
Journal of Object Technology | RESEARCH ARTICLE

Extensible Tooling for Reactive Programming Based on
Active Expressions

Stefan Ramson∗, Markus Brand∗, Jens Lincke∗, and Robert Hirschfeld∗
∗Hasso Plattner Institute, University of Potsdam, Germany

ABSTRACT Reactive programming uses dedicated language concepts such as signals, data bindings, and constraints, so
developers can better express behavior that is triggered by data changes and user interactions. As applications also contain
aspects that cannot be easily expressed through reactive programming, reactive concepts are often integrated into more
generally applicable imperative programming languages. Although such language integrations are readily available, working on
reactive code with tools designed for imperative code is hard, because without dedicated tool support implementation details
may leak unintentionally. There are special tools for reactive programming available, however, they are expensive to make.
Further, a tool typically supports only a single language concept and cannot be applied to others even though they build on
similar ideas. Consequently, control flow or data flow cannot be followed between concepts.
We propose to leverage the commonalities found in reactive programming concepts to create reusable tool components for
data gathering and visualization. To do so we create a toolset working on a generalization of reactive programming concepts,
Active Expressions. By building upon the generic tool components, tool developers can create tool support for specific reactive
concepts. Furthermore, multiple reactive concepts and their potentially complex interaction can be explored in one shared
environment. We implemented the approach in the Lively4 Web-based JavaScript development environment using its Active
Expression framework. Our toolset gathers relevant data about the reactive system and visualizes it using code annotations,
an overview tree, an event timeline, and a dependency graph. We evaluate the reusability of this toolset by adapting it to two
more concepts: signals, and implicit layer activation, known from context-oriented programming. We found that most of the
functionality provided by the toolset can be reused, thus, reducing the implementation effort. Further, we show that multiple
reactive concepts can be supported by the same common toolset. Programmers can use and debug multiple different reactive
concepts simultaneously, without requiring new tools for each one. For future work, we believe our common toolset provides a
starting point for researching the interplay between multiple reactive programming concepts.

KEYWORDS Programming Tools, Development Environments, Reactive Programming, Active Expressions, Lively Kernel

JOT reference format:
Stefan Ramson, Markus Brand, Jens Lincke, and Robert Hirschfeld.
Extensible Tooling for Reactive Programming Based on Active Expressions.
Journal of Object Technology. Vol. 23, No. 1, 2024. Licensed under
Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2024.23.1.a4

1. Introduction

The reactive programming (RP) paradigm (Bainomugisha et
al. 2013) established itself as a viable method for programming
event-driven and interactive applications by relieving program-
mers from manually updating outputs when inputs change. RP

Parts of this paper covering “Explicit Tool Support for Implicit Layer
Activation” were previously presented at“COP’22, the 14th ACM
International Workshop on Context-Oriented Programming and Advanced
Modularity” (Brand et al. 2022).

An AITO publication

http://dx.doi.org/10.5381/jot.2024.23.1.a4

has many manifestations, such as signals, data bindings, and
constraints, which we will henceforth refer to as reactive pro-
gramming concepts. These concepts overcome well-known
issues of other change detection mechanisms, such as the ob-
server pattern (Gamma et al. 1995), by providing dedicated
abstractions for detecting and responding to change, including
external user inputs or internal state changes.

Compared to imperative programming, the declarative style
of RP eases expressing data dependencies and cause-action
relationships in code. This effect becomes apparent by looking
at an example. Say we want to express a data dependency, where
the variable sum should always contain the sum of all values in
the array a. Using a signal, a common RP concept, allows us to
express this desired behavior as a one-liner:

signal: sum = a.reduce((acc, curr) => acc + curr)

This signal will automatically recalculate the value of sum,
whenever the array changes. In contrast, an imperative imple-
mentation has to manually update the sum at all places where
the array was changed. This manual task costs the programmer
time, complicates the code, and can easily lead to bugs when
forgotten (Salvaneschi & Mezini 2016).

While being inferior to RP for some use cases, imperative
programming is still the most common programming paradigm.
One of the reasons for this is that imperative programming is
conceptually close to the way the hardware executes the code.
Due to this direct mapping, many tasks are most easily ex-
pressed using imperative programming. To get the best of both
worlds, reactive programming concepts are often embedded in
an imperative programming environment (Van den Vonder et
al. 2020). By extending the available linguistic repertoire, this
integration allows programmers to choose the paradigm best
suited for their current use case.

While language integrations are readily available, tool sup-
port lags behind. One primary reason is that debugging tools
designed for these imperative environments are unable to ade-
quately capture the declarative nature of RP. Coming back to
the sum-of-an-array example, any code location that changes
the contents of the array will also trigger a re-computation of
the sum variable. Debugging this behavior by stepping through
the code with a symbolic debugger would cause it to jump from
a location where the array is changed into the implementation
of the reactive system which internally recomputes the sum. A
symbolic debugger involuntarily reveals implementation details
at run-time. As a result, the carefully constructed abstraction
in static source code does not match the available dynamic in-
formation, necessitating additional mapping steps that impede
comprehending the data dependencies. These inadequate tools
thus hinder programmers from embracing RP concepts and
make them resort to a less concise and more error-prone, albeit
easier to debug, imperative implementation.

To not lose the advantages of RP, dedicated debugging tools
for RP are required. These tools need to be able to depict
the reactive system and connect the imperative and reactive
worlds. While first promising results for dedicated RP tooling
exist (Banken et al. 2018; Salvaneschi & Mezini 2016), it is only
available for a small subset of reactive programming concepts,
and the tools are not frequently used in practice (Alabor &

Stolze 2020). In conclusion, the lack of proper tool support
makes it hard for many programmers to embrace RP concepts
and can lead to frustration for those who do. To tackle this
absence of proper tool support, we identify the lack of reusable
components for RP debugging tools as one main cause that we
want to address. Without reusable components, tools have to
be implemented from scratch for every new RP concept. This
increased effort can cause developers of RP concepts to not
provide tools in the first place.

Signal Tooling
ILA Tooling

based on

inspects

Active Expression

inspects

State-Based

Reactive Concept

based on
Active Expression

Tooling State-Based Reactive
Concept Tooling

Signal
ILA

Active Expression

...

...

Implicit Layer ActivationSignal

Active Expression
Tooling

Implicit Layer Activation
ToolingSignal Tooling

inspects inspectsinspects

Change Detection

Spezialized Reaction

Data Gathering

Reactive Visualization

Visualize Reaction

...

...

Legend

After

Before

Figure 1 Overview of how Active Expressions and their tool-
ing can be used to implement State-Based Reactive Concepts
and their tooling

To overcome this issue, we propose to leverage commonali-
ties found in many RP concepts to extract shared components
like visualizations or data-gathering methods. These shared
components could provide a reusable basis for new tools, re-
ducing the overhead of implementing proper tool support. By
utilizing this reusable basis, RP concept developers can focus
on the required debugging functionality specific to their RP
concept and do not have to worry about common RP debug-
ging functionality, like highlighting the interface between the
reactive and imperative worlds.

Due to this reduced overhead, debugging support can easily
be implemented by the RP concept developers from the begin-
ning. This co-development holds multiple potential benefits.
To begin with, debugging tools can be provided to users from
the very beginning, easing the usage of the RP concept as de-
scribed above. Moreover, having tools early on can help RP
concept developers validate that the RP concept behaves the
way they intended and can help build a deeper understanding of
the RP concept. Further, different RP concepts are commonly
only used in isolation and the interaction between them hasn’t
been thoroughly researched yet. Basing the debugging tools on
shared components enables a common toolset, which offers the
chance to investigate this interaction between multiple RP con-
cepts. In conclusion, extracting shared components for common
functionality eases the implementation of new tools, allows for

2 Stefan Ramson et al.

co-development of the RP concept and its tools, and enables a
shared toolset that can help investigate the interaction between
multiple RP concepts.

As for the commonality we want to leverage for shared com-
ponents, we choose a common change detection mechanism
found in many RP concepts: detecting changes in the evalua-
tion result of an expression (Ramson & Hirschfeld 2017). This
mechanism automatically detects the dependencies of the ex-
pression, i.e. the variables that might change its evaluation
result. Whenever a variable is updated, the mechanism auto-
matically finds all expressions that depend on it, checks if their
evaluation result changed, and triggers their concept-specific
reactions. We call the subset of RP concepts with this change
detection mechanism State-Based Reactive Concepts (SBRCs).
As we want to supply debugging functionality for all SBRCs,
the most primitive one, the Active Expression (AE), is of special
interest to us. An AE reacts to a detected change by executing
arbitrary callbacks. By specifying these arbitrary callbacks to
more concrete domain-specific reactions, AEs can be used as
a basic building block to implement other SBRCs (Ramson &
Hirschfeld 2017).

Analogously, we claim that the tooling for AEs can be reused
as a basic building block for tooling for other SBRCs. To sup-
port this claim, we provide debugging tools for AEs and extend
them to also support more specialized SBRCs, like signals and
implicit layer activation (ILA) (Brand et al. 2022) (see figure 1).
This toolset is depicted in figure 2 and consists of code anno-
tations, an overview tree, an event timeline, and a dependency
graph. All of these tools can be used to simultaneously depict
multiple different reactive concepts and their interactions.

We show that the toolset can be adapted to support additional
concepts while only requiring changes related to the specific
reaction behavior of these concepts. This, AEs as well as our
debugging toolset and data gathering methods provide a reusable
basis for developers of a new concept to simultaneously create
debugging tools as depicted in figure 1.

We make the following contributions:

– The design of an AE debugging toolset is based on com-
mon challenges that occur when working with AEs.

– An exemplary adaption of the aforementioned toolset for
two SBRCs: signals and ILA.

– An implementation of the aforementioned tools as well
as their integration into the Lively4 system (Lincke et al.
2017).

– An evaluation of the reusability of the AE toolset as well
as the usability and performance of both, the basic and
adapted tools.

The remainder of this paper is organized as follows. Sec-
tion 2 provides necessary background information. Section 3
describes the AEs debugging toolset. Section 4 identifies and
executes on necessary adaptations of the toolset to support other
SBRCs. Section 5 discusses implementation details for collect-
ing the required debugging data and visualizing it in the tools.
Section 6 evaluates the reusability, usability, and performance of
the provided toolset. Finally, section 7 outlines possible future
research opportunities and concludes.

2. Background and Motivation
RP has a long history, in which a multitude of different ap-
proaches have been produced. Survey papers (Bainomugisha et
al. 2013; Johnston et al. 2004; Benveniste et al. 2003) summarize
this long research history by classifying the reactive approaches
and extracting properties that constitute a taxonomy. Two dis-
tinguishing features of reactive programming are behaviors and
events (Bainomugisha et al. 2013). Behaviors (sometimes also
called signals) are first-class abstractions of continuous time-
varying values. Events on the other hand are values that occur at
discrete points in time. Most reactive programming languages
and concepts define reactive primitives (Bainomugisha et al.
2013), which include both these features and are used as basic
abstractions to help express reactive behavior (Elliott & Hudak
1997).

2.1. Dependency Graphs
Graph visualizations similar to data flow graphs (Davis & Keller
1982) are commonly used to depict reactive primitives and how
they interact (Bainomugisha et al. 2013; Salvaneschi & Mezini
2016; Banken et al. 2018; Salvaneschi et al. 2014). As an exam-
ple, consider a temperature measuring application that displays
the apparent temperature tA in degrees Celsius. The apparent
temperature depends on the actual temperature t and the relative
humidity h1 using the formula tA = t + (h − 0.3) ∗ t ∗ 0.25.
Whenever the sensor values t or h change, we should update the
apparent temperature accordingly. The dependency graph in
figure 3 shows the desired relation between the apparent tem-
perature tA and its dependencies t and h. Nodes highlighted in
red represent objects in the reactive system. Dependencies and
dependents of a node are all its highlighted ancestors and descen-
dants, respectively. Note that most RP approaches assume these
graphs to be a directed acyclic graph (DAG) (Bainomugisha et
al. 2013).

Note that the degree of information depicted in a dependency
graph may vary depending on the use case. As an example,
figure 3 provides a detailed view of how data flows through
various computation nodes. Such detailed dependency graphs
can grow quickly, especially when analyzing the entire graph of
a complex system. When systems grow bigger, it is often more
practical to use a collapsed view as shown in figure 4. This
condensed view allows developers to focus only on values and
dependencies involved. By adapting the granularity and focus
of the visualization, developers can align dependency graphs to
their current needs and level of understanding.

Dynamic and Static Another aspect to consider is that some
frameworks allow the dependency graph of a reactive primitive
to be dynamic, i.e. it changes its topology at run-time. Consider
the example x = a ? b : c using the ternary operator. When
a is true, b is relevant for the value of x, while c is not. This
swaps when a becomes false. There are two ways to represent
this in the dependency graph. In the static method, b and c are
always dependencies of x, even though one of them is always
irrelevant at any given moment. In the dynamic method, the
graph can change over time and always contains the precise
1 ranging from 0 to 1

Extensible Tooling for Reactive Programming Based on Active Expressions 3

Figure 2 Overview of the toolset depicting signals (SI) and implicit layer activations (IL) simultaneously

0.3
−

∗

0.25
∗

+

t

h tA

Figure 3 A detailed dependency graph of the apparent temper-
ature application

objects that can change the expression at any given time. The
dynamic method, therefore, contains fewer false positives when
searching for variables that can influence the calculation of a
reactive primitive at any given time.

2.2. Active Expressions
The AE (Ramson & Hirschfeld 2017) is a reactive primitive that
automatically detects changes in the return value of an expres-
sion. When a change occurs, previously registered callbacks
are automatically called with the new value of the expression.

t

h
tA

Figure 4 A collapsed dependency graph of the apparent tem-
perature application

1 aexpr(expression).onChange(callback);

Listing 1 Most basic form of an Active Expression

Listing 1 displays the syntax of this concept in its original im-
plementation in the Lively4 system in JavaScript.

AEs are designed to ease the detection of state changes
while integrating well into existing object-oriented program-
ming (OOP) languages. To achieve this effortless integration,
every variable, including local, global, and member variables,
that is used in an AE is automatically used as a dependency for
this AE, without the need to manually mark it as a dependency.

4 Stefan Ramson et al.

1 val t = Var(0)
2 val h = Var(0)
3 val tA = Signal{t() + (h() - 0.3) * t() * 0.25}

Listing 3 Example of wrapping objects in ReScala

1 let t = 0;
2 let h = 0;
3 aexpr(() => t + (h - 0.3) * t * 0.25)
4 .onChange(tA => println("Apparent Temperature: " + tA));
5
6 readTemperatureFromSensor(val) {
7 t = val;
8 }
9 readHumidityFromSensor(val) {
10 h = val;
11 }

Listing 2 Active Expression version of a reactive temperature
sensor application

The fact that AEs support arbitrary expressions with arbitrary
objects has a significant impact on the dependency graph. While
all nodes in the graph represent a reactive primitive in most
other reactive frameworks, most nodes in the AE’s graph are
just normal objects. These objects do not depend on each other
directly, but AE nodes depend on the objects and can write
other objects in their callback functions. This new bipartite
dependency graph for the temperature sensor application of
listing 2 is depicted in figure 5.

t

h
AE tA

Figure 5 Active Expression version of the dependency graph
of the apparent temperature calculator

The AE reactive programming concept implicitly detects de-
pendencies, which can dynamically change, from an arbitrary
expression. AEs react to changes in the result of the expres-
sion by executing an arbitrary callback. Consequently, their
dependency graphs are not restricted. Further, the AEs con-
cept emphasizes a seamless integration with object-oriented
languages.

