
Journal of Object Technology | RESEARCH ARTICLE

Specifying and Composing Layered Architectures
Manfred Broy∗ and Bran Selić†‡

∗Technische Universität München, Germany
†Malina Software Corp., Canada

‡Monash University, Australia

ABSTRACT We define the layered architectural style as an architectural pattern and a structuring method in terms of precise
specifications of interface behavior and modular composition, based on a formal model. Interface predicates and interface
assertions are used to specify the interface behavior of systems, which is a description of the services that they require and
provide. We give both a syntactic and a semantic description of the design pattern of layered system architectures. Moreover,
we prove that the composition of multiple layers also generates layers, subject to the condition that the services provided by
lower layers are refinements of the required services of upper layers. We demonstrate the approach by examples. We seek
two goals: (a) to give a precise semantic characterization of the concept of layered architectures, and (b) to provide a method
for specifying and for structuring layered system architectures. We show how to decompose services as offered and used by
layered architectures into encapsulated subservices called functional features. A related issue is the identification of feature
interactions between these subservices. Feature interactions between functional features can be identified by studying their
interface behavior. A number of small examples is given to illustrate the introduced notions and concept.

KEYWORDS Architecture Specification, Verification, Layered Architecture, Feature Interaction.

1. Introduction

Layered structures are an essential way of designing the ar-
chitecture of software systems, communication systems, and
cyber-physical systems, among others. The big advantage of
this approach is that it gives a very clear structuring style that
supports modularity, encapsulation, information hiding, main-
tainability, changeability, and portability. At the same time, it
also allows a crisp and incremental separation of concerns. One
notable advantage is that layered architectures can be flexibly
deployed onto distributed platforms.

These clear and undisputed advantages of layered architec-
tures have led to its almost ubiquitous deployment in software
engineering practice. It is fair to say that, at the highest level,
most practical software systems exhibit some form of a layered
architecture. Yet, despite this widespread adoption, there is still

JOT reference format:
Manfred Broy and Bran Selić. Specifying and Composing Layered
Architectures. Journal of Object Technology. Vol. 23, No. 1, 2024. Licensed
under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2024.23.1.a2

Figure 1 A common graphical approach to depicting layered
system architectures

some lack of clarity and consensus regarding what constitutes
the essential nature of layers and layered systems (Selić 2021).

Consider, for example, the most common graphical repre-
sentation of layers involved in a layering relationship, which
is typically rendered as a vertical stack, as depicted in Figure
1. This representation is intended to convey the essential fea-
tures of the layering relationship. The vertical arrangement
suggests a hierarchical ordering, whereby layers lower in the
stack “support” higher layers in some way.

Thus, layering is sometimes referred to as constituting “verti-
cal” composition of components, in contrast to “horizontal” (or

An AITO publication

http://dx.doi.org/10.5381/jot.2024.23.1.a2

“peer”) composition (see (Mietzner et al. 2010)). Despite the
intuitive appeal of this simple representation and terminology,
it does not answer some important questions about this architec-
tural design pattern. Moreover, although the concept of layering
and its use in software architecture have been discussed exten-
sively in literature (e.g., (Schmidt et al. 1996; Clements et al.
2003; Dijkstra 1983; Hofmeister et al. 2000; Selic 2020; Sarkar
et al. 2009; Mary & David 1996; Zdun & Avgeriou 2005)) its
precise semantics still remain elusive. For example, there is still
an ongoing debate as to whether a given layer, such as Layer 2
in Fig. 1, can directly access only the layer immediately below,
or can it also access layers further down in the hierarchy (e.g.,
Layer 0)1? More generally, what exactly is the nature of the
dependencies between layers (i.e., what does it mean for one
layer to “access” another)?

Without consensus on the precise nature and characterization
of layers and layering it becomes difficult to analyze and assess
the key properties or suitability of a particular layered design.
Therefore, a precise and clear definition of the layering design
pattern would provide a foundation for a formal specification,
implementation, and verification of layered architectures. To
that end, in this paper we propose a formally precise definition
of layering and related concepts. The main result of this study is
a discussion and a formal definition of the concepts of layer and
platform, as well as a specification method for defining layers
and a method for composing them to provide layered system
architectures.

In what follows, we first provide an informal description of
the key properties that uniquely characterize the layering design
pattern. This is intended as background to help explain the ratio-
nale behind layering as well as for the formal model proposed
in this work. Section 3 provides an informal overview of that
approach, while more technical details are covered in the Ap-
pendix. This section also provides a formal definition of its two
key concepts: interface specifications and services, as formally
defined in (Broy et al. 2007) and explained in section 3. The
layer concept itself is then defined formally in section 4, which
also covers methods for composing layers to provide layered
system architectures. In particular, the applied specification
technique also introduces a calculus for proving properties of
layers. To support more complex analyses, a more refined data
flow in layers is studied in section 5. Section 6 discusses the
decomposition of services into subservices called features, their
relationship in terms of feature interactions, and the relation-
ships between the services within a layer. Section 7 provides
a more extensive illustrative example of a layered architecture.
Finally, the summary in section 8 briefly discusses possible
perspectives of this work, such as implementation issues, and
other potential future research areas.

2. About the Layering Pattern
As commonly understood in the software engineering domain,
layering is a structural and operational relationship between at

1 This issue of “layer jumping” is often considered to be a case of poor design.
However, as argued in (Mietzner et al. 2010) the issue can be much more
complicated than it appears.

least two functional modecifules called layers. It is a hierar-
chical and asymmetric relationship in the sense that there is a
distinct dependency of the upper layer on its lower layers but
not the other way around. More precisely, the correct operation
of the higher layer is dependent on the correct operation of the
lower layer, whereas the correct operation of the lower layer is
independent of the upper layer.

2.1. Layers, Platforms, and Services
In general, the model of layers and layering adopted in this work
is that lower layers provide a set of functional capabilities in
terms of services, which can be utilized by the upper layer to
realize its specified functionality. From that viewpoint, lower
layers can be thought of as providing a platform for the upper
layer. Perhaps the most obvious example of layering is the
relationship between computer hardware – the lower layer – and
the software that it executes – the upper layer.

As noted, a common architectural approach consists of stack-
ing two or more layers, one on top of another, thereby allowing
for a gradual realization of some desired complex functionality.
For example, a firmware layer may first be placed “on top of”
computer hardware. Its purpose is both to hide implementation
details of the hardware that are irrelevant to higher layers, as
well as to provide a conceptually simpler and, typically, seman-
tically more suitable representation of the hardware to those
layers. Next, an operating system layer of software is usually
placed over the firmware. Operating systems generally provide
certain widely useful functional capabilities (i.e., services), such
as memory management, concurrency support, and interpro-
cess communication, which are useful for realizing applications
in the next layer above. When required, an application will
select and invoke (e.g., using an API call) the appropriate oper-
ating system services. From that perspective, supporting (i.e.,
lower) layers can be viewed as providing an abstract execution
environment, or “virtual machine”, to upper layers.

