifacts, as introduced in Section 2, are typically
associated with various rules, formal or informal, explicit or
implicit, that dictate how artifacts must be structured or related
to one another. The violation of these rules may result in incon-
sistency within the system.

To capture consistency relations across different artifacts and
rules, we extend the consistency definition proposed in (Dávid
2019) to encompass systems of rules. In the example of Fig-
ure 2, a1 and b1 are inconsistent with respect to existing assign-
ment records, because evaluations of r1 and r′2 on a1 and b1,
respectively do not agree. The Triumph task assigned to three
employees satisfies the technical rule r1 “JuncTable records per
primary key ≤ 1024”, but it does not comply with the new busi-
ness rule r′2 “each task assigned to 2 employees”. Additionally,
evaluations of the two business rules r′2 “each task assigned to 2
employees” and r′3 “2 juniors and 1 senior” on b1 do not agree,
meaning that these rules are also no longer consistent with re-
spect to existing assignment records. In other words, the system
is in an inconsistent state, where the application continues to
function without failure due to adherence to technical database
constraints. However, this situation is risky as the inconsistency
may go unnoticed and unmanaged, potentially compromising
the quality of the generated application.

We highlight that when we assess a single rule on an artifact,
we validate its correctness, not its consistency. However, shift-
ing from correctness to consistency as explained in Section 3.1,
and allowing inconsistencies to emerge rather than preventing
them might yield valuable insights. Furthermore, analyzing
pairs of rules can uncover conflicting evaluations between the
Dev and Ops domains or within a single domain with respect to
existing data.

We define consistency as the relationship between artifacts
and their associated rules. Specifically, we consider artifacts
ax and by, along with their corresponding rules rn and rk that
must be satisfied by the artifacts. We state that ax and by are
consistent if and only if their respective rn and rk are related
and their evaluations on the artifacts concur. More formally, RR
is the “rule traceability relationship” between rn and rk defined
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as:

RR(rn, rk) = RM(rn, rk) ∧ RE(rn, rk) (1)

The predicate RM denotes a traceability mapping between
the rules. In the SimplePM app example, RM captures the
fact that the system generates the Assignment table from the
specifications based on JuncTable, and their associated rules r1
and r′2 are related. Moreover, the business rules r′2 and r′3 are
related to each other. This relationship applies to r2 and r3 as
well. The predicate RE captures the fact that the evaluation
of the two rules against their respective artifacts should agree.
In our example, the rule r′2 (“each task two employees”) is a
specialization of rule r1 (“up to 1024 relationship records per
primary key”). Thus, the predicate RE(r1, r′2) means that, if
they are evaluated on their associated artifacts, i.e., a1 and b1,
they should either both evaluate to true or both to false. The
same situation applies to r′2 and r′3 concerning b1.

Figure 3 illustrates LCDP-level and app-level rules. In our
example, the technical rule r1 pertains to the LCDP-level, while
the rest are business rules belonging to the app-level. App
developers cannot introduce app-level rules independently; there
is always a connection with an LCDP-level rule, because they
are bound by the rules of the platform.

For roles that exclusively operate within the Ops domain, like
administrators, mappings only involve app-level rules, which
are in their domain of expertise. The relationship between app-
level and LCDP-level rules can be captured automatically by the
LCDP or semi-automatically by stakeholders who are proficient
in both business and technical rules within the Dev domain,
like app developers. In Section 5, we delve further into rule
mappings.

We could specialize RR to differentiate the different kinds
of traceability relationships among LCDP-level and app-level
rules. However, this is not needed for our analysis. We keep our
formalization abstract, allowing us to define data consistency
based on the evaluation results of rules, irrespective of the rules
type.

As discussed in challenge C2, in Section 3.2, LCDPs often
lack well-defined meta-levels and conformance relationships
between them. The rule traceability relationship RR makes
relationships across levels explicit.

Given RR, we define consistencyr as follows:

consistentr(ax, by, rn, rk) ≡
RR(rn, rk) =⇒ (E(ax, rn) ⇔ E(by, rk)) (2)

Here, E(ax, rn) and E(by, rk) are true if and only if ax and by
satisfy the rules rn and rk, respectively.

Importantly, rn and rk are artifact-level rules, i.e., they are
evaluated on individual artifacts within the low-code system.
However, we define consistentr(ax, by, rn, rk) at the system
level. This means that it is applicable to any pairs of related
artifacts (code, models, data, etc.) at any level of abstraction
within the low-code system, encompassing both the platform
and the generated application. The definition of consistentr is
modular, allowing to outsource the evaluation of artifact-level
rules to artifact-specific reasoners or procedures.

To express the requirement that artifacts ax and by are con-
sistent with each other, we can consider the set of all rules that
each should satisfy, denoted as Sr

ax and Sr
by

, respectively. For
instance, in the SimplePM application, Sr

by
includes rules r2

(“each task assigned to 3 employees”) and r3 (“each task as-
signed to 2 juniors and 1 senior”). We formalize the general
consistency between a pair of artifacts ax and by as:

consistent(ax, by) ≡
∀rn ∈ Sr

ax , ∀rk ∈ Sr
by

, consistentr(ax, by, rn, rk) (3)

In our example, it evaluates to false for artifacts a1 and b1,
since a1 satisfies r1 but b1 does not satisfy r′2.

By formalizing the consistency problem in this manner, we
can also examine a pair of related rules on the same artifact
to evaluate their consistency. In our example, following the
administrator’s modification, there are assignment records in
their view (b1) that meet the criteria of rule r′3 but not r′2.

Finally, we define the consistency of a system M as the
conjunction of all pairwise consistency predicates of its artifacts:

consistent(M) ≡
∧

ax ,by∈L

consistent(ax, by) (4)

In our example, the SimplePM app is inconsistent, be-
cause at least one of the pairwise consistency predicates
(i.e., consistent(a1, b1)) is false.
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Figure 5 Architecture of the inconsistency detection frame-
work.

We employ this formalization as a technique for consistency
detection and implement it using Alloy, a formal tool renowned
for its proficiency in rapid prototyping.

5. Inconsistency Detection
Our inconsistency detection approach is a multi-step workflow,
shown in Figure 4. It consists of a preprocessing phase (steps
1–4) and the main detection phase in (steps 5–7). This work-
flow is completely automated using an Ant builder, with the
exception of step 2: “Rule mapping”, which is done manually.
The inconsistency detection framework is implemented in Java
using the Eclipse Modeling Framework and the Alloy Analyzer.

5.1. Preprocessing phase
The preprocessing phase (steps 1–4 in Figure 4) gathers the
information required for the detection phase.

5.1.1. Model extraction The initial step creates an analyz-
able representation of the low-code system, including the plat-
form, application, and user data. MDE provides a conducive
framework for representing and reasoning about large-scale sys-
tems, enabling effective management of a diverse set of artifacts
at various levels of abstraction (Hebig et al. 2017). Leveraging
the similarities between low-code development and MDE, we
can reuse existing MDE techniques and technological infrastruc-
ture. However, low-code platforms may not always use models
conforming to explicitly defined metamodels, as some platforms
may store data in schema-less documents or databases (Di Rus-
cio et al. 2022). Therefore, the first step in our approach is to
reconstruct models and metamodels from the artifacts as needed,
to facilitate further analysis.