Implicit Dependency Detection A reactive system can achieve
automatic detection of change in several ways. While repeatedly
reevaluating the reactive primitive, also known as polling, is
possible, it can quickly become inefficient and makes it hard to
guarantee an appropriate evaluation order. Therefore, most reac-
tive systems require explicit knowledge about the dependency
graph to trigger the correct reactive behavior when a depen-
dency changes. A common way of obtaining this knowledge
is to wrap objects into specialized meta objects as shown in
Listing 3 for ReScala (Salvaneschi et al. 2014). However, meta
objects are incompatible to ordinary functions and operations.
To overcome this incompatibility, the process of lifting converts
these functions and operators to versions that support said meta
objects (Bainomugisha et al. 2013). AEs differ from most other
reactive systems in that they do not require dependencies of a

reactive primitive to be wrapped by an object. Instead of us-
ing a lifting strategy, AEs use dynamic analysis to determine
dependencies and their write accesses. To achieve this, AEs
assume every variable that is currently used in the expression to
be a dependency. Unlike other frameworks, the decision about
which objects should be dependencies is, therefore, the respon-
sibility of the system rather than the user. Since objects in the
AE system are reactive without being wrapped by a dependency
class, the interaction with them remains unchanged and they
can be combined in arbitrarily complex ways, including code
branching and function calls, by using arbitrary JavaScript code.

A common source of bugs in reactive applications is for-
getting to establish all required dependencies (Salvaneschi &
Mezini 2016). While this source of bugs is eliminated by the
AE system, the automatic declaration of dependencies may also
lead to bugs, e.g. if the user wants to reuse a variable for another
purpose and forgets that it is used in an AE. Note the inherent
trade-off: while automatic detection of dependencies eliminates
the problem of missing dependencies and takes that responsibil-
ity from the user, it also takes away control from the user and
might introduce new bugs.

Dynamic Change As with most other reactive approaches,
the dependencies of an AE can dynamically change over time.
In listing 4 mode and a are dependencies of the AE at the
beginning. When mode changes in line 6, a is no longer a
dependency for the AE but b becomes one. In other words, only
the objects used in the last evaluation of the expression are its
current dependencies. Changing dependencies also implies that
the dependency graph of an AE changes over time.

1 let mode = true;
2 let a = 5;
3 let b = 10;
4 aexpr(() => mode ? a : b)
5 .onChange((value) => /* Reaction */);
6 mode = false;

Listing 4 An Active Expression with changing dependencies

An alternative to this dynamic approach is to statically as-
sume mode, a, and b to be dependencies at all times. Detecting
the dependencies in this way requires static analysis, as it is
not guaranteed that a given execution of an expression uses all
variables it could possibly use. However, a complete static anal-
ysis is very complicated with unrestricted JavaScript code, as
expressions like obj["TEST".toLower()] can hide property
names.

Types of Reactions In addition to how they detect change,
reactive concepts also differ in the way they react to a detected
change. While section 2.3 describes a multitude of special-
ized reactions, AEs act as a basic building block to help imple-
ment these specialized reactive concepts. Thus, AEs themselves
provide a generic reaction: invoking associated callbacks ev-
ery time a change occurs. As these callbacks can be arbitrary
JavaScript code, it is hard to predict the effects of a callback
before its execution. This also makes it hard to determine the
full dependency graph. As seen in figure 6, the AE system is
only aware of the connections from dependencies to their AEs
and not from the AEs to the objects they write.

Extensible Tooling for Reactive Programming Based on Active Expressions 5

1 ae1 = aexpr(() => a).onChange(val => b = 2 * val)
2 ae2 = aexpr(() => b).onChange(val => c = 2 * val)

a AE1 b AE2 c

Figure 6 Example of an Active Expression writing a variable
that triggers another Active Expression and the dependency
graph of this example. The Active Expression system is un-
aware of the dashed connections.

Unrestricted Dependency Graph The most common restric-
tion to the dependency graph is to enforce it to always be a
directed acyclic graph (DAG) and therefore cycle-free. This
restriction guarantees that a topological order exists. Evaluating
behaviors in this order guarantees that all dependencies are up-
to-date when calculating the new value of a behavior, avoiding
glitches (Bainomugisha et al. 2013). However, this property
also restricts the possible use cases of the system: constraint
systems (Felgentreff et al. 2014) and bidirectional data bind-
ings (Weiher & Hirschfeld 2016) inherently contain circular
dependencies. Since AEs try to be a basic building block for
a wide variety of reactive concepts, which may depend on a
specific dependency graph form, AEs do not restrict the de-
pendency graph themselves. Instead, AEs rely on specialized
implementations to enforce these restrictions, if deemed neces-
sary.

Object-Oriented Language Integration Frameworks like
REScala or AEs focus on reducing the gap between the reactive
system and the object-oriented environment around it. They,
therefore, provide the user with abstractions that can detect and
react to changes, without reducing the available language fea-
tures. Signal expressions in REScala and even more so AEs are
as close as possible to ordinary Scala or JavaScript code, respec-
tively. In contrast, many frameworks like ReactiveX (Meijer
2010), Flapjax (Meyerovich et al. 2009), or Frappé (Court-
ney 2001) focus on transforming data using classic functional
programming functions like map, filter or functions special-
ized for data streams that merge or combine multiple streams.
These explicit operators provide a simple foundation to insert
hooks required to detect dependencies. While explicit reac-
tive approaches are easier to implement, a more object-oriented
approach offers better integration with existing code and thus
omits the need for time-consuming refactorings (Köhler & Sal-
vaneschi 2019).

2.3. State-Based Reactive Concepts
Reactive concepts are often implemented as language extensions
or libraries for various programming languages. Examples are
shown in listing 5. The reactions in these examples contain
a variety of use cases like writing to a variable, manipulating
the document object model (DOM), or triggering a constraint
solver. All concepts share that they react to changes in the
return value of an expression. Concepts that share this prop-
erty are called State-Based Reactive Concepts (SBRCs), which
are originally defined as “all reactive concepts in which depen-
dencies are specified implicitly as expressions over program

1 // Active Expression: Callback (JS)
2 aexpr(expression() -> any)
3 .onChange((value) => /* Reaction */);
4
5 // REScala Signal: Assign variable (Scala)
6 val s = Signal{expression() -> any}
7
8 // Flapjax: DOM Manipulation (JS)
9 insertValueB(expression() -> any, DOMElement, Field);

10
11 // Implicit Layer Activation (JS)
12 layer.activeWhile(expression() -> bool)
13
14 // Reactive Object Query (JS)
15 select(Class, expression(Object) -> bool) -> View
16
17 // Constraints (JS)
18 constraint: expression() -> bool

Listing 5 A summary of the basic form of different reactive
concepts highlighting types of reactions. The reactive part
for all of these concepts can be expressed by an expression
and is highlighted in green. Some concepts extend the
underlying language, e.g. constrains (Felgentreff et al. 2014)
use JavaScript’s label syntax to declare themselves.

state” (Ramson & Hirschfeld 2017). All shown SBRCs react
to changes in the state of a program by identifying dependen-
cies of its expression, like local, global, or member variables,
and reevaluating the expression if one of them changed. The
difference between SBRCs and AEs is the reaction to a de-
tected change. While AEs execute associated callbacks, SBRCs
specialize this behavior and sometimes adapt it to a specific
domain: signals update a graph of interconnected, time-varying
values (Gautier et al. 1987), implicit layer activation enables or
disable dynamic behavior adaptations according to a boolean
expression (Costanza & Hirschfeld 2005; von Löwis et al. 2007;
Kamina et al. 2016), reactive object queries update groups of
objects to match the current system state (Lehmann et al. 2016),
and interactive constraint systems resatisfy desired properties
of a system if necessary (Freeman-Benson 1990; Grabmüller &
Hofstedt 2004).

AEs generalize these concepts by providing a freely pro-
grammable reaction. Therefore, AEs can often be used as build-
ing blocks to implement other SBRCs as exemplified in the
following.

Signals Just like AEs, Signals automatically detect changes
in the return value of an expression. But instead of triggering
arbitrary callbacks on a change, signals always assign the new
value of an expression to a variable. Signals are typically con-
nected (i.e. the value of one signal is used in the expression
of another signal) and therefore form an explicit dependency
graph. When a change occurs that affects multiple signals, it is
guaranteed that signals are executed in an order that is free of
race conditions. Figure 7 shows a basic example of such a race
condition. When a changes in line 4, signals should guarantee
that b is reevaluated before c, which prevents c to update its
state twice and having an unwanted intermediate state. This
glitch avoidance can be achieved by sorting the graph topolog-
ically (Bainomugisha et al. 2013), starting from the changing

6 Stefan Ramson et al.

1 let a = 5;
2 signal: b = a + 1;
3 signal: c = a + b;
4 a++;

a
b

c

Figure 7 A potential glitch a signal system should avoid

dependency (nodes that cannot be reached by this dependency
are ignored).

Implicit Layer Activation The context oriented programming
(COP) programming paradigm allows developers to define be-
havior adaptations as partial methods (Costanza & Hirschfeld
2005). These partial methods are grouped in layers that can be
activated dynamically at run-time.

1 let layer = new Layer(); // Layer definition
2 const obj = {
3 getProp() { // getProp is a layered method
4 return 17;
5 }
6 };
7
8 layer.refineObject(obj, {
9 getProp() { // Partial method definition
10 // proceed calls the original getProp
11 return 42 + proceed();
12 }
13 })

Listing 6 Basic example of defining a layer refining a method

Listing 6 exemplifies this functionality by defining a layer
(layer) with the partial method (getProp), which executes
code and can use the underlying partial method using a
proceed() call. COP behaves similarly to overriding methods
using inheritance except that the adaptation is in effect if and
only if the corresponding layer is active. Before the invocation
of a layered method, the system, therefore, checks all the layers
and augments the code with the additional functionality from
all active layers. There are various proposed activation means
for method layers (Kamina et al. 2016), most of which require
developers to model context switches explicitly. In contrast, the
concept of implicit layer activation (von Löwis et al. 2007) de-
scribes the dynamic activation or deactivation of method layers
based on a boolean expression using the activeWhile method.
The layer is active if and only if a specified boolean expression
returns true.

1 layer.activeWhile(/* condition */);

To implement such a reactive behavior, an AE can be used to
watch the boolean expression and activate or deactivate the layer
whenever the expression changes (Ramson et al. 2017):

1 activeWhile(condition) { // in class Layer
2 aexpr(condition)
3 .onBecomeTrue(() => this.activate())
4 .onBecomeFalse(() => this.deactivate());
5 }

2.4. Debugging Reactive Programming
RP concepts are declarative. Conventional tools, however, are
built for imperative concepts. Since reactive and imperative

concepts require different mental models, integrating reactive
debugging functionality in existing debuggers is challenging.
One example of this is that the declarative nature of RP implies
that the effects of a reactive statement, like a signal definition,
are not immediate, but leave a lingering effect in the system.
Compared to the instantaneous nature of imperative program-
ming, the order of operations is thus often unclear in RP. To
make the order of operations discoverable, an interactive ex-
ploration of reactive behavior over time is suitable to debug
RP concepts. Omniscient debuggers are also known as back-
in-time debuggers (Pothier & Tanter 2009; O’Callahan et al.
2017) like the Whyline (Ko & Myers 2008) record the entire
history of a debugged program to explore it freely after execu-
tion. This approach has the advantage that past activity is saved
and that behavior can be navigated interactively, forward and
backward. This approach can also be applied to RP debugging
by recording the relevant events during execution, as shown by
RxFiddle (Banken et al. 2018), a debugger designed for Reac-
tiveX (Meijer 2010). Further, running temporal assertions over
a time series of states can result in even faster identification of
root causes (Perez & Nilsson 2017).

2.5. Extensible Debugging Tools

The need for reuse and adaptability in debugging functionality
is not new and appears in various related research. Examples
are integrated development environments (IDEs) that want to
support and debug multiple programming languages. IDEs and
languages form a many-to-many relation in software develop-
ment. When m IDEs each want to support n languages, m * n
many debugging sets need to be implemented. In these many-
to-many relations, an abstract protocol with an adapter (Gamma
et al. 1995) for each IDE and each language debugger is com-
monly used to reduce the effort to m + n adapters. One particular
example of this approach is the debug adapter protocol (DAP)2,
which allows IDE developers to automatically support a multi-
tude of language debuggers by implementing only one abstract
protocol. Similarly, we also have such a many-to-many rela-
tionship between RP concepts and debugging functionalities.
The general idea of reusing as many components as possible
applies to our case as well. This is why we chose AE as a gen-
eralization, which is broad enough to support many concepts
while being specific enough that many functionalities can be
reused. However, each concept that builds on AEs has special
properties and reactions. As it is impossible to predict every
possible reaction and incorporate them into the generic protocol,
the need for possible adaptations always remains. This issue
also applies to the DAP and other language protocols, where
domain-specific languages (DSLs) (Merino et al. 2020; Prähofer
et al. 2013) offer unique constructs that are not supported in the
generic protocol (Jeanjean et al. 2021).

One approach to combat this abstraction gap in debugging
DSLs is the moldable debugger (Chis et al. 2014) that, similar
to the Reactive Inspector, automatically adapts itself to the do-
main of the currently debugged code at run-time. The moldable
debugger uses domain-specific extensions to make it easy to

2 https://microsoft.github.io/debug-adapter-protocol (February 21, 2022)

Extensible Tooling for Reactive Programming Based on Active Expressions 7

https://microsoft.github.io/debug-adapter-protocol

1 const data = new LinkedList();
2 let mean, median, sd, skew;
3
4 // AE4
5 aexpr(() => (mean - median) / sd).onChange(v => skew = v);
6
7 // AE1
8 aexpr(() => data.median()).onChange(v => median = v);
9
10 // AE2
11 aexpr(() => data.average()).onChange(v => mean = v);
12
13 // AE3
14 aexpr(() => {
15 return Math.sqrt(
16 data.map(x => (x - mean) ** 2).sum() / data.length)
17 }).onChange(v => sd = v);
18
19 aexpr(() => Math.sign(skew))
20 .onChange(v => lively.notify("New skew of data: " + v));
21
22 data.pushBack(4);
23 data.pushBack(1);
24 data.pushBack(1);

Listing 7 Example usage of a LinkedList with Active
Expressions

provide additional views and operations depending on the cur-
rent domain. However, the lingering effects of the declarative
nature of RP simply make it hard to define the current domain
in reactive applications.

3. Debugging Active Expressions
Dedicated RP tooling often has to be built from scratch. To
reduce this effort, we propose to leverage commonalities in
reactive concepts to extract reusable components for debugging
tools. We implement this approach by using AE debugging
tools as a reusable component since AEs are a generalization of
many reactive concepts.

3.1. Challenges
To design AE debugging tools, we analyze a selection of chal-
lenges that commonly occur when working with AEs. Namely,
we will analyze dangling AEs, unexpected dependencies, unex-
pected evaluation orders, and errors in AE statement evalua-
tions. These challenges were chosen, as they are perceived as
the most common problems in personal experience and because
they are well fit to highlight the need for debugging tools.

Running Example A LinkedList implementation (Full ver-
sion in listing 15) is a good example to demonstrate the
challenges that can come up when working with AEs. The
LinkedList has a pushBack(value) method to add an item
to the back of the list as well as average() and median()

methods, to calculate the average and median value in the list,
respectively. The LinkedList also tracks its length by incre-
menting a counter every time an item is added.

Listing 7 shows how AEs can be used to automatically track
the median, mean and sd (standard deviation) and nonparamet-
ric skew3 of a LinkedList and always output whenever the
skew of the data changes. The sd and skew are calculated as a

3 https://en.wikipedia.org/wiki/Nonparametric_skew (February 24, 2022)

L
in

ke
dL

is
t

AE1 median

AE2 mean

AE3 sd

AE4 skew

length

e1

e2

eN

...

st
ar

t
en

d

Figure 8 Dependency graph of the LinkedList example in
listing 7

function of the other variables, as the LinkedList implemen-
tation does not provide it directly. The dependency graph in
figure 8 depicts this logic. The nodes on the left represent the
state of the LinkedList, with its length and e1 to eN as its
elements.