It is crucial to note that, in the case of inter-layer interactions,
platform service requests are made directly by the implementa-
tion elements of an application. This is because the selection
of which platform services are to be used (and when) is strictly
an application implementation decision, which, according to
time-proven principles of modularity and information hiding,
should be of no concern to external entities. From that perspec-
tive, a platform has a kind of “privileged” direct connection
to the (otherwise private) implementations of the applications
that it supports. In a sense, a platform layer can be viewed
as an external extension of the implementations of its appli-
cations. Nevertheless, a platform remains fully encapsulated
with respect to applications, which access its services strictly
through the platform’s provided interfaces. Moreover, due to
the asymmetric dependency relationship between layers noted
above, a platform layer is independent of its application layer
and can exist and function regardless of whether its services
are being used by applications. This particular arrangement is
unique to layering and distinguishes it from any other types of
client/server relationships2.

2 For a more detailed discussion of this topic, refer to (Hofmeister et al. 2000).

2 Broy, Selić

With regards to how and why an application uses the services
of its platform, it is worth distinguishing two different uses
case. In one of these – which we provisionally call a seman-
tically transparent usage – the interaction between the upper
and lower layers is exclusively a discretionary application de-
sign issue. That is, the selection of which platform services
are used is driven purely by implementation concerns, and will
have no observable consequences on the behavior that the ap-
plication displays to external entities. In contrast, in case of a
semantically observable usage, the invocation of a lower layer
service will have an effect on an application’s externally ob-
servable behavior. The most common example of this occurs
in cyber-physical systems, whose function involves monitoring
and control external physical devices. Such devices are neces-
sarily connected to a computer via the computing hardware (e.g.,
through an interrupt mechanism), which is the bottommost layer
in a system architecture. To provide access to these devices, they
have to be “propagated upwards” to the appropriate application
layer. This is generally done by means of a suitable platform
service (this case is discussed in greater detail in sect. 5.3).
For example, to control the brake of a vehicle, an automotive
driving control application may need to invoke the “apply brake”
service, which provides a simplified abstract view of what is
likely a very complex hydro-mechanical mechanism. That type
of service is often provided by a specialized application-specific
framework platform layer, such as AUTOSAR3. Clearly, the
ability to control the state of the brake is a first-order concern
for a driving control application, and, consequently, invoking
this service will have observable effects at the application level.

2.2. Platform Sharing and Feature Interactions
An often overlooked consequence of sharing a single platform
between multiple (possibly independent) applications, is that
undesirable “hidden” interactions between such applications
can arise. This can occur when a given platform service is used
concurrently by two or more applications, leading to concur-
rency conflicts. These effects, which are sometimes referred to
as feature interactions, may take place directly in services of
the layer immediately below the application. However, they are
even more problematic if the interactions occur in layers deeper
down in the layer stack, which makes them more difficult to
trace and identify. In these types of situations, it is necessary to
specify how data flows through the layers, so that the connection
between the invocation of a required service and its effect can
be traced. This issue is discussed in greater detail in sect. 6.1.

2.3. Capturing the Semantics of Layering
In what follows, we take advantage of the FOCUS approach
(Broy & Stølen 2012) to capture the semantics of layering in
a precise formal way. The essential nature of this approach
is briefly introduced in the following section, and, in some-
what more detail, in the Appendix. However, in the most ab-
stract sense, it can be characterized as a “black box” approach,
whereby a functional module (or, component), is specified in
purely in terms of its input-output behavior, without delving into

3 https://www.autosar.org/

its internal implementation details. In the specific case of layer-
ing, this means treating layers as modules characterized by their
required and provided interfaces. The required interfaces of a
layer represent the services that it needs of its supporting layers,
whereas its provided interfaces capture its desired observable
behavior.

Specifically, we do not only give a formal definition of lay-
ered architectures, but we also describe the decomposition of
layers into a family of subservices called functional features.
For these features, a critical question is about potential feature
interactions between them, how to find and to model them, and
how these can affect the services in higher layers. In the fol-
lowing section, we first introduce the Focus-based approach
to specifying services by their behaviors as observed via their
interfaces and also how systems defined in this way can be com-
posed into larger systems. This provides the foundation for a
formal specification of layers and layered architectures in sect.
4.

An important aspect here is the difference between syntac-
tic characterizations of layered architecture (“who is allowed
to call whom”) and the semantic characterizations of layered
architectures (“what are the required properties of the data flow
between the interfaces of adjacent layers”). This is related to
the question of how encapsulation of layers and their connec-
tions are defined and what semantic properties are required for
layering. We define a layer as a system that can be used as a
building block in a layered architecture. Its key property is that
it provides services to its “higher” layers subject to the condition
that it gets access to required services offered by layers directly
below. This definition, of course, needs a precise definition
of the notion of service (see (Broy et al. 2007) and sect. 3.2
below).

3. System Interface Behavior: Specifying Ser-
vices and Systems

We specify systems and their services in terms of their interface
behavior. Interface behavior is modelled by relations between
input and output streams of data. Interface behavior is specified
by interface predicates and interface assertions (for details, see
the Appendix). Thus, a system or a service specification is given
by a syntactic interface with a corresponding interface assertion.
Interface behaviors are a formal model both of system interface
behaviors and of services. In fact, a system shows an interface
behavior that is called the service(s) offered by the system.

Let Ti and Si be data types. Let TSTR Ti and TSTR Si denote
the data type of timed streams of elements of type Ti and Si
respectively (for a formal definition, see the Appendix). Given
two sets of typed channel names:

X = {x1 : TSTR T1, . . . , xn : TSTR Tn}
Y = {y1 : TSTR S1, . . . , ym : TSTR Sm}

we denote a syntactic interface of a system by (X ▶ Y) where
X denotes the set of input channels and Y denotes the set of
output channels of the system interface of a system or of a
service. We call X and Y signatures. This way, interfaces consist

Specifying and Composing Layered Architectures 3

syntactically of channels where each channel is identified by an
identifier with a specified data type indicating which types of
data are communicated.

Given a signature X, we denote by
→
X the valuation of the

channels in X by the streams of the respective type. The ele-

ments of
→
X are called histories. Formally, a history x ∈

→
X is a

mapping from the set of channels X onto streams. A history is
therefore just a family of streams with streams named by the

corresponding channel identifiers. Given history x ∈
→
X and

channel c ∈ X we denote the stream associated in history x with
channel c by x(c).