We create a flexible and modular architecture that allows
adapting our approach to various LCDPs, each with unique
characteristics and requirements (Figure 5). While our for-
malization is applicable to arbitrary LCDPs, the preprocessing
phase requires the LCDP to provide APIs or facilities for access-
ing information such as the data model or data of the generated
applications.

We have defined an extraction API that can be implemented
as per the requirements of a particular LCDP. In our proto-

Figure 6 Rule mapping metamodel

type, we have specifically implemented this API for an OutSys-
tems extractor to extract the metamodel (i.e., the data model
of the tables in our running example) and the corresponding
data. To accomplish this, we developed a simple low-code ap-
plication as a module in OutSystems. We then created a Java
interface (LCDP adapter) in our framework, and used it to ex-
tract the data and data model from our OutSystems module in
CSV format. We used system entities such as Espace, Entity,
Espace_Entity, and Entity_Attr for this purpose. These sys-
tem entities maintain the data model of generated applications,
tracking their attributes, entities, and associated constraints,
which are the rules we aim to extract. The OutSystems extrac-
tor, which represents the concrete implementation of the Fetcher
and the Transformer depicted in Figure 5, is responsible for con-
verting the data obtained from the preceding entities into EMF
EObjects. Acting as middleware, these extractors receive the
LCDP-specific extensions and translate them into EMF EOb-
jects. For the hypothetical LoCo platform example, we assume
that this preliminary step has been previously completed. We
assume that we have been able to reconstruct all artifacts in the
SimplePM application as class and object models.

5.1.2. Rule mapping As described in Section 4, to evaluate
the consistency between artifacts and rules, we need to know
the relationships between rules RR, expressed as traceability
mappings between rules. The relationships between rules can
be diverse, including derivation, refinement, specialization, co-
satisfaction, etc. In the case of LoCo, rule r′2 is a specialization
of rule r1, and there is a co-satisfaction relationship between r′2
and r′3.

To capture these relationships, we create a Rule Mapping
domain-specific language in Ecore, the metamodel of which is
shown in Figure 6. Users, like the SimplePM administrator, can
create rule mapping models that conform to this DSL manually
or automatically if the LCDP provides appropriate traceabil-
ity information. The stakeholders responsible for mapping the
rules and establishing relationships (administrators and app de-
velopers) oversee this process within their respective domains of
expertise. As depicted in Figure 3, we require creating manual
mappings between app-level rules. The app developer estab-
lishes the mappings between app-level and LCDP-level rules.
This role should possess expertise in both the constraints of the
LCDP for app development (technical rules) and the validation
rules they define to ensure their application’s quality (business
rules). To streamline these tasks, we envision a wizard interface
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Figure 7 An example of rule mapping for SimplePM

to assist in the mapping process by allowing users to select rele-
vant app-level rules from a pre-populated list, while handling
the instantiation of the metamodel of the trace DSL behind the
scenes.

We show the rule mapping of SimplePM in Figure 7. In-
stances of the rule mapping metamodel capture the rules, their
specifications, their associated artifacts, and their relations with
other rules.

In our prototype, we have implemented three different rule
types. The Range rule type is used to evaluate whether a numer-
ical value or the length of a string falls within a specified range.
The Required rule type ensures that mandatory fields contain
a value, and the RecordLimit rule type validates both the mini-
mum and maximum allowable number of records of a particular
type. In our example, both rules fall under the RecordLimit cat-
egory. The Unknown rule type serves as a catch-all placeholder,
while more rule types can be added if needed. We do not claim
the universality of these three types of rules: additional rules
can be included if needed. Additionally, the ruleDef attribute
facilitates the creation of simulators for external rule evaluators,
as detailed in Section 5.1.4.

We also link the rules to corresponding artifacts to indicate
that the artifacts are expected to satisfy the rules. In Figure 7,
the selected rule is linked to the Assignment artifact. Having this
information allows us to construct RM and RE, as discussed
in Section 4. The evaluation of the artifacts against the rules is
handled in the rule evaluation (step 4).

5.1.3. Data collection In this step, we collect the runtime
data from the generated application and the LCDP. These data
are either available in the LCDP during the generation of the
application or are provided as input to the application by end-
users during its operation. For example, in the SimplePM app,
the rule mapping model initially represents the relationship
between the two artifacts and their associated rules (a1, r1 and
b1, r′2 from Figure 2). We augment it with the data fetched from
the LoCo LCDP and the generated SimplePM app, i.e., the
records of the Assignment table from Figure 2. This allows us to
prepare for evaluating the related rules (r1 and r′2) and (r′2 and
r′3) on the collected data.

5.1.4. Rule evaluation In this step, we systematically verify
each artifact ax against any rule rn that it is associated with. This
allows us to compute the predicate E(ax, rn), which is true iff
ax satisfies rn, as discussed in Section 4. We update the rule
mapping model with the results of the external rule evaluations.
In our example, we use custom external rule evaluators capable
of parsing and evaluating the rule stored in the ruleDef attribute,
as illustrated in Figure 7. We apply these rules to the records
stored in the Assignment table, and store the results in the rule
mapping model. As shown in Figure 7, we record the evaluation
result in the Eval Result field of the rule mapping model.

Section 4 presents the modular definition of consistencyr,
enabling the delegation of artifact-level rule evaluation to
artifact-specific reasoners. This flexibility facilitates the in-
tegration of semi-formal or informal rules and evaluators into
our framework. Our approach solely necessitates the evaluation
result and is independent of the evaluator used.

In the rule evaluation stage, we do not assume any specific
level of formality. The satisfaction of formally defined rules can
be verified with an off-the-shelf automated reasoner, such as a
constraint checker. But the same architecture can be used for
rules whose evaluation is semi-formal or informal. This flexi-
bility enables us to reason about approaches such as assurance
arguments, code inspections, and more (Maksimov et al. 2020).

5.2. Main detection phase
We take the following steps (5–7 in Figure 4) to detect inconsis-
tencies:

5.2.1. Constraint solver code generation In Section 4,
we formally defined consistency using first-order logic. We
created a prototype consistency checker using Alloy (Jackson
2011), an open-source language, toolkit, and analyzer for au-
tomatic semantic analysis. In Alloy, a modeler creates a logic
specification as a set of signatures and constraints over them.
Properties of interest can be defined as assertion predicates over
the specification. These can then be checked by bounded scope
model finding, using a boolean satisfiability constraint solver
(SAT solver) (Gomes et al. 2008), which makes it efficient and
effective for analyzing complex systems.

We encode our formalization of consistency as an Alloy
module, as shown in Listing 1. Lines 1–10, define signatures
to model rules, artifacts, and their relationships in a given in-
consistency checking scenario. In Lines 7–10, specify that the
scenario is characterized by a set of “givens”, which are to be
taken from the rule mapping model, created during the prepro-
cessing phase. On lines 11–20, we define predicates defined in
our consistency formalization in Section 4.

