
Journal of Object Technology | RESEARCH ARTICLE

Mitigating Injection-Based Weaknesses: A Flexible
Template Architecture

Onyeka Ezenwoye
Augusta University, USA

ABSTRACT
Addressing vulnerabilities in software requires consideration of architectural issues. This paper presents a flexible architecture
using design patterns to address software vulnerabilities. The architecture employs an extensible security template for mitigating
injection-based weaknesses in authentication, authorization, and data validation. The paper presents the architecture’s
associated algorithms, demonstrates the mapping of weaknesses to use cases and the utilization of architectural, behavioral,
and security patterns to mitigate them. A case study application is used to show the prevention of use-case specific weaknesses.

KEYWORDS Design Pattern, Software Vulnerability, Software Architecture

1. Introduction
Software security remains a persistent challenge in the field
of software engineering, despite significant advancements in
vulnerability identification and mitigation techniques (Leveson
2020). While efforts have been made to combat security issues
through secure coding practices, addressing vulnerabilities at
the architectural level remains a challenging aspect of software
security (Jøsang et al. 2015; Ryoo et al. 2015; Cervantes et
al. 2016; Amoroso 2018). Many vulnerabilities are rooted in
the design and implementation flaws, making it essential to
integrate security considerations into the architecture design
process (da Silva Santos, Tarrit, & Mirakhorli 2017).

Neglecting architectural issues can undermine even the most
comprehensive coding efforts, leading to insecure systems. One
such vulnerability is client-side authentication, where authen-
tication is performed solely within the client code of a client-
server product, rather than on the server code. This approach
enables attackers to circumvent the authentication processes by
using a modified client (da Silva Santos, Tarrit, & Mirakhorli
2017).

It is important to develop effective security measures that

JOT reference format:
Onyeka Ezenwoye. Mitigating Injection-Based Weaknesses: A Flexible
Template Architecture. Journal of Object Technology. Vol. 23, No. 1, 2024.
Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2024.23.1.a3

integrate security considerations into the software architecture,
using appropriate security design patterns (Halkidis et al. 2006;
A. V. Uzunov et al. 2012; Villagrán-Velasco et al. 2020). Exist-
ing works have focused on software design patterns and security
methodologies in isolation, overlooking the integration of these
elements to create a unified approach for adaptively mitigating
common software weaknesses. These existing works undoubt-
edly contribute to the understanding of software architecture and
security and propose valuable frameworks, methodologies, and
patterns. However, they lack a holistic and practical approach to
address the evolving security challenges of web-based software.

In contrast to the existing related work, this research focuses
on a novel approach that offers a flexible MVC-based archi-
tecture for mitigating common contemporary injection-based
weaknesses across multiple use cases. This research does not
rely on pre-existing architectures such as Hexagonal and Onion
due to their inherent complexity and the absence of official ref-
erence implementations, which can impose significant adoption
challenges (Nunkesser 2022; Khalil et al. 2016). This work, as
detailed in the following sections, introduces a comprehensive
framework that bridges this gap by providing adaptable and
practical security solutions that can be tailored to diverse web
application scenarios. It proposes a template architecture that
leverages software design patterns to mitigate injection-based
weaknesses in authentication, authorization, and data validation.

The research question guiding this study is: "How does an
extensible security template enhance the prevention of common

An AITO publication

http://dx.doi.org/10.5381/jot.2024.23.1.a3

injection-based weaknesses across multiple use cases?" The
primary contribution of this research is the development and
evaluation of an extensible security template and its associated
algorithms, that can be applied to various use cases to effectively
mitigate injection-based weaknesses. By mapping security re-
quirements to use cases and utilizing architectural, behavioral,
and security patterns, a repeatable solution for enhancing appli-
cation security is provided.

To assess the effectiveness of the proposed architecture, a
case study is conducted using a web application with known vul-
nerabilities. Through this evaluation, the mitigation of various
security weaknesses in each use case is demonstrated, providing
empirical evidence of the architecture’s efficacy. This solution
can be generalized to other similar applications or systems.

For the rest of this paper, an overview of the research method-
ology presented in Section 2, Section 3 describes the back-
ground work that supports this research, and Section 4 discusses
the process for determining the requirements for the flexible ar-
chitecture. The architecture is presented in Section 5. Section 6
outlines the evaluation methodology and presents the results
of the case study. Section 7 provides some lessons learned
and suggests areas for further research. Related work can be
found in Section 8. Finally, Section 9 summarizes the work and
contribution.

2. Methodology

This section presents the methodology used for this work. The
methodology focuses on understanding the requirements, an-
alyzing the use cases of the application, establishing security
requirements, implementing the architecture, and systematically
evaluating its effectiveness and coverage.

The first step is to analyze each use case of the case study
application to identify their weaknesses. This involves an exami-
nation of the known weaknesses of the system. The analysis will
identify the cause of these weaknesses and the impact they have
on the security of the system. Additionally, security require-
ments for each use case are established to mitigate all potential
weaknesses.

The proposed architecture along with the associated algo-
rithms, is then designed to address the requirements for security
that have previously been established. The architecture is im-
plemented along with the functional aspects of the original case
study application. The implementation will create a new secure
version of the original case study application.

Given that the implementation involves integrating security
patterns into the proposed architecture, a systematic evaluation
is necessary (Halkidis et al. 2006; Villagrán-Velasco et al. 2020).
The evaluation will assess the effectiveness and coverage of the
architecture in mitigating the identified weaknesses. The system
is tested against various injection-based attacks and measuring
its ability to prevent them. The coverage of the architecture
is assessed by analyzing its capability to address the known
weaknesses specific to the original implementation of the case
study.

3. Background
This section offers background information on the software
vulnerability landscape addressed in this research. It introduces
the case study web application and also the process of capturing
security requirements for use cases.

3.1. Vulnerability Landscape
A vulnerability refers to a defect in a software artifact that can
be exploited to compromise the security of a system. Vulner-
abilities are commonly categorized based on their types, also
known as weaknesses (Bojanova & Galhardo 2023). Examples
of weaknesses include buffer overflow and race condition. The
vulnerability landscape of modern software is extensive, owing
to its complex nature, interconnectivity, and reliance on existing
software components (Ponta et al. 2021; Banga 2020). The Com-
mon Weakness Enumeration (CWE), a community-maintained
dictionary, currently lists over 900 known weaknesses (MITRE
2023). In this article, the terms vulnerability and weakness
will be used interchangeably, acknowledging their technical
distinction but recognizing their relationship.

Software vulnerabilities can exist in any software artifact
produced at any stage of the software development process, not
solely in source code. Mitigating all weaknesses in a system
with a single measure is practically impossible. Therefore,
efforts to minimize weaknesses must span all phases of the
software lifecycle. This research focuses on mitigating specific
weaknesses through architectural design.

Addressing software weaknesses requires a comprehensive
understanding of the potential security threats faced by the soft-
ware. In previous work, vulnerability data was analyzed to de-
termine the susceptibility of weaknesses across various software
types (Ezenwoye et al. 2020; Ezenwoye & Liu 2022a). The re-
sults indicated variations in weaknesses among software types,
including operating systems, browsers, utilities, middleware,
servers, and web applications. This research concentrates on a
group of weaknesses identified as common in web applications.

CWE Name Rank

79 Cross-Site Scripting 1
89 SQL Injection 2
200 Exposure of Sensitive Information 3
352 Cross-Site Request Forgery 4
284 Improper Access Control 5
20 Improper Input Validation 6
22 Path Traversal 7
119 Buffer Overflow 8
434 Unrestricted Upload of File 9
94 Code Injection 10
287 Improper Authentication 11

Table 1 The most common web application weaknesses,
which make up 70% of reported vulnerabilities (2011-2020)

Table 1 presents the most prevalent weaknesses for web ap-
plications based on an analysis of vulnerability data from the
National Vulnerability Database (Ezenwoye & Liu 2022a). The
weaknesses are ranked by their frequency of occurrence, rather
than employing other ranking methodologies that consider addi-

2 Ezenwoye

tional metrics such as potential impact and severity (Mell et al.
2006; Wu et al. 2015; Galhardo et al. 2020). The results demon-
strate that Cross-Site Scripting (CWE-79) is the most frequently
reported weakness among web application vulnerabilities. The
data covers over thirteen thousand vulnerabilities in a ten-year
period (2011 to 2020). While the total number of reported weak-
nesses exceeds 100, these 11 weaknesses accounted for 70.4%
of all vulnerabilities, making them representative of the most
common weaknesses in this software type.

3.2. Insecure Web Application
Previously, a web application called SecureEd was developed
to demonstrate typical vulnerabilities mentioned in Table 1.
SecureEd is an educational application within the domain of
a course management system and contains ten real-world use
cases. Its purpose is to allow students to explore common weak-
nesses found in web applications (Lee et al. 2021). This research
aims to analyze and fix these vulnerabilities for educational pur-
poses, and hence it is introduced here.

SecureEd has a total of 11 known vulnerabilities, including
10 of the web application weaknesses specified in Table 1. It is
worth noting that there are no vulnerabilities related to Buffer
Overflow (CWE-119) in this system. Further details regarding
these vulnerabilities and their characteristics are provided in
Section 4.

To mitigate vulnerabilities within the application’s architec-
ture, it is necessary to define appropriate security requirements.
These security requirements, in turn, rely on a comprehensive
understanding and analysis of the vulnerability risks associated
with the application’s various use cases. The following section
will delve into previous research on the process of specifying
security requirements by carefully examining the vulnerability
risks associated with the system.

3.3. Specifying Security Requirements
In the process of threat modeling, an important step involves
determining the necessary actions to address vulnerability risks
once they have been identified and prioritized (Shostack 2014).
In most cases, these actions take the form of security require-
ments that complement the functional requirements of the sys-
tem. Security requirements are objectives that must be met by
the system to prevent specific vulnerabilities. They can apply
to the entire system or specific functional requirements (use
cases) (Firesmith 2003, 2004; Bruegge & Dutoit 2009).

To illustrate, in a healthcare application, the security require-
ment to encrypt private information storage would be applicable
to the entire system, regardless of individual use cases (Thapa
& Camtepe 2021). However, user authentication requirements
may vary depending on the specific use case. For instance, an
e-commerce application may not require user authentication for
adding items to the shopping cart, but it may require authentica-
tion for completing the payment process. Therefore, the security
requirement to mitigate Improper Authentication (CWE-287)
would only be specified for the checkout use case and not for
adding items to the shopping cart.