Given x ∈
→
X and a subset C ⊆ X we denote by x | C the

history which is the restriction of x to the channels in C. For

x ∈
→
X and y ∈

→
Y , where X ∩ Y = ∅ the history x ⊕ y ∈

→
Z

where Z = X ∪ Y is defined by:

(x ⊕ y)(c) = x(c) ⇐ c ∈ X

(x ⊕ y)(c) = y(c) ⇐ c ∈ Y

For many applications this needs to be refined to support a
more refined hierarchy, whereby channels can be grouped into
channel groups, such that a particular channel group can contain
a subset of X and Y . This allows modeling of engineering
concepts such as bidirectional virtual (or physical) connections,
which is how channels are typically realized in practice (see sect.
6.1). The reason why this might be useful is that such “grouped
channels” share certain properties, such as quality of service
(QoS) or failure modes, and also represent administrative units
(e.g., enabling, disabling, etc.).

We specify the behavior of a system or of a service with the
syntactic interface (X ▶ Y) by a Boolean expression Q(x, y)
where x is an input history (or in simpler cases an input stream)
and y is an output history (or in simpler cases an output stream)
and Q is a predicate:

Q :
→
X ×

→
Y → B

on the channel histories over X and Y .
In system specifications, for better readability, we write the

Boolean expression Q(x, y) with histories x ∈
→
X and y ∈

→
Y

by logical assertions in higher-order predicate logic with free
variables from X and Y where each of these variables stands for a
timed stream of the respective type. The logical formula is called
the interface assertion over the syntactic interface (X ▶ Y). In
the following sections, we introduce interface specifications
for services written in the form of templates. We introduce
composition and refinement, and illustrate these concepts with
examples.

3.1. Syntax

We use the following form of templates for concrete interface
specifications of systems or services as demonstrated by the
following brief example (see Fig. 2 below):

Figure 2 System or service MIX as a data flow node

MIX
in x, z: TSTR M
out y: TSTR M

∀ d ∈ M : d#x + d#z = d#y

The above template gives a name to a system or to a service
(in our example, MIX). It describes its syntactic interface (in
our example (x, z : TSTR M ▶ y : TSTR M)) and an interface
assertion (in our example ∀ d ∈ M : d#x + d#z = d#y) that
specifies the system or the service. We derive the proposition:

MIX ⊢ (x, z : TSTR M ▶ y : TSTR M) :
∀ d ∈ M : d#x + d#z = d#y

from the template which states that the system (or the service)
MIX fulfills (“implies” and therefore “is required to be a refine-
ment of”) the specification:

(x, z : TSTR M ▶ y : TSTR M) :
∀ d ∈ M : d#x + d#z = d#y

Using (Broy 2023a) we may deduce further properties from
the specifying assertion (see also the Appendix).

In the interface assertion:

∀ d ∈ M : d#x + d#z = d#y

x, z, and y denote timed streams. MIX is the name of the system,
x and z are input channels carrying messages of type M, and y
is an output channel of type M. Figure 2 depicts MIX as a data
flow node.

System specifications of this form are called untimed, since
according to the interface assertion the output data stream y
does not depend on the timing of the input streams x and z. As
a result, MIX is called non-time-critical. In the following, we
specify interface behavior by such interface assertions.

3.2. Services
A service is an interface behavior specified by a syntactic inter-
face and an interface predicate. A service specification coincides
with a system interface specification. A system typically offers
(“provides”) a family of services while it may need (“require”)
a number of services. In the simplest case, a system just offers
one service without requiring any services. Thus, interface spec-
ifications support the specification of services while services
are used to specify the functional behavior of systems. This ex-
plains in turn how interface specifications specify the functional
behavior of systems.

Key issues are the relationship between system specifications
in terms of services and modularity concepts. The specification

4 Broy, Selić

Figure 3 Composition of systems S1 and S2 (hiding feedback
channels)

of systems in terms of their services by syntactic interfaces and
predicates specifying interface behavior defines systems that
can be used as components in architectures (see the composition
operator in the next section). The specification method achieves
encapsulation including information hiding as discussed in more
detail in sect. 6. It guarantees modularity in the sense that the
specification of a composed system can be deduced from the
specifications of its components.

3.3. Concurrent Composition with Interaction via Feed-
back Loops

To define concurrent composition of systems we use the idea that
systems are composed by putting them side by side introducing
feedback loops for mutual communication via their channels
that fit together.

Systems are composed as shown in Fig. 3. There the channels
z1 and z2 serve as feedback channels carrying streams for the
communication between the two systems S1 and S2. These
streams are defined by fixpoints.

Systems Sk with syntactic interfaces (Xk ▶ Yk) with k = 1, 2
are called composable, if their channel types are consistent and
Y1 ∩ Y2 = ∅. Moreover, we assume that for k = 1, 2 the
channel sets Xk and Yk are disjoint Xk ∩ Yk = ∅. We define
concurrent composition with feedback of system specified by
interface predicates by logical conjunction of their interface
predicates. Feedback channels become hidden by existential
quantification.

Consider systems Sk with given specifications Sk ⊢
(xk : Xk ▶ yk : Yk) : Qk(xk, yk) for k = 1, 2, that are compos-
able. Define:

X = (X1 ∪ X2)\Z input channels for the composed system

Y = Y1 ∪ Y2 output channels for the composed system

Z = Y ∩ (X1 ∪ X2) feedback channels – internal channels

The channel set Z denotes the set of feedback channels in the
composition. We specify the composite system (S1 ⊗ S2) by:

(S1 ⊗ S2) ⊢ (x : X ▶ y : Y\Z) : ∃ y′ ∈
→
Y :

(Q1(x ⊕ y′ | X1, y′ | Y1)

∧ Q2(x ⊕ y′ | X2, y′ | Y2)

∧ y = y′ | (Y\Z)

hiding feedback channels as output. Here x | X′ denotes the

restriction of the history x ∈
→
X to the history in

→
X′ where for

the channels c ∈ X′\X we get x′(c) = x(c).

Whenever for the considered subsystems Sk and the specify-
ing predicates Pk the specification

Sk ⊢ (xk : Xk ▶ yk : Yk) : Pk(xk, yk)

is derived or stated, for the composed system S1 ⊗ S2 the speci-
fication:

(S1 ⊗ S2) ⊢ (x : X ▶ y : Y\Z) : ∃ y′ ∈
→
Y :

(P1(x | X1, y′ | Y1)

∧ P2(x | X2, y′ | Y2)

∧ y = y′ | (Y\Z)

is concluded. This holds, in particular, if for the considered
subsystems Sk the laws of strong causality or full realizability
are applied (see the Appendix). Note that this form of defin-
ing composition works both for specifications and data flow
programs and both for service and system specification.

3.4. Modularity and Refinement
We define modularity as the following property of an approach
for specifying systems:

– systems are specified by their interface behavior while the
details of their implementation are hidden, following the
principles of information hiding,

– the composition of systems from subsystems leads to a
composite system with a specification of its interface be-
havior that can be derived by composing the specifications
of the interface behavior of its subsystems.