Then, we use this module to represent a concrete consis-
tency checking scenario. A scenario is encoded in generated
Alloy code, using the module defined in Listing 1 and the rule
mapping model prepared during preprocessing. To generate
it, we use template-based code generation with the Epsilon
Generation Language (EGL) (Rose et al. 2008). We show the
generated Alloy code for the LoCo example in Listing 2. Lines
2–5, define the artifact and the rules of the scenario shown
in Figure 2. On lines 6–13, we define the structure of the
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1 module Consistency
2 sig Artifact {}
3 sig Rule {}
4 sig Scenario {
5 artifacts : set Artifact,
6 rules : set Rule,
7 // These we assume given (dynamically computed

based on the rule mapping model)
8 givenRM : rules -> rules,
9 givenRE : rules -> rules,

10 givenE : artifacts -> rules }
11 pred RM[s : one Scenario, r1 : one Rule, r2 : one

Rule] {
12 r1 -> r2 in s.givenRM }
13 pred RE[s : one Scenario, r1 : one Rule, r2 : one

Rule] {
14 r1 -> r2 in s.givenRE }
15 pred RR[s : one Scenario, r1 : one Rule, r2 : one

Rule] {
16 RM[s, r1, r2] and RE[s, r1, r2] }
17 pred E[s : one Scenario, a : one Artifact, r : one

Rule] {
18 a -> r in s.givenE }
19 pred Consistency_r [s : one Scenario, a : one

Artifact, b : one Artifact, r1 : one Rule, r2 :
one Rule] {

20 RR[s, r1, r2] implies (E[s, a, r1] iff E[s, b,
r2]) }

Listing 1 Formalization implemented in Alloy

scenario as a generated set of “givens” based on the rule map-
ping model. These “givens” encode the full interpretation of
the predicates RM, RE, and E, defined in Section 4 for the
given scenario. We highlight that givenE reifies the results of
external rule evaluators. For example, if the result of applying
the rule r2 Assignment_RecordLimit_3 on the artifact Assignment
b1 is true we add (Assignment -> Assignment_RecordLimit_3) to
givenE (line 12 of Listing 2 generated for lines 17–18 of List-
ing 1).

5.2.2. Constraint solver code execution To verify con-
sistency in a given scenario, we conduct assertion checking on
the generated Alloy code from the preceding step. For the LoCo
example, in lines 15–23 of Listing 2, we define and verify asser-
tions consistencyr for artifact Assignment b1, and its associated
rules r′2 and r′3. As we introduce one singleton signature per
rule, extending the main Rule signature, we use a scope of 1
in Alloy. This results in a reduced search space and improved
efficiency. We use the Alloy Java API to execute the assertion
checks of the generated code.

5.2.3. Consistency report generation If an Alloy asser-
tion is invalid, i.e., if an inconsistency is found, Alloy produces
a counterexample. We take note of all invalid assertions to pro-
duce an overall consistency report for the scenario. It includes
details such as the specific rule or rules that are violated, the rule
mapping model elements that contribute to the inconsistencies,
and any additional information that aids in understanding the
root cause of the inconsistencies. In the prototype, the report
is presented as a simple text document that lists all the rules
and highlights those that are inconsistent with respect to the
existing data. Listing 3 shows the generated consistency report

1 open Consistency
2 one sig Assignment extends Artifact {}
3 one sig Assignment_RecordLimit_3 extends Rule {}
4 one sig Senior_TypeLimit_1 extends Rule {}
5 one sig Junior_TypeLimit_2 extends Rule {}
6 one sig LocoDs extends Scenario {
7 } {
8 artifacts = Assignment
9 rules = Junior_TypeLimit_2 + Senior_TypeLimit_1

+ Assignment_RecordLimit_3
10 givenRM = (Assignment_RecordLimit_3 ->

Junior_TypeLimit_2) + (
Assignment_RecordLimit_3 ->
Senior_TypeLimit_1) + (Senior_TypeLimit_1 ->
Assignment_RecordLimit_3) + (
Junior_TypeLimit_2 ->
Assignment_RecordLimit_3)

11 givenRE = (Assignment_RecordLimit_3 ->
Junior_TypeLimit_2) + (
Assignment_RecordLimit_3 ->
Senior_TypeLimit_1) + (Senior_TypeLimit_1 ->
Assignment_RecordLimit_3) + (
Junior_TypeLimit_2 ->
Assignment_RecordLimit_3)

12 givenE = (Assignment ->
Assignment_RecordLimit_3) + (Assignment ->
Senior_TypeLimit_1) + (Assignment ->
Junior_TypeLimit_2)

13 }

15 assert
Assignment_RecordLimit_3__Senior_TypeLimit_1
{

16 Consistency_r[LocoDs, Assignment, Assignment,
Assignment_RecordLimit_3, Senior_TypeLimit_1]

17 }
18 check

Assignment_RecordLimit_3__Senior_TypeLimit_1
for 1

20 assert
Assignment_RecordLimit_3__Junior_TypeLimit_2
{

21 Consistency_r[LocoDs, Assignment, Assignment,
Assignment_RecordLimit_3, Junior_TypeLimit_2]

22 }
23 check

Assignment_RecordLimit_3__Junior_TypeLimit_2
for 1

Listing 2 Generated Alloy code for the LoCo example

of the running example, illustrating the inconsistency between
two rules with respect to existing data. The current version of
our prototype generates a basic text file listing the rules and
artifacts, along with their consistency status with respect to ex-
isting data. The first line of the text report in Listing 3 shows
that the running example contains inconsistencies. Lines 3–7
highlight situations where, despite adhering to the updated rule
of assigning a maximum of 2 employees to a task, other rules
(i.e., having 1 senior and 2 juniors) cannot be satisfied, causing
the system to enter an inconsistent state. Future iterations of the
prototype will furnish a well-organized response and a message
that is more easily understandable to humans.
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1 Inconsistencies found in scenario: min-
paperProblem-easy-all-inc

3 INCONSISTENT:
4 Check min_paperProblem_easy_all_inc_Assertion__

__Assignment_RecordLimit_2____Senior_TypeLimit_1
for 1

6 INCONSISTENT:
7 Check min_paperProblem_easy_all_inc_Assertion__

__Assignment_RecordLimit_2____Junior_TypeLimit_2
for 1

Listing 3 Consistency report

6. Evaluation of Correctness

6.1. Objective
We conducted a case study to validate the effectiveness of our
approach in detecting inconsistencies in a real domain-specific
low-code platform. We pose the following research question:

RQ1: Correctness – Can our approach correctly identify
inconsistencies?

6.2. Case description
ReLiS (Bigendako & Syriani 2018) is a domain-specific low-
code platform geared towards supporting reviewers for con-
ducting systematic literature reviews (SLRs) (Kitchenham &
Charters 2007). With ReLiS, reviewers can create a project
from a protocol specification, which generates a dedicated web
application and a database integrated into the platform. We
describe the user roles and usage scenarios in ReLiS using the
same terminology as in the LoCo example. Project managers
define a SLR protocol and generate the project: this is the app
developer role of our running example, where each app is an
SLR project. ReLiS supports a domain-specific language to
define a protocol for planning, conducting, and reporting their
review. It offers an online editor to design and modify the
project-specific protocol model, where they specify various pa-
rameters, such as the screening phases, number of reviewers and
their roles, and the data extraction form for collecting relevant
information from each paper. Project managers can modify the
protocol and redeploy an updated version of the project while
the project is running. These users can make specific changes to
the protocol directly in the running project via an administrator
menu: this is also the administrator role of our running example.
Reviewers can be assigned articles to screen and classify using
the data extraction forms to effectively conduct the SLR: this is
the application user role of our running example.