In the following, we use this example to demonstrate com-
mon challenges when working with AEs.

3.1.1. Dangling AEs AEs do not manage their lifetime au-
tomatically and have to be disposed of manually by calling
.dispose() on AE object if the AE is no longer needed. This
manual task can easily be forgotten, as done with the five AEs in
the LinkedList example in listing 7, where no reference to the
AE object is held. These AEs are "dangling" - meaning that they
still exist in the system, but are never deleted. Dangling AEs are
especially dangerous in a self-sustaining environment, as code
is automatically rerun when changed. If no proper migration is
performed, this leads to dangling AEs from previous iterations.
These dangling AEs can produce unwanted side effects, like
debug output or even changes in the object graph. They can
also extend the lifetime of objects that are no longer referenced
anywhere else and could therefore be deleted otherwise, thus
clogging memory. This problem could be circumvented with
weak references (which were not supported by JavaScript, as of
ES7), but even then the question of whether an AE has the right
to extend the lifetime of its dependencies remains.

What do tools need to provide? Currently, to find dangling
AEs, programmers need to resort to reflective access through a
management class called AERegistry to get a list of all AEs
currently in the system. This yields multiple disadvantages.
First, this method requires detailed knowledge about the AE
API. Second, a plain list of all AEs is unfiltered and contains too
much information, which makes the searched AEs hard to find.
Third, the AE list will either be shown by print-debugging or in
a hierarchical object inspector, which only provides text output
without any visual preparation. These disadvantages make it
inconvenient to work with the reflective access, which motivates
the need for a dedicated tool for finding dangling AEs. This tool

8 Stefan Ramson et al.

https://en.wikipedia.org/wiki/Nonparametric_skew

needs to be able to show all AEs that are active in the system.
Moreover, it should make the AEs discoverable, by allowing
overview, filtering, and details on demand functionality(Shnei-
derman 1996). To fix bugs related to dangling AEs, the tools
should also be able to dispose of AEs.

3.1.2. Unexpected Dependencies Another common prob-
lem that occurs when working with AEs is unexpected depen-
dencies, which include both missing dependencies and depen-
dencies triggering an AE at an unexpected time. Both of these
cases are mostly due to the implicitness of dependencies in AEs
(See section 2.2) as we will discuss in the following.

Missing Dependencies Multiple scenarios can make program-
mers believe a variable is a dependency of an AE, while it is
not. Contrary to the belief of the programmer, the AE does not
detect a change and does not call its callbacks in these scenarios.
One small example of missing dependencies is highlighted in
the minimum method of the LinkedList example, where vari-
ables in the test expression of a for loop are not tracked, due
to a limitation in the AEs system implementation, as seen in
listing 8.

1 // this.length not detected as a dependency,
2 // when used in the test expression
3 for(let i = 0; i < this.length; i++) { /* ... */ }
4
5 // this.length is detected as a dependency
6 const l = this.length;
7 for(let i = 0; i < l; i++) { /* ... */ }

Listing 8 Missing dependency in LinkedList code due to a
limitation in the Active Expression implementation

However, the two main scenarios that cause missing depen-
dencies are that they change over time and the inability to detect
changes in external code.

As described in section 2.2, the dependencies of an AE can
change over time. This is caused by the code taking different
branches on reevaluations of the AE. If a variable was not used
in the path of the last evaluation, it can not possibly change
the result of the AE when changed and is therefore not tracked.
Programmers may not realize that a variable can no longer influ-
ence an expression and therefore be confused that the expression
does not trigger its callbacks when the variable changes. To help
programmers with this, the system should help them understand
which dependencies an AE has at a given moment in time. As
dependencies change over time, the programmer should have
the possibility to explore how dependencies are changed over
time or be informed if a variable is not currently a dependency
but was in the past.

The second scenario that causes missing dependencies is
external code and native code — in both, the AE system can
not detect changes. These are actual shortcomings of a specific
AE implementation and not misunderstandings of the program-
mer. The used AE implementation rewrites code to insert hooks.
When the programmer uses an external library, the imported
code also needs to be rewritten by the system, to support au-
tomatic change detection. This rewriting process is often not
feasible: external libraries may suffer too much from the re-
duced performance due to the additional hooks. For native code,
the source code is not available in the first place. Therefore,

external libraries and native code are often not supported by
the AE system. Implementing the LinkedLists minimum()
method using e.g. lodash’s min()4 function does therefore not
work, since lodash’s internal access to the elements of the list do
not contain the hooks to mark these variables as dependencies if
lodash is not rewritten. For this case, programmers need to see
all dependencies an AE ever had. This way they can identify
that the dependencies they expected are not present and start
reasoning why. It is also conceivable to warn programmers if
their AEs use non-rewritten code.

Unexpected Evaluation When working with AEs, it can often
happen that an AE is reevaluated at an unforeseen moment at
which the dependencies of the AE are in an inconsistent state.
This can cause the expression to evaluate to an erroneous value,
which can propagate through the reactive system and cause
unexpected behavior.

We will now show one of these unexpected evaluations that
occur in the LinkedList example in the AE calculating the
average: aexpr(() => data.average()).

1 average() {
2 let sum = 0;
3 let current = this.start;
4 for(let i = 0; i < this.length; i++) {
5 if(!current) break;
6 sum += current.value;
7 current = current.child;
8 }
9 return sum / this.length;
10 }

Listing 9 The average method in the LinkedList class

1 pushBack(value) {
2 this.length++;
3 const oldEnd = this.end;
4 if(!this.start) {
5 this.start = new Node(value);
6 this.end = this.start;
7 } else {
8 this.end.child = new Node(value);
9 this.end = this.end.child;
10 }
11 }

Listing 10 The pushBack method in the LinkedList class

The average method, shown in listing 9, depends on the list
entries and its length. When the pushBack(value) method
(listing 10) increases the length of the list by one at the beginning
of the method, the AE immediately recognizes a change and
reevaluates the expression. The average method is called with
an increased length, but before the new item was added to the
list. The average implementation in listing 9 at least prevents
a run-time error in line 5, but still returns a wrong average
calculation as the length is increased, while the sum is not. The
author of the pushBack method assumed that the method is
used as an atomic operation and that the order of operations
is not relevant, as long as the state of the list is valid after the
complete evaluation of the method. This assumption is broken

4 https://lodash.com/docs/4.17.15 (January 17, 2022)

Extensible Tooling for Reactive Programming Based on Active Expressions 9

https://lodash.com/docs/4.17.15

by the AE system because the AE system tracks dependencies
across abstraction boundaries. While this behavior is essential
for immediate feedback and e.g. constraint systems, it can lead
to unexpected intermediate values.

Such problems can often be resolved by changing the order
of operations to keep the internal state consistent at all times
or by manually suppressing updates of the reactive system,
which can be implemented in multiple ways. However, the
problematic behavior can only be resolved once the inconsistent
state is found and understood in the first place. Finding such
problematic behavior is often the most challenging task. One
reason for this is that the code locations of these write operations
to a dependency can potentially be located far away from the
code location of the AE declaration, in different files or even
modules of the program. Even if programmers know which
dependencies an AE has, it is already hard for them to find all
code locations that can change this AE, as the write accesses to
its dependencies may be scattered across multiple files.

Unlike other reactive systems, the implicit dependency detec-
tion of AEs implies that the programmer does not have to mark
the dependencies of an AE explicitly, but they are determined
automatically. This reduces the complexity for the user as it al-
lows them to not be aware of the precise dependencies of an AE.
The LinkedList example can demonstrate this higher level of
abstraction. Let’s have a look at the AE the user installed to
keep track of the average: aexpr(() => data.average())

in line 5. A programmer who writes this code is likely not too
concerned with how the average() method looks like and will
not look up the variables that are used in the method. They will
therefore be unaware of the dependencies of the AE. Even if
they were to check the method, it is not trivial to extract the
dependencies from the method implementation.

What do tools need to provide? As demonstrated above, the
unawareness of the dependencies of an AE can cause the de-
veloper to overlook unexpected erroneous behavior. At first
glance, it seems like the improved ease of use that AEs provide
by automatically handling dependency detection is diminished
by these challenges it can cause. It is therefore important for
programmers to have the ability to quickly get an overview over
the dependencies of an AE. This overview should include show-
ing all dependencies for an AE and vice versa as well as listing
all code locations that write a dependency. The advantage of
this approach is that in most cases, programmers do not need to
worry about dependencies, but they can easily get the required
information when they need it to investigate the reactive system.
As described above, dependencies that change over time can
lead to confusion. Thus, an appropriate visualization of how
and when dependencies change over time is required.

3.1.3. Order of Evaluation As discussed in section 2.2,
AEs do not have a specialized execution model. This means that
the order in which multiple AEs execute their callbacks when
they simultaneously detect a change, is not resilient to glitches.
We assume the most common evaluation order, which executes
AEs in the order of their declaration if multiple AEs simultane-
ously detect a change. This can lead to unfortunate evaluation
orders, which can cause unwanted behavior. Invalid interme-

diate values that are propagated are the source of the problem.
Such glitches are avoided by most reactive concepts by evalu-
ating them in topological order. Even without these glitches,
knowing the precise order in which the reactive primitives are
evaluated and invoking their callbacks can be imperative for
programmers to ensure correct behavior. Tools should therefore
be able to communicate the order of evaluation and which AEs
trigger which other AEs.

What do tools need to provide? To learn the precise order in
which reactive primitives are evaluated, the tools should be able
to provide a temporal overview. This temporal overview should
include the evolution of all values an AE assumed over time, as
this overview can often show erroneous behavior. However, in
some cases, this temporal overview does not suffice to show the
cause of an erroneous value, as the timeline’s ability to show the
relation between multiple AEs is very limited. For these cases,
a structural overview of the object graph and the AEs in it at
the time of these events should also be provided. This structural
overview can provide additional information about the way AEs
interact and the state of related objects in the system.

3.1.4. Error in Statement Evaluation
The evaluations of AEs are interleaved with the imperative

execution model, possibly at any write operation. To not raise
errors at confusing code locations, the AE system, therefore,
catches all errors that occur during the evaluation of AEs by
default. This design decision makes the errors invisible to pro-
grammers, who just observe that their AEs do not seem to trigger
callbacks. To show why these invisible errors are problematic,
assume the unexpected evaluation bug above still exists and the
guard clause if(!current) break; in line 5 of the average
method in listing 9, does not exist. When the average method
is called in an invalid intermediate state an error occurs that
is not visible to the programmer. This completely hides the
unexpected evaluation bug in the system from the programmer.
AE tools should therefore communicate these errors to the user.

What do tools need to provide? Next to recording and pre-
senting the errors to the programmer on demand, it is also
essential that the tools inform the programmer that an error ex-
ists. Informing the programmer should preferably be done close
to the code location of the AE definition, so they can easily
relate the error with the AE and minimize context switches.

Figure 9 Sketch of code annotations marking lines that contain
an Active Expression definition or a dependency change

3.1.5. From Challenges to Design Our designed tools
need to be able to display structural and temporal information

10 Stefan Ramson et al.

Figure 10 The code annotations add indicators at lines of
code that define or trigger reactive behavior (1). The context
menu of a line, that changes a dependency, links to all Active
Expression written by the dependency (2) and vice versa (3).

Figure 11 Sketch of an hierarchical overview tree for Active
Expressions structured by file, line and instance

Figure 12 Overview showing all Active Expressions in a
hierarchical tree

of the reactive system. Further, they need to bridge the gap
between the reactive and the imperative world by linking the
tools with the dynamic run-time data of the AEs to the code and
vice versa and by displaying information at their interface.

To find good representations that can support these chal-
lenges, previous studies (section 2.4) suggest that reifying the
mental model of a concept is a key task for a debugging tool.
This reification is especially important, since answering poten-
tial questions programmers have about the reactive system is

Figure 13 Sketch of a timeline tool with different color-coded
event types

easiest, when the explanation is in a representation close to
the mental model of the programmer. To provide proper tool
support, it is, therefore, necessary to find a representation that
captures the programming model of RP and AEs in particular.

We designed four tools: the code annotations (section 3.2)
augment the code to highlight the interface between the imper-
ative and reactive worlds and provide an entry point into the
other tools as well as code navigation capabilities. The AE
overview (section 3.3) shows all AEs that are currently in the
system. The event timeline (section 3.4) provides a temporal
overview of the reactive system. The dependency graph (sec-
tion 3.5) gives a structural overview. To make the information
explorable, the presented tools follow the information-seeking
mantra by Shneiderman 1996 (Overview first, zoom and filter,
then details-on-demand).

3.2. Code Annotations
Depicting the code locations that write a dependency also re-
quires depicting structural information. However, the depen-
dency graph is not the best fit for this task. Instead, it would
be more suitable to highlight the code locations directly in the
text editor, as it also shows the surrounding context in which
the code is called. These annotations in the margin of the code,
sketched in figure 9, can then act as an entry point for debug-
ging by providing functionality related to the code location, like
navigating to the affected AEs, or showing the dependency in
the graph. On top of that, immediately warning a programmer
writing an AE that it produced errors should also be close to the
code.

Annotating code at the interface between the imperative
and reactive worlds bridges the gap between these worlds and
provides an entry point for debugging. As seen in figure 10, lines
that contain an AE, as well as lines that change a dependency
of an AE are annotated with a respective icon in a UI gutter
on the left (1). The annotations project the dynamic run-time
dependency information back onto the static code, which is an
essential task in debugging (Lieberman & Fry 1995). The icons
can be clicked for additional information, code navigation and
to open the other reactive tools with information relevant to the
selected line (2 and 3). The code navigation helps to understand
which lines in the imperative code interact with the declarative
behavior of an AE. One advantage of augmenting the code
directly is that it provides a very small feedback cycle since
there is no context switch for the programmer, who is already
working with the code. Furthermore, the concept of additional
information in the sidebar is familiar from established IDEs
(e.g. any JetBrains IDE5). The annotations can also be used to

5 https://www.jetbrains.com/ (August 8, 2021)

Extensible Tooling for Reactive Programming Based on Active Expressions 11

https://www.jetbrains.com/

Figure 14 Event timeline tool depicting events and values of selected Active Expressions over time

display critical information to the user as fast as possible. If
the evaluation of an AE fails with an error, the code locations
of the AE and the triggering dependency display an additional
warning icon, which provides additional information about the
error.

3.3. Overview
While an overview of all AEs in the system is given by a graph,
it may not always be the best tool for this use case, as it also
contains a lot of other information. An additional overview over
all AEs, hierarchical by file and line of declaration, for easy
discoverability, should also be provided (see figure 11). Such
an overview is also a fitting place for disposing of AEs.

An overview of the AEs in a system is an important first
step in investigating reactive behavior. As seen in figure 12, we
chose a hierarchical tree that groups the AEs by file, then line,
and then instance, to structure the AEs and ease searching for
specific AEs (1). Each AE instance has a corresponding emoji
(2) that eases tracking this AE across multiple visualizations.
The context menu of each item also allows the user to perform
actions on the AEs in this subtree (2). We designed the AE
overview as a reusable selection tool that is integrated in the
timeline (figure 14) as well as the graph tool (figure 16).

3.4. Event Timeline
One possibility to provide temporal information is to reconstruct
a dependency graph (section 3.5) at different points in time and
give the user a means of selecting the desired timestamp. This
is great for understanding the system behavior at any given
time and showing changes in a single timestamp, like which
dependencies are added or removed. However, this approach is
not enough to give an actual overview over time, because it only
ever shows the state of the reactive system at one timestamp at
a time. An additional timeline view, as sketched in figure 13,
could provide an overview of how the values of an AE changed
over time or to temporally relate multiple events.