In previous work, the Risk-Based Security Requirements
(RBSR) model was proposed (Ezenwoye & Liu 2022b). This

Figure 1 RBSR model: Use cases are associated with events,
which have security risks. Weaknesses are associated with
risks, which have mitigations.

model facilitates the process of linking security requirements to
use cases based on their respective vulnerability risks. Figure 1
illustrates the relationships among the entities within the RBSR
model, which include use cases (U), events (E), weaknesses
(W), risks (R), and mitigations (M).

The RBSR model enables the linkage of each use case to
essential events necessary for its completion. For instance, in
an e-commerce application, a use case for paying for items
in a shopping cart may involve an essential event where the
user submits their credit card information using a designated
form. Each event associated with a use case is then linked to
potential vulnerability risks. For example, entering credit card
details may pose the risk of malicious data input, leading to
SQL Injection (CWE-89) or Buffer Overflow (CWE-119). Each
identified risk is associated with potential weaknesses that could
be exploited. To mitigate the risk of malicious input resulting in
SQL Injection, a security requirement may specify the validation
of input data to detect any SQL Injection-specific scripts. By
considering the functional requirements of each individual use
case, the RBSR model allows for comprehensive and coherent
integration of security requirements across multiple use cases,
reducing the possibility of security vulnerabilities in the system.

Table 2 provides an example of a use case description en-
hanced with security requirements. Use case descriptions offer
a structured representation of use cases, outlining specific inter-
actions and scenarios within an application. They may include
non-functional requirements, such as relevant security consider-
ations. In this example, Table 2 describes a scenario where the
login feature is utilized within SecureEd. The use case is ana-
lyzed using the RBSR model to identify security requirements.
The description includes events, actors, pre/post-conditions,
along with the associated security requirements and their cor-
responding weaknesses (CWEs). This example demonstrates
the inclusion of use case-specific security requirements. Fur-
ther discussion on these security requirements for SecureEd is
provided in Section 4.2.

While some web application vulnerabilities require system-
level security measures, this project focuses on addressing use-
case-specific security requirements rather than system-level
ones. For instance, the weakness Exposure of Sensitive Informa-
tion (CWE-200), which may involve the lack of secure HTTP

Mitigating Injection-Based Weaknesses 3

Use case name Login

Participating
actors

Initiated by Admin, Faculty, or Student

Pre-condition

Flow of events
1. The user enters their username, password, and sub-
mits the form.

2. System displays user dashboard or error message
for incorrect credentials.

Post-condition Correct dashboard or login form is displayed

Security
requirements

1. Ensure input matches its specification (CWE-20)

1. Ensure input is free of SQL injection (CWE-89)

1. Ensure input is free of XSS (CWE-79)

1. Ensure user is authenticated (CWE-287)

1. Ensure user is authorized (CWE-284)

2. Prevent Information Exposure (CWE-200)

Table 2 Description for login function with security require-
ments for specific events and weaknesses.

usage, poses a risk of a man-in-the-middle attack (Patni et al.
2017). To mitigate this, a system-level security requirement is
necessary, which specifies the use of a secure application layer
protocol (Rescorla & Schiffman 1999). It’s important to note
that this requirement is a server configuration solution rather
than an architectural solution.

4. Vulnerability Analysis
Prior to designing the architecture for weakness mitigation,
there is need to understand the requirements. This was done by
first analysing each use case of the application to identify their
weaknesses. The next step was to establish the security require-
ments for each use case to mitigate all potential weaknesses.
This section discusses those two steps.

4.1. Weakness Enumeration
The vulnerabilities in SecureEd that pertain to its use cases , of
which there are 9, where identified and analyzed. An overview
of these vulnerabilities is presented in Table 3. The table pro-
vides a description of each vulnerability, the corresponding use
case affected by it, and the associated weakness. As mentioned
earlier in Section 3.2, SecureEd has ten use cases, but only the
five use cases listed in Table 3 are known to have weaknesses.
The application defines three user roles: Admin, Student, and
Faculty. Below is a brief description of the use cases identified
in Table 3.

– CreateAccount: The Admin has the ability to create ac-
counts for all types of actors.

– EditAccount: The Admin can modify the profile of any
existing account.

– EnterGrade: The Faculty can upload a grade report in
CSV format to enter grades for students assigned to their
course.

– ForgotPassword: In case of a forgotten password, all
actors can change their password.

– Login: Access to the system requires all actors to log in
using a username and password.

Table 3 lists the nine vulnerabilities specific to use cases in
SecureEd, which can be addressed through architectural mea-
sures. Each vulnerability in the table is associated with a cor-
responding weakness. For example, the first vulnerability is
related to a flaw in the Login use case, enabling an attacker
to bypass the login mechanism through SQL script insertion.
This vulnerability highlights the presence of the Improper Input
Validation weakness (CWE-20). Understanding the cause-and-
effect relationship among weaknesses is crucial in mitigating
them (Bojanova et al. 2016; Zhu et al. 2019).

Upon analyzing the vulnerabilities in Table 3, it became
clear that all vulnerabilities can be attributed to three main
weaknesses; CWE-20 Improper Input Validation, CWE-287 Im-
proper Authentication, and CWE-284 Improper Access Control.
For instance, in the case of the first vulnerability (#1), the lack
of proper input validation facilitates SQL Injection (CWE-89),
which in turn leads to the bypass of the authentication proce-
dure (CWE-287). This cause-and-effect relationship between
weaknesses can be visualized using a causal model (Zhu et al.
2019; Hitchcock 2023), as shown in Figure 2.

Figure 2 The causal model of the weaknesses, with three
highlighted weaknesses as root causes of the vulnerabilities.

Figure 2 is a directed acyclic graph illustrating the causal
relationship among the associated weaknesses of the nine vul-
nerabilities in SecureEd, including (Table 3). Each of the nine
weaknesses is depicted as a node, and the outgoing edges indi-
cate the resulting effects of these weaknesses. The highlighted
weaknesses signify the three root causes for all nine vulnerabil-
ities. The model shows that the most prominent root cause is
Improper Input Validation (CWE-20), which is responsible for
the majority of the vulnerabilities. Additional information on
this cause and effect relationship is provided in Section 6.

The vulnerability analysis also reveals that the attack method
for the three causal weaknesses was injection. Injection attacks
are among the most common software weaknesses, where an
attacker can insert malicious data or commands into the system
to exploit deficiencies in data validation and access control
mechanisms (Bojanova et al. 2021). All the web application

4 Ezenwoye

No. Vulnerability Description Use Case Weakness

1 The absence of validation for user name and password fields enables a boolean attack to
bypass the login mechanism.

Login CWE-20 - Improper Input Validation

2 Malicious script in the form a video link is inserted into a form field (first name) which is
subsequently executed by the application’s client.

EditAccount CWE-79 - Cross-Site Scripting

3 When an SQL script is injected into a form field (new password), it causes data to be deleted
from the database.

ForgotPassword CWE-89 - SQL Injection

4 Leaving the user name and password input fields blank triggers the application to expose
debugging information on the client view.

Login CWE-200 - Exposure of Sensitive Info.

5 The system has a vulnerability that enables an authorized user (Admin) to upload a file of
any type, which can then be accessed afterwards.

EnterGrade CWE-434 - Unrestricted upload of file

6 A Student can access functionality meant for Faculty by directly navigating to the page. EnterGrade CWE-284 - Improper Access Control

7 Instead of using their actual password, a user can log in using a hashed password. Login CWE-287 - Improper Authentication

8 An attacker exploits a user’s session privilege to create an account by tricking the user into
clicking on a link that initiates the creation request.

CreateAccount CWE-352 - Cross-Site Request Forgery

9 Malicious code can be uploaded to the system via file upload by an authenticated user, and
later used to execute PHP commands.

EnterGrade CWE-94 - Code Injection

Table 3 List of vulnerability instances in SecureEd, along with the impacted use cases and their corresponding weaknesses.

vulnerability types listed in Table 1 are susceptible to some
form of injection attack (Bojanova et al. 2021; Ezenwoye & Liu
2022a,c).

The findings of the analysis align with existing research
that identifies inadequate input data validation and access con-
trol tactics as the primary source of architectural flaws in soft-
ware (da Silva Santos, Peruma, et al. 2017). Thus, the proposed
architecture’s ability to mitigate injection attacks for these root
causes is crucial and should serve as the first line of defense in
mitigating the resulting weaknesses.

4.2. Security Requirements

The RBSR model, explained in Section 3.3, was utilized to
define security requirements for each use case, aiming to ad-
dress potential weaknesses and known vulnerabilities. As an
example, Table 4 presents the description of the grade entry use
case, along with its specified security requirements that covers
seven possible weaknesses across six events. These weaknesses
include Improper Authentication (CWE-287), Improper Access
Control (CWE-284), Improper Input Validation (CWE-20), SQL
Injection (CWE-89), Cross-site Scripting (CWE-79), Code In-
jection (CWE-94), and Unrestricted Upload of File (CWE-434).

Certain security requirements apply to multiple events. For
instance, authentication is required for both events 1 and 5,
given the use case’s precondition. Table 3 shows the three
vulnerabilities in SecureEd that are associated with the grade
entry use case, along with their corresponding weaknesses. The
specified security requirements in Table 4 effectively specifies
mitigation for these weaknesses.

Due to space constraints, only the descriptions for Login and
EnterGrade use cases from Table 3 are provided here (Tables 2
and 4). However, the remaining use cases share similar scenarios
with the two described here.

Use case name EnterGrade

Participating
actors

Initiated by Faculty

Pre-condition Faculty is logged in

Flow of events
1. Faculty selects the enter grade function from the
faculty dashboard.

2. System displays the enter grades form.

3. Faculty enters a course identifier, and selects the
upload file function.

4. System displays a file chooser for user to select a
CSV file containing data for Student and Grade.

5. Faculty selects a CSV file to upload, then submits
the form.

6. System updates the grades for the selected course
using the data in the file and displays the faculty dash-
board or error message if data is invalid.

Post-condition Faculty dashboard is displayed AND Data is correctly
stored.

Security
requirements

1,5. Ensure user is authenticated (CWE-287)

1,5. Ensure user is authorized (CWE-284)

3,5. Ensure input matches its specification (CWE-20)

3. Ensure input is free of SQL injection (CWE-89)

3. Ensure input is free of XSS (CWE-79)

5. Prevent code injection (CWE-94)

5. Prevent unrestricted upload of file (CWE-434)

Table 4 Use case description: Security requirements deter-
mined by event-specific vulnerability risk in grade entry

5. A Flexible Architecture

A software architecture outlines the components and sub-
systems within a system, as well as the connections between
them (Buschmann et al. 1996). This section presents such de-

Mitigating Injection-Based Weaknesses 5

Figure 3 Object model showing the associations between the components of the proposed architecture.

tail for the proposed architecture. The architecture has been
designed to incorporate security measures that can safeguard
against use-case specific weaknesses as outlined by the require-
ments. A flexible architecture is needed to accommodate the
variations in the functional and security needs of the use cases.