Changes to the ReLiS configuration specification while con-
ducting the SLR result in the regeneration of some of these
artifacts, which may produce breaking changes to the currently
existing data. Furthermore, a project manager can change a
subset of the configuration directly in the generated application
through the administration panel without modifying the textual
model. This creates inconsistencies between the rules specified
in the configuration model and in the generated application.
Therefore, although the SLR naturally evolves with new rules,
some new rules may lead to inconsistencies because there are

multiple points in which rules can be added or changed: at
design-time (configuration model) and at runtime (administra-
tion panel).

Comparing ReLiS to our running example, ReLiS is an
LCDP like LoCo, while each SLR project is a distinct appli-
cation like SimplePM. ReLiS exemplifies one of our intended
low-code platforms, as depicted in Figure 1. The configuration
aspect of ReLiS is encapsulated within its configuration file,
while the metadata encompasses system-generated data, such
as the exclusion criteria for papers in a systematic literature
review conducted within the ReLiS environment. Additionally,
user-generated data can include the assignment of classification
categories to individual papers within the review process.

We want to emphasize that our evaluators do not delve into
the textual content of the SLR criteria; rather, they focus on
detecting variations in the number of criteria. Detecting incon-
sistencies between the initial content and the final version of
a criterion in the generated app requires a more sophisticated
external rule evaluator to consider its text. However, as detailed
in Section 4 and Section 5, our formalization operates inde-
pendently of external evaluators and identifies inconsistencies
between interconnected rules based on the evaluation results
provided by these evaluators. Specifically, we compare the num-
ber of SLR criteria specified and those present in the generated
app. In some SLR projects, papers may be excluded based on
a criterion that is removed in the app but remains in the spec-
ification. This scenario resembles the LoCo example, where
the number of Assignment records was technically correct but
incorrect from a business logic standpoint.

6.3. Consistency of SLR projects
As a benchmark for validation, we conducted a study on a sam-
ple of 10 SLR projects available in ReLiS, listed in Table 1. We
chose projects of a significant size that utilized a majority of
the functionalities offered in ReLiS to define their protocols.
Designing a protocol and getting it right on the first attempt
is uncommon, and project managers often need to refine their
protocols through multiple iterations. However, modifying the
protocol model after starting the review process can result in in-
consistencies between the application logic and the data entered
in previous iterations, and the new specification.

One common aspect that may change during the course of an
SLR is the exclusion criteria: reasons to exclude an article from
the corpus of the review. In ReLiS, project managers can modify
the exclusion criteria via the generated application. This may
introduce inconsistencies between the protocol model and the
generated project with respect to already existing data. Detect-
ing and understanding these complex changes and the resulting
inconsistencies can be challenging for ReLiS users. We thus
can use our approach to help users identify and understand the
inconsistencies.

In Table 1, we present the details of the SLR projects that we
investigated. The table displays the number of exclusion criteria
recorded at the outset of each project in the protocol model,
as well as in the database during the project’s runtime. We
observe that the exclusion criteria of 5 of the projects underwent
evolution over time (marked in bold). For example, one project
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Table 1 SLR projects in ReLiS with the initial number of exclusion criteria in the configuration and the final number in the
database

Project Initial criteria Final criteria Consistent (manual) Consistent (Alloy)
Collaborative modeling 8 8 ✓ ✓
Language composition 8 8 ✓ ✓
Language composition classification 8 8 ✓ ✓
Model-Driven Engineering 4 4 ✓ ✓
Reinforcement learning 5 5 ✓ ✓
Cyber physical systems 1 7 ✗ ✗
Dependency freshness 3 4 ✗ ✗
Dependency graphs 6 8 ✗ ✗
Mobile app development 2 5 ✗ ✗
Modeling assistance 7 1 ✗ ✗

1 PROJECT mobileApps "Mobile app development"
2 SCREENING
3 Reviews 2
4 Conflict on Decision resolved_by Unanimity
5 Criteria = ["Paper not in the scope", "Papers not

in English"]

Listing 4 Excerpt from the Mobile app development protocol
written in ReLiS

was an SLR study on mobile app development (Brunschwig et
al. 2022). We show an excerpt of its protocol model in Listing 4.
The SLR project was generated with two exclusion criteria,
shown in the listing (“Paper not in the scope”, “Papers not in
English”). However, during the SLR process, while the SLR app
was running, the project manager modified the set of exclusion
criteria to adapt the evolving needs of the study. They added
three more criteria: “Paper not the right length: 3 to 20 pages
only”, “Paper doesn’t focus on energy efficiency practices”,
and “Paper not related to mobile applications directly”.

Overall, the studied projects collectively encompassed
16 829 papers and 58 exclusion criteria. Using our approach,
we manually searched for inconsistencies in these projects and
identified inconsistencies in the exclusion criteria of 5 projects
when compared to the initial specification.

6.4. Results
We applied the workflow presented in Section 5 to all 10 projects.
We constructed the rule mapping model for the projects in a
manner where each project is associated with two rules. One
of these rules is derived from the exclusion criteria defined in
the ReLiS configuration file, while the other is extracted from
the metadata within the ReLiS database. Notably, the latter
rule could have been modified via the ReLiS portal by project
administrators, distinct from changes made in the configuration
file. These two rules are interrelated for each project. Our
prototype successfully identified the five inconsistent projects
and the five consistent ones with respect to exclusion criteria.

As an example, we show an excerpt from the generated Alloy
code for the Mobile app development project in Listing 5. Our
analysis identified this project as inconsistent and identifies an
inconsistency regarding exclusion criteria between the protocol
model and the database of the runtime data. Specifically, the

1 open Consistency
2 one sig mobileApps extends Artifact {}
3 one sig mobileApps_RecordLimit_2 extends Rule {}
4 one sig ref_exclusioncrieria_TypeLimit_2 extends

Rule {}
5 one sig RelisDm extends Scenario {
6 } {
7 artifacts = . . . + mobileApps_RecordLimit_2 + . . .
8 givenRM = . . . + (mobileApps_RecordLimit_2 ->

ref_exclusioncrieria_TypeLimit_2) + (
ref_exclusioncrieria_TypeLimit_2 ->
mobileApps_RecordLimit_2) + . . .

9 givenRE = . . . + (mobileApps_RecordLimit_2 ->
ref_exclusioncrieria_TypeLimit_2) + (
ref_exclusioncrieria_TypeLimit_2 ->
mobileApps_RecordLimit_2) + . . .