Our timeline component visualizes events that happened
during the lifetime of an AE, as displayed in figure 14. These
events include value and dependency changes, (de-)registration
of callbacks, and created and disposed of events (1). The tool
also incorporates the overview component (2). The timeline will

always be filtered to only the AEs selected in this component.
The history of the values an AE evaluated over time as well as
filter functionality for events can be found in the upper right
corner (3). Hovering an event shows additional information
relevant to that event type (4) and clicking the event allows
for additional debugging actions like jumping to the line in the
code responsible for emitting the event, or opening the event in
an object inspector (5). This tool provides a good entry point
for debugging unexpected behavior because relevant AEs and
events can quickly be found and displayed. It also helps to
relate multiple AEs temporally, as events of multiple AEs can
be displayed in the same timeline.

Figure 15 Sketch of a graph tool with objects in green, identi-
fiers in orange, and AEs in green.

3.5. Dependency Graph
Graph visualizations are commonly used to reason about RP
concepts. This representation visualizes the interplay between
an AE and the object graph via a bipartite graph with AE nodes
and variables nodes. An edge from an AE to and variable means
that a callback of the AE writes to that variable. An edge from
a variable to an AE means that the variable is a dependency. We
use a dependency graph as shown in figure 15 as a starting point
for our design. A graph is a good tool for depicting the dynamic
run-time data of AEs.

In our approach, a dependency graph provides a structural
overview for understanding the state of the reactive system. As
shown in figure 16, the graph can visualize the dependencies
between AEs and the object graph (1) at a specific timestamp
during execution, e.g. upon the evaluation of an AE. The graph
can therefore help understand the cause of an event as well
as the state of the program. It also uses the same overview
component as the timeline to allow the user to filter and select
relevant AEs to show in the graph (2). One of the main features

12 Stefan Ramson et al.

Figure 16 The Dependency graph (1) with Active Expression overview for selection (2) and event selection for time travel (3)

of the graph is that it combines the temporal and structural
dimensions of the dependency graph. An event selection slider
allows the user to select an event from one of the displayed AEs
(3). The graph will always show the state of the system at the
time of the selected event, allowing the user to travel through
time and inspect the evolution of the dependency graph over
time. The graph also highlights the changes the selected event
caused (shown as a thick blue line).

The graph can be separated into two parts: a relevant sub-
graph of the object graph (Lange & Nakamura 1997), and the
reactive part containing AEs and their callbacks. The partial
object graph is a bipartite graph with nodes for keys (orange)
and value objects (green) and arrows marking referential rela-
tionships. An edge from a value to a key means that the object
has a member with the name of the key. An edge from a key
to a value means that the variable points to that object. The
separation of keys and their values allows the system to make
it visible if two variables reference the same value, as both key
nodes can connect to the same value node. This notation can be
extended to data structures as well. If values are primitives, they
are not displayed in a separate value node but directly within
the key node.

The reactive part contains nodes for AEs (blue rectangles)
and their registered callbacks (purple rounded rectangles), as
shown in figure 17. AEs have an additional emoji as an easy
identifier to distinguish similar AEs. The two sides are con-
nected by dependency and event arrows. Dependency arrows
are edges that show which keys are currently dependencies of an
AE. Dependency arrows change their color and turn into event
arrows when the dependency causes a change in the AE. Its

multiplicity shows the number of times this dependency caused
the AE to change. By adding additional event arrows, the depen-
dency graph shows the relation between multiple AEs. These
additional arrows are used when an AE’s callback writes to a
dependency of another AE and is shown by additional arrows
from the AE to its callback and from the callback to the depen-
dency, as shown in the graph displayed in figure 17. Each node
type also has a context menu that links the element to the other
tools, inspects the data shown in the node, or collapses/expands
the node (4).

3.6. Tool Integration
As stated in section 2.4, a solid integration of these new tools
into the existing workflow is necessary for them to be used
in practice (Alabor & Stolze 2020). Since the write locations
of dependencies are the interface between the reactive and im-
perative execution models, they should be annotated. These
locations should be the entry point to all other debugging tools.
Further, good integration between all reactive tools is essential
to provide a holistic understanding of the reactive system and
its integration into the imperative environment.

4. Debugging State-Based Reactive Concepts
Naturally, the RP concepts that can be implemented with AEs
are the most promising candidates for being able to be debugged
with the AE tools. We, therefore, analyze the subset of RP con-
cepts called State-Based Reactive Concepts (SBRCs), described
in detail in section 2.3. The additional knowledge about the
specialized reactive behavior provides the opportunity for the
tools to better reify a concept’s reaction.

Extensible Tooling for Reactive Programming Based on Active Expressions 13

Figure 17 Dependency graph that shows how changes can propagate

We chose to adapt our toolset to signals and ILA, because
they are quite different albeit representative of how they specify
AEs: signals set additional restrictions on change propagation
order and specialize the reactive behavior in a non-domain-
specific manner. In contrast, implicit layer activations limit
the relevant value range to a boolean value and have a more
specialized reaction. Both of these concepts are implemented
using AEs, as described in section 5.4.1 and section 5.5.1.

4.1. Changed Challenges
The challenges for debugging AEs discussed in section 3.1
change when accommodating for more SBRCs. To achieve this
we first revisit these challenges and analyze how they apply
to signals and ILA. Then, we analyze the specific reaction
behavior and properties of these concepts and how they change
the tools.

Running Example: Online Editor To build a better under-
standing of signals and ILA and to better demonstrate how the
debugging requirements of these concepts change compared to
AEs, we introduce a running example of a text editor. This text
editor will have an online mode, where it syncs all changes with
a remote server, and an offline mode where the text content is
exclusively saved locally.

The offline text editor has two functions of interest, shown in
listing 11: render returns an HTMLElement with the content
of the text editor and save writes the current content of the text
field into local storage.

A signal is used to append the content of the text editor into
the DOM. It automatically detects when the return value of the
render method changes and therefore relieves the programmer
of updating the DOM when a change occurs. For the online
mode, changes are saved on a server to allow for a shared text
editor. Whenever a change is made, it is submitted directly to
the server. However, if no internet connection is established,
changes are saved locally and get synchronized with the server
as soon as the connection is back up.

To implement this functionality, a method layer (see sec-
tion 2.3) called onlineLayer (see listing 12) is used to aug-
ment the functions of the text editor with the required additional
functionality. This allows all server-specific code to be defined
at one central point, increasing modularity (Parnas 1972) and

1 class TextEditor {
2 /* ... */
3 render() {
4 return <input
5 type="text" id="text"
6 value={this.localStorage.read(this.file)}></input>;
7 }
8 save(text) {
9 this.localStorage.write(this.file, text);

10 }
11 }
12 let editor = new TextEditor();
13 // content is the div containing the editor
14 signal: content.innerHTML = editor.render().outerHTML;

Listing 11 The basic text editor and a signal that keeps the
DOM up-to-date

1 this.onlineLayer = new Layer("onlineEditor");
2
3 this.onlineLayer.refineObject(this.editor, {
4 render() {
5 return <div style="border:2px solid blue">{
6 proceed()
7 }</div>
8 },
9 save(text) {

10 this.server.send(this.file, text)
11 proceed(text)
12 }
13 })

Listing 12 Remote editor method layer definition

1 this.onlineLayer.activeWhile(() =>
2 this.workRemote && this.server.connected);
3
4 this.server.onFileChange(this.file, () =>
5 this.mergeServer())
6
7 this.onlineLayer.onActivate(() => this.mergeServer());
8
9 this.onlineLayer.onDeactivate(() => {

10 if(this.workRemote) {
11 lively.notify("Lost server connection")
12 }
13 });

Listing 13 Method layer activation and event handling

14 Stefan Ramson et al.

improving separation of concerns (Dijkstra 1982; Reade 1989).
The render method adds a blue border around the text field to
indicate that it is synced. The save method sends the content
of the text editor to the server.

This additional behavior should only be active while a con-
nection to the server is established and the programmer chooses
to work remotely, which is specified with the activeWhile

function (see listing 13). Further, we specify that when the
server connection comes back online, or a change occurs on the
server, the server and client texts should be merged. When the
connection to the server is lost, but the programmer still wishes
to work online, a message is printed. The full implementation
of this online editor can be found in appendix B.

4.1.1. How do AE Challenges Change for ILA and Sig-
nals The current implementation of AEs does not come with
automatic garbage collection of AEs instances. During devel-
opment in a live programming environment, it can happen that
instances of AEs, signals, and ILAs can accidentally be "lost"
in the system, without any reference to dispose of them. They
can therefore clog memory and cause unwanted side effects.
An overview of all instances of signals and ILAs, as well as
the possibility to dispose of them via the tools, is therefore still
required. A structural overview of their interactions with each
other and the object graph is also useful for this task.

All SBRCs share the same core of reacting to changes in
the return value of an expression. Hence, the challenge of
unexpected dependencies (section 3.1.2) still requires linking
the concepts to all its dependencies and vice versa, showing all
code locations that write these dependencies, and visualizing
how the dependencies change over time. The same goes for
the challenge of handling errors in statement evaluation where
making the errors explorable still applies.

The problem of unexpected evaluation order does not apply
to signals, as glitch-avoidance is part of the concept, but can still
occur for ILA. Giving the possibility for a temporal overview
of the events in the system still applies as a requirement for
both concepts, though, as it also helps to relate the events of
multiple concepts. Showing the graph at a given timestamp also
stays important for both concepts, as it is vital for understand-
ing the state of the reactive system at a given time, which is
often required to properly understand the reactive behavior. An
overview of the values the expressions evaluated to over time
is still important for signals, but less so for ILA, as they are
just alternating true and false values indicating that a layer was
activated or deactivated.

4.1.2. Specialized Reaction As discussed, the main dif-
ference between SBRCs is the way they react to changes in
the expression. These specialized reactions imply additional
information that should be visualized directly instead of leaking
implementation details by visualizing the underlying AE.

When a signal changes, it always sets the value of a variable.
A debugging view should therefore also be able to show the
changed variable directly and not expose the underlying AE.
For the dependency graph, this means that it should assume the
form displayed in figure 4 instead of the AE visualization from
figure 5.

For implicit layer activations, a visualization of when the
layer was activated and deactivated over time – perhaps within
a timeline – is a more appropriate granularity than stating that
an arbitrary callback was invoked.

Since implicit layer activations always enable or disable
dynamic behavior, the tools should be able to visualize and link
to this toggleable code.

4.1.3. Additional properties As discussed in section 2.3,
signals form an explicit dependency graph that is traversed in a
topological order starting at the point of a detected change to
avoid glitches. For signals, this eases the challenge of evaluation
order that was discussed for AE. This reduces the significance
of a temporal overview, but it can still be beneficial. A much
more common way of displaying the evaluation order of Signals
is using a layout for the dependency graph that captures the
topological order of the graph, like placing all dependencies left
to their dependents.

For ILA too, a precise temporal overview is less important,
as the activation or deactivation of a layer usually does not
immediately propagate changes and is thus less prone to glitches.
However, in a system that uses signals and ILA at the same time,
the activation of a layer may easily change a method used in
a signal expression and therefore trigger that signal. It would
therefore still be beneficial to show the precise temporal order
of these events.

Instead of revealing the AE-based implementation, the tools
should visualize the specialized change directly. Apart from
adapting names and icons, this implies for signals to directly
show which variable will be written and to depict the depen-
dency graph in a way that reflects its topological order.

Almost all the challenges from section 3.1 still exist for
signals. As none of these new challenges requires a completely
new perspective, adapting the four previously presented tools
suffices to properly capture signals and ILA.

4.2. Adapted Code Annotations
The code view mainly focuses on the change detection aspect,
which is the same for all SBRCs and therefore needs the least
amount of adaptations. However, it should also be able to visual-
ize the specialized reaction behavior. All SBRCs should change
the AE icon in the line that defines the concept to an icon that
represents this concept, to not reveal to the user that the concept
is implemented using an AE. As shown in figure 18, an implicit
layer activation’s declaration (3) links to the method layers it
can activate or deactivate (4) and vice versa. Further, layered
methods link to the original method and vice versa (2). Since
the reaction of a signal, writing a variable, is already visible in
the signal declaration and the possible change propagation is
captured in the already displayed dependencies, no additional
information is required.

4.3. Adapted Overview
Similar to the code annotations, the overview component
that is integrated into the timeline and the dependency graph
tools mainly has to change names to hide the underlying AE-
implementation of the concepts (see figure 19). For an ILA, we

Extensible Tooling for Reactive Programming Based on Active Expressions 15

Figure 18 This figure shows the code view adjusted for signals
(1) and implicit layer activation (2 and 3). Methods with an
overview icon in the gutter can navigate to other partial layers
of the method (2). The ILA definition (3) can navigate to
partial methods (4) it refines.

Figure 19 Reactive concepts overview for signals (1) and im-
plicit layer activation (2) adapted from the Active Expression
overview.

show the corresponding method layer name instead of the AE
code as its identifier (2). For signals, we show the name of the
dependency it writes to (1).

With these small changes, the tool is equipped to give the
programmer an overview of all reactive concepts currently used
in the system, and thereby both shows which layers are currently
active and gives an overview of all signals.

4.4. Adapted Event Timeline
Other SBRCs usually require different event types compared to
AEs. This leads to three scenarios: events can be completely
hidden from the user, they can be adapted to better capture
the specialized behavior, or new events can be added. Most
commonly, the added and removed callback events no longer
apply to all previously discussed SBRCs, since the reaction to
change is fixed and can no longer be set by the user. These
events should therefore be filtered in the timeline.

ILA benefits from additional events, which are shown in fig-
ure 20. As the creation of a method layer does not necessarily
happen at the same moment when the implicit activation con-
dition is set, an additional event is required. We reused the AE
creation for the implicit condition creation and introduced a new
layer created event depicted in mint (1). Moreover, refining and
un-refining methods can be done at run-time too, and should
therefore also be captured by events (1). Having these additional
events also helps the dependency graph in reconstructing an ac-

Figure 20 Timeline view depicting a signal and an implicit
layer activation with new event types (1), intervals that depict
when a layer is active (2), and a specialized event (3)

curate picture of the ILA system at any point in time. As the
values the expression of an ILA can evaluate to are restricted,
the values over time view can be specialized: since the return
values are always interpreted as boolean, the intervals in which
a layer is active can be marked directly inside the timeline (2),
instead of a row of alternating true and false values. Due to the
additional knowledge of the reaction, specialized information
can be displayed. As seen in figure 20 the changed value event
for ILA (3) also shows that two partial methods in one object
were disabled. The event can jump to those partial methods in
the code.

Signals can also benefit from specialized events. The
changed value event of a signal can be augmented with the
variable that was set. This small change helps to better show the
effect of the changed value event.

4.5. Adapted Dependency Graph

Since SBRCs based on AEs specialize the reactive behavior,
the current visualization of generic callback nodes no longer
captures this behavior properly, but accidentally reveals imple-
mentation details irrelevant to the user. Instead, the specialized
behavior should be shown directly. Thus, when the boolean
expression of an ILA changes, the specialized reaction, which
is the activation or deactivation of a method layer, needs to be
visualized. The tool has to be able to link to the respective code
and highlight which code is active and which is not. As seen in
figure 21, we achieved this by introducing the yellow layer (1)
and layered function (2) nodes. The layer nodes are specialized
AE nodes that show the state of the layer and have the layered
function nodes as children. The layered function nodes show the
current interface of the layered method by listing the layers of a
function in execution order from top to bottom while graying
out inactive layers and highlighting the proceed calls.

AE-based signals always set the value of one variable when
they detect a change in their expression. The AE node and
the callback node can therefore be omitted, and the reactive
information can be added directly to the dependency node which
will be written by the signal. Collapsing these three nodes into
one simplifies the graph, makes the reaction that will happen
and the connections between signal variables clearer, and hides
implementation details. We can see this new aggregated node
in figure 21 for the innerHTML signal node (3). We see that
it has an HTMLDivElement as its parent and depends on the
outerHTML and editor members and the render function.
We can also observe (by the highlighted edges) that the render
function was just changed by deactivating the onlineEditor

16 Stefan Ramson et al.

layer, which will activate the signal in the next timestamp of the
graph timeline.