An objective of this project is to develop the flexible architec-
ture by employing well-established design patterns. The design
patterns leveraged by the proposed architecture can be classified
into three categories: Architectural, Behavioral, and Security
patterns.

– Architectural patterns refer to the styles that specify
how a system is divided into subsystems. This subsystem
decomposition is a crucial step in managing the complexity
of the system (Bruegge & Dutoit 2009). Two architectural
styles are applied: Model-View-Controller and Repository.

– Behavioral patterns are used to provide solutions for flex-
ible interaction between objects. These patterns specify
the actions of objects, their responsibilities, and the com-
munication flow between them. Utilizing these patterns
promotes flexibility and reuse (Gamma et al. 1995). Two
behavioral patterns used in the proposed architecture are
Template Method and Strategy.

– Security patterns are standard solutions to recurring secu-
rity problems. These solutions can be composed into con-
crete design structures (Schumacher et al. 2013; Villagrán-

Velasco et al. 2020). The implemented security patterns in
this project include Authenticator, Role-Based Access Con-
trol, and Input Validation. Their implementation details
are discussed in Section 6.

Figure 3 is class diagram that highlights the key components
of the architecture and the relationships that exist between them.
The following sections will elaborate on the architect by fo-
cusing on the design patterns. Each specific design pattern is
explained, taking a pattern-centric approach to justify its inclu-
sion in the architecture. Although certain patterns may depend
on each other, presenting them individually provides a logical
structure to comprehend their role in the architecture.

5.1. Model-View-Controller
The Model-View-Controller style (MVC) decomposes a system
into three subsystems, Model, View and Controller. The Model
captures domain knowledge in the form of data structures for
the system. The View is responsible for displaying data, it
represents the user interface subsystem. The Control subsystem
manages interactions with the user. Controllers manage the flow
of data between the Model and View (Buschmann et al. 1996;
Bruegge & Dutoit 2009). This separation of concerns is an
important advantage of MVC, which is used in various types of
applications including web applications (Leff & Rayfield 2001).

The model subsystem consists of Resource, Role,

6 Ezenwoye

Account, Right, and UserRole entity objects, which are re-
sponsible for maintaining system information required for im-
plementing Role-Based Access Control (RBAC). RBAC is a
security model and pattern that restricts system access to users
based on their roles (Sandhu et al. 1996; E. B. Fernandez & Per-
nul 2006; E. B. Fernandez 2007). Permissions are thus assigned
to protected resources, such as system’s data or functions. The
user’s access rights are determined by their assigned role. The
Account entity object stores user information, Role encapsu-
lates different roles, and UserRole maps each user to their roles.
Resource represents all protected resources, while Right cap-
tures the relationship between resources and roles as their access
rights. It is important to note that other access control models
such as Attributed Based Access Control (ABAC) (Yuan & Tong
2005) could be applied here.

The UserInterface class in the view subsystem serves
as a boundary object enabling user interaction with the sys-
tem. The control subsystem contains the remaining components,
classified as control objects. The MVC architecture provides
adaptability, allowing subsystems to grow and develop indepen-
dently while dividing responsibilities. The following sections
will detail the responsibilities of each component in each sub-
system.

5.2. Repository
The Repository design pattern recommends that subsystems
should access application data structures by using a centralized
component, commonly referred to as the repository. This ap-
proach allows for the separation of the logic for data retrieval
and update from the rest of the application, which can greatly
enhance modularity. This design pattern is frequently used in
applications that involve managing databases or other large data
sets. One of the key advantages of the Repository pattern is that
it provides a mechanism for facilitating access to shared data
across multiple subsystems through a standardized interface.

By centralizing access to data, it becomes easier to manage
and maintain application-wide data consistency, while minimiz-
ing the risk of data inconsistencies and conflicts (Bruegge &
Dutoit 2009; Lalanda 1998). In the proposed architecture, the
Repository object encapsulates the logic necessary to access
entity objects within the model subsystem. This approach en-
ables Repository to serve as a bridge between the application
and the underlying data storage mechanisms, providing a layer
of abstraction that simplifies the management of data access
operations. Repository offers a unified interface that allows
the model subsystem to be shared across multiple use cases. It
exposes two operations as part of this interface: GetAccount
and GetRights.

1 GetAccount(user)
2 pre: user ̸= null
3 post: (result = null) ∨ (result ∈ Accounts) ∧

(result.user = user)
4 result := null
5 FORALL a ∈ Accounts | a.user = user DO
6 result := a
7 END
8 RETURN result

Listing 1 The algorithm for GetAccount.

Listing 1 outlines the algorithm for GetAccount. The algo-
rithm is a function that takes in a single parameter, user, which
represents the user whose account information is being sought.
The algorithm specifies a precondition that the user parameter
must not be null. For the postcondition, the returned result can
be null or a valid Account object for the user. The Account
object returned will have a user attribute that matches the input
user parameter. The body of the function iterates through all
the Account objects in the Accounts collection and checks if
the user attribute of each object matches the user parameter
passed into the function. If a match is found, the corresponding
Account object is returned. Otherwise, the function returns
null. This algorithm is useful in situations where it is neces-
sary to retrieve the account information for a specific user, such
as when implementing user authentication or authorization in a
use case like that described for the login function (Table 2).

Listing 2 outlines the algorithm for GetRights. The al-
gorithm represents a function GetRights that takes in two
parameters, user and resource. The function returns an ob-
ject (Right) if the user has the rights to access the resource.
The algorithm specifies a precondition that user and resource
cannot be null. The postcondition states that the function will
return either a Right object that belongs to the user or null if
the user does not have access to the resource. The body of
the function iterates through all the Right objects and checks if
the user attribute of each object matches the user parameter
passed into the function. If a match is found, the correspond-
ing Right object is returned. Otherwise, the function returns
null. This algorithm is useful in situations where access con-
trol needs to be implemented, as it allows for the retrieval of
user permissions for a particular resource.

1 GetRights(user , resource)
2 pre: user ̸= null ∧ resource ̸= null
3 post: (result = null) ∨ (result ∈ Rights) ∧ (

user = result.user) ∧ (resource = result.
resource)

4 result := null
5 FORALL r ∈ Rights | user = r.user ∧ resource =

r.resource DO
6 result := r
7 END
8 RETURN result

Listing 2 The algorithm for GetRights.

5.3. Template Method
With the Template Method, algorithmic steps can be defined in
abstract terms. These steps may utilize operations of the object.
Subclasses may extend some steps of the algorithm without
modifying the structure of the original algorithm (Gamma et
al. 1995). This pattern is useful for a variety of applications
where it is necessary to define the algorithm for a sequence
of operations such as the Connect-Send-Receive-Disconnect
sequence of a network Socket API (Kalita 2014). Subclasses
may extend the operations but not the sequence.

Figure 4 illustrates the Template Method pattern from overall
architecture (Figure 3). The class SecurityTemplate contains
two template methods, SecurityCheck and DataCheck. The
UseCase class is an abstraction of an application various use

Mitigating Injection-Based Weaknesses 7

Figure 4 The template methods SecurityCheck and
DataCheck as members of SecurityTemplate.

cases. These use cases consist of operations that could poten-
tially involve certain data, such as user credentials in the login
function (Table 2). SecurityTemplate is a generalization of
UseCase, thus every UseCase is-type-of SecurityTemplate.
The template methods SecurityCheck and DataCheck de-
fine the skeleton of algorithms in the base class, allowing the
subclasses (use cases) to provide specific implementations of
certain steps of the algorithm. The subclasses can override the
methods in the SecurityTemplate class to implement their
security checks SecurityCheck includes three necessary steps:
Authenticate-Authorize-DataCheck. Listing 3 outlines the skele-
ton of the algorithm.

1 SecurityCheck(user , resource , data , type)
2 pre: user ̸= null ∧ resource ̸= null
3 post: result = true ∨ result = false
4 result := false
5 IF Authenticate(user) THEN
6 IF Authorize(user , resource) THEN
7 result := true
8 IF (data ̸= null) AND (type ̸= null) THEN
9 result := DataCheck(data , type)

10 END
11 END
12 END
13 RETURN result

Listing 3 The algorithm for SecurityCheck.

The SecurityCheck algorithm is a function that takes in
several parameters: a user parameter which represents the user
attempting to access a resource, a resource parameter which
represents the resource the user is trying to access, a data
parameter which contains input data from the user, and a type
parameter which represents the desired specification of data.
The algorithm specifies a precondition that both the user and
resource parameters must not be null. The postcondition of
the function states that the function will return either a true
or false value. The purpose of this function is to ensure that
the input data is safe, and only authorized users with the right
access rights can access specific resources.

The body of the function first checks if the user is authen-
ticated using the Authenticate method. If authentication is
successful, the function proceeds to check if the user is au-
thorized to access the resource using the Authorize method.
Authenticate and Authorize go together, as merely pos-
sessing knowledge of a user’s identity may not be adequate to
determine whether to permit or deny them from performing
specific actions. Therefore, authorization must follow authen-
tication (Arce et al. 2014; Schumacher et al. 2013; Shiroma
et al. 2010). If authorization is successful, the algorithm sets
the result variable to true and proceeds to check the data
and type parameters using the DataCheck function. If both
the data and type parameters are not null, the algorithm sets
the result variable to the value returned by the DataCheck
function. Finally, the algorithm returns the value of the result
variable.

For use cases that require strict control over resource access
and validation of incoming data, this algorithm is necessary.
The template method SecurityCheck is useful as it specifies
a common set of steps that need to be performed, however the
details of each step may vary depending on the specific use
case. For use cases that may not require either authentication,
authorization or data check, these can be skipped by specifying
null values for the user, resource or data parameters of
SecurityCheck. This affords each uses the needed flexibility
in its implementation. Implementation of the template ensures
that only authorized users gain access to specific resources,
and data undergoes validation before the system uses it. The
algorithm plays a crucial role in improving system security
by enforcing these security checks and thwarting unauthorized
access or data tampering attempts.

The upcoming sections will provide an explanation of the
DataCheck template method. It’s essential to understand that
this data validation process occurs in the UseCase component,
not the UserInterface component. As previously mentioned
(Section 5.1), the UserInterface is a part of the view subsys-
tem. In a client-server setup, the client hosts the view subsystem,
while the model and controller subsystems are located on the
server (Leff & Rayfield 2001). As a result, the UserInterface
is within the reach of users and beyond the system’s trust bound-

Figure 5 Interaction between architecture’s components.
UserInterface and incoming data are outside of system’s
trust boundary.