10 givenE = . . .
11 }

13 assert
mobileapps_RecordLimit_2__exclusioncrieria_
TypeLimit_2 {

14 Consistency_r[RelisDm, mobileApps, mobileApps,
mobileApps_RecordLimit_2,
ref_exclusioncrieria_TypeLimit_2]

15 }
16 check mobileapps_RecordLimit_2__exclusioncrieria_

TypeLimit_2 for 1

Listing 5 Excerpt from the generated Alloy code for the
Mobile app development project

assertion defined in Lines 13–15 of Listing 5 was shown by
Alloy to be invalid. This is because the rule in Line 3 and the
updated rule in Line 4 are evaluated differently for the initial
specification of the project and runtime data.

This gives us evidence to answer RQ1 by affirming that our
approach can correctly detect inconsistencies in real low-code
applications.

6.5. Threats to validity

The validity of our case study is threatened by the choice of
the low-code platform and the choice of projects. This is ac-
ceptable because we are not claiming general applicability of
our approach. Instead, we aim to make the argument that it is
possible to use our approach in real applications to correctly
produce useful results.

Another threat to validity is the relatively small size of the
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low code applications (SLR projects) that we studied. To mit-
igate this, we present a second evaluation in the next section,
where we experimentally study the scalability, sensitivity and
efficiency of our approach for increasing sizes of the various
aspects of the consistency detection scenarios.

7. Performance Evaluation
The ReLiS case study involved a small set of artifacts and simple
rules. We now report on experiments we conducted on a larger
dataset using synthetic data to evaluate the performance of our
inconsistency detection approach.

7.1. Objectives
For performance evaluation, we focus on the generation and
execution of the Alloy code, because the performance of our
approach highly depends on this component. However, the
overall performance of the system depends on the performance
of artifact-level rule evaluators. Therefore, we evaluate the
performance of the Alloy component relative to the performance
of the evaluators, to assess whether it impacts the overall system
performance. Our proposed consistency checking approach
is meant to complement existing artifact-level rule checking
already present in LCDPs. So it should not impose an undue
reasoning burden, relative to any existing rule verification load
in a given LCDP.

We focus on the following research questions:
RQ2: Sensitivity – What is the impact of rule mapping

complexity on our approach? We hypothesize a correlation
between the execution time of the Alloy code and the complexity
of rule mapping.

RQ3: Scalability – How does the size of input data affect our
approach? We hypothesize that the input size, quantified by the
number of records, exerts minimal influence on our approach.

RQ4: Efficiency – What is the impact of incorporating the
inconsistency detection mechanism in a low-code generated
application in operation with respect to time? We hypothesize
that the incorporation of our approach as a new layer for incon-
sistency detection places a negligible to acceptable burden on
the performance of the system.

7.2. Experimental subjects
In the absence of publicly available LCDP datasets, we opt to
use synthetic data to evaluate our approach.

Specifically, to validate our hypotheses, we experiment with
a synthesized suite of input data obtained from Microsoft Adven-
tureWorks, a set of datasets published by Microsoft to test and
demonstrate the capabilities of Microsoft SQL Server1. We use
the Person, Phone, and PersonPhone tables from Microsoft
AdventureWorks 2019. These tables represent realistic data that
one would typically find in a phonebook application generated
by a LCDP, and are thus suitable source of synthetic data for
our evaluation. Additionally, we formulate simple, yet practi-
cal, business rules for such an application. For instance, we
established rules like “each person must have N phone numbers”

1 See: https://github.com/Microsoft/sql-server-samples/tree/master/samples/
databases/adventure-works

(R1) and “each person must have X home numbers and Y cell
numbers” (R2).

To simulate the rule evaluators that would be implemented in
a real low-code application, we developed custom evaluators in
Java. For example, the evaluator for R1 performs a straightfor-
ward count of entries in the PersonPhone table associated with
a given Person entry, ensuring it does not exceed the specified
limit. The rule evaluators employ a simple counting procedure
to yield a yes/no output. These evaluators represent simple
calculations compared to the more intricate calculations that
might be necessary for evaluating complex rules. For instance,
in scenarios with more sophisticated rule evaluators, substantial
resources may be required, coupled with intricate data compu-
tations to determine the final binary evaluation. An example
of a more complex rule is “tasks assigned to each employee
group should relate to a single topic” and “tasks assigned to
each employee group must align with their skills”. These rules
call for in-depth calculations and data extraction to deliver the
final evaluative verdict; thereby demanding a greater allocation
of time and other resources. As explained in Section 7.3.2, com-
paring the impact of our approach relative to simple evaluators
allows us to better assess how light is the overall impact of
incorporating our additional consistency detection layer to an
LCDP.

7.3. Metrics
7.3.1. Independent variables We create varying dataset
sizes by sampling from the entire dataset, and simulate differ-
ent scenarios similar to SimplePM to create rules. The suite
includes datasets with up to 500 000 records and 40 rules, with
varying degrees of mapping complexity, ranging from easy to
medium and hard. We use the following independent variables:

– Number of records
– Number of rules
– Mapping complexity
– Number of inconsistencies

To explain mapping complexity, in our analysis, we treat the
rules and their relationships as a graph. The nodes represent the
rules and the edges represent the related rules. The frequency
of edge occurrences serves as a quantitative indicator of the
complexity degree. As we currently perform the rule mapping
step manually, as depicted in Figure 4, we create rule sets with
10, 20, and 40 rules to simulate increasing difficulty in the
mapping phase.

We construct rule graphs to represent a spectrum of easy
to hard mapping complexity levels. For every mapping, we
generate graphs with the following number of edges calculated
based on n, where n represents the number of rules.

Number of edges =


((n − 2)/2) + 1 if easy
⌊((n − 2)/2)1.75⌋+ 1 if medium
((n − 2)/2)2 + 1 if hard

Essentially, we parameterize the graph’s edge count to generate
mappings of diverse complexities. Graphs with a greater number
of edges signify highly interconnected rule mappings, while
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Table 2 Excerpt from the experiment results with synthetic data - Times are in seconds.

# Records # Rules Mapping Complexity # Inconsistencies Time in Evaluators Time in Alloy ACOR
1 5 000 10 Easy None 0. 034 0. 026 43%
2 5 000 10 Medium One 0. 026 0. 052 67%
3 5 000 20 Medium All 0. 044 0. 422 90%
4 5 000 40 Hard Some 0. 078 37. 092 100%
5 50 000 10 Easy None 0. 226 0. 023 9%
6 50 000 10 Medium One 0. 218 0. 048 18%
7 50 000 20 Medium All 0. 400 0. 399 50%
8 50 000 40 Hard Some 0. 726 36. 740 98%
9 500 000 10 Easy None 2. 032 0. 029 1%
10 500 000 10 Medium One 2. 060 0. 050 2%
11 500 000 20 Medium All 5. 103 0. 406 7%
12 500 000 40 Hard Some 7. 827 36. 830 82%

those with fewer edges indicate lower interdependence between
rules. We use a power of 1.75 for medium mappings to ensure
a distinctive growth rate compared to the other two mapping
complexities.

In our experimental setup, we implemented straightforward
Java-based external rule evaluators based on the modular defini-
tion of consistency in Section 4 that allows outsourcing the eval-
uation of artifact-level rules to artifact-specific reasoners. This
approach facilitates fast and efficient evaluation, simulating the
optimized checks typically found in real LCDPs. Additionally,
it enables us to manually set the evaluation results to simulate
various levels of inconsistency, ranging from no inconsistencies
to all rules being inconsistent.