A key issue is the relationship between layered architectures and
key modularity concepts such as components, encapsulation,
and information hiding as discussed in sect. 6.

For a system or service specification (x : X ▶ y : Y) :
Q(x, y) a specification (x : X ▶ y : Y) : Q′(x, y) is called a
refinement if Q′ ⇒ Q.

4. Layered Architectures
A layered system architecture consists of one or more layer
“stacks”. Unfortunately, many people interpret the term "stack"
to refer exclusively to a single linear hierarchy of layers . But,
as noted in [18], in practice, a layered architecture is much more
often realized as a more complex directed acyclic graph. There-
fore, it is more precise to say that a layered system architecture
consists of a “non-cyclical hierarchy of layers”.

4.1. Layers
As noted, layers are systems which provide one or more special-
ized services, which they often realize by relying on services
(required services) provided by lower layers. Both provided and
required services are described by interface specifications. The
union of the individual syntactic interfaces of these services de-
fines the syntactic interface of the layer. The interface predicate
of the layer is composed of the interface predicates associated
with both the required and the provided services.

Specifying and Composing Layered Architectures 5

Figure 4 Figure 4. Layer L with its input and output channels

We start with a simple form of layers: Let X, Y , A, and
B be pairwise disjoint sets of channels, and P be an interface
predicate for the syntactic interface (X ▶ Y) and be an interface
predicate for the syntactic interface (A ▶ B). Let the interface
behavior:

S ⊢ (x : X ▶ y : Y) : P(x, y)

denote the provided service and:

W ⊢ (a : A ▶ b : B) : R(a, b)

denote the required service. As we show in sect. 6, both S
and W may describe families of subservices represented here
respectively as a single compound service.

We then formulate the following specification of layer L (see
Fig. 4:

L ⊢ (x : X, b : B ▶ y : Y , a : A) : R(a, b) ⇒ P(x, y)

It specifies that, if the required service W is provided via the
channels in a and b, then the provided service S is offered via the
channels x and y. It is an instance of an assumption/commitment
specification (see (Broy 2018)).

In this essential description of a layer, we do not demand a
specific data flow between the provided and the required service.
(Moreover, we do not even specify whether a required service is
actually used by a layer for realizing its own provided service.)
The specification simply states that the provided service is of-
fered if the required service is available. In this case we speak
of a basic layer. We may add to the specification, as a detail, that
the provided service is offered as long as the required service is
available (see sect. 5.1).

If layer L is composed with a system U for which the in-
terface predicate G holds and that shares with L exactly the
syntactic sub-interface (A ▶ B), then if G ⇒ R then L ⊗ U
implies P. In other words, if U offers the required service W
as a subservice, then the composite system L ⊗ U offers the
provided service S.

As noted above, a further interesting aspect has to do with
adding specifications of an explicit data flow between the pro-
vided and required service. We may add – as a refinement –
conditions which relate the input to the provided service ex-
plicitly to the output to the required service. Such additional
data dependencies allow a more explicit relationship between
the streams of the provided and the required service. That way
we can model some data flow relationships between the two
services (see sect. 5).

Figure 5 Parallel composition of two layers L1 and L2

As explained in the Appendix, a fully realizable service is
assumed to be strongly causal. This means that the messages
in the output streams of a service till some time t + 1 depend
at most on the input streams till time t. There is no instan-
taneous reaction by a service, output is delayed at least one
time step. This assumption has strong consequences since it
allows the deduction of additional properties in terms of refined
specifications given an initial specification.

Moreover, since we assume that both the required service and
the provided service are strongly causal (see the Appendix for
definitions) we deduce additional properties. Since in most prac-
tical cases, strongly causal specifications are fully realizable, we
consider only the case where both the required service and the
provided service are strongly causal. Then the key correctness
assumption of a layer is as follows: As long as the required
service is guaranteed, the provided service is guaranteed. If the
required service is delivered correctly all the time, the provided
service is delivered correctly all the time. This is worked out in
detail in sect. 4.7.

4.2. Composing Layers
In this section we introduce two ways of composing layers to
produce more complex layers: (1) parallel composition that puts
two layers side by side, and (2) layer stacking, that is, putting
one layer “on top of” another layer.

For parallel composition (Fig. 5), let as assume that we have
two layers:

L1 ⊢(x1 : X1, b1 : B1 ▶ y1 : Y1, a1 : A1) :
R1(a1, b1) ⇒ P1(x1, y1)

L2 ⊢(x2 : X2, b2 : B2 ▶ y2 : Y2, a2 : A2) :
R2(a2, b2) ⇒ P2(x2, y2)

where all channel sets are pairwise disjoint. We can combine
these into a single unifying layer, LP, by parallel composition so
that: X = X1 ∪ X2, Y = Y1 ∪ Y2, A = A1 ∪ A2, B = B1 ∪ B2 :

LP ⊢(x : X, b : B ▶ y : Y , a : A) :
(R1(a | A1, b | B1) ∧ R2(a | A2, b | B2)) ⇒
(P1(x | X1, y | Y1) ∧ P2(x | X2, y | Y2))

Here a | A1 denotes the restriction of the history a (which
assigns streams to the channels in signature A) to the channels in

6 Broy, Selić

Figure 6 Two layers, where the provided service of layer L1
is a refinement of the required service of layer L2

Figure 7 Stacked layer composition L = L1 ⊗ L2 of the two
composable layers L1 and L2

signature A1 ⊆ A. The history a | A1 ∈
→
A1 then assigns streams

to the channels in signature A1 such that for each channel c ∈ A1
we have (a | A1)(c) = a(c).

Now, for layer stacking, let us assume that we have two
layers (k = 1, 2):

Lk ⊢(xk : Xk, bk : Bk ▶ yk : Yk, ak : Ak) :
Rk(ak, bk) ⇒ Pk(xk, yk)

The two layers are shown in Fig. 6 where we assume that the
sets of channels X1 ∪ Y1 and X2 ∪ Y2 are disjoint.

Next, we compose the two layers (Fig. 7), one on top of the
other, to form composite layer L. Recall that the proposition
“R ⇒ P” expresses that the described system S offers an in-
terface behavior that is a refinement of the specified service P.