8 Ezenwoye

Figure 6 Class diagram illustrating the aggregation association between SecurityTemplate and its validation and verification
strategies.

ary, posing some vulnerability risks.
The sequence diagram in Figure 5 demonstrates that

UserInterface triggers an operation in UseCase when the
user initiates an action. This operation may include data origi-
nating from beyond the trust boundary, which could be harmful.
Despite initial validation of this data on the client-side, it should
not be trusted (Shostack 2014; Ezenwoye & Liu 2022a). To
mitigate such risks, it’s recommended to incorporate central-
ized validation mechanisms. This would help ensure that any
incoming data to the system or significant components from
other components within the same system are subjected to ap-
propriate validation (Arce et al. 2014; da Silva Santos, Tarrit,
& Mirakhorli 2017). Consequently, the DataCheck template
method forms part of SecurityTemplate for this purpose.

5.4. Strategy Pattern
The Strategy pattern allows for families of related algorithms to
be defined as objects (strategies). For instance, a set of sorting
algorithms could be encapsulated as a set of interchangeable
concrete strategies. An application can then extend its behav-
ior at runtime by selecting a suitable strategy. This pattern
makes it possible to switch algorithms dynamically when mul-
tiple algorithms can be applied to solve a particular problem,
and the specific algorithm to use may vary depending on the
circumstances (Gamma et al. 1995).

The proposed architecture employs the strategy pattern to
perform data checks. In Figure 6, the relationship between
SecurityTemplate and the classes ValidationStrategy
and VerificationStrategy is illustrated through the aggre-
gation (is-part-of) association. ValidationStrategy and
VerificationStrategy represent the strategy patterns for
data validation and verification, respectively, with Verifyer
and Validator being the concrete strategies. This allows for
the creation of multiple versions of Verifyer and Validator,
each encapsulating a unique algorithm for data validation and
verification.

By integrating the DataCheck template method with the
validation and verification strategies, SecurityTemplate is
able to combine the strengths of both patterns. This results
in a highly modular and flexible application that can be easily
adapted and extended to meet changing requirements. The
template method provides a consistent algorithmic structure,
while the strategy pattern offers a variety of interchangeable
algorithms that fit within that structure (Buschmann et al. 1996).

List 4 describes the algorithm for DataCheck template
method. The DataCheck algorithm is a function that takes
two parameters: data (some form of incoming data) and type,
which specifies the required format of the data. The precondi-
tion specifies that both data and type must not be null. The
postcondition of the function is that it will return a true or
false value. The function will return true if the data is valid
according to its specified format and contains no extraneous or
malicious content. Otherwise, it will return false.

1 DataCheck(data , type)
2 pre: data ̸= null ∧ type ̸= null
3 post: result = true ∨ result = false
4 result := false
5 IF Validate(data , type) THEN
6 IF Verify(data) THEN
7 result := true
8 END
9 END

10 RETURN result

Listing 4 The algorithm for DataCheck.

The body of the function first calls the Validate method
to check if the input data matches its specified format. If the
input data is valid, the function then calls the Verify method to
check for any extraneous or malicious content. If both checks
pass, the function returns true. Otherwise, it returns false.

The data check algorithm proves to be advantageous when
there is a need to verify that the input data is both in the proper
format and without any potential security risks. This algorithm
adheres to the Bugs Framework (BF) model which separates

Mitigating Injection-Based Weaknesses 9

data semantics check as data verification. The data check pro-
cess in the BF model comprises data validation, which assesses
the proper structure of the data syntax, and data verification,
which confirms that the data semantics are accurate, making it
suitable for the intended purpose (Bojanova et al. 2021).

The DataCheck template method employs two methods,
Validate and Verify, to ensure that the data is in the desired
format and free from tampering. These methods rely on the
ValidationStrategy and VerificationStrategy, respec-
tively, to provide the necessary algorithms depending on the
type of data. Data input, such as the content found in form fields
can have varying formats, requiring distinct algorithms to assess
their correctness during runtime. To address this need, particu-
lar Validator and Verifyer instances are chosen to execute
the necessary algorithms for each input field Validator and
Verifyer instances are selected to implement the necessary
algorithms for each input field.

Concrete Verifyer instances check for malicious inputs,
such as SQLi or XSS, while concrete Validator instances
ensure that the input adheres to the specified format. Both
validation and verification are necessary, as the data can be
well-formed but still be malicious (Jan et al. 2015; Bojanova
et al. 2021). The combination of data verification and vali-
dation forms a defense-in-depth strategy, providing a layered
approach to robust vulnerability mitigation (Stytz 2004). Using
concrete implementations of various validation and verification
algorithms ensures consistent application of data checks for
different instances of the same type of data. Validation should
use a whitelisting approach, while verification utilizes blacklist-
ing (Arce et al. 2014).

6. Evaluation
The objective of this section is to evaluate how effectively the
architecture deals with injection-based security vulnerabilities
related to authentication, authorization, and data validation. The
primary aim of the evaluation is to demonstrate the adaptability
of the architecture in diverse scenarios, covering different use
cases and weaknesses present in SecureEd. The evaluation
process consists of the following two steps, by which the rest of
this section is organized:

1. Implement both the architecture and the use cases.

2. Assess the effectiveness and coverage of the architecture.

6.1. Implementation
The source code for SecureEd is readily available and is of a
reasonable scope (Lee & Steed 2021). The application is written
mostly in PHP, which is an object-oriented language (PHP
2023). The source code underwent refactoring to integrate the
proposed architecture. Through this refactoring process, the
functionality of SecureEd was retained while simultaneously
addressing its security requirements.

The SecurityTemplate class of the architecture (Figure 4)
was implemented as an abstract class that cannot be instanti-
ated. Rather, it serves as a template for implementing specific
security checks in child classes that extend it. Listing 5 shows a

snippet of the implementation that includes the template method
SecurityCheck, which performs various security checks on
input data, user sessions, and access rights. The method checks
the user’s session using the Authenticate method, the user’s
access rights using the Authorize method, and the input data
using the DataCheck method. If any of these checks fail, the
method returns false, indicating that the security checks did
not pass.

1 <?php
2 abstract class SecurityTemplate{
3 public static function SecurityCheck($user , $res

, $data , $type){
4 $secFlag = false;
5

6 if($user != null){ //check session
7 $secFlag = self:: Authenticate($user);
8 if($secFlag == false)
9 return false;

10 }
11

12 if($res != null){ //check access rights
13 $secFlag = self:: Authorize($user [0], $res);
14 if($secFlag == false)
15 return false;
16 }
17

18 if($data != null && $type != null){ //check
input data

19 $secFlag = self:: DataCheck($data , $type);
20 if($secFlag == false)
21 return false;
22 }
23

24 return $secFlag;
25 }
26 ...
27 }
28 ?>

Listing 5 Implementation of the SecurityCheck algorithm
from Listing 3.

As required by the architecture, every implementation of a
use case is a child class of SecurityTemplate (Figure 4). For
this application, every use case inherits the implementation of
the authentication, authorizations, and data check procedures.
As previously noted, the algorithm for SecurityCheck allows
for these procedures to be skipped for use cases that do not
require them.

The realization of the authentication, authorizations, and data
check procedures leveraged the use of security patterns, which
provide solutions to recurring security problems. The security
patterns implemented here are Authenticator, Role-Based Ac-
cess Control, and Input Validation. Their implementation details
are provided in the following sections, within the context of the
Authenticate, Authorize, and DataCheck methods.

6.1.1. Authenticate Method: The implementation of the
Authenticate method involved the use of the Authenticator
security pattern. The Authenticator pattern is applied to ver-
ify the identity of system users. This is typically achieved by
using authentication information like credentials, biometrics,
or tokens. The primary goal of the Authenticator pattern is to
guarantee that a user can establish their identity before gaining
access to a secured system (Schumacher et al. 2013).

10 Ezenwoye

The Authenticator pattern was implemented in the
Authenticate method of SecurityTemplate. The authenti-
cation information utilized are user credentials in the form of
a username and password. Listing 6 shows the code for the
Authenticate method. The method takes a parameter named
user and its purpose is to authenticate the user’s credentials
and create a new session ID. The method first checks whether
the user has valid session (line 4). And if so, a new session
ID is created, indicating successful authentication. Otherwise,
the method checks whether the user’s password is set. If the
password is set, the method retrieves the user’s account from the
database using the GetAccount method of the DBConnector
class (line 13).

1 <?php
2 abstract class SecurityTemplate{
3 public static function Authenticate($user){
4 if(self:: IsSetSession($user [0])==true){
5 // create new session ID, discard old one
6 session_regenerate_id ();
7 return true;
8 }
9 else if($user [1] != null){ // password is set

10 $username = $user [0];
11 $password = $user [1];
12

13 $User = DBConnector :: GetAccount($user);
14

15 if($User != null){// check password matches
16 $validPass = self:: PasswordMatches($User ,

$password);
17

18 if($validPass){// create user session
19 self:: CreateSession($username , $User −>

GetAccType ());
20 return true;
21 }
22 }
23 }
24 return false;
25 }
26 ...
27 }
28 ?>

Listing 6 Implementation of Authenticator pattern in
Authenticate method.

The DBConnector plays the role of the Repository pattern
described in Section 5.2. The associated GetAccount algorithm
is captured in Listing 1. If the account is found, a check is
performed to see whether the password matches the one in the
database (line 16). If the password matches, a new user session
is created (line 19). If any of the authentication checks fail,
the method returns false, indicating that the user’s credentials
could not be authenticated. This method can be extended and
customized to support various authentication methods such as
two-factor authentication.

6.1.2. Authorize Method: The Role-Based Access Control
pattern implements the role-based access control model (RBAC),
which is used to manage and regulate access to protected re-
sources based on a user’s designated role. Protected resources
can include a system, specific features, or data. RBAC involves
defining a collection of roles and assigning permissions to each

role. This enables resource access to be granted or denied based
on the user’s role (Schumacher et al. 2013; Sandhu et al. 1996).

In this implementation, RBAC is utilized as the Authoriza-
tion pattern. Security patterns have interdependencies, such as
the one that exists between the Authenticator and Authoriza-
tion patterns. The Authenticator pattern must be implemented
before the Authorization pattern, with Authenticator preceding
RBAC (Shiroma et al. 2010). This implementation accom-
plishes this requirement.

1 <?php
2 abstract class SecurityTemplate{
3 public static function Authorize($username ,

$res){
4 $auth_flag = false;
5

6 if($username != null && $res != null){
7 //check user rights to requested resource
8 if(DBConnector :: GetRights($username , $res

) != null)
9 $auth_flag = true;

10 }
11 return $auth_flag;
12 }
13 ...
14 }
15 ?>

Listing 7 Implementation of RBAC pattern within the
Authorize method.