The inclusion of (n − 2)/2 in our calculations of mapping
complexity is due to our use of bipartite graphs. We use bi-
partite graphs to facilitate the simulation of differing levels of
inconsistency and mapping complexities. Within our approach,
inconsistency is deduced through the concurrence of evaluation
outcomes in two interconnected rules. Consequently, instances
where two YES or two NO results emerge are deemed as con-
sistent scenarios.

In our testing process, we replicate varying degrees of in-
consistency, encompassing none, one, some, and all. Figure 8
shows a case of hard mapping complexity involving eight rules.
We make it so that the first two rules are always related in our
graphs, allowing us to easily recreate the scenario of one incon-
sistency, by altering the evaluation outcome of one rule to NO
and the other to YES. To recreate the scenario of all rules being
inconsistent, we make the odd-numbered nodes be YES and
the even-numbered nodes NO. To recreate the scenario of some
inconsistencies, we designate all nodes as YES, except for half
of the odd-numbered nodes.

The above strategies allow us to create experimental subjects
of various complexity gradations of the independent variables.

7.3.2. Dependent variables To answer the research ques-
tions RQ2-RQ4, we measure the time usage of the Alloy com-
ponent and the rule evaluators of our approach for varying
complexities of input data, rule mappings, and inconsistencies.
Furthermore, we aim to quantify the impact of the Alloy com-
ponent on the operation of the entire system.

Artifact-level rule evaluators are a resource-intensive aspect

71 3 5

82 4 6

Figure 8 An example of a bipartite graph of eight rules with
the “hard” mapping complexity. This graph is unrelated to
Figure 3. It corresponds to the auto-generated rule mapping
graph for the app-level rules.

of the system. As presented in Section 5, our approach depends
on the result of artifact-level rule evaluations within the rule
mapping model prior to initiating the Alloy code generation
phase (See Figure 4). To capture the efficiency of our approach,
we define the Alloy Component Overhead Ratio (ACOR) as:

ACOR =
Time spent in Alloy

Time spent in Alloy + Time spent in evaluators
(5)

Higher ACOR values indicate that the system’s overall per-
formance is degraded by the added overhead of our Alloy-based
inconsistency component. Smaller ACOR values mean that
it exerts a lesser influence on the overall system performance
relative to the performance of the LCDP’s own rule evaluators.
To underscore the impact of our component in our evaluation,
we specifically chose simple implementations of external rule
evaluators, to simulate the fast, optimized rule evaluation checks
that real LCDPs would be expected to deploy. The similarly fast
calculations in our evaluators tend to minimize the value “time
spent in evaluators” in the denominator of the ACOR metric.
Thus, using simple evaluators allows us to assess the overhead
of our approach in the least favourable scenario – a setup with
more complex rule evaluators would be more forgiving.

Based on the formalization in Section 4, the value of the
“time spent in Alloy” in ACOR is associated with the implemen-
tation of consistency(ax, by) in Equation 3 within our proto-
type. Similarly, the time usage in evaluators is related to the
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implementation of E(ax, rn) ⇔ E(by, rk) in Equation 2 within
our prototype.

7.4. Experiment setup
The experiments were conducted on a machine running Win-
dows 11, equipped with an AMD Ryzen 7 5700U processor
clocked at 1.8GHz, 16GB of RAM, and utilizing Alloy 5 and
Eclipse Epsilon with Java 17.0.1, with a heap size set to 8GB.

7.5. Results
We show the results of the experiments in Table 2. To address
the research Questions RQ2, RQ3, and RQ4, we summarize the
correlations we identified using the Pearson correlation coeffi-
cient in Table 3 and Table 4.

7.5.1. Sensitivity (RQ2). The sensitivity analysis of our
approach aimed to explore the effect of mapping complexity
on our Alloy component. To this end, we conducted several
experiments on synthetic data, where we varied the mapping
complexity while keeping all other independent variables con-
stant. Our findings indicate that the influence of rule mapping
complexity on our approach is substantial, demonstrated by the
strong positive correlation with the performance of the Alloy
component (r = 0.95, p = 0.000), shown in Table 3. This
means that more complex rule mappings tend to slow down the
performance of the Alloy component.

We can also see the impact of the number of rules on our ap-
proach, as indicated by the positive correlation between the num-
ber of rules with Alloy component performance (r = 0.53, p =
0.000) shown in Table 3.

7.5.2. Scalability (RQ3). The scalability of our approach
was evaluated by investigating the effect of the size of the input
on our Alloy component. Our experiments showed that the
approach is generally scalable, with respect to the number of
records.

The impact of input size on our approach is negligible, as
indicated by the very weak correlation with Alloy component
performance (r = 0.00, p = 0.999) shown in Table 3. Our
approach displays insensitivity to variations in input size, par-
ticularly with respect to the number of records, and number of
inconsistencies. This suggests that variations in input size and
number of inconsistencies do not significantly affect the perfor-
mance of the Alloy component, thus the approach is scalable in
terms of the input size.

However, the time spent in evaluators tended to increase more
rapidly with larger input sizes, indicating that the evaluation
process becomes more computationally expensive as the input
size grows.

7.5.3. Efficiency (RQ4). We compared the time spent in
rule evaluation with the time spent in Alloy to provide insights
into the efficiency of the overall approach. Using the Alloy
Component Overhead Ratio (ACOR) metric, we studied the
added overhead of the inconsistency detection layer. The results
are shown in Table 4.

For applications with small and medium number of rules (10
and 20, respectively), we observe a strong negative correlation

between ACOR and the number of records (r = −0.93, p =
0.000). This indicates that as the input size, measured by the
number of records, increases, the ACOR decreases significantly.
In other words, as the application handles more data, the Al-
loy component’s relative performance becomes notably better
(i.e., less overhead to the whole system), suggesting that incor-
porating the inconsistency detection mechanism is an efficient
choice in these scenarios.

Moreover, for applications with the maximum number of
rules (40), we note a substantial positive correlation between
ACOR and mapping complexity (r = 0.62, p = 0.000). This
implies that as the rule mapping complexity intensifies, ACOR
also increases significantly. Therefore, when dealing with com-
plex rule mappings, the incorporation of the inconsistency detec-
tion mechanism could potentially lead to a noticeable overhead.

7.6. Discussion
Based on the correlations presented in Table 3 and Table 4,
along with the results presented in Section 7.5, we can draw
insights into the performance of our approach under various
conditions.

Our approach exhibits good performance when dealing with
less intricate rule relationships and big datasets. The degree
of rule complexity and interconnection varies among software
applications, and it is essential to consider these characteristics
when contemplating the adoption of our approach. In scenarios
characterized by a significant volume of data, as indicated by
the number of records, and a relatively low degree of rule in-
terconnection, our approach proves to be a valuable choice for
detecting inconsistencies.

In summary, our approach’s suitability varies based on fac-
tors like rule complexity, data size, and the degree of rule inter-
connection within a given software application. These consid-
erations should guide the decision to incorporate our approach
into a specific context.