5. Implementation

The debugging toolsets are implemented in the Lively4 sys-
tem (Lincke et al. 2017; Ingalls et al. 2008, 2016). Lively is a
live object computing environment (Ingalls et al. 2016; Suther-
land 1964; Ingalls et al. 1988, 1997) for the web implemented
using JavaScript. Like Squeak/Smalltalk (Ingalls et al. 1997),
the Lively system is a self-sustaining system (S3) (Hirschfeld &
Rose 2008), which means that it is based on a small kernel that
is used to implement the entire user interface, including pro-
gramming and debugging tools from within itself. This results
in both the applications and the tools used to create these ap-
plications being implemented in the same environment. Lively
was chosen for this project because the combination of live pro-
gramming and an S3 allows us to implement and execute both
a programming concept and its debugging tools in the same
environment (Niephaus et al. 2020). Figure 23 shows how many
parts of the system had to be adapted, ranging from language
rewriting, providing new basic components, and creating new
and adapting existing tools6.

5.1. System Overview

To make the required data clearer, an overview of the given AE
system is required, which is depicted in figure 23. The Lively4
system provides multiple implementations of AEs, which all
share BaseActiveExpression as a common base. We only
focus on the RewritingActiveExpression, which imple-
ments the change detection behavior by rewriting the source
code via abstract syntax tree (AST) transformation with babel7

and injecting hooks whenever the state is accessed. We also
inject code that analyses an AE on registration, to determine
its Dependencies. A Dependency has a type which can be
either local, global or member and DependencyKey which
uniquely identifies the Dependency. Each DependencyKey

does this by converting all three types of Dependencies into a
context object and an identifier string, which can then be used
to access the value with a computed member expression. To
achieve this for local and global dependencies, scope objects
are generated, which converts a variable x in an expression like
_scope1["x"]. For a member Dependency like vector.x,
this is trivially achieved by using vector as the context and
x as the identifier which results in a vector["x"] member
expression to compute the value of the Dependency. When-
ever a Dependency registers a change, all its affectedAEs
are notified and reevaluated. If the evaluation result of an AE
changed, it proceeds to call its callbacks with the new value.
All BaseActiveExpressions in the system are stored in a
ActiveExpressionRegistry singleton, which is a manage-
ment class that allows reflective access to the AEs in the system.

6 All tools and their adaptations became part of the Lively4 GitHub
project https://github.com/LivelyKernel/lively4-core/tree/gh-pages/src/client/
reactive/components/basic (January 19, 2023)

7 https://babeljs.io/ (January 19, 2023)

5.2. Required Debugging Data
Apart from an overview of the system, figure 23 also shows
the additional information that is saved for debugging purposes,
highlighted in bold. There are two types of additional informa-
tion.

On the one hand, there is meta information. This includes
the AEs’ source code and locations before rewriting, as well as
the locations of each dependency, which are all code locations
where a dependency is assigned a value. This information is
required for the code annotations to navigate from an AE to its
dependencies and vice versa, and for the other tools to link back
into the code. There is also a global cache, with all dependencies
and AEs per source file, for faster access.

On the other hand, there are the events recorded during the
lifetime of an AE. These events allow the graph and timeline
tools to display the history of an AE over time. The different
events are described in more detail in section 5.2.2.

5.2.1. Rewriting To obtain the necessary location and (orig-
inal) source code information, we adapted the rewriting process
of AEs as seen in figure 24. It can be seen that next to the nor-
mal insertion of hooks for variable accesses, like _getMember,
location and source code information is provided to the method
calls, which is then passed to the dependency and AE objects
respectively. An alternative to this process is to analyze the
call stack at a moment of interest, e.g. inside the constructor
of an AE, find the stack frame that created the AE, and use the
automatically generated sourcemap files to map the rewritten
code back to the original code. This process, however, is quite
expensive at run-time and has the disadvantage that the stack
frames do not provide the end position of a statement.

DependenciesChanged ValueChanged EvaluationFailed

newDependencies previousValue error

removedDependencies newValue

matchingDependencies triggeringDependency

triggeringLocation

aeStack

Created Disposed CallbackAdded CallbackRemoved

callback callback

Table 1 Event subclasses and their stored information

5.2.2. Events An event system is used to record the relevant
history of AEs. Whenever relevant code is run, a corresponding
event is generated, which holds a timestamp and event data, and
is saved into a list of events for this AE. There are seven types of
events that are depicted in table 1: one each for the creation and
deletion of an AE. One each for adding or removing a callback.
One event occurs when the value of the AE changes. This event
also stores the dependency and location that triggered the re-
evaluation as well as a shallow copy of the current AE evaluation
stack, meaning all AEs that currently evaluate a callback. At the
time of a ValueChangedEvent the stack, therefore, contains
all AEs that are responsible for the change. This information is

Extensible Tooling for Reactive Programming Based on Active Expressions 17

https://github.com/LivelyKernel/lively4-core/tree/gh-pages/src/client/reactive/components/basic
https://github.com/LivelyKernel/lively4-core/tree/gh-pages/src/client/reactive/components/basic
https://babeljs.io/

Figure 21 The figure shows the dependency graph adjusted for signals and implicit layer activations. The internal Active Expression
nodes are hidden and replaced with specialized nodes that still display dependencies as usual. The yellow nodes (1 and 2) show a
layer that was just deactivated. The additional layered code in the save function is therefore grayed out. The signal node (3) directly
displays the variable that is written to.

Figure 22 Implementation of AE Tool Framework, the ILA,
and signals extensions in the Lively4 environment

vital for understanding the interplay of multiple AEs. It should
be emphasized that this event is only emitted when the return
value of the AE changes after the re-evaluation. Programmers
that try to answer the question of why an AE did not trigger,
might also be interested in re-evaluations that did not change
the AE. We decided to not record these, due to the high amount
of additional memory they would require. Another event is
emitted when dependencies change. This event is different in
that it is not atomic, but accumulates multiple changes. The
main reasons for that are to reduce the visual clutter and to make
it easier for a user to see all changed dependencies caused by
one event together, as this is the level of detail a user thinks
about AEs. The last event occurs when the evaluation of an AE
failed. It saves the error and makes it possible to inspect it in
one of the debugging tools.

5.2.3. Memory Management Recording events of each AE
in the system can quickly produce a significant memory over-
head, especially since the value each AE had at any point of its
lifetime is saved. Even though this information is crucial while
debugging AEs, the information is not required once everything
is running as expected, which ideally should be the majority of
the time. Thus, a system to dynamically activate and deactivate
the recording of events is needed. There are many possible
granularities on how to control which AEs should record events:
a global switch for all AEs, as well as a switch per folder, file,
or line. Finding good default values for this decision is also
important: AEs in a file where a recent change occurred are
more likely to be relevant to the programmer at that time and
could therefore be activated for event recording automatically.
We decided on a per-file approach where everything is off by de-
fault unless there was a change in the file in the current session
or the programmer explicitly activated tracking for this file.

5.3. Using the Data in the Active Expression Tools

All tools are implemented as components in the Lively4 system
and share common functionalities. They all use the Lively4
inspector component, which allows the inspection of any given
object by recursively displaying all of its members in a tree
view. The graph and the timeline also share the AE overview
component described below. The last common functionality is
the connection between the tools: each tool provides a method
to open it with a filter. If this method is called and a matching
window already exists, the window will be reused; a new one
is created otherwise. The code annotations allow jumping to a
certain location in the code, which is used to find the definition
of an AE or the write access to a dependency that caused an

18 Stefan Ramson et al.

Figure 23 Class diagram of the AE system with additional
debugging information depicted in bold

1 signal: let a = x + y;
2 signal: b = x + y;
3 signal: obj.c = x + y;

Listing 14 Signal syntax in the Lively4 system

event. The timeline and the graph can both be opened for a list
of AEs that will be selected in the AE overview component, and
optionally an event to select.

5.4. Adapting for Signals
The implementations of the signal concept (see section 2.3) and
its debugging capability in the Lively4 environment are based
on AEs and the AE debugging toolset respectively.

As seen in listing 14, the Lively4 signal implementations
support any left hand side (LHS) of an assignment expression.
The value a signal can write to can be a new variable a, an
existing variable b, or a member obj.c. If a signal is created
for a LHS, which is already the LHS of another signal, or if a
signal introduces a cycle in the dependency graph, a run-time
error is thrown.

Whenever the signal expression x + y changes, the signal
system triggers the dependency graph and writes the new value

to the LHS. When the dependency graph is triggered, the signal
system traverses it along a topological sort to guarantee glitch
freedom.

5.4.1. Implementing Signals
Implementing this signal behavior requires three steps:

Rewrite the signal expression into an AE As seen in figure 25
each signal declaration is transformed into an AE declaration
with the same expression and a callback that sets the given vari-
able to the changed value. This transformation is achieved via
AST rewriting with a babel plugin. The rewriting also adds
some additional information that is relevant for the debugging
tools later: the fact that this AE represents a signal and the
context and identifier of the set variable. The different LHSs,
require a case differentiation, but all three cases are transformed
into a context and identifier pair. The property and object of a
member expression of a signal can be a computed expression in-
stead of an identifier. For example, in object.array[x * 2],
object.array is the context and the evaluated value of x * 2

is the identifier. In these cases, both are evaluated once upon
the signal declaration, and the evaluated context and identifier
are used from there on. This ensures that a signal always writes
to the same dependency.

Ensure cycle-free property and no re-registration of signal
objects at creation In order to implement the glitch freedom
of signals, we need to prohibit cycles in the signal graph. Since
the object that will be written to with a signal is known and can
not change during the signal’s lifetime, the entire signal graph
can be reconstructed by the signal system. This reconstruction
is used to determine, whether the creation of a new signal would
create a cycle in the dependency graph. This check can be
achieved by trying to compute a topologically sorted order for
the graph. Further, a check whether the signal object is already
used by another signal is introduced. Both of these checks throw
a run-time error if they fail.

Ensure glitch freedom when traversing the signal graph. To
ensure that signals are evaluated in the correct order, the internal
dispatching of the reactive system needs to be adapted. When
a dependency changes, the reactive system in Lively4 calls a
notifyAEs method, with all AEs (including signal AEs) that
are affected by this dependency. Instead of just triggering the
AEs in order of their declaration, the logic is adapted to first
trigger the affected signals and their dependent signals in the
previously determined topological order. Only after the entire
signal graph is evaluated, the rest of the AEs are triggered, the
same as before.

5.4.2. Tool Adaptations for Signals Some tools need to
be adapted to be able to properly support signals. Screenshots
of the resulting tools and a conceptual discussion of the changes
can be found in section 4.

In general, all tools try to hide the underlying AE-based
implementation of the signal logic. One important aspect of
hiding the AE system is code navigation. Navigating to inter-
esting positions in the code is a core feature of the toolsets and
is important for relating dynamic information from the tools

Extensible Tooling for Reactive Programming Based on Active Expressions 19

Before transformation
1 aexpr(() => this.c);
2
3
4

After transformation
_aexpr(() => _getMember(this, "c"), {

location: /* collapsed for brevity */,
sourceCode: "() => this.c"

});

Figure 24 This listing shows Active Expression code before and after rewriting. The location object contains the filename and begin
and end objects that mark the line and character index of the code.

Before transformation
1 signal: obj.c = x + y;
2
3
4
5

After transformation
aexpr(() => x + y, {

isSignal: true,
signalContext: obj;
signalIdentifier: "c"

}).onChange(value => obj.c = value);

Figure 25 Rewritten signal from line 3 of listing 14. The used AE is annotated as representing a signal.

back to the code. The AE system handles this by annotating the
source code location of AE declarations and writing operations
in the rewriting step. Since the signal system introduces an
additional rewriting step, we need the system to use the code
locations before this rewriting instead of the intermediate AE
code locations. This is achieved by annotating the locations in
the signal rewriting step and then reusing these locations in the
AE rewriting step.

Code Annotations The only required change for the code an-
notations is the introduction of a new signal icon. The specified
reaction of a signal, writing a variable, is already quite clear by
looking at the signal definition and does not need an additional
representation in the code annotations.

Overview The overview now differentiates between AEs and
signals. Moreover, the object written by a signal is a better
identifier for the signal than the code of the expression and
should therefore be displayed.

Event Timeline The event timeline requires a similarly small
adaption: since callbacks can no longer be freely registered and
deregistered, the timeline can filter the corresponding events to
reduce visual clutter.

Dependency Graph The dependency graph requires the most
adaptations. The specialized reaction behavior of signals allows
for a more concise representation in the graph, which hides
the fact that the signal was implemented using an AE: since a
signal AE always has a single callback and can only affect a
single dependency in the graph, these three nodes - the AE, the
callback and the dependency - can be combined into one. To
achieve this, a reusable reactive node extension was extracted
from the AE node class. The extension provides information
and behavior for nodes that have an AE. This extension is then
reused in the AE node class as well as the signal node class,
which is otherwise a dependency node. This allows the new
node to act as both a dependency and as an AE.

5.5. Adapting for Implicit Layer Activation
As with our signal implementations, the implicit layer activation
(ILA) concept (see section 2.3) and its debugging capability

are based on AEs and the AE debugging toolset respectively.
Figure 26 shows how to create an implicit layer activation in the
Lively4 system. In this example, the landscapeModeLayer
is active if and only if width is greater than height.

5.5.1. Implementing Implicit Layer Activation The
rewriting process for implementing ILA is quite straightfor-
ward. Figure 26 shows how code is transformed using a babel
AST transformation. The expression is placed in an AE which
uses the utility methods onBecomeTrue and onBecomeFalse

to activate or deactivate the layer, when the return value of the
expression becomes false or true, respectively. The rewriting
also adds some additional information that is relevant for the
debugging tools later: the fact that this AE represents an ILA,
and the layer it activates. Instead of rewriting, the library that
provides the method layer functionality could also internally
call aexpr with the arguments shown in figure 26. For our
purposes, this would complicate detecting the lines of code that
create an ILA and annotating this information for our debugging
tools. To patch this information, an additional rewriting would
be required anyway. Unlike signals, ILA AEs are not prioritized
for the evaluation order but follow the same rules as other AEs.

5.5.2. Tool Adaptations for Implicit Layer Activation
The AE tools need to be adapted to support ILA. Screenshots
of the resulting tools and a conceptual discussion of the changes
can be found in section 4. In general, all tools try to hide the
underlying AE-based implementation of the ILA logic by re-
naming and augmenting visualizations. Some domain-specific
events are added, which are relevant to multiple tools. The
refine and unrefine events are triggered when the layer refines or
unrefines a function. These events are required to determine the
interface of a layered function at any point in time. Moreover,
next to the ILA created event, which is a derived version of the
AE created event, a layer created event is added. The first is
triggered when the ILA condition is registered, while the latter
is triggered directly at layer creation. Since events can occur, be-
fore the AE, which usually stores the events, is created, they can
temporally be stored in the layer object and are transferred to
the AE on its creation. Also, the callback register and deregister

20 Stefan Ramson et al.

Before transformation
1 landscapeModeLayer.activeWhile(() => width > height);
2
3
4

After transformation
aexpr(() => width > height, {

isILA: true, ila: landscapeModeLayer
}).onBecomeTrue(() => landscapeModeLayer.activate())
.onBecomeFalse(() => landscapeModeLayer.deactivate());

Figure 26 implicit layer activation syntax in the Lively4 system, which is rewritten using AEs.

events are removed, as these events always happen together with
the creation of the ILA. To enable navigating to ILA definitions
and partial layers, we add additional information during the
rewriting that is then stored in the corresponding events.

Code Annotations The code annotations introduce a new icon
for ILA. The context menu at the code locations that define the
ILA are now linked to the methods they activate and deactivate
and vice versa. To achieve this, code locations for refining and
unrefining methods as well as defining an ILA are stored in
the respective events. We also added a layer overview with an
additional annotation to each partial method definition, as seen
in figure 35. This overview shows all partial method and their
corresponding layers in execution order and with the current
partial layer highlighted. Clicking one of the partial layers
navigates to the corresponding definition.