Listing 7 presents the code for the Authorize method within
the SecurityTemplate class. This method takes in two pa-
rameters, a username and a resource. The method is used to
verify if the user specified by the username has the necessary
rights to access the requested resource. The method invokes
the GetRights method of the DBConnector class to verify if
the user has the required access rights. The GetRights method
implements the algorithm described in Listing 2.

1 <?php
2 abstract class SecurityTemplate{
3 public static function DataCheck($data , $type){
4 $correctData = false;
5

6 //check data format
7 $validFormat = self:: Validate($data , $type);
8

9 if($validFormat == true){
10 //check data for taint
11 $correctData = self:: Verify($data);
12 }
13 return $correctData;
14 }
15 ...
16 }
17 ?>

Listing 8 Implementation of DataCheck algorithm described
in Listing 4.

6.1.3. DataCheck Method: The Input Validation pattern
verifies the accuracy of incoming data, such as from web forms,
to ensure it is both semantically and syntactically correct. This
validation is done prior to processing the data in downstream
system components. A validator component enforces data rules
during input validation, which may involve the use of whitelists

Mitigating Injection-Based Weaknesses 11

and blacklists. Data that does not conform to the expected for-
mat, range, or is contaminated with harmful content is rejected.
This pattern assists in reducing injection-based vulnerabilities
such as SQLi and XSS (Netland et al. 2007; Bojanova et al.
2021).

Input Validation pattern is implemented as part of the
DataCheck method within the SecurityTemplate class. The
code block in Listing 8 presents the implementation. The
DataCheck method has two parameters, data and type. The
method is used to verify the integrity of input data by first check-
ing if the data format is valid based on the specified type, this
done using the Validate method (line 7). If the data format is
valid, the method then proceeds to check if the input data is
free of taint using the Verify method (line 11). If the Verify
method returns true, then the correctData flag is set to true,
indicating that the input data is valid. The implementation of the
DataCheck method provides a security mechanism that helps
prevent attacks such as SQLi and XSS by ensuring that input
data is verified for format and taint before processing. This
enhances the overall security of the system by reducing the risk
of attacks that exploit vulnerabilities in input data.

1 <?php
2 abstract class SecurityTemplate{
3 public static function Validate($data , $type){
4 $validationStrategy = null;
5 // select validation starategy
6 switch($type){
7 case Constants :: $CHAR_STRING_TYPE:
8 $validationStrategy = new
9 CharStringTypeValidator ();

10 break;
11 case Constants :: $INT_TYPE:
12 $validationStrategy = new
13 IntTypeValidator ();
14 break;
15 case Constants :: $USERNAME_TYPE:
16 $validationStrategy = new
17 UsernameTypeValidator ();
18 break;
19 case Constants :: $PASSWORD_TYPE:
20 $validationStrategy = new
21 PasswordTypeValidator ();
22 break;
23 ...
24 default:
25 }
26 //use selected strategy
27 if($validationStrategy != null)
28 return $validationStrategy −>
29 IsValid($data);
30 else
31 return false;
32 }
33 ...
34 }
35 ?>

Listing 9 Utilizing concrete validation strategies to perform
data format checks in the Validate method implementation.

The validator components for enforcing data rules where
implemented as Strategy patterns (Section 5.4). Listing 9 shows
the implementation of data format checks in the Validate
method using various concrete validation strategies. The
Validate method takes in two parameters: data, which is

the input data to be validated, and type, which specifies the
type of validation strategy to be used. The code then selects
the appropriate validation strategy based on the value of type
using a switch statement (line 6).

Each concrete validation strategy is defined in a
separate class, such as CharStringTypeValidator or
IntTypeValidator, and implements the IsValid method,
which takes in the input data and returns a boolean value indicat-
ing whether the data is valid according to the specified format.
Once the appropriate validation strategy is selected based on the
type parameter, the IsValid method of that strategy is called
with the input data as its parameter. The IsValid method then
performs the necessary checks on the input data and returns a
boolean value indicating whether the data is valid or not. If no
valid validation strategy is found, the Validate method returns
false.

1 <?php
2 abstract class SecurityTemplate{
3 public static function Verify($data){
4 //check for SQL injection
5 $VerificationStrategy = new SQLiVerifier ();
6 $sqlSafe = $VerificationStrategy −>IsSafe($data

);
7

8 if($sqlSafe == true){ //check for xss
9 $VerificationStrategy = new XssVerifier ();

10 $xssSafe=$VerificationStrategy −>IsSafe($data
);

11

12 if($xssSafe == true)
13 return true;
14

15 return false;
16 }
17 }
18 ...
19 }
20 ?>

Listing 10 Utilization of concrete verification strategies to
perform checks for tainted data.

Listing 10 shows the implementation of the Verify method
that uses concrete verification strategies to check for data taint.
In this case, it checks that the data isn’t tainted with either
SQLi or XSS. The code first creates a new instance of the
SQLiVerifier class to check for SQL injection vulnerabilities
in the input data (line 6). If the data is deemed safe from
SQL injection, the code proceeds to create a new instance of
the XssVerifier class to check for XSS vulnerabilities in the
input data (line 10). Both strategies implement the IsSafe
method, which takes in the input data and returns a boolean
value based in the outcome of the check. If the data passes
both checks, the Verify method return true, indicating that
the input data is free from any malicious content.

Listing 11 shows the implementation of a concrete val-
idation strategy that checks if a password data follows a
set of rules for its format. The strategy is implemented
as PasswordTypeValidator class, which implements the
ValidationStrategy interface. The IsValid method of the
class receives the password data to be validated and checks if
its length is between 8 to 10 characters (line 7). Then, it applies

12 Ezenwoye

a regular expression pattern to verify if the password contains
at least one uppercase letter, one lowercase letter, one number,
and one special character from a whitelist that includes some
special characters. If the password data passes all these checks,
the method returns true, indicating that the data is valid. The
implementation of this concrete validation strategy helps ensure
that password data in a system is correctly formatted.

1 <?php
2 class PasswordTypeValidator implements

ValidationStrategy{
3 public function IsValid($data){
4 $password = $data [0];
5 $length = strlen($password);
6

7 if($length >= 8 && $length <= 10){
8 $pattern = "/(?=.∗[A−Z]) (?=.∗[a−z])

(?=.∗[0 −9]) (?=.∗[!@#$%^&∗])/"; // whitelist
9

10 if(preg_match($pattern , $password)==true)
11 return true;
12 }
13 return false;
14 }
15 }
16 ?>

Listing 11 Implementation of a validation strategy that uses
a whitelist to check if the input complies with password
requirements.

1 <?php
2 class SQLiVerifier implements

VerificationStrategy{
3 public function IsSafe($data){
4 $harmfuls = array("’", ’"’, "\x1a", ’;’,

’=’, ’\\’, "\0", "\n", "\r"); // blacklist
5

6 foreach($harmfuls as $harmful){
7 if(strpos($data [0], $harmful)!=false)
8 return false;
9 }

10 return true;
11 }
12 }
13 ?>

Listing 12 Implementation of a verification strategy using a
blacklist to detect SQL Injection in input data.

1 <?php
2 class DBConnector{
3 public static function GetRights($uname ,

$resource){
4 $query = "SELECT ∗
5 FROM User
6 INNER JOIN UserRole ON User.

UserID = UserRole.uid
7 WHERE Email=:un";
8 $stmt = $GLOBALS[’db’]−>prepare($query);
9 $stmt −>bindParam(’:un’, $uname ,

SQLITE3_TEXT); // parameterized query
10 $result = $stmt −>execute ();
11 $userinfo = array ();
12 ...
13 }
14 ...
15 }

16 ?>

Listing 13 Implementation of GetRights showing use of
parametrized query to mitigate SQL injection.

The code snippet at Listing 12 shows the implementation of
the concrete verification strategy to ensure that the input data
is safe from SQLi attacks. The SQLiVerifier class checks
the input data for specific characters that are commonly used
in SQLi attacks, such as single quotes, double quotes, and
semicolons. These characters are included in a blacklist of
harmful values (line 4). The code uses a foreach loop to iterate
through the list of harmful characters and checks whether any
of them are present in the input data. If any harmful character
is found, the code returns false, indicating that the data is not
safe from SQLi attacks. If none of the harmful characters are
found, the code returns true, indicating that the input data is
safe.

It is important to note that there are several approaches
to mitigating SQLi (Singh 2016; OWASP 2023). Listing 12
could be extended with other strategies. The implementation
of the Repository component uses parameterized queries as
to prevent SQLi. Listing 13 shows the implementation of the
GetRights method where a parameter is used to bind the user-
name (line 9).

The code at Listing 14 shows the implementation
of the Login use case in PHP. The code is contained
within the LoginController class, which extends the
SecurityTemplate class. The Login method within the
LoginController class takes in user input data and an op-
tional data type parameter, which is set to a default value of
1. The SecurityCheck method is called within Login to vali-
date the input data, perform authentication, and authorization
after validating the data (line 5). If the input data is valid, the
SecurityCheck method is called again to authenticate the user
(line 10). If the user is authenticated successfully, the user is
redirected to the appropriate dashboard page based on their
account type.

1 <?php
2 class LoginController extends SecurityTemplate{
3 public static function Login($data ,$dataType =1){
4 // validate input
5 $validData=self:: SecurityCheck(null ,null ,$data
6 ,$dataType);
7

8 if($validData == true){
9 // authenticate user

10 $validUSer=self:: SecurityCheck($data ,null ,
11 null ,null);
12

13 if($validUSer == true){
14 if(self:: IsAccountType(
15 Constants :: $FACULTY_TYPE))
16 header("Location: ../ FacultyDash.php");
17 elseif(self:: IsAccountType(
18 Constants :: $ADMIN_TYPE))
19 header("Location: ../ AdminDash.php");
20 elseif (self:: IsAccountType(
21 Constants :: $STUDENT_TYPE))
22 header("Location: ../ StudentDash.php");
23 }
24 else
25 LoginForm :: Error(

Mitigating Injection-Based Weaknesses 13

26 Constants :: $INVALID_CREDENTIALS);
27 }
28 else
29 LoginForm :: Error(
30 Constants :: $INVALID_INPUT);
31 }
32 ...
33 }
34 ?>

Listing 14 Implementation of the Login use case as a
subclass of SecurityTemplate.

The IsAccountType method is used to check the account
type of the authenticated user against the predefined account
types. If the user account type matches any of the predefined
types, then the user is redirected to the appropriate dashboard
page. If the user account type does not match any of the prede-
fined types, the user is redirected to an appropriate error page.
In case the user input data is invalid, the LoginForm::Error
method is called to display an appropriate error message to the
user (line 25). Similarly, if the user account credentials are
invalid, the LoginForm::Error method is called to display a
user not found error message to the user.