Currently, we have developed a proof of concept prototype.
We envision that a full implementation of our approach would
be incorporated into an LCDP either as a plugin or through API
interfaces. As previously mentioned, our approach performs
well with data-intensive low-code applications characterized
by fewer interconnected rules. To achieve integration with an
LCDP, we envision providing an assistant tool to aid administra-
tors and app developers in rule mappings. This tool will abstract
the complexities associated with instantiating the trace DSL.
Additionally, while structured outputs of our consistency checks
are available, they require better interpretation and presentation
for users. With the inclusion of a mapping assistant tool and the
provision of more user-friendly reports in the future, integration
of our approach with an LCDP will become feasible.

7.7. Threats to validity
One threat to validity concerns to the construct validity of the Al-
loy Component Overhead Ratio (ACOR) as a metric to capture
the Alloy component’s impact on the entire system. It is possi-
ble that certain rule types, which are not implemented, remain
unaccounted for in ACOR. Moreover, our synthetic data may
not entirely emulate the complexity of real-world low-code ap-
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Table 3 Pearson correlation test between Alloy Time/Evaluation Time and independent variables. Each cell shows (r-value, p-
value).

Input size (Number of records) Number of rules Mapping complexity Number of inconsistencies
Alloy component (0.000, 0.999) (0.528, 0.000) (0.954, 0.000) (0.310, 0.001)
Rule evaluators (0.767, 0.000) (0.329, 0.001) (0.202, 0.036) (0.169, 0.081)

Table 4 Pearson correlation test between ACOR and Numer of records/Mapping complexity for fixed number of rules. Each cell
shows (r-value, p-value).

Input size (Number of records) Mapping complexity
Minimum number of rules (10) (-0.932, 0.000) (0.191, 0.264)
Medium number of rules (20) (-0.928, 0.000) (0.312, 0.064)
Maximum number of rules (40) (-0.657, 0.000) (0.624, 0.000)

plications. Although we have endeavored to generate synthetic
data that simulates real-world scenarios, the limited variability
within the data could impact the generalizability of our results.

Another potential threat arises from the choice of the Alloy
solver and its specific configuration. During our testing, we
encountered challenges when dealing with a large number of
rules, resulting in excessively large Alloy files that its file parser
struggled to handle. A possible solution to this issue could
involve preprocessing the text within the file and then feeding
the generated code to the Alloy API engine as multiple files,
making it more manageable. Additionally, the selection of
evaluators for comparison could influence the performance of
our approach. To mitigate this threat, we opted for evaluators
that are intentionally simple and efficient. It is worth noting
that, in real low-code platforms, artifact-level rules can be much
more complicated, potentially being as complex as OCL (Object
Management Group 2014) expressions.

One threat to the validity of our study is that our synthetic
data may not fully capture the complexity of real-world low-
code applications. While we have made an effort to generate
synthetic data that mimics real-world scenarios, the lack of
variability in the data may affect the generalizability of our
findings.

Our study focuses on a particular category of low-code plat-
forms, as explained in Section 3.1. Our perspective and under-
standing of low-code platforms may not necessarily apply to all
general-purpose low-code development platforms. Furthermore,
Alloy is a formal tool appropriate for prototyping, and our find-
ings are based on this specific implementation. It is important
to recognize that our results, which rely on this version of our
implementation using Alloy, may not be readily transferable to
other formal tools employed for implementing our formalization
and detecting inconsistencies. Finally, the performance of our
approach may be affected by the choice of the Alloy solver and
the specific configuration of the solver.

8. Related Work

In this section, we present a comprehensive overview of the
state-of-the-art research. The focus of this review is on four
key areas that are related to the research objectives of this paper.

We reviewed relevant research on consistency management in
software engineering, which has been extensively studied in
multiple sub-disciplines. The research was divided into four
main focus areas: Round-trip Engineering, Model-Metamodel
Co-evolution, Database Schema-Data Co-evolution, and Model
Inconsistency Management.

8.1. Round-trip Engineering
In the field of round-trip engineering, low-level artifacts (such
as code) are derived from high-level models (such as UML
diagrams), and changes made to the generated artifacts are
reflected back in the high-level models (Sendall & Küster 2004).

Angyal et al. offer a synchronization method that supports
bidirectional change propagation between code and models by
elevating the concrete syntax of code to the model level, thus
allowing indirect manipulation of code through model transfor-
mations. Additionally, by incorporating abstract syntax trees
into the code generation process, the problem is reduced to
a model-to-model synchronization task (Angyal et al. 2008).
Paesschen et al. identify a set of round-trip engineering sce-
narios that account for various bidirectional changes made to
elements and relationships in both code and models. They ad-
dress these scenarios using a tool-supported approach, where
the entities of the data modeling view and the corresponding
implementation objects are the same, synchronizing different
views through a shared repository of entities (Paesschen et al.
2005). Yu et al. address the inconsistency between generated
code and user code bidirectionally by utilizing an invariant trace-
ability framework. They maintain traceability links as artifacts
evolve and ensure that changes made to generated methods in
code, whether from the code template or the model, are syn-
chronized (Yu et al. 2012). Riedl-Ehrenleitner et al. present an
approach for identifying inconsistencies between UML mod-
els and code. Their method requires user-specified consistency
rules and relies on the existence of a single, coherent metamodel
for both models and code. They use the user-provided rules
and the shared metamodel to assess the consistency of UML
models and source code (Riedl-Ehrenleitner et al. 2014). Pham
et al. propose a bidirectional approach between UML models
and code to maintain consistency between the structure of gen-
erated code and architectural models. Their method reduces
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the abstraction gap between models and code by raising the
abstraction level of a programming language, though it is only
implemented for one language (Pham et al. 2017).

Despite these efforts, none of these techniques account for
consistency-breaking changes that may occur while the system
is in operation and impact artifacts at any level of abstraction.
Regenerating low-level artifacts may not always be a straightfor-
ward task and can lead to data loss or disruption to the system
state. As such, these round-trip engineering methods do not
adequately address the issues outlined in the previous section.

8.2. Model Metamodel Co-evolution
In MDE, metamodels serve as the formal definition of models
and are subject to evolution throughout their lifecycle. However,
the evolution of metamodels can pose challenges for existing
models that conform to previous versions of the metamodel.
One approach to address this issue is to migrate models to
align with the changes in the metamodel (Cicchetti et al. 2008).
Nevertheless, this process can result in data loss if not properly
handled (Narayanan et al. 2009).

Cicchetti et al. proposed a method based on metamodel
differencing and higher-order transformations to automatically
generate co-evolving actions, allowing the designer to refine the
changes (Cicchetti et al. 2008). Another approach proposed by
Cicchetti et al. focuses on the evolution of web applications and
uses system model differencing to detect and represent structural
changes, generating semi-automated migration support to assist
the designer (Cicchetti et al. 2011). Kessentini et al. proposed a
multi-objective approach using genetic algorithms to create a
new model that conforms to the evolved metamodel (Kessentini
et al. 2019). Khelladi et al. addressed the co-evolution of
metamodels and code, proposing a method to detect metamodel
changes and analyze their impact on code, involving developers
in the resolution process (Khelladi et al. 2020).