These two layers fit syntactically together, if X1 = A2 and
Y1 = B2, and semantically if the provided service:

S1 ⊢(x1 : X1 ▶ y1 : Y1) : P1(x1, y1)

of the lower layer L1 is a refinement of the required service:

W2 ⊢ (a2 : A2 ▶ b2 : B2) : R2(a2, b2)

Figure 8 Figure 8. Layered architecture LA

of the upper layer L2 which is expressed by (note that X1 = B2
and Y1 = A2):

P1(x1, y1) ⇒ R2(x1, y1)

We compose the two layers to create composite system L:

L = L1 ⊗ L2 ⊢
(x2 : X2, b1 : B1 ▶ y2 : Y2, a1 : A1) :

∃ x1 ∈
→
X 1, y1 ∈

→
Y 1 :

(R1(a1, b1) ⇒ P1(x1, y1))∧
(R2(x1, y1) ⇒ P2(x2, y2))

Since P1(x1, y1) ⇒ R2(x1, y1) holds, we conclude:

L ⊢(x2 : X2, b1 : B1 ▶ y2 : Y2, a1 : A1)) :
R1(a1, b1) ⇒ P2(x2, y2)

This shows that system L which is the result of composing
the two layers is yet another layer with a provided service S2 that
is the provided service of Layer L2, while its required service
W1 is the required service of layer L1.

4.3. Layered Architectures: Stacks of Layers
The composition of layers, as introduced, can be iterated for n
given layers, n ∈ N. Given a family of n layers Lk for k ∈ N,
1 ≤ k ≤ n, with specifications:

Lk ⊢(xk : Xk, bk : Bk ▶ yk : Yk, ak : Ak) :
Rk(ak, bk) ⇒ Pk(xk, yk)

where Xk = Ak+1, Yk = Bk+1, and where all other channel sets
are disjoint, and where:

Pk(xk, yk) ⇒ Rk+1(xk, yk)

for all k, 1 ≤ k < n, we get a “stacked” layered architecture:

LA = Ln ⊗ Ln−1 ⊗ · · · ⊗ L1

Specifying and Composing Layered Architectures 7

Figure 9 A DAG-structured layered architecture with par-
tially overlapping layers

Figure 10 Composing two layers which only partially overlap

The layered architecture LA is depicted in Fig. 8.
Applying the rule of composing layers iteratively to form LA

we conclude:

LA ⊢(xn : Xn, b1 : B1 ▶ yn : Yn, a1 : A1) :
R1(a1, b1) ⇒ Pn(xn, yn)

Of course, we can get a large variety of different layered
architectures, through different combinations of these two layer
composition patterns (parallel or stacked).

4.4. Layers with only Partial Overlap
As noted earlier, it is not uncommon to have a layered architec-
ture that is not a strict layer stack, but one whose topological
configuration is represented by a directed acyclic graph (DAG),
as illustrated by the example in Fig. 9. Here, both layer L2
and L3,2 require some services of layer L0, but layer L3,2 also
depends on the serves of layer L2.

Accordingly we examine the case of just two partially over-
lapping layers, shown in Fig. 10. Let Xk, Yk for k = 0, 1, 2, and
Ak, Bk for k = 0, 1 be channel sets and xk, yk, for k = 0, 1, 2
as well as ak, bk, for k = 0, 1 be histories. We assume that the
channel sets are pairwise disjoint.

For layer stacking, let us assume that we have two layers (see
Fig. 10) which only partially fit:

L0 ⊢ (x0 : X0, x2 : Y2, b0 : B0 ▶ y0 : Y0, a0 : A0, y2 : Y2) :
R0(a0, b0) ⇒ P0(x0, x2, y0, y2)

L1 ⊢ (x1 : X1, b1 : B1, y0 : B0 ▶ y1 : Y1, a1 : A1, x0 : X0) :
R1(a1, x0, b1, y0) ⇒ P1(x1, y1)

The two layers fit together syntactically (see Fig. 10) and se-
mantically, with respect to the required service for layer L1, if
the following assertion holds:

P0(x0, x2, y0, y2) ⇒ ∀ a1 ∈
→
A1 : ∃ b1 ∈

→
B1 : R1(a1, x0, b1, y0)

Then, we construct the specification layer L = (L1 ⊗ L0) by
composition of the specifications of layer L1 and layer L0:

L ⊢ (x1 : X1, x2 : X2, b0 : B0, b1 : B1 ▶

y1 : Y1, y2 : Y2, a0 : A0, a1 : A1) : ∃ y0 ∈
→
Y0, x0 ∈

→
X0 :

(R0(a0, b0) ⇒ P0(x0, x2, y0, y2))

∧ (R1(a1, x0, b1, y0) ⇒ P1(x1, y1))

and get by simple propositional logic a layer specification:

L ⊢ (x1 : X1, x2 : X2, b0 : B0, b1 : B1 ▶

y1 : Y1, y2 : Y2, a0 : A0, a1 : A1) : ∃ y0 ∈
→
Y0, x0 ∈

→
X0 :

(R0(a0, b0) ∧ R1(a1, x0, b1, y : 0)) ⇒
(P0(x0, x2, y0, y2) ∧ P1(x1, y1))

Thus:

(a0 : A0, a1 : A1 ▶ b0 : B0, b1 : B1) :

∀ x0 ∈
→
X0 : ∃ y0 ∈

→
Y0 : R0(a0, b0) ∧ R1(a1, x0, b1, y0)

specifies the required service while:

(x1 : X1, x2 : X2 ▶ y1 : Y1, y2 : Y2) : ∀ x0 :
→
X0 : ∃ y0 :

→
Y0 :

(∃ a0 ∈
→
A0, b0 ∈

→
B0, a1 ∈

→
A1, b1 ∈

→
B1 :

R0(a0, b0) ∧ R1(a1, x0, b1, y0)) ⇒
(P1(x1, y1) ∧ P0(x0, x2, y0, y2)))

specifies the provided service.

4.5. Platforms
If for a layer the required service W ⊢ (a : A ▶ b : B) : R(a, b)
is empty, for precisely if no service is required and thus A =
∅, B = ∅, and R = true, then the layer L degenerates to:

L ⊢(x : X ▶ y : Y) : P(x, y)

which is the provided service which is offered with any need of
a required service.

We get a layered architecture LAP as a stack of layers on top
of a platform L0 which is the bottom layer that does not require
a “required” service.

8 Broy, Selić

Figure 11 Stack of layers LAP on top of a bottom layer with-
out required service.

4.6. Refining Layers
Of course, it may also be useful to apply the concept of re-
finement to layers. Recall, a specification (X ▶ Y) : P′ is a
refinement of a specification (X ▶ Y) : P if P′ ⇒ P. For a
layer L:

L ⊢ (x : X, b : B ▶ y : Y , a : A) : R(a, b) ⇒ P(x, y)

we obtain a refinement:

(x : X, b : B ▶ y : Y , a : A) : Q(a, b, x, y)

provided that Q(a, b, x, y) ⇒ (R(a, b) ⇒ P(x, y)). If this holds,
we can replace the layer L by its refinement L′

L′ ⊢ (x : X, b : B ▶ y : Y , a : A) : Q(a, b, x, y)

Actually, there are special forms of refinements of layers; if we
have interface predicates R′ and P′ such that:

R(a, b) ⇒ R′(a, b)

and:

P′(x, y) ⇒ P(x, y),

Then layer L′, which is specified by:

L′ ⊢ (x : X, b : B ▶ y : Y , a : A) : R′(a, b) ⇒ P′(x, y)

is a refinement of L since (R′ ⇒ P′) ⇒ (R ⇒ P). This is
shown by a simple proof in propositional logic.