Overview The overview should now differentiate between
AEs and ILA AEs. Moreover, the layer activated by an ILA is a
better identifier for the ILA, than the code of the expression and
should therefore be displayed.

Event Timeline Next to displaying the new event types, the
event timeline is also extended with intervals. These intervals
mark the time intervals at which a layer was active. They there-
fore start and end at value changed events of the underlying AE.
These events as well as the interval are adapted to link to the
methods that are affected by the layer during this interval.

Dependency Graph We extended the graph with layer and
layered function nodes. The layer nodes are specialized AE
nodes that show the state of the layer and have the layered
function nodes as children. The layered function nodes show
the interface of the layered method at the currently selected
timestamp. The current interface is recreated by querying the
current interface from the method layer system and going back
in time through refine and unrefine events of all layers. Inactive
layers are shown grayed out at the position in which they would
be executed if they were activated.

6. Evaluation
To evaluate both the AE and the derived toolsets we analyze
the reusability of the AE toolset for debugging other concepts.
Then, we discuss the usability of the different toolsets and state
the limitations of the reusable toolset approach.

6.1. Reusability
The AE toolset is reused and adapted for signals and ILA. The
adaptations are done by modifying and extending the base tools
resulting in a toolset that supports AE, signals, and ILA at the

same time. We compare and discuss the effort of implementing
both adaptations by counting source lines of code (SLOC) where
we excluded comments and blank lines.

Figure 27 Code size of AE tools and size of adaptation for
signals and ILA (in SLOC)

As demonstrated by the small list of changes described
in section 5.4.2, the signal tools were able to reuse most of
the AEs debugging tools (see figure 27). For the graph view,
which required the most adaptions, less than fifteen SLOC were
changed in both the central graph and the dependency node
class. The overview, code annotation, and timeline classes did
not require any changes, but overriding the getIdentfier,
getName, getType, and getTypeShort methods from the
BaseActiveExpression class to return signal specific values
added nine lines of code. Not including the small refactoring
for extracting logic from the AENode class, we counted a total
of 36 changed SLOC.

Combining the number of changes required for the new ILA
node types (128 SLOC), method layer code annotations (51
SLOC), intervals (27 SLOC in the timeline and 60 SLOC to
implement the d3 functionality, which we exclude here as it
is library code), and new event types (38 SLOC), as well as
miscellaneous small adaptions like reconstructing the state of
a layered method based on the events (31 SLOC) totals at 275
changed SLOC.

The amount of changes for supporting ILA is almost an
order of magnitude higher than the changes for supporting sig-
nals. This difference is mostly caused by the fact that more
consequences can be directly inferred by the ILA reaction of
activating a layer than by writing a variable for signals. For
ILA, the activated/deactivated code, and the new interface of
all changed layered methods can be visualized. In contrast,
visualizing that a variable changed can simply be achieved by
showing the variable name and the old and new values. The
more specific the reaction behavior becomes, the more effort
has to be directed toward properly capturing this mental model.
The increased amount of required changes for supporting ILA
is therefore not surprising, as all adaptations were highly spe-
cific for the concept. The fact that almost no functionality for

Extensible Tooling for Reactive Programming Based on Active Expressions 21

detecting the reason for changes, giving an overview of the state
of the reactive system, or navigating through time is required
shows the advantage of reusing the AE toolset.

The means of implementing the adaptations are currently
direct manipulation of the debugging tool code. This has sev-
eral advantages and disadvantages as opposed to a pre-defined
interface: a programmer who wants to support a new concept
needs knowledge of the debugging tools code architecture to
be able to integrate their changes and needs to make sure that
the code still supports all other concepts. On the upside, this
leaves full flexibility for adapting the visualizations at any given
point. Highly specialized concepts often require visualizations
at unexpected places, which makes defining a catch-all interface
close to impossible. To mitigate this, modular code, like the
extension system described in section 5.4.2, was used in the
implementation of the tools, to make this direct adaption easier.
Maintaining the ability to visualize different RP concepts and
their interplay in the same tools poses an additional challenge
for a pre-defined interface. Unlike the Moldable Debugger(Chis
et al. 2014), it is not an option to provide a separate view for
each concept, but the views need to maintain compatibility for
all concepts at the same time. We decided to favor this compat-
ibility over the disadvantage that additional knowledge about
other concepts is required to directly manipulate the code.

Based on the knowledge gained by expanding the tools to
signals and ILA, an extension Application Programming Inter-
face (API) for common adaptations to the tools could be defined
in the future. This interface could ease defining new node types
and extensions in the graph, as well as defining new event types
and their visualizations in the timeline. While such an interface
could improve modularity and enable adaptations to the tool
without knowledge of the tool implementation, it also limits the
types of visualizations a tool developer can choose from.

6.2. Usability
To analyze the usability of the presented toolsets, we describe
how AE toolset eases overcoming the challenges of working
with AEs. The signal toolset is compared to established signal
debugging tools (Salvaneschi & Mezini 2016). The usability
of the ILA toolset is validated by demonstrating, how it can be
used to answer the six questions for debugging context oriented
programming (COP) (Taeumel et al. 2014).

6.2.1. Active Expressions To evaluate the usability of the
AE toolset, we revisit the challenges of working with AEs from
section 3.1. We describe how the toolset can help overcome
each challenge and subsequently discuss the usability toolset as
a whole.

Dangling AEs As described in section 3.1, to find dangling
AEs, a good overview of all AEs in the system is helpful. For
this, the AE overview, with its easy-to-search hierarchical struc-
ture, provides the required discoverability functionality, as well
as a method of disposing of AEs. Figure 28 shows an AE
overview, where the mean, median, sd, and skew AEs from
the LinkedList example have additional instances, because AEs
from previous iterations were not properly disposed. This er-
roneous behavior can easily be spotted in the overview, as the

Figure 28 Dangling AEs shown in the overview

programmer knows that each AE is supposed to only have one
instance. The context menu of one of these additional AEs
contains an entry to dispose of it. However, when a lot of AEs
exist in the system and the programmer is unaware of the code
location the dangling AEs originate from, it may be hard for
them to identify which AEs are dangling using the overview
alone. For this case, the values over the table in the timeline
can also help, to find the AEs that produce the unwanted side
effects, as they can often be identified by the value an AE as-
sumed. Further, the filter provided in the timeline can be used
to search all events, which further eases identifying the events
that caused unwanted side effects.

Unexpected Dependencies To demonstrate the capability of
the toolset to help the programmer with unexpected dependen-
cies, we show how the toolset can be used to debug the erroneous
average method from section 3.1. To reiterate, the average
AE is reevaluated in an inconsistent state, in which the length
of the list is already increased, even though the new item has
not been added yet. These inconsistent intermediate values are
mostly spotted due to erroneous outputs or by looking at the
values over time overview.

Figure 29 Code annotation of the average AE

Figure 29 depict the code annotation of the average AE
in question, which is a likely starting point for debugging the
erroneous behavior. As the line contains both an AE declaration
and a dependency write location, for the maximum AE, the line
is marked with the generic RE icon, for reactive, and has a
submenu for both of these annotations. The AE submenu lists
all dependencies of the AE, which are start, length, and
child, which are all properties of the LinkedList. From here
on, the programmer could already navigate to the code that
changed the AE and probably find the bug, given enough time.

However, the tools can provide additional help to understand
what is going on. The timeline (depicted in figure 30) with its
values over the timetable quickly reveals values that are out of
place. In this example, we pushed values 6 and 5 into the list.

22 Stefan Ramson et al.

Figure 30 Timeline of the average AE

Therefore, the average should never become 3 which immedi-
ately reveals an error. Clicking the 3 in the table highlights
the corresponding event, which shows where this change was
triggered and allows the programmer to navigate there. By nav-
igating to this code location (by clicking "open location") the
programmer now knows that increasing the length causes the
wrong intermediate value.

To understand what is happening at this moment, the pro-
grammer can navigate to the graph at this timestamp, which is
depicted in figure 31. Here, the programmer can see that the
length just changed and caused an update. They can also ob-
serve that the AE only has dependencies to the first node in the
LinkedList, but not the second. This missing dependency be-
comes even more obvious by navigating to the next timestamp,
where the two dependencies are added, and the timestamp after
that, where the value is updated. By navigating to the cause of
these two events, the programmer sees that it is just after the
line of code that increases the length of the list.

All these visualizations help the programmer to find the code
that triggered the erroneous behavior and to understand the
order of events and the state of the system at these events. This
information greatly eases the error-finding process.

Unexpected Evaluation Order The workflow for finding errors
in the evaluation order of AEs is very similar to the process
described for unexpected dependencies. We will therefore not
go into as much detail but focus on the differences instead.
Wrong AE evaluation orders can not be found by looking at
the code, as the operation order is determined by the reactive
system. Analyzing the behavior in the timeline and dependency
graph thus becomes way more important. Especially, exploring
the graph through time is best suited for understanding the
evaluation order and the state of the system at each timestamp.

Unexpected evaluation orders can lead to inconsistent in-
termediate values, which are mostly spotted, due to erroneous
outputs or by looking at the values over time overview. The
first unexpected value of this kind in the LinkedList example
occurs when the mean of the list is updated, which triggers a
recalculation of the skew. As median and sd are not yet up-
dated, the skew calculating has inconsistent inputs and wrongly
evaluates to -0.33. After spotting this value in the timeline and
navigating to the graph view at this timestamp, the user sees the
graph depicted in figure 32. At this timestamp, 4 arrows in the
graph are highlighted. They form a path from the average AE
to its callback, to the mean variable, and finally to the skew AE.
This not only depicts the variable that caused the change but also
why it was changed. These additional highlights are detected by

analyzing which AEs currently trigger callbacks when a change
occurs, and are especially important for understanding relations
between AEs in the graph. The graph also shows the values of
the median and sd are still the old values, which hints at the
fact that variables are updated in the wrong order. Exploring the
subsequent timestamps in the graph with the other AEs quickly
reveals that they are updated right after the event we currently
observe, giving even more insight into the order of evaluations
and how the AEs are connected.

In conclusion, finding unexpected values in the timeline and
then exploring this timestamp, as well as surrounding times-
tamps, in the graph greatly eases finding unexpected evaluation
orders.

Errors in AE Statement Evaluations We identified making
errors visible to the programmer as the main task the tools need
to support for handling errors thrown during AE evaluation. Fig-
ure 33 depicts the code annotation and timeline of the average
method if the unexpected dependency bug still exists but without
the if(!current) break; guard clause that prevents access
from the not-yet-existing item in the list. The evaluation of the
average AE then fails, whenever an item is added to the list,
as the method tries to access a list item that was not added yet.
To make this error visible, both the line that defines the AE and
the dependency code location that triggers the reevaluation get
highlighted in an attention-grabbing red. The context menu lists
all errors, with options to show them in the timeline and to open
the error in the Lively4 error view. From there, the programmer
can execute the usual AE debugging tools and can get some
additional information about the state of the system at the time
of the error in the timeline. In conclusion, the toolset makes
it hard to miss the existence of errors and the graph helps to
understand the system state at the time of the error.

Conclusion The above examples show, how each of the tools
offers a unique perspective on the problem at hand. While
the timeline helps understand the temporal correlation between
events, the overview, and the graph present the run-time state
with different levels of detail. The code annotations map the
information back onto the static code, which is especially im-
portant, as it bridges the gap between the reactive system and
the imperative environment.

As all tools provide a unique perspective, it is important to be
able to switch between them to get the whole picture. Because
this process inherently comes with a lot of context switches, it is
vital to preserve as much context as possible between the tools.
We achieved this by introducing recognizable emojis as unique
identifiers for each AE and by linking the views closely. These
links are implemented by giving almost every item in the views,
like nodes in the graph or events in the timeline, the possibility
to be clicked and inspected in one of the other views.

In conclusion, the tools can preserve the computational
model of AEs without revealing its implementation details. Our
toolset, therefore, helps overcome the leaking abstractions that
arise when debugging reactive code with conventional imper-
ative tools. The implementation details that are hidden are
the internals of AEs and their implementation themselves, the
implementation of signals, and ILA using AEs is visible and

Extensible Tooling for Reactive Programming Based on Active Expressions 23

Current event: value changed Next event: dependency changed

Figure 31 Dependency graph of the average Active Expression and the next timestamp

Figure 32 The dependency graph of the average and skew

AEs at the time of the first wrong intermediate value

wanted to see how they interact with each other. Without the
AEs in the middle, program behavior that involves different
reactive concepts could otherwise not be understood.

6.2.2. Signals To comprehend the dynamic behavior of sig-
nals, we compare the signal toolset with an established debug-
ging tool, the reactive inspector (Salvaneschi & Mezini 2016).
We compare how both approaches depict the signal graph, how
they integrate into the debugging workflow, how they bridge the
gap between the reactive behavior and the imperative environ-
ment, and which filtering and collapsing features they provide.

Depicting the signal graph Both the reactive inspector and the
graph tool depict the signal graph (see figure 34) with the option
to explore it over time to inspect the evolution of the graph
and the changing dependencies and program state. They are

therefore both able to capture the mental model of a dependency
graph.

Since signals always form a DAG, the reactive inspector uses
a specialized layouting algorithm that is good at depicting the
graph in a topologically sorted way, i.e. every dependency of
every variable can be rendered to the left of that variable. Since
our toolset can also depict concepts, whose dependency graphs
can not necessarily be topologically sorted, we decided against
such a layouting algorithm. In the future, using a specialized
layouting algorithm, just for the signal part of the dependency
graph is conceivable and might improve depicting dataflow. As
none of the graphviz layouting engines 8 supports such a layout-
ing mechanism, a manual adaptation of one of them is required
to support this feature. However, as seen in figure 34, the layout
engine often chooses appropriate layouts automatically, albeit
the direction of the data flow may vary.

Integration into Debugging Workflow Another difference be-
tween the reactive inspector and our toolset is the way they are
integrated into the debugging workflow. The reactive inspector
focuses on augmenting the step-by-step debugger with reactive
tools and integrates the signal graph by offering conditional
breakpoints that can be set for each node. The advantage of
this approach is a close integration into the existing debugging
workflow, where the usual debugger can be used to inspect the
run-time state. In comparison, our toolset mostly focuses on
post-mortem back-in-time debugging, where the execution of
reactive is recorded first and explored afterward. The advantage
of this approach is that it focuses on the temporal aspect and
thus makes it easier to analyze how the reactive system changes
over time. While both approaches yield advantages and disad-
vantages, we chose the purely back-in-time approach mostly
due to the integration of our toolset into the Lively4 system.

8 https://graphviz.org/docs/layouts/ (February 15, 2022)

24 Stefan Ramson et al.

https://graphviz.org/docs/layouts/

Figure 33 An Active Expression which threw errors shown in the code annotations and the timeline

Figure 34 Comparison between the reactive inspector and our
graph tool using a Fibonacci example

As a closer integration of our toolset into a classical debugger
is desirable, we will now discuss how this could be achieved
and which challenges the integration into the Lively4 yields. To
declare conditional breakpoints in the graph, each node type in
the graph could offer fitting debugging points. For example, an
AE node could support breaking when the AE is evaluated or
just when it changes its value. The main reason, we do not cur-
rently support this but mostly rely on back-in-time debugging
is that breaking the code also freezes the debugging tools, as
all UI in Lively4 runs in the same thread. Further, the Lively4
system does not provide a dedicated debugger but relies on the
debugging functionality of the browser. Integrating debugging

functionality into the Chrome debugger would be possible, but
limits the debugging functionality to a single browser. Using
web workers9 with a second browser tab might be another so-
lution to offer a dedicated Lively4 debugger where our tools
could be integrated.