The inconsistencies that arise in this research domain are
only resolved during the development cycle, not during the
operation of the system. It is critical to maintain the consistency
between the model and metamodel, especially given their well-
defined conformance relationship, throughout the co-evolution
process. Additionally, the co-evolution must also consider the
horizontal consistency between instances, taking into account
semantic and property-based constraints that go beyond the
simple syntactic relationship between model and metamodel.
Despite the numerous approaches proposed in the literature, the
resolution of these inconsistencies remains a challenge, as these
methods fail to address several important issues.

8.3. Database Schema Data Co-evolution
In this paper, we delve into the realm of data-intensive appli-
cations generated through LCDPs, where the complexities of
database schema-data co-evolution come into play. This issue is
synonymous with the classic problems of schema evolution (Lin
& Neamtiu 2009), data cleaning (Fan et al. 2008), and schema
repair (Wijsen 2005) in database research. Lin et al. highlight
the challenges of application/database co-evolution, particularly
in terms of mismatched assumptions between the database and
the application that can lead to data loss or compromise data

integrity. Through a comprehensive study of two open-source
applications, the authors extract the differences between two
schema versions and outline the difficulties posed by consistency
issues (Lin & Neamtiu 2009). Fan et al. tackle the problem of
data consistency with the Conditional Functional Dependencies
method, an extension of Functional Dependencies that enforces
semantically-related constants. The authors demonstrate the effi-
cacy of their approach in detecting and repairing inconsistencies
in the data (Fan et al. 2008). Wijsen et al. take a novel approach
to preserve data consistency, proposing to update the schema
rather than repair the data through deletion or insertion. The
authors advocate for the creation of a single database that con-
sistently answers queries without the need for rewriting (Wijsen
2005).

In conclusion, a holistic approach to consistency manage-
ment must consider the lessons learned from classic database
schema-data problems. However, it is crucial to remember that
in databases, the relationship between the data and the schema
is well-defined, with clearly separated meta-levels.

8.4. Model Inconsistency Management
In the realm of model-based systems, multiple languages can
be used to model the target system from varying angles, as
each collaborator brings their unique point of view (David et al.
2016). This notion is embraced by multi-paradigm modeling
(MPM)(Mosterman & Vangheluwe 2004) which advocates for
modeling every aspect of the system using the most suitable
formalisms and abstraction levels. Such scenarios may result
in inconsistencies between the models and views of different
users.

Egyed et al. introduce an automatic method for identify-
ing inconsistencies in software engineering design models and
delivering instant feedback on such inconsistencies when the
models change. This method tracks the behavior of consistency
rules to assess the impact of model modifications (Egyed 2011).
Almeida et al. suggest an approach that employs Prolog to repair
inconsistencies in UML design models. The objective of this
approach is to prepare a plan of action to resolve inconsisten-
cies while minimizing the introduction of new inconsistencies.
The size of the space explored to resolve the inconsistencies
is adjustable (da Silva et al. 2010). Kolovos et al. provide a
categorization of the different types of inconsistencies that can
occur between models in a model-driven development process.
They demonstrate the use of the Epsilon Validation Language
for detecting and repairing these inconsistencies (Kolovos et al.
2008).

Although separate techniques can be used to tackle specific
problems with models at the same level of abstraction, we advo-
cate for a holistic approach that enables coordination between
these techniques. However, incorporating parts of these meth-
ods into our setting would require significant modifications to
the assumptions and data structures they use. Additionally, these
methods are functional in the design phase of the product lifecy-
cle, unlike in generated applications LCDPs. The relationships
between artifacts in LCDPs are not well-defined, and existing
model inconsistency management methods do not account for
the aforementioned problems.
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8.5. Novel approach distinctions
The above-mentioned approaches often focus on detecting and
resolving inconsistencies at design time, which is not applicable
to LCDPs where inconsistencies can arise at runtime. Also,
these approaches often assume a high level of technical pro-
ficiency from users, which can be problematic as application
developers and administrators may not necessarily possess soft-
ware engineering expertise. Moreover, these techniques do not
take into consideration the specific constraints and requirements
of LCDP, where inconsistencies may arise from the co-evolution
of the model and data during operation. Additionally, the ap-
proaches assume there are well-defined and well-structured
meta-relationships between artifacts, which is not the case in
LCDPs where the metalevels are not clearly separated. There-
fore, the existing methods fall short in adequately addressing the
consistency challenges (C1–C4) identified in Section 1. Thus,
there is a need for novel approaches that are specifically tai-
lored to the unique characteristics of LCDPs and their generated
applications, with the aim of effectively managing consistency.

On the other hand, we aim to address the inconsistencies
that arise in low-code applications during runtime, considering
multiple artifacts at different levels of abstraction, and taking
into account the limited technical expertise of the citizen de-
velopers who use these platforms. In a low-code setup, it is
crucial to address the challenge of changing rules by different
stakeholders during the operation of the generated application.
This dynamic nature can introduce contradictions between rules.
Our approach tackles this issue by defining and checking con-
sistency as relationships between artifacts and their associated
rules. This novel solution enables us to identify contradictions
by detecting disagreements in artifact-level evaluations. By
delegating the responsibility of defining and evaluating artifact-
level rules to artifact-specific reasoners, our approach achieves
a high level of generality and wide applicability. This is because
our framework relies exclusively on the results generated by the
reasoners or rule evaluators, which perform straightforward yes/
no checks. The implementation of each reasoner or evaluator
can be customized and integrated into our framework, offering
flexibility and adaptability to different scenarios.

Building on OutSystems and adopting some Model-Driven
Engineering (MDE) techniques, we developed and generated
an application to test our approach to address the consistency
challenge in LCDPs.

9. Conclusion
Inconsistency arising from the co-evolution of models and data
can pose challenges in LCDPs. Existing techniques for manag-
ing consistency are often insufficient due to the specific char-
acteristics of low-code development. In this paper, we propose
an approach for detecting inconsistencies between multiple ar-
tifacts at different levels of abstraction in LCDPs and their
generated applications.

Our approach leverages the MDE paradigm to represent
various elements of LCDPs and their generated applications.
We use lightweight formal analysis, based on Alloy to reason
about the consistency of the generated application. We provide

methodological and tool support2 for detecting inconsistencies
that may arise between multiple artifacts in low-code generated
applications at runtime due to model/data co-evolution.

We evaluated the correctness of our approach using a case
study of 10 real applications developed on a domain-specific
LCDP. We also evaluated the scalability, efficiency, and sensi-
tivity of our approach with experiments on synthetic data. Our
evaluation demonstrates that our approach effectively detects
inconsistencies while maintaining a desirable level of scalability
and efficiency.

In the future, we plan to leverage reverse engineering ap-
proaches to enhance the automation of the model extraction
process. We aim to address any detected inconsistencies and
restore the system to a consistent state. We acknowledge that
various uncertainties (Troya et al. 2021) may arise during the
restoration process, which require careful consideration. Ad-
ditionally, we intend to provide facilities for semi-automating
the rule mapping step, with the goal of streamlining the overall
approach and improving its efficiency.
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