4.7. Behavior of Layers in Case of Partially Correct Re-
quired Services

In the following, we consider the case where the required service
is delivered correctly at least to a certain time t. Then the

provided service is delivered at least until time t + 1. This is
expressed as follows:

(x : X, b : B ▶ y : Y , a : A) : ∀ t ∈ N :
(R ↓ t)(a, b) ⇒ (P ↓ t + 1)(x, y)

where:

(R ↓ t)(a, b) = ∃ a′ ∈
→
A , b′ ∈

→
B :

R((a ↓ t)ˆa′, (b ↓ t + 1)ˆb′)

(P ↓ t)(x, y) = ∃ x′ ∈
→
X , y′ ∈

→
Y :

P((x ↓ t)ˆx′, (y ↓ t + 1)ˆy′)

Finally we get, as a consequence the layer specification:

(x : X, b : B ▶ y : Y , a : A) :
(∀ t ∈ N : (R ↓ t)(a, b) ⇒ (P ↓ t + 1)(x, y))

∧ (R(a, b) ⇒ P(x, y))

which is a stronger specification of a layer. This states that
the provided service will be correct up to time t, provided the
required service is correct up to time t. This property is a
consequence of strong causality as explained in detail in (Broy
2023b). Note ∃ t ∈ N : ¬(R ↓ t)(a, b) ⇒ ¬R(a, b).

Now let us consider two layers L1 and L2 specified as in the
preceding section. From P1 ⇒ R2 we can conclude that:

(P1 ↓ t)(x1, y1) ⇒ (R2 ↓ t)(x1, y1)

and thus, for a stacked composition of layers:

L = L1 ⊗ L2 ⊢ (x : X, b : B ▶ y : Y , a : A) :

∃ x1 ∈
→
X1, y1 ∈

→
Y1 : (R1(a1, b1) ⇒ P1(x1, y1))

∧ (R2(x1, y1) ⇒ P2(x2, y2))

∧ (∀ t ∈ N : (R1 ↓ t)(a1, b1) ⇒ (P1 ↓ t + 1)(x1, y1))

∧ (∀ t ∈ N : (R2 ↓ t)(x1, y1) ⇒ (P2 ↓ t + 1)(x2, y2))

We obtain, since (P1 ↓ t)(x1, y1) ⇒ (R2 ↓ t)(x1, y1) fol-
lows from P1(x1, y1) ⇒ R2(x1, y1):

L ⊢(x : X, b : B ▶ y : Y , a : A) : (R1(a1, b1) ⇒ P2(x2, y2))

∧ (∀ t ∈ N : (R1 ↓ t)(a1, b1) ⇒ (P2 ↓ t + 2)(x2, y2))

which implies:

L ⊢ (x : X, b : B ▶ y : Y , a : A) : (R1(a1, b1) ⇒ P2(x2, y2))

∧ (∀ t ∈ N : (R1 ↓ t)(a1, b1) ⇒ (P2 ↓ t + 1)(x2, y2))

This formula expresses that as long as the required services
are guaranteed, the required behavior of the provided service
will be delivered. Moreover, it expresses that the provided
service is correct up to time t + 1 provided the required service
is correct up to time t.

Two systems described in terms of assumed and provided ser-
vices can be composed if the provided services are refinements
of the assumed services. Note that service S1 is a refinement

Specifying and Composing Layered Architectures 9

of service S2 if the interface assertion specifying S1 implies the
interface assertion specifying S2.

(Note: The specification of layers working with partially cor-
rect required services is more complicated than the specification
of the layers given in sect. 4.1. Fortunately, the specification
of layers working for partially correct required services can be
derived by the principle of strong causality as shown in (Broy
2023b) schematically (see the Appendix) from the specification
of the layers given in sect.. 4.1.)

5. Layers with Specific Data Flow
So far we considered layers specified in terms of a provided and
a required service where the provided service was guaranteed
as long as the required service was available and there was
no specified data flow between the required and the provided
service. In the following, we deal with layers, where there is
some additional specified data flow between the required and
the provided services. Such layers are called expanded layers.

5.1. Data Flow Between the Required and the Provided
Service

So far, we have not explicitly discussed any specific data flows
between a required and a provided service. As noted, the spec-
ification of a layer expresses that the provided service is guar-
anteed if the required service is available. This, however, does
not even specify whether the required service is used at all nor
how it is used or in which way the input for the provided service
influences the output to the required service or in which way the
input coming from the required service influences the output to
the provided service.

Consider the following specification of layer L:

L ⊢ (x : X, b : B ▶ y : Y , a : A) : R(a, b) ⇒ P(x, y)

Actually, for a number of applications, an explicit data flow
between provided service and the input and the required service
may be of interest or even mandatory. This data flow can be
expressed by an assertion Q(x, b, y, a). In that case, the specifi-
cation of the layer LDF with specific data flow reads as follows:

LDF ⊢ (x : X, b : B ▶ y : Y , a : A) : (R(a, b) ⇒ Q(x, b, y, a))

where we assume:

Q(x, b, y, a) ⇒ P(x, y)

This case with explicit data flow constraints is obviously a refine-
ment of the specification of layer L, which does not specify any
data flow and where interface predicate Q is only guaranteed to
hold if the required service is available. However, a layer LDF′

may be specified as a refinement of layer L, in situations where
the additional data flow holds independently of the availability
of the correct required service:

LDF′ ⊢ (x : X, b : B ▶ y : Y , a : A) :

(R(a, b) ⇒ P(x, y)) ∧ Q′(x, b, y, a)

Note that the specification for LDF′ is stronger that the
specification for LDF, but both are refinements while both are

Figure 12 Composition of systems S1 and S2 (hiding feed-
back channels z1 and z2)

refinements of the specification of layer L. Nevertheless, both
LDF and LDF′ are refinements of L.

Examples of specifications for some data flow between the
provided and the required service are given in sect. 5.3 and in
the extended example in sect. 7.