6.2. Effectiveness and Coverage
After implementation, the use cases were tested for all the vul-
nerabilities listed in Table 3, all of which were effectively re-
solved. Further tests were performed to verify that all security
requirements were met for each use case. Table 5 illustrates
the results of the evaluation. The table highlights the secu-
rity requirements and weaknesses that were targeted by the
methods employed in SecurityTemplate. It further provides
an overview of the SecureEd vulnerabilities that were directly
resolved by addressing the root cause (C) and consequently
mitigating the resulting effect (E).

Every use case within SecureEd was implemented as a child
(typeOf) SecurityTemplate, functioning as controller compo-
nents. These implementations effectively addressed the vulner-
abilities in SecureEd by directly mitigating the root cause (C)
and subsequently eliminating the resulting effect (E):

1. Improper Input Validation (C) -> SQL Injection
(E) -> Improper Authentication (E): In the imple-
mentation of the Login controller, the SecurityCheck
component is invoked when users submit their creden-
tials. The DataCheck method within SecurityCheck
is utilized to validate that the provided username
and password align with the specified criteria.
The validation process incorporates two concrete
Strategy patterns (UsernameTypeValidator and
PasswordTypeValidator), effectively preventing the
SQLi.

2. Improper Input Validation (C) -> Cross-Site Scripting
(E): Within the EditAccount controller implementation,
when a user submits the account information form, the
SecurityCheck component is triggered. The DataCheck
method in SecurityCheck is employed to validate that
all the submitted data fields adhere to their specified re-
quirements. To accomplish this, the UserTypeValidator
concrete Strategy pattern is utilized to validate all the form
fields, effectively preventing the XSS.

3. Improper Input Validation (C) -> SQL Injection (E):
In the ForgotPassword controller implementation, when
a user submits their new password, the SecurityCheck
component is triggered. The DataCheck method within
SecurityCheck is used to validate that the provided pass-
word meets the specified criteria. This validation process
employs the PasswordTypeValidator concrete Strategy
pattern, effectively preventing SQLi.

4. Improper Input Validation (C) -> Exposure of Sensitive
Information (E): The process utilized here is identical to
that of vulnerability #1. The empty username and password
fields did not cause a failure which prevented the exposure
of sensitive information.

5. Improper Input Validation (C) -> Unrestricted Upload
of File (E): Within the implementation of the EnterGrade
controller, when a user submits a form that includes a

Security Requirement Weakness SecurityTemplate SecureEd Vulnerability

Authenticate Authorize DataCheck 1 2 3 4 5 6 7 8 9

Ensure input matches its specification CWE-20 ✓ C C C C C C

Ensure input is free of XSS CWE-79 ✓ E

Ensure input is free of SQL injection CWE-89 ✓ E E

Prevent code injection CWE-94 ✓ E

Prevent Information Exposure CWE-200 ✓ E

Ensure user is authorized CWE-284 ✓ C C

Ensure user is authenticated CWE-287 ✓ E E C

Prevent cross-site request forgery CWE-352 ✓ E

Prevent unrestricted upload of file CWE-434 ✓ E E

Table 5 Showing the security requirements and weaknesses that were targeted using SecurityTemplate methods. Also indicates
the resolution of SecureEd vulnerabilities by addressing the underlying cause (C) and subsequent effect (E).

14 Ezenwoye

file, the SecurityCheck component is activated. The
DataCheck method within SecurityCheck is employed
to validate both the form and the file. This validation
process incorporates the EnterGradeTypeValidator
concrete Strategy pattern. EnterGradeTypeValidator
further utilizes the SectionIdTypeValidator and
GradeFileTypeValidator for this validation, effec-
tively preventing unrestricted file uploads.

6. Improper Access Control (C): In the EnterGrade con-
troller implementation, when a user initiates a request, the
SecurityCheck component is triggered. The Authorize
method within SecurityCheck is utilized to verify the
user’s authorization to access the function. This authoriza-
tion process efficiently prevents a Student from gaining
access to Faculty functions.

7. Improper Input Validation (C) -> Improper Authen-
tication (E): The approach employed here mirrors that
of vulnerabilities #1 and #4. The DataCheck mechanism
identified the presence of incorrect input data in the pass-
word field, effectively preventing improper authentication.

8. Improper Authentication (C) -> Cross-Site Re-
quest Forgery (E): Within the implementation of the
CreateAccount controller, when the user loads the page
that triggers the attacker’s request, the SecurityCheck
component is activated. The Authenticate method
within SecurityCheck is employed to authenticate the
user’s session. This authentication process effectively safe-
guards against Cross-Site Request Forgery.

9. Improper Access Control (C) -> Unrestricted Upload
of File (E) -> Code Injection (E): This vulnerability bears

No. Cause Effect Use Case Sample Test Case Mitigation

1 CWE-20 CWE-89 Login Input User Name: ’ OR 1=1; DataCheck

Improper Input Validation SQL Injection

2 CWE-20 CWE-79 EditAccount Input First Name: DataCheck

Improper Input Validation Cross-Site Scripting <iframe height="166" src="http://www.youtube.com/

embed/oHg5SJYRHA0?autoplay=1"frameborder="0">

</iframe>

3 CWE-20 CWE-89 ForgotPassword Input New Password: ’; DROP TABLE User; DataCheck

Improper Input Validation SQL Injection

4 CWE-20 CWE-200 Login Input User Name: (blank), Password: (blank) DataCheck

Improper Input Validation Information Exposure

5 CWE-20 CWE-434 EnterGrade Authenticated user in Faculty role uploads malicious Grade DataCheck

Improper Input Validation Unrestricted File Upload File (expected csv format - <student ID,letter grade>):

Test Input 1: non,always remember to sanitize your in-
puts’); DROP TABLE User;–

Test Input 2:<?php eval ("echo ".$_RE-
QUEST["parameter"].";"); ?>

6 CWE-284 EnterGrade Authenticated user in Student role attempts to access page Authorize

Improper Access Control for Faculty role via url:

https://localhost:44343/public/EnterGradeForm.php

7 CWE-20 CWE-287 Login Input valid user name and password hash: DataCheck

Improper Input Validation Improper Authentication User Name: scienceguy@email.com

Password: 1e031774109ee2e6ac244e778ca579d5199
e94fa3753848a3180e9d2e27e8ff7

8 CWE-287 CWE-352 CreateAccount Authenticated user access a web page and clicks on an Authenticate

Improper Authentication Cross-Site Request image that submits a hidden from:

Forgery <form id="accform" method="post" ac-
tion="https://localhost:44343/public/ CreateAccount-
Form.php"> .. </form>

9 CWE-284 CWE-434 EnterGrade An authenticated user in either Admin or Student role DataCheck

Improper Access Control Unrestricted File Upload attempts to access EnterGradeForm.php and is prevented.

Authenticated user in Faculty role is unable to upload
malicious file in vulnerability No. 5 (Test Input 2)

Table 6 Each vulnerability in the SecureEd and the Ssample test cases used to validate its mitigation.

Mitigating Injection-Based Weaknesses 15

resemblance to vulnerability #6. The authorization process
in EnterGrade controller, exclusively grants access to
the file upload function for Faculty members, effectively
preventing the occurrence of unrestricted file uploads and
subsequent code injection.

All security measures involving the DataCheck method em-
ploy the Verify method immediately after validating the data
format using the Validate method (see Listing 8). The Verify
method ensures that the data is free from SQLi or XSS by uti-
lizing two specific Strategy patterns, namely SQLVerifier and
XssVerifier (see Listing 10). Table 6 provides a comprehen-
sive view of the test cases illustrating successful attacks prior
to the implementation of the proposed architecture and their
subsequent mitigation within this adaptable framework.

This evaluation included the implementation of all 10 Se-
cureEd use cases as SecurityTemplate types, including the
previously mentioned 5 use cases (Section 4.1). A total of 17
concrete Strategy patterns were employed to meet the diverse
DataCheck requirements across all use cases (Hall et al. 2022).

7. Discussion
The security template approach proves to be highly effective
in mitigating software vulnerabilities as it adeptly addresses
various use-case specific security requirements and weaknesses,
successfully resolving multiple vulnerabilities within SecureEd.
SecureEd represents a real-world scenario that is applicable to
the problem being addressed. This solution described here can
be generalized to other similar applications or systems.

7.1. The Choice of Approach
Previous works have contributed to the understanding of soft-
ware architecture and security, addressing various aspects such
as distributed systems, IoT, SOA, and quality requirements. This
research takes a novel approach by offering a flexible MVC-
based architecture tailored to mitigating common contemporary
injection-based weaknesses across multiple use cases.

While architectures such as Hexagonal and Onion have their
merits, including adaptability, modularity and separation of
concerns, they can also be complex and lack official reference
implementations, which can pose significant challenges in terms
of adoption for developers who desire a more focused solution
for less complex systems. This work offers a comprehensive,
practical security solution supported by an architecture that
is both comprehensible and straightforward to implement, all
while preserving key attributes such as adaptability, modularity,
and the separation of concerns.

Structural properties of software, such as coupling, can con-
tribute to cognitive complexity for developers (Emam et al.
2001). The simplicity of the proposed architecture promotes
clarity while being effective. The incorporation of the reposi-
tory pattern emphasizes decoupling which enhances flexibility,
robustness, and maintainability (Lalanda 1998). Also, the cou-
pling between object classes (CBO) is very limited and the
number of children (NOC) of each class is at most 1. Undue
CBO is harmful to modular design, reuse, and maintainability,

while large NOC increases the likelihood of improper abstrac-
tion and misuse of subclassing (Chidamber & Kemerer 1994).
Reducing complexity and enforcing decoupling can be linked
to minimizing vulnerabilities and strengthening system secu-
rity (Chowdhury & Zulkernine 2010).

7.2. Lessons Learned
One of the key lessons learned from this project is the impor-
tance of understanding the vulnerabilities specific to a system,
including their root causes and consequences. This understand-
ing is instrumental in identifying suitable architectural solutions.
The project also emphasizes the importance of taking architec-
tural aspects into account when addressing software vulnera-
bilities. It shows the benefits of integrating security patterns
into the architecture and leveraging design patterns to enhance
security measures. It highlights the significance of adaptabil-
ity in addressing software vulnerabilities and the need for an
architecture that can be extended to meet varying security needs.

7.3. Scope of Application
The proposed flexible template architecture is tailored to address
injection-based weaknesses in web applications. Its primary
focus is on enhancing security in the context of contemporary
software challenges. Web applications with similar security
requirements as those discussed here, stand to benefit most from
the adaptability and modularity offered by this approach. The
architecture could potentially extend to other software domains,
such as mobile applications or distributed systems that utilize
the request-response communication pattern, have multiple use
cases and require input data validation, user authentication, and
authorization.