Representing the interface between reactive and imperative
programming To minimize context switches between pro-
gramming and debugging, it is important for debugging tools
to link the information they provide back into code. The reac-
tive inspector mainly links back into the code using conditional
breakpoints and by just analyzing the graph at the time that
the code is currently paused. This way, the programmer can
combine the run-time state information of a classical debugger,
with the static code at the position the debugger breaks as well
as the additional information about the signals from the reac-
tive inspector. As discussed before, in the Lively4 system, the
programmer can not use the reactive tools when the debugger
breaks. To link the reactive behavior back to the code we, there-
fore, use the code annotations, as well as the fact that almost
any element in the views can jump to related positions in the
code, like definitions of an AE or the change locations of a
dependency. This behavior is enabled by annotating each event
in the reactive system with corresponding code locations, which
are kept up-to-date automatically.

Filtering and Collapsing Dependency graphs in general can
quickly become big and therefore unclear to the user. To miti-
gate this, it is important to provide appropriate functionality to
filter the shown data. This includes both choosing which nodes
should be displayed and what information each node should
show. Both tools provide the functionality to filter the graph and
to collapse subgraphs for scalability. Further, our graph tool can
toggle how much information should be shown in each node, so
that the user can select the information they want to focus on.

Unlike the graph view, the reactive inspector provides a
query language to locate events in the execution, with a twofold
usage: setting the above-mentioned conditional breakpoints and

9 https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/
Using_web_workers (February 15, 2022)

Extensible Tooling for Reactive Programming Based on Active Expressions 25

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers

finding specific events in the past of a graph. While conditional
breakpoints are currently not supported by the presented views,
the timeline view with its overview and filter abilities can make
events explorable.

Conclusion Many features of the reactive inspector are sup-
ported by the dependency graph, and the other tools and pos-
sible integration of missing features were discussed. Further,
our toolset and the reactive inspector differ in the way they are
integrated into the debugging workflow. Despite these differ-
ences, we argue that the similarity between the tools indicates
the usability of our signal toolset.

6.2.3. Implicit Layer Activation A study (Taeumel et al.
2014) that showcased data-driven tool building for COP came
up with a list of questions to evaluate debugging tools for
method layers (de-)activation:

Q1 Which layers refine method M?
Q2 Which methods are refined by layer L?
Q3 In which methods can layer L be activated?
Q4 In which methods can layer L be deactivated?
Q5 Which layers are currently active in process P?
Q6 What is the current interface for object O considering active

layers?

By evaluating if our adapted ILA toolset can be used to
answer the six questions for debugging method layers, we
hope to demonstrate its usefulness. We reuse the online ed-
itor example from section 4.1 with the onlineLayer which
layers the render and save functions of a text editor to add
online synchronization functionality. To better highlight the
features of the tools, we added a second method layer called
darkThemeLayer, which also layers the render function and
toggles the dark theme.

Figure 35 Code annotations at a layered method

Q1: which layers refine method M? There are two points in
the tools that can answer this question. The first point in the
tools that can show which layers refine a method is the depen-
dency graph, as shown in figure 36. A layeredFunction

node shows all layered methods and has a connection to each
layer node that refines it.

Figure 36 Dependency graph for dark theme and online layers

The second point is the code annotations at each layered
method. Figure 35 shows these annotations and their context
menu, which gives an overview of all partial layers of the re-
spective method in order of execution, as well as the layer that
created this partial layer. Hovering a partial layer highlights it
in the code when it is in the same file and selecting an item will
navigate to the method. Unlike the dependency graph, which
shows the dynamic run-time state of the layers, the code anno-
tations offer a static mapping of this data onto the code. This
static mapping aggregates information and presents it close to
the code, to make the data more accessible for the programmer.

Q2: which methods are refined by layer L? Analogous to Q1,
the information on which methods are refined by a layer can be
answered by the code annotations and the dependency graph.
The code annotations add the capability to navigate from an
ILA definition to all its layered methods, as seen in figure 37.
In the dependency graph, the methods refined by a layer are
simply its children.

Q3/Q4: in which methods can layer L be (de-)activated? This
question directly maps to the question of which dependencies
an AE has and where they are written. These write locations
of dependencies are the precise locations at which the layer
condition can change. Therefore, the same two methods as with
AEs can be used. First, the code annotations link AEs, or in our
case, the ILA definitions, to their dependency write locations.
Second, the dependency graph shows the dependencies of an
AE, or layer in our case (see figure 36).

26 Stefan Ramson et al.

Figure 37 Code annotations at an ILA declaration.

Figure 38 Concepts overview of ILA and a signal

Q5: which layers are currently active in process P? All
currently registered layers are listed in the reactive concept
overview, as seen in figure 38. Each instance of a layer, also
shows if it is active or not. This is a good entry point for investi-
gating ILA behavior, as the hierarchical structure gives a quick,
but not overwhelming overview.

Q6: what is the current interface for object O considering
active layers? This question can best be answered by the
layeredFunction nodes in the dependency graph. It shows
all partial methods of the method in the order they are executed,
with the proceed calls highlighted. Disabled layers are greyed
out but appear at the position where they would be executed if
they were activated.

Conclusion All six questions can completely be answered
by the adapted tools set, which indicates that the toolset can
adequately depict the specialized behavior of ILA.

6.3. Limitations
Next to the possible improvements to the integration of the
toolset into classical debuggers described in section 6.2.2 and
the means of adaptation discussed in section 6.1, possible threats
to validity remain. The memory and run-time overhead of col-
lecting the information required for debugging was not analyzed
in detail, but the approach of only collecting information when
required, described in section 5.2.3, helps to mitigate this limita-
tion. Moreover, the exact borders of which RP concepts can be
supported by the tool ecosystem is not yet fully explored: highly
domain-specific concepts might need entirely new views, while
it is possible that even RP concepts that are not SBRCs, like an
event system, could reuse some described views. Further, an
extensive empirical study (Ko & Fincher 2019) of the actual
usability of the tools is not provided. However, evidence for
the suitability of the tools is provided in section 6.2, e.g. by the
high similarity to established tools like the reactive inspector,
which did perform a study to show their usability, as well as the
usage of established UI elements like code annotations. Lastly,
the performance impacts of the tooling on run-time and memory

are not measured. Multiple things could be inspected. While
the performance of rendering the visualizations themselves is
important to guarantee a minimum frame rate to not impact
usability, we do not think that they should be the main focus
of performance analysis. To start, we never experienced any
lag while using the tools. Moreover, the debugging tools are
generally only opened, when the code is inspected closely due
to erroneous or unexpected behavior. In these scenarios, pro-
grammers are often in a debugging mindset and do not expect
maximum performance. We feel that the performance impact
that should be analyzed more closely is the performance impact
of the additional debugging annotations added in the rewrit-
ing, as it always impacts performance, no matter if the code
is debugged or not. Also, the memory overhead of storing the
debugging information should be analyzed, to better inform
memory management decisions.

7. Conclusion and Future Work

To combat the lack of debugging tools for reactive programming
concepts, we propose leveraging commonalities in debugging
concepts to provide reusable components that ease tool develop-
ment. For such reusable components to be possible, a common
foundation needs to exist. We chose AEs as this foundation and
developed a reusable debugging toolset for them. By provid-
ing code annotations, an overview component, a dependency
graph tool, and an event timeline, we were able to offer different
perspectives on the reactive system that builds a holistic rep-
resentation of AEs. A tight connection of these tools with the
functionality to switch between them without losing the context
proved to be vital to forming this holistic picture.

This AE toolset was then adapted to signals and implicit
layer activation (ILA) to demonstrate its reusability and exten-
sibility. This adaptation process showed that using our toolset
as a building block eases the process of providing tool support
for a concept because few changes to the tools are sufficient to
capture the new mental model. These few changes produced
tools that are comparable to existing tools for signals and that
can answer relevant questions for debugging ILA. Based on the
type of required changes, we also found that the tool developer
can focus on representing the unique aspects of their concept
and fully reuse the common functionality.

Further, our common toolset allows developers to use and
visualize multiple RP concepts in conjunction with the same
code base. Since the concepts are embedded in the same system,
their interplay can be observed and programmers can use the
same toolset for all of them, minimizing context switches.

The co-evolution of a reactive concept and its tools may result
in tools that are tailored for the language developer and may

Extensible Tooling for Reactive Programming Based on Active Expressions 27

be too powerful for the application developer. E.g. being able
to debug lost instances of signals is important for the language
developer, but the actual user of the new signal concept should
in theory rely on that such things are not necessary. Thus the
ideal toolset and its capabilities and with it its complexity should
be tailored to the actual role of the developer.

The presented toolset is an exploration in the design space
of state-based reactive programming concepts and their tool
support. This work should be perceived as a feasibility study of
what tools are needed and helpful and how they work together.
Reactive programming concepts are very different from each
other. Because of that, the tools we designed and explored are
very generic. In that, they represent aspects that are shared by
all reactive concepts: exploring the state, seeing behavior over
time, and mapping to source code. On that level, we discovered
that the tools are very similar and be expressed in common
visualizations and interactions. This discovery might imply a
common protocol for tooling on AE based reactive concepts,
which is possible for some aspects like labeling lines of code
with, e.g. “AE“, “SI“, or “IL“. By prematurely restricting the
creation of tools to a rigid protocol we cannot explore the full
range of possible concept-specific user interaction, especially
since there are few best practices and experience with reactive
concept tooling yet. This is also a reason why a more thor-
ough investigation of how the tools themselves can be better
modularized or automatically generated is future work.

Our approach of an extensible reactive toolset enables multi-
ple directions of further research.

Visualizing multiple concepts and their interplay in the same
tools enables a closer investigation of this interplay. The extent
to which multiple reactive concepts can be used in conjunction
is still understudied. We previously discussed that we evalu-
ate all signals before ILA and other AEs, to guarantee glitch
avoidance for signals. Integrating signals with, for example, a
constraint system that also requires immediate reaction might
become challenging. Our toolset could be used to investigate
and visualize the interactions between these concepts.

Further, studies suggest that not using dedicated tools in
application development produces a mental gap, which can limit
programmers’ debugging capabilities (Chis et al. 2014; Sillito
et al. 2008). When expanding this empirical body of research to
system development, it would be interesting to see whether the
simultaneous development of RP concepts and tooling leads to
more robust RP concepts and better tools. It is also conceivable
that this co-development eases the development of the concepts,
as the tools can provide additional insight and understanding
during development.

Despite these open research areas, we believe that our ap-
proach contributes to making RP more accessible for two rea-
sons. First, our reusable debugging toolset eases the develop-
ment of tooling for new concepts, which can result in more
tools being provided. Second, our toolset supports multiple
RP concepts, which facilitates their simultaneous usage, thus
increasing the programmer’s expressiveness.

A. LinkedList Example Implementation

1 class Node {
2 constructor(value) {
3 this.value = value;
4 }
5 }
6 class LinkedList {
7 constructor() {
8 this.length = 0;
9 }

10 pushBack(value) {
11 // this.length++; // increasing the length here

produces an invalid internal state
12 if(!this.start) {
13 this.start = new Node(value);
14 this.end = this.start;
15 } else {
16 this.end.child = new Node(value);
17 this.end = this.end.child;
18 }
19 this.length++; // This is the correct position for

increasing the length
20 }
21
22 average() {
23 let sum = 0;
24 let current = this.start;
25 for(let i = 0; i < this.length; i++) {
26 if(!current) break;
27 sum += current.value;
28 current = current.child;
29 }
30 return sum / this.length;
31 }
32
33 median() {
34 if(!this.start) return undefined;
35 let list = [];
36 let current = this.start;
37 for(let i = 0; i < this.length; i++) {
38 if(!current) break;
39 list[i] = current.value;
40 current = current.child;
41 }
42 list.sort();
43 if(list.length % 2 === 1) {
44 return list[(list.length - 1) / 2];
45 } else {
46 return (list[list.length / 2 - 1] + list[list.length

/ 2]) / 2;
47 }
48 }
49
50
51 map(f) {
52 if(!this.start) return [];
53 let current = this.start;
54 let list = [];
55 const l = this.length;
56 for(let i = 0; i < l; i++) {
57 list[i] = f(current.value);
58 current = current.child;
59 }
60 return list;
61 }
62
63 mininum() {
64 if(!this.start) return undefined;
65 let min = this.start.value;
66 let current = this.start;
67 // Missing dependency if we do not extract this
68 const l = this.length;
69 for(let i = 0; i < l; i++) {
70 if(!current) break;
71 if(current.value < min) {
72 min = current.value;
73 }
74 current = current.child;
75 }
76 return min;
77 }
78 }
79
80 const data = new LinkedList();

28 Stefan Ramson et al.

81
82 let mean, median, sd, skew;
83
84 aexpr(() => (mean - median) / sd) // Wrong order, as this

is now prioritized leading to wrong intermediate
values

85 .onChange(v => skew = v);
86 aexpr(() => data.average())
87 .onChange(v => mean = v);
88 aexpr(() => data.median())
89 .onChange(v => median = v);
90 aexpr(() => {
91 return Math.sqrt(
92 data.map(x => (x - mean) ** 2).sum() / data.length)
93 }).onChange(v => sd = v);
94
95 aexpr(() => Math.sign(skew))
96 .onChange(v => lively.notify("New skew of data: " + v));
97
98 data.pushBack(4);
99 data.pushBack(1);

100 data.pushBack(1);

Listing 15 LinkedList implementation

B. Remote Editor Example Implementation

1 "enable aexpr";
2 import { Layer, proceed } from ’src/client/ContextJS/src/

Layers.js’;
3 import Morph from ’src/components/widgets/lively-morph.js’;
4 import {Server, EditorWidget} from ’./mock-editor.js’
5
6 export default class RemoteEditor extends Morph {
7 async initialize() {
8 this.windowTitle = "RemoteEditor";
9 this.file = await lively.prompt("file to edit");
10 this.save.addEventListener("click", () => {this.editor.

save(this.text.value)})
11 this.server = new Server(() => this.serverCheckbox.

checked);
12 this.editor = new EditorWidget(this.file);
13 this.server.onFileChange(this.file, (text) => this.

merge(text))
14
15 always: this.content.innerHTML = this.editor.render().

outerHTML;
16
17 this.onlineLayer = new Layer("onlineEditor");
18 this.onlineLayer.onActivate(() => this.merge(this.

server.read(this.file)));
19 const server = this.server;
20 this.onlineLayer.refineObject(this.editor, {
21 render() {
22 return <div style="border:2px solid blue">
23 {proceed()}
24 </div>
25 },
26 save(text) {
27 server.send(this.file, text)
28 proceed(text)
29 }
30 })
31 this.onlineLayer.activeWhile(() => this.

workRemoteButton.checked && this.server.connected);
32 }
33
34 merge(text) {
35 this.editor.localStorage.merge(text);
36 }
37 get workRemoteButton() {
38 return this.get("#workRemoteButton");
39 }
40 get content() {
41 return this.get(’#content’);
42 }
43 get save() {
44 return this.get(’#save’);
45 }
46 get text() {
47 return this.get(’#text’);
48 }

49 // Button that "enables"/"disables" our mock server
50 get serverCheckbox() {
51 return this.get(’#server’);
52 }
53 }

Listing 16 Remote editor script

1 <template id="remote-editor" >
2
3 <input type="checkbox" id="workRemoteButton" name="work

remote" checked>
4 <label for="workRemoteButton">Work Remote</label>
5 <input type="checkbox" id="server" name="enable server"

checked>
6 <label for="server">Toggle server</label>
7 <button id="save">
8 Save
9 </button>
10
11 <div id="content">
12 <input type="text" id="text">
13 </div>
14 </template>