5.2. The Layering Pattern versus General System Com-
position

Consider systems composed as shown in Fig. 12. Again, for
simplicity of notation, we consider only channels that carry
streams instead of signatures with histories carrying families
of streams. Nevertheless, this discussion can be generalized to
histories (families of streams). Consider systems Sk with given
specifications

Sk ⊢ (xk, zk ▶ yk, z3−k) : Qk(xk, zk, yk, z3−k)

for k = 1, 2, that are composable.
The channels z1 and z2 denote the feedback channels in the

composition. We define (S1 ⊗ S2) hiding feedback channels as
output by:

(S1 ⊗ S2) ⊢ (x1, x2 ▶ y1, y2) :
∃ z1, z2 : Q1(x1, z1, y1, z2) ∧ Q2(x2, z2, y2, z1)

We consider two instances of specifications of the systems S1
and S2 to show the difference between “vertical” composition
(which means layering – see sect. 2) and “horizontal” composi-
tion (peer composition). For layer stacking, let us assume that
we have two layers L1 and L2 for the systems S1 and S2:

L1 ⊢ (x1, z1 ▶ y1, z2) : R1(x1, y1) ⇒ P1(z1, z2)

L2 ⊢ (x2, z2 ▶ y2, z1) : R2(z1, z2) ⇒ P2(x2, y2)

In other words, we consider systems L1 and L2 that follow the
layer specification pattern.

If P1 ⇒ R2 holds, we get:

(L1 ⊗ L2) ⊢ (x1, x2 ▶ y1, y2) : R1(x1, y1) ⇒ P2(x2, y2)

This shows the key properties of the layer pattern: restricted
dependencies between input and output under the assumption
of the presence of the required services.

In the general case, in system S1 the streams y1, z2 depend
on the streams x1, z1 and in system S2 the streams y2, z1 depend
on the streams x2, z2. Therefore, in general, the streams y1,
y2 depend on the streams x1, x2 in (S1 ⊗ S2). This shows that
the layering pattern is a special case of general (“horizontal”)
composition.

10 Broy, Selić

Figure 13 A layer LAY and a general component COMP

The interesting question here is, whether there is a difference
between a component as used for composition in the horizontal
way and a layer in a layered architecture. We illustrate this
difference by two rather simple example components depicted
in Fig. 13.

We specify layer LAY and a component COMP which have
the same syntactic interface, specified as follows (let Nat be the
type of natural numbers). First, we specify the layer element:

LAY
in x, b: TSTR Nat
out y, a: TSTR Nat

R(a, b) ⇒ P(x, y)

We specify its provided service as:

P(x, y) = (∀ d ∈ Nat : (d#x > 0 ⇒ d#y = ∞)

∧ (d#x = 0 ⇒ d#y = 0))

and its required service as:

R(a, b) = ∀ d ∈ Nat : d#b = d#a

These specifications of the provided service and the required
service leads to the interface assertion:

(∀ d ∈ Nat : d#b = d#a) ⇒
(∀ d ∈ Nat : (d#x > 0 ⇒ d#y = ∞)

∧ (d#x = 0 ⇒ d#y = 0))

which specifies layer LAY. Note that imposing causality for the
layer leads to additional assertions about the timing.

Next, we consider the system COMP with an identical syn-
tactic interface as LAY, but with different interface assertions.

COMP
in x, b: TSTR Nat
out y, a: TSTR Nat

∀ d ∈ Nat :
d#a = min(d#x, d#b)

∧ d#y = d#x + d#b

Obviously, COMP LAY is not realizable. Consider

∀ d ∈ Nat :d#a = min(d#x, d#b) ∧ d#y = d#x + d#b

∧(∀ d ∈ Nat : d#b = d#a) ⇒
(∀ d ∈ Nat : (d#x > 0 ⇒ d#y = ∞)

∧ (d#x = 0 ⇒ d#y = 0))

This is shown by a simple example. Choose d#x = 1 and
∀ d ∈ N : d#b = 0; then COMP implies d#a = 0 and d#y = 1
while LAY d#a = 0 implies d#y = ∞. COMP LAY is not
realizable.

For the specification of component LAY, we may specify, in
addition, some data flow for the layer LAY between input x and
b and output a:

∀ d ∈ Nat : d#a = d#x + d#b ∧ (d#x = 0 ⇒ d#a = 0)

as well as between input b and output y:

∀ d ∈ Nat : d#y = d#b

This specifies how LAYI makes use of the required service to
produce the provided service. We get the refined specification:

LAYI
in x, b: TSTR Nat
out y, a: TSTR Nat

(∀ d ∈ Nat : d#b = d#a) ⇒
(∀ d ∈ Nat : d#y = d#b ∧ d#a =
d#x + d#b ∧ (d#x = 0 ⇒ d#a = 0))

Note that the specifying assertion of LAYI implies the speci-
fying assertion of LAY since:

(∀ d ∈ Nat : d#y = d#b

∧ #a = d#x + d#b ∧ (d#x = 0 ⇒ d#a = 0)) ⇒
∀ d ∈ Nat : d#a = d#x + d#b ∧ (d#x = 0 ⇒ d#a = 0)

This shows that the specification LAYI is a refinement of LAY.
Specification LAYI describes again a layer between the provided
service and the required service with a particular way (based on
the data flow specification) to make use of the required service.
This demonstrates how we may refine a layer specification by
adding a specification of the data flow between the provided
and the required service.

A specification of a system which fulfills the layer specifica-
tion is exactly an example of a specification that, in addition to
the layer specification, may include further properties about the
data flow between the provided and the required service.

Formulating this more generally, there are many specifica-
tions which are refinements of a layer specification L. They
are created by specifying additional properties, in particular, of
the data flow between the provided and the required service.
However, there are other specifications for the same syntactic
interface that are not refinements of the layer specification. If
they are logically weaker than the layer specification, then the
layer specifications is a refinement of such weaker specifica-
tions. In that case we can, of course, refine those specifications
into a layer specification.

In the end, we distinguish the following three situations for
the relation between a specification for a layer L and a specifica-
tion of system G for the same syntactic interface. We specify
a system by the weakest specification which is a refinement
both of the specification of layer L and the specification of sys-
tem G. If Q is the specifying predicate of layer L and E is the

Specifying and Composing Layered Architectures 11

Figure 14 A compound physical device with its provided
service

specifying predicate of system G, then the conjunction Q ∧ E is
the specifying predicate of the weakest specification which is a
refinement both of the layer L and the system G:

– First, if E is logically weaker than G, i.e. if G ⇒ E, then
Q ∧ E = Q. Layer L is a refinement of G.

– Second, if the system specified by Q∧ E is realizable, then
there exists an implementation which is a refinement both
of L and G (see sect. 5).

– Third, if the system specified by Q ∧ E is not realizable,
then there does not exist an implementation which is a
refinement both of L and G (see the example L = LAY and
G = COMP above).

Given systems with specifications that (depending on how
they are specified) fulfill a layer specification (are refinements
of a layer specification), they can also be used as layers but also
in a different way.