A possible limitation is that the extensibility of the architec-
ture could lead to increased complexity as additional security
measures are integrated. Increased complexity could adversely
impact other application attributes such as performance and
maintainability. Also, the architecture of some existing systems
may not align with that of the proposed MVC-based design. For
such systems, integrating the proposed architecture might not be
feasible or may require that substantial modifications are made.

7.4. Future Research Directions
There are several promising directions for future research. One
avenue involves investigating the integration of additional pat-
terns to enhance system-wide security. Also, it would be valu-
able to explore the applicability of the architecture in different
domains and extend the evaluation to include larger-scale sys-
tems. Another potential area of work is the development of
automated tools and frameworks that support the implemen-
tation and adoption of the proposed architecture. Such tools
can assist developers in identifying vulnerabilities, seamlessly
integrating security patterns, and evaluating the effectiveness of
the architecture, thereby streamlining the mitigation process.

Future research might also investigate the feasibility of the
architecture’s principles in non-software contexts, such as net-
work protocols. This would assess the broader applicability of
the design pattern-based approach.

16 Ezenwoye

Study Advantages Disadvantages

Uzunov et al. (A. Uzunov et al.
2012; A. V. Uzunov et al. 2012) – Comprehensive evaluation of security method-

ologies.
– Systematic methodology comparison.

– Lacks specific security patterns for contempo-
rary weaknesses.

– Doesn’t offer practical solutions for improving
security or methodology applicability.

Khan et al. (Khan et al. 2021)
– Emphasis on integrating security throughout the

software development lifecycle.
– Presents a SWOT analysis of security ap-

proaches.

– Lacks a unified framework for addressing vari-
ous vulnerabilities.

– Doesn’t offer specific security architecture.

Fernandez et al. (E. Fernandez et al.
2021) – Catalog of security patterns for IoT systems. – Primarily focused on IoT security.

– Doesn’t address injection-based weaknesses.
– No proposed architecture leveraging patterns.

Realpe-Muñoz et al. (Realpe-
Muñoz et al. 2017) – Focuses on effective authentication interfaces.

– Discusses evaluation for usability and security.
– Limited scope in overall software security.
– Doesn’t address a wide range of security issues.

Alkussayer et al. (Alkussayer &
Allen 2010) – Framework for integrating security patterns.

– Combines secure software development best
practices with patterns.

– Generalized framework, lacks focus on specific
vulnerabilities and patterns.

– No practical case study for demonstration.

Awaysheh et al. (Awaysheh et al.
2021) – Considers confidentiality, integrity, availability,

and privacy as concerns for Big Data operations.
– Presents a framework for designing BigCloud

solutions with security analysis patterns.

– Specialized for cloud-based Big Data, limited
applicability.

– Introduces a high level of complexity which
might not fit smaller projects.

Dwivedi et al. (Dwivedi & Rath
2015) – Focus on incorporating security features in

Service-Oriented Architecture (SOA).
– Integrates components for concerns such as con-

fidentiality, authentication, and authorization.

– Doesn’t cover contemporary injection-based vul-
nerabilities or broader architectural issues.

– Doesn’t cover specific implementation details
or discuss comprehensive mitigation strategies.

Savić et al. (Savić et al. 2010)
– Provides a software architecture integrating au-

thentication and authorization processes.
– Uses Chain of Responsibility pattern to describe

authentication and authorization processes.

– Doesn’t cover a wide range of security concerns,
including data validation.

– Doesn’t include a case study to demonstrate the
effectiveness of proposed security architecture.

Alebrahim et al. (Alebrahim et al.
2011) – Focuses on integrating security and performance

requirements into software architecture.
– Introduces a method for annotating UML with

quality requirements within the architecture.

– Limited focus on security weaknesses and secu-
rity patterns to address vulnerabilities.

– Doesn’t explicitly emphasize the need for archi-
tectural adaptability.

Harrison et al. (Harrison & Avge-
riou 2007) – Introduces the concept of consequences for ar-

chitectural pattern reviews.
– Provides an analysis of architecture patterns and

their impact quality attributes.

– Doesn’t address contemporary security chal-
lenges comprehensively.

– Lacks focus on security and has limitations in
practical application.

Ratnaparkhi et al. (Ratnaparkhi &
Liu 2021) – Describes use of Strategy Factory pattern for

SQL injection and Cross-Site Scripting (XSS).
– Uses case study to demonstrate how the pattern

prevents SQL injection and XSS.

– Primarily focuses on SQL injection and XSS.
– Doesn’t offer a broader perspective on address-

ing injection-based weaknesses across various
aspects of a comprehensive architecture.

Table 7 Comparative Analysis of Related Work

Mitigating Injection-Based Weaknesses 17

8. Related Work
In this section, we present existing works grouped into three
main categories based on their application areas. This structured
overview provides insights into contributions related to specific
domains, with a focus on software weaknesses. We compare
and contrast these works with our proposed flexible template
architecture.

8.1. Security Methodologies and Lifecycle Integration
– Uzunov et al. (A. Uzunov et al. 2012; A. V. Uzunov et al.

2012) offer a comprehensive survey of security methodolo-
gies for distributed systems, emphasizing software lifecy-
cles, modeling languages, and security pattern evaluation.

– Khan et al. (Khan et al. 2021) contribute by highlighting
the importance of integrating security measures throughout
the software development lifecycle. These works provide
overarching security principles and holistic considerations.

8.2. Security Challenges in Specific Domains
– Fernandez et al. (E. Fernandez et al. 2021) address security

challenges in IoT systems, focusing on the use of patterns
to handle specific concerns.

– Awaysheh et al. (Awaysheh et al. 2021) present the Big-
Cloud security-by-design framework for cloud-based Big
Data operations.

– Dwivedi et al. (Dwivedi & Rath 2015) incorporate security
features in Service-Oriented Architecture using software
security patterns. These works provide domain-specific
insights into securing complex systems.

8.3. Architectural Design and Integration
– Realpe-Muñoz et al. (Realpe-Muñoz et al. 2017) discuss

the design of effective interfaces for security management
systems, focusing on usability and security constraints.

– Savić et al. (Savić et al. 2010) propose a three-tiered soft-
ware architecture that integrates authentication and autho-
rization processes.

– Alebrahim et al. (Alebrahim et al. 2011) present a UML-
based approach for designing software architectures that
consider quality requirements and integrate patterns. These
works contribute to understanding the practical aspects of
integrating security measures into system architectures.

8.4. Design Patterns for Specific Vulnerabilities
– Ratnaparkhi et al. (Ratnaparkhi & Liu 2021) introduce

the Secure Strategy Factory pattern to address SQLi and
XSS vulnerabilities in web applications. Their case study
with the OWASP Juice Shop application aligns with our
emphasis on design patterns for addressing specific vulner-
abilities.

9. Conclusion
This paper presents a Flexible Template Architecture, which
effectively leverages the MVC pattern’s structure while incorpo-
rating customized security design patterns tailored to injection-
based weaknesses. By focusing on these specific challenges, the

architecture offers a more streamlined and effective approach to
addressing these weaknesses. This approach effectively bridges
the gap between architectural patterns and security methodolo-
gies by tailoring security patterns to software weaknesses. The
architecture’s adaptability and modularity provide a cohesive
solution for enhancing software security.

A case study of a web application is used to demonstrate the
architecture’s effectiveness in mitigating security weaknesses
across various use cases. This integration of security consider-
ations into architecture design , combined with the utilization
of existing design patterns, underlines the significance of this
research in promoting a holistic approach to software security.

This project highlights the importance of understanding vul-
nerability causality, considering architectural aspects, and pro-
moting adaptability. Future research directions include explor-
ing additional patterns, different application domains, larger-
scale systems, and the development of automated tools to sup-
port a seamless weakness mitigation process.

Acknowledgments
I would like to acknowledge the contributions of A. Hall, J.
Parker, A. Blackman, and B. McClammy, Computer Science
students at Augusta University, who helped with the imple-
mentation the proposed software architecture as part of their
Senior Capstone Project. Their efforts were instrumental in the
completion of this work.

References
Alebrahim, A., Hatebur, D., & Heisel, M. (2011). Towards

systematic integration of quality requirements into software
architecture. In I. Crnkovic, V. Gruhn, & M. Book (Eds.),
Software architecture. Berlin, Heidelberg: Springer Berlin
Heidelberg.

Alkussayer, A., & Allen, W. (2010, 03). The isdf framework:
Towards secure software development. Journal of Informa-
tion Processing Systems, 6.

Amoroso, E. (2018). Recent progress in software security. IEEE
Software, 35(2).

Arce, I., Clark-Fisher, K., Daswani, N., DelGrosso, J., Dhillon,
D., Kern, C., . . . others (2014). Avoiding the top 10 software
security design flaws. IEEE Computer Society.

Awaysheh, F. M., Aladwan, M. N., Alazab, M., Alawadi, S., Ca-
baleiro, J. C., & Pena, T. F. (2021). Security by design for big
data frameworks over cloud computing. IEEE Transactions
on Engineering Management, 69(6).

Banga, G. (2020). Why is cybersecurity not a human-scale
problem anymore? Commun. ACM, 63(4).

Bojanova, I., Black, P. E., Yesha, Y., & Wu, Y. (2016). The
bugs framework (BF): A structured approach to express bugs.
2016 IEEE International Conference on Software Quality,
Reliability and Security.

Bojanova, I., & Galhardo, C. E. (2023). Bug, fault, error, or
weakness: Demystifying software security vulnerabilities. IT
Professional, 25(1).

Bojanova, I., Galhardo, C. E., & Moshtari, S. (2021). Input/out-
put check bugs taxonomy: Injection errors in spotlight. In

18 Ezenwoye

IEEE international symposium on software reliability engi-
neering workshops.

Bruegge, B., & Dutoit, A. H. (2009). Object-oriented software
engineering using UML, patterns, and java (3rd ed.). Prentice
Hall Press.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., &
Stal, M. (1996). Pattern-oriented software architecture: A
system of patterns. John Wiley & Sons, Inc.

Cervantes, H., Kazman, R., Ryoo, J., Choi, D., & Jang, D.
(2016). Architectural approaches to security: Four case stud-
ies. Computer, 49(11), 60-67.