Listing 17 Remote editor HTML

1 export class LocalStorage {
2 constructor() {
3 this.files = new Map();
4 }
5 read(file) {
6 if(!this.files.has(file)) {
7 this.write(file, "new file");
8 }
9 return this.files.get(file);
10 }
11 write(file, text) {
12 this.files.set(file, text);
13 }
14 merge(file, text) {
15 this.files.set(file, text);
16 }
17 }
18
19 export class Server {
20 constructor(enabledSource) {
21 this.enabledSource = enabledSource;
22 this.storage = new LocalStorage();
23 }
24 send(file, text) {
25 this.storage.write(file, text);
26 }
27 read(file, text) {
28 return this.storage.read(file, text);
29 }
30 onFileChange() {
31 // no remote changes for now
32 }
33 get connected() {
34 return this.enabledSource();
35 }
36 }
37
38 export class EditorWidget {
39 constructor(file) {
40 this.file = file;
41 this.localStorage = new LocalStorage();
42 }
43 render() {
44 return <input type="text" id="text" value={this.

localStorage.read(this.file)}></input>;
45 }
46 save(text) {
47 this.localStorage.write(this.file, text);
48 }
49 }

Listing 18 Additional mock classes for the remote editor

Extensible Tooling for Reactive Programming Based on Active Expressions 29

References

Alabor, M., & Stolze, M. (2020). Debugging of RxJS-based
applications. In Proceedings of the 7th ACM SIGPLAN Inter-
national Workshop on Reactive and Event-Based Languages
and Systems. ACM. doi: 10.1145/3427763.3428313

Bainomugisha, E., Carreton, A. L., van Cutsem, T., Mostinckx,
S., & de Meuter, W. (2013). A survey on reactive pro-
gramming. ACM Computing Surveys(4). doi: 10.1145/
2501654.2501666

Banken, H., Meijer, E., & Gousios, G. (2018). Debugging
data flows in reactive programs. In Proceedings of the 40th
International Conference on Software Engineering. ACM.
doi: 10.1145/3180155.3180156

Benveniste, A., Caspi, P., Edwards, S. A., Halbwachs, N., Guer-
nic, P. L., & Simone, R. D. (2003). The Synchronous
Languages 12 Years Later. Proceedings of the IEEE. doi:
10.1109/JPROC.2002.805826

Brand, M., Ramson, S., Lincke, J., & Hirschfeld, R. (2022).
Explicit tool support for implicit layer activation. In Pro-
ceedings of the 14th acm international workshop on context-
oriented programming and advanced modularity. New York,
NY, USA: Association for Computing Machinery. doi:
10.1145/3570353.3570355

Chis, A., Gîrba, T., & Nierstrasz, O. (2014). The Moldable
Debugger: A Framework for Developing Domain-Specific
Debuggers. In B. Combemale, D. J. Pearce, O. Barais, &
J. J. Vinju (Eds.), Software Language Engineering. Springer.
doi: 10.1007/978-3-319-11245-9_6

Costanza, P., & Hirschfeld, R. (2005). Language constructs
for context-oriented programming: An overview of ContextL.
In Proceedings of the Dynamic Languages Symposium. doi:
10.1145/1146841.1146842

Courtney, A. (2001). Frappé: Functional Reactive Programming
in Java. In I. V. Ramakrishnan (Ed.), Practical Aspects of
Declarative Languages. Springer. doi: 10.1007/3-540-45241
-9_3

Davis, A., & Keller, R. (1982). Data Flow Program Graphs.
Computer. doi: 10.1109/MC.1982.1653939

Dijkstra, E. W. (1982). On the role of scientific thought.
In Selected writings on computing: A personal perspective.
Springer-Verlag.

Elliott, C., & Hudak, P. (1997). Functional reactive animation.
In Proceedings of the second ACM SIGPLAN international
conference on Functional programming. ACM. doi: 10.1145/
258948.258973

Felgentreff, T., Borning, A., Hirschfeld, R., Lincke, J., Ohshima,
Y., Freudenberg, B., & Krahn, R. (2014). Babelsberg/JS. In
R. Jones (Ed.), ECOOP 2014 – Object-Oriented Program-
ming. Springer. doi: 10.1007/978-3-662-44202-9_17

Freeman-Benson, B. N. (1990). Kaleidoscope: Mixing objects,
constraints, and imperative programming. ACM SIGPLAN
Notices(10). doi: 10.1145/97946.97957

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). De-
sign patterns: Elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc.

Gautier, T., Le Guernic, P., & Besnard, L. (1987). SIGNAL: A
declarative language for synchronous programming of real-
time systems. In G. Kahn (Ed.), Functional Programming
Languages and Computer Architecture. Springer. doi: 10
.1007/3-540-18317-5_15

Grabmüller, M., & Hofstedt, P. (2004). Turtle: A Constraint Im-
perative Programming Language. In F. Coenen, A. Preece, &
A. Macintosh (Eds.), Research and Development in Intelligent
Systems XX. Springer. doi: 10.1007/978-0-85729-412-8_14

Hirschfeld, R., & Rose, K. (Eds.). (2008). Self-Sustaining
Systems: First Workshop, S3 2008 Potsdam, Germany, May
15-16, 2008, Proceedings. Springer-Verlag. doi: 10.1007/
978-3-540-89275-5

Ingalls, D., Felgentreff, T., Hirschfeld, R., Krahn, R., Lincke,
J., Röder, M., . . . Mikkonen, T. (2016). A world of active
objects for work and play: The first ten years of lively. In
Proceedings of the 2016 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming
and Software. ACM. doi: 10.1145/2986012.2986029

Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., & Kay, A.
(1997). Back to the future: The story of Squeak, a practical
Smalltalk written in itself. ACM SIGPLAN Notices(10). doi:
10.1145/263700.263754

Ingalls, D., Palacz, K., Uhler, S., Taivalsaari, A., & Mikkonen,
T. (2008). The Lively Kernel A Self-supporting System on a
Web Page. In R. Hirschfeld & K. Rose (Eds.), Self-Sustaining
Systems, First Workshop, S3. Springer. doi: 10.1007/978-3
-540-89275-5_2

Ingalls, D., Wallace, S., Chow, Y.-Y., Ludolph, F., & Doyle, K.
(1988). Fabrik: A visual programming environment. ACM
SIGPLAN Notices(11). doi: 10.1145/62084.62100

Jeanjean, P., Combemale, B., & Barais, O. (2021). IDE as Code:
Reifying Language Protocols as First-Class Citizens. In 14th
Innovations in Software Engineering Conference (formerly
known as India Software Engineering Conference). ACM.
doi: 10.1145/3452383.3452406

Johnston, W. M., Hanna, J. R. P., & Millar, R. J. (2004). Ad-
vances in dataflow programming languages. ACM Computing
Surveys(1). doi: 10.1145/1013208.1013209

Kamina, T., Aotani, T., & Masuhara, H. (2016). General-
ized Layer Activation Mechanism for Context-Oriented Pro-
gramming. In S. Chiba, M. Südholt, P. Eugster, L. Ziarek,
& G. T. Leavens (Eds.), Transactions on Modularity and
Composition I. Springer International Publishing. doi:
10.1007/978-3-319-46969-0_4

Ko, A. J., & Fincher, S. A. (2019). A Study Design Process.
In A. V. Robins & S. A. Fincher (Eds.), The Cambridge
Handbook of Computing Education Research. Cambridge
University Press. doi: 10.1017/9781108654555.005

Ko, A. J., & Myers, B. A. (2008). Debugging reinvented:
Asking and answering why and why not questions about
program behavior. In Proceedings of the 30th international
conference on Software engineering. ACM. doi: 10.1145/
1368088.1368130

Köhler, M., & Salvaneschi, G. (2019). Automated refactoring
to reactive programming. In 34th IEEE/ACM international
conference on automated software engineering, ASE 2019,

30 Stefan Ramson et al.

san diego, ca, usa, november 11-15, 2019 (pp. 835–846).
IEEE. doi: 10.1109/ASE.2019.00082

Lange, D. B., & Nakamura, Y. (1997). Object-oriented program
tracing and visualization. Computer(5). doi: 10.1109/2
.589912

Lehmann, S., Felgentreff, T., Lincke, J., Rein, P., & Hirschfeld,
R. (2016). Reactive object queries: Consistent views in
object-oriented languages. In Companion Proceedings of the
15th International Conference on Modularity. ACM. doi:
10.1145/2892664.2892665

Lieberman, H., & Fry, C. (1995). Bridging the gulf between
code and behavior in programming. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Sys-
tems. ACM Press/Addison-Wesley Publishing Co. doi:
10.1145/223904.223969

Lincke, J., Rein, P., Ramson, S., Hirschfeld, R., Taeumel, M.,
& Felgentreff, T. (2017). Designing a live development
experience for web-components. In PX/17.2. doi: 10.1145/
3167109

Meijer, E. (2010). Subject/observer is dual to iterator. Confer-
ence on Programming Language Design and Implementation
(PLDI), Fun Ideas and Thoughts Session.

Merino, M. V., Vinju, J., & van der Storm, T. (2020). Ba-
catá: Notebooks for DSLs, Almost for Free. The Art, Sci-
ence, and Engineering of Programming(3). doi: 10.22152/
programming-journal.org/2020/4/11

Meyerovich, L. A., Guha, A., Baskin, J. P., Cooper, G. H.,
Greenberg, M., Bromfield, A., & Krishnamurthi, S. (2009).
Flapjax: A programming language for ajax applications. In
24th acm sigplan conference on object-oriented programming
systems, languages, and applications (OOPSLA), 2009. (pp.
1–20). New York, NY, USA: ACM. doi: 10.1145/1640089
.1640091

Niephaus, F., Rein, P., Edding, J., Hering, J., König, B., Opahle,
K., . . . Hirschfeld, R. (2020). Example-based live program-
ming for everyone: Building language-agnostic tools for live
programming with LSP and GraalVM. In Proceedings of
the 2020 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and
Software. ACM. doi: 10.1145/3426428.3426919

O’Callahan, R., Jones, C., Froyd, N., Huey, K., Noll, A., &
Partush, N. (2017). Engineering Record And Replay For
Deployability: Extended Technical Report. CoRR.

Parnas, D. L. (1972). On the criteria to be used in decomposing
systems into modules. Communications of the ACM(12). doi:
10.1145/361598.361623

Perez, I., & Nilsson, H. (2017). Testing and debugging func-
tional reactive programming. Proceedings of the ACM on
Programming Languages(ICFP). doi: 10.1145/3110246

Pothier, G., & Tanter, É. (2009). Back to the Future: Omniscient
Debugging. IEEE Software. doi: 10.1109/MS.2009.169

Prähofer, H., Schatz, R., Wirth, C., Hurnaus, D., & Mössenböck,
H. (2013). Monaco—A domain-specific language solution
for reactive process control programming with hierarchical
components. Computer Languages, Systems & Structures(3).
doi: 10.1016/j.cl.2013.02.001

Ramson, S., & Hirschfeld, R. (2017). Active Expressions:
Basic Building Blocks for Reactive Programming. The Art,
Science, and Engineering of Programming(2). doi: 10.22152/
programming-journal.org/2017/1/12

Ramson, S., Lincke, J., & Hirschfeld, R. (2017). The declarative
nature of implicit layer activation. In Proceedings of the 9th
International Workshop on Context-Oriented Programming.
ACM. doi: 10.1145/3117802.3117804

Reade, C. (1989). Elements of functional programming.
Addison-Wesley Longman Publishing Co., Inc.

Salvaneschi, G., Hintz, G., & Mezini, M. (2014). REScala:
Bridging between object-oriented and functional style in
reactive applications. In Proceedings of the 13th interna-
tional conference on Modularity. ACM. doi: 10.1145/
2577080.2577083

Salvaneschi, G., & Mezini, M. (2016). Debugging for Re-
active Programming. In 2016 IEEE/ACM 38th Interna-
tional Conference on Software Engineering (ICSE). doi:
10.1145/2884781.2884815

Shneiderman, B. (1996). The eyes have it: A task by data type
taxonomy for information visualizations. In Proceedings
1996 IEEE Symposium on Visual Languages. doi: 10.1109/
VL.1996.545307

Sillito, J., Murphy, G. C., & De Volder, K. (2008). Asking
and Answering Questions during a Programming Change
Task. IEEE Transactions on Software Engineering(4). doi:
10.1109/TSE.2008.26

Sutherland, I. E. (1964). Sketch pad a man-machine graphical
communication system. In Proceedings of the SHARE design
automation workshop. ACM. doi: 10.1145/800265.810742

Taeumel, M., Felgentreff, T., & Hirschfeld, R. (2014). Ap-
plying Data-driven Tool Development to Context-oriented
Languages. In Proceedings of 6th International Workshop
on Context-Oriented Programming. ACM. doi: 10.1145/
2637066.2637067

Van den Vonder, S., Renaux, T., Oeyen, B., De Koster, J.,
& De Meuter, W. (2020). Tackling the Awkward Squad
for Reactive Programming: The Actor-Reactor Model. In
R. Hirschfeld & T. Pape (Eds.), 34th european conference
on object-oriented programming (ecoop 2020). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/
LIPIcs.ECOOP.2020.19

von Löwis, M., Denker, M., & Nierstrasz, O. (2007). Context-
oriented programming: Beyond layers. In Proceedings of the
2007 international conference on Dynamic languages. ACM.
doi: 10.1145/1352678.1352688

Weiher, M., & Hirschfeld, R. (2016). Constraints as poly-
morphic connectors. In Proceedings of the conference on
modularity (modularity) 2016 (pp. 134–145). New York,
NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/
2889443.2889456 doi: 10.1145/2889443.2889456

Extensible Tooling for Reactive Programming Based on Active Expressions 31

http://doi.acm.org/10.1145/2889443.2889456
http://doi.acm.org/10.1145/2889443.2889456

About the authors
Stefan Ramson is a member of the Hasso Plattner Institute’s
Software Architecture Group at the University of Potsdam. He
regards the design of programming systems as the intersec-
tion of notation, interface design, psychology, and ergonomics.
His current research interests include live and exploratory pro-
gramming systems, alternative input methods, visual languages,
and natural programming. You can contact him at stefan.ram-
son@hpi.uni-potsdam.de.

Markus Brand is a graduate student at the Software Architec-
ture Group of the Hasso Plattner Institute. His research interests
include programming tools and reactive programming in partic-
ular. You can contact him at Markus.Brand@student.hpi.uni-
potsdam.de.

Jens Lincke is a member of the Hasso Plattner Institute’s Soft-
ware Architecture Group. His research interests include live and
exploratory programming. Lincke received a PhD in IT-Systems
Engineering from the Hasso Plattner Institute at the Univer-
sity of Potsdam. You can contact him at jens.lincke@hpi.uni-
potsdam.de.

Robert Hirschfeld leads the Software Architecture Group of
the Hasso Plattner Institute at the University of Potsdam. His
research interests include dynamic programming languages,
development tools, and runtime environments to make live, ex-
ploratory programming more approachable. Hirschfeld received
a PhD in computer science from Technische Universität Ilmenau.
You can contact him at robert.hirschfeld@hpi.uni-potsdam.de.

32 Stefan Ramson et al.

mailto:stefan.ramson@hpi.uni-potsdam.de?subject=Your paper "Extensible Tooling for Reactive Programming Based on Active Expressions"
mailto:stefan.ramson@hpi.uni-potsdam.de?subject=Your paper "Extensible Tooling for Reactive Programming Based on Active Expressions"
mailto:Markus.Brand@student.hpi.uni-potsdam.de?subject=Your paper "Extensible Tooling for Reactive Programming Based on Active Expressions"
mailto:Markus.Brand@student.hpi.uni-potsdam.de?subject=Your paper "Extensible Tooling for Reactive Programming Based on Active Expressions"
mailto:jens.lincke@hpi.uni-potsdam.de?subject=Your paper "Extensible Tooling for Reactive Programming Based on Active Expressions"
mailto:jens.lincke@hpi.uni-potsdam.de?subject=Your paper "Extensible Tooling for Reactive Programming Based on Active Expressions"
mailto:robert.hirschfeld@hpi.uni-potsdam.de?subject=Your paper "Extensible Tooling for Reactive Programming Based on Active Expressions"