For a layer specification L, of course, it is not unreasonable
to use L in a horizontal manner. However, if we combine L
with another system J, which does not deliver the required
service, then we do not know anything according to the layer
specification about the behavior of the result with respect to the
provided service. Nevertheless, in cases where the system J
fulfills the specification of the required service, then according
to the specification of L we get the provided service.

5.3. Cyber-Physical Systems: Controlling Physical De-
vices

In a cyber-physical system, a physical device (PD) is typically
controlled by a service. The physical device may have sensors
that provide information about the state of the PD and it may
have actuators that offer the possibility to control the device.
Both sensors and actuators can be modeled by services.

We may choose to combine all the sensors and actuator ser-
vices into one compound service. Then a PD can be graphically
illustrated as shown in Fig. 14.

A control layer is often placed on top of a physical device
and offering a provided service for controlling the device that
is more structured, more abstract, and simpler way to use the
device rather than manipulating the device itself. This control
layer uses the provided service of the physical device for its
required services (see Fig. 15). In this case, the control layer
specification should include an explicit data flow both from the
provided to the required service and back from the required to
the provided service.

Figure 15 Control layer combined with a compound physical
device

Figure 16 Control layer combined with a compound physical
device

Consider, for example, the case of a brake control system,
where the Control Layer is responsible for realizing an anti-
lock braking function. This function is activated by signals
received on input x, which are translated by the Control Layer
into appropriate “operate-brake” output signals to the actual
physical brake, which then achieve the corresponding antilock
braking mode.

For more complex devices it may be necessary to work with
a more explicit model. In that case, the physical device can be
modelled by a state machine with inputs and outputs, where
the states represent the state of the physical device. The input
is given to the actuators of the physical device as part of a
cyber-physical system, while the output on the channels in
B models the original sensor outputs (see Fig. 16). Here the
stream of states generated by the state machine this way provides
observations about the behavior of the state machine beyond
what can be observed through the sensors that generate the
history b.

The streams s represents a stream of states which reflects the
reaction of the physical device to the input by the stream a to the
actuators of the physical device. Of course, layers that control
physical devices like the Control Layer in Fig. 16 are classic
expanded layers since typically, there is a data flow between its
provided and its required service.

12 Broy, Selić

6. Structuring Services into Subservices and
the Feature Interactions Problem

In the preceding text, we have given a syntactic requirement for
layers and a semantic one which is based on the following idea:
Each layer provides a set of services, which can be invoked by
applications in its immediate upper layers based on their specific
needs. In general, a supporting layer makes no assumptions or
restrictions on when and to what purpose these applications use
its services. That is the responsibility of its applications.

Note, however, that this does not preclude the possibility of
specific protocols that may constrain the order and timing in
which individual services are invoked (see summary). More
technically, the specification of the required services may in-
clude some assumptions that have to be maintained to get valid
access to a required layer service. This can be expressed in the
interface assertion for a service and such protocols have to be
observed by an application using the service. There might be
rather complex and complicated procedures to get access to a
service, but – as shown in (Broy 2018) – such special access
protocols can easily be part of a service specification.

Although the interface specification of a supporting layer in-
cludes a specification of its own required services (and, possibly,
the even data flows between provided and required services),
this does not violate information hiding, because applications
using the provided services of a layer can only access those.

6.1. Decomposition of Services into Subservices: Fea-
ture Interactions

In this section, we show how to decompose services of a system,
such as the provided service or the required service of a layer,
into a set of subservices. Such subservices of a system may be
called functional features. To keep the presentation simple, we
treat only the decomposition of a service into two subservices
in detail. This is easily generalized to larger sets of subservices.

Given a service S = (X ▶ Y) : Q where X ∩ Y = ∅
specified by the interface assertion Q, we may decompose it
into two (or more) distinct subservices Si = (Xi ▶ Yi) : Qi for
i = 1, 2 provided that:

X = X1 ∪ X2 where X1 ∩ X2 = ∅
Y = Y1 ∪ Y2 where Y1 ∩ Y2 = ∅

such that for all:

Q(x, y) = Q1(x | X1, y | Y1) ∧ Q2(x | X2, y | Y2)

In that case:

S = S1 ⊗ S2

This indicates that the input on X1 determines the output on
Y1 which is not dependent on the input on X2 and vice versa the
input on X2 determines the output on Y2 which is not dependent
on the input on X1 (see Fig. 17). This means that, in this case,
there are no interactions between subservices S1 and S2. Service
S can be decomposed into independent subservices S1 and S2 as
well as composed from subservices S1 and S2 (see Fig. 18).

Figure 17 Decomposition of service S into independent sub-
services S1 and S2

Figure 18 Composition of service S by combining subser-
vices S1 and S2

However, if such a clean separation into two independent
subservices is not possible, this implies that there exist feature
interactions between subservices S1 and S2 (see (Broy 2010)).
That is, there are dependencies between the inputs or outputs
of subservice S1 and the inputs or outputs of subservice S2.
Typically, this is due to some form of sharing by the (hidden)
implementations of the subservices involved, such as sharing of
resources or inputs and outputs. The effect of such interactions
can be highly problematic for applications that use both subser-
vices because, although this internal coupling is visible at the
application level, it may not be noticed and cause faults.

Fortunately, it is possible to identify if such feature inter-
actions between subservices exist without having to examine
the internal implementation details of service S. Simply by
examining the interface behavior of service S we can determine
whether S can be decomposes into distinct subservices S1 and
S2 in the way described above.

Dependencies according to feature interactions between ser-
vices are modelled by capturing possible interactions between
two distinct services, S′1 and S′2 (see Fig. 19), each with a set of

Figure 19 Two services, S′1 and S′2 and their brute force real-
ization where service S′1 is replaced by service S and S′s is a
dummy that forwards its input x2 to S and receives its output
y2 from S

Specifying and Composing Layered Architectures 13

Figure 20 Composition of services S′1 and S′2

“interaction” channels, ui and vi, for i = 1, 2, where:

S′i ⊢ (xi : X, vi : Vi ▶ yi : Yi, ui : Ui) : Q′
i(xi, vi, yi, ui)

We then compose S′1 and S′2 into a joint combined service S
such that u1 = v2 and u2 = v1 for i = 1, 2 (Fig. 20).

Then, if there do not exist mutually independent subservices
S1 and S2 such that S = S1 ⊗ S2, it implies that there are, in
fact, feature interactions between both S1 and S2. That is, there
are services S′1 and S′2 such that (here we write S[v/u] for a
specification S to rename the channels in u to the channels in v):

S = S′1[u2/v1]⊗ S′2[u1/v2]

Channel sets V1 and V2 model the feature interactions be-
tween the subservices of S with their distinct syntactic sub-
interfaces (X1 ▶ Y1) and (X2 ▶ Y2) of the overall syntactic
interface of S, (X ▶ Y).

It is easy to prove that such channel sets Ui