Chidamber, S., & Kemerer, C. (1994). A metrics suite for object
oriented design. IEEE Transactions on Software Engineering,
20(6), 476-493. doi: 10.1109/32.295895

Chowdhury, I., & Zulkernine, M. (2010). Can complexity,
coupling, and cohesion metrics be used as early indicators
of vulnerabilities? In Proceedings of the ACM symposium
on applied computing. New York, NY, USA: Association for
Computing Machinery. doi: 10.1145/1774088.1774504

da Silva Santos, J. C., Peruma, A., Mirakhorli, M., Galstery, M.,
Vidal, J., & Sejfia, A. (2017). Understanding software vulner-
abilities related to architectural security tactics: An empirical
investigation of chromium, php and thunderbird. In 2017
IEEE international conference on software architecture.

da Silva Santos, J. C., Tarrit, K., & Mirakhorli, M. (2017).
A catalog of security architecture weaknesses. In Proceed-
ings of the 2017 IEEE international conference on software
architecture workshops.

Dwivedi, A. K., & Rath, S. K. (2015, feb). Incorporating se-
curity features in service-oriented architecture using security
patterns. SIGSOFT Softw. Eng. Notes, 40(1).

Emam, K. E., Melo, W., & Machado, J. C. (2001, feb). The pre-
diction of faulty classes using object-oriented design metrics.
J. Syst. Softw., 56(1). doi: 10.1016/S0164-1212(00)00086-8

Ezenwoye, O., & Liu, Y. (2022a). Integrating vulnerability risk
into the software process. In Proceedings of the ACM south-
east conference. Association for Computing Machinery.

Ezenwoye, O., & Liu, Y. (2022b). Risk-based security require-
ments model for web software. In IEEE 30th international
requirements engineering conference workshops. IEEE Com-
puter Society.

Ezenwoye, O., & Liu, Y. (2022c). Web application weak-
ness ontology based on vulnerability data. arXiv preprint
arXiv:2209.08067.

Ezenwoye, O., Liu, Y., & Patten, W. (2020). Classifying
common security vulnerabilities by software type. In Inter-
national conference on software engineering and knowledge
engineering.

Fernandez, E., Washizaki, H., Yoshioka, N., & Okubo, T. (2021,
September). The design of secure iot applications using
patterns: State of the art and directions for research. Internet
of Things (Netherlands), 15.

Fernandez, E. B. (2007). Security patterns and secure systems
design. In Proceedings of the third latin-american conference
on dependable computing. Springer-Verlag.

Fernandez, E. B., & Pernul, G. (2006). Patterns for session-
based access control. Association for Computing Machinery.

Firesmith, D. (2003). Security use cases. J. Object Technol., 2,
53-64.

Firesmith, D. (2004). Specifying reusable security requirements.
J. Object Technol., 3, 61-75.

Galhardo, C. C., Mell, P., Bojanova, I., & Gueye, A. (2020).
Measurements of the most significant software security weak-
nesses. In Annual computer security applications conference.
Association for Computing Machinery.

Gamma, E., Johnson, R., Helm, R., Johnson, R. E., & Vlissides,
J. (1995). Design patterns: elements of reusable object-
oriented software. Pearson Deutschland GmbH.

Halkidis, S. T., Chatzigeorgiou, A., & Stephanides, G. (2006). A
qualitative analysis of software security patterns. Computers
& Security, 25(5).

Hall, A., Parker, J., McClammy, B., & Blackman, A. (2022).
Secure web application. https://github.com/onniegit/Secure
-Web-Application. GitHub.

Harrison, N. B., & Avgeriou, P. (2007). Leveraging architecture
patterns to satisfy quality attributes. In F. Oquendo (Ed.),
Software architecture. Berlin, Heidelberg: Springer Berlin
Heidelberg.

Hitchcock, C. (2023). Causal Models. In E. N. Zalta &
U. Nodelman (Eds.), The Stanford encyclopedia of philos-
ophy (Spring 2023 ed.). Metaphysics Research Lab, Stan-
ford University. https://plato.stanford.edu/archives/spr2023/
entries/causal-models/.

Jan, S., Nguyen, C. D., & Briand, L. (2015). Known XML
vulnerabilities are still a threat to popular parsers and open
source systems. In IEEE international conference on software
quality, reliability and security (p. 233-241).

Jøsang, A., Ødegaard, M., & Oftedal, E. (2015). Cybersecurity
through secure software development. In Information secu-
rity education across the curriculum. Springer International
Publishing.

Kalita, L. (2014). Socket programming. International Journal
of Computer Science and Information Technologies, 5(3).

Khalil, M. E., Ghani, K., & Khalil, W. (2016). Onion architec-
ture: a new approach for xaas (every-thing-as-a service) based
virtual collaborations. In 2016 13th learning and technology
conference (l&t).

Khan, R. A., Khan, S. U., Khan, H. U., & Ilyas, M. (2021).
Systematic mapping study on security approaches in secure
software engineering. IEEE Access, 9, 19139-19160.

Lalanda, P. (1998). Shared repository pattern. In 5th annual
conference on the pattern languages of programs.

Lee, D., & Steed, B. (2021). SecureEd 1.0. https://github.com/
onniegit/SecureEd-1.0. GitHub.

Lee, D., Steed, B., Liu, Y., & Ezenwoye, O. (2021, October).
Tutorial: A lightweight web application for software vulner-
ability demonstration. In 2021 IEEE secure development
conference. IEEE Computer Society.

Leff, A., & Rayfield, J. (2001). Web-application development
using the model/view/controller design pattern. In Proceed-
ings fifth IEEE international enterprise distributed object
computing conference.

Leveson, N. (2020). Are you sure your software will not kill
anyone? Commun. ACM, 63(2).

Mitigating Injection-Based Weaknesses 19

https://github.com/onniegit/Secure-Web-Application
https://github.com/onniegit/Secure-Web-Application
https://plato.stanford.edu/archives/spr2023/entries/causal-models/
https://plato.stanford.edu/archives/spr2023/entries/causal-models/
https://github.com/onniegit/SecureEd-1.0
https://github.com/onniegit/SecureEd-1.0

Mell, P., Scarfone, K., & Romanosky, S. (2006). Common
vulnerability scoring system. IEEE Security & Privacy, 4(6).
doi: 10.1109/MSP.2006.145

MITRE. (2023). Comprehensive weakness dictionary. (https://
cwe.mitre.org/data/definitions/2000.html, Retrieved Febru-
ary, 2023)

Netland, L.-H., Espelid, Y., & Mughal, K. A. (2007). Security
pattern for input validation. In Fifth nordic conference on
pattern languages of programs.

Nunkesser, R. (2022). Using hexagonal architecture for mobile
applications. In 17th international conference on software
technologies (icsoft 2022).

OWASP. (2023). OWASP cheat sheet series. (https://
cheatsheetseries.owasp.org/, Retrieved October, 2023)

Patni, P., Iyer, K., Sarode, R., Mali, A., & Nimkar, A. (2017).
Man-in-the-middle attack in http/2. In 2017 international
conference on intelligent computing and control (i2c2).

PHP. (2023). (https://www.php.net/manual/en/oop5.intro.php,
Retrieved May, 2023)

Ponta, S., Fischer, W., Plate, H., & Sabetta, A. (2021). The
used, the bloated, and the vulnerable: Reducing the attack
surface of an industrial application. In IEEE international
conference on software maintenance and evolution. IEEE
Computer Society.

Ratnaparkhi, A. C., & Liu, Y. (2021). Towards tackling common
web application vulnerabilities using secure design patterns.
In 2021 ieee international conference on electro information
technology (eit).

Realpe-Muñoz, P., Collazos, C. A., Granollers, T., Muñoz
Arteaga, J., & Fernandez, E. B. (2017). Design process
for usable security and authentication using a user-centered
approach. In Proceedings of the xviii international confer-
ence on human computer interaction. New York, NY, USA:
Association for Computing Machinery.

Rescorla, E., & Schiffman, A. (1999). The secure hypertext
transfer protocol (Tech. Rep.). Network Working Group.

Ryoo, J., Kazman, R., & Anand, P. (2015). Architectural
analysis for security. IEEE Security & Privacy, 13(6), 52-59.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., & Youman, C. E.
(1996, February). Role-based access control models. IEEE
Computer, 29(2).

Savić, D., Simić, D., & Vlajić, S. (2010). Extended software
architecture based on security patterns. Informatica, 21(2).

Schumacher, M., Fernandez-Buglioni, E., Hybertson, D.,
Buschmann, F., & Sommerlad, P. (2013). Security patterns:
Integrating security and systems engineering. Wiley.

Shiroma, Y., Washizaki, H., Fukazawa, Y., Kubo, A., Yosh-
ioka, N., & Fernández, E. (2010). Model-driven security
patterns application and validation. In Proceedings of the
17th conference on pattern languages of programs.

Shostack, A. (2014). Threat modeling: Designing for security.
Wiley.

Singh, J. P. (2016). Analysis of sql injection detection tech-
niques. arXiv preprint arXiv:1605.02796.

Stytz, M. R. (2004). Considering defense in depth for software
applications. IEEE Security & Privacy, 2(1), 72–75.

Thapa, C., & Camtepe, S. (2021). Precision health data: Re-

quirements, challenges and existing techniques for data secu-
rity and privacy. Computers in Biology and Medicine, 129,
104130.

Uzunov, A., Fernandez, E., & Falkner, K. (2012). Engineering
security into distributed systems: A survey of methodologies.
Journale of Universal Computer Science, 18(20).

Uzunov, A. V., Fernandez, E. B., & Falkner, K. (2012, jul). Se-
curing distributed systems using patterns: A survey. Comput.
Secur., 31(5).

Villagrán-Velasco, O., Fernández, E. B., & Ortega-Arjona, J.
(2020). Refining the evaluation of the degree of security of
a system built using security patterns. In Proceedings of the
15th international conference on availability, reliability and
security. Association for Computing Machinery.

Wu, Y., Bojanova, I., & Yesha, Y. (2015). They know your
weaknesses–do you?: Reintroducing common weakness enu-
meration. CrossTalk, 45.

Yuan, E., & Tong, J. (2005). Attributed based access control
(abac) for web services. In Ieee international conference on
web services (icws’05).

Zhu, L., Zhang, Z., Xia, G., & Jiang, C. (2019). Research on
vulnerability ontology model. In 2019 IEEE 8th joint inter-
national information technology and artificial intelligence
conference.

About the author
Onyeka Ezenwoye is an associate professor at the School of
Computer and Cyber Sciences in Augusta University (USA).
He holds a bachelors degree in Software Engineering and a
doctorate degree in Computer Science.

20 Ezenwoye

https://cwe.mitre.org/data/definitions/2000.html
https://cwe.mitre.org/data/definitions/2000.html
https://cheatsheetseries.owasp.org/
https://cheatsheetseries.owasp.org/
https://www.php.net/manual/en/oop5.intro.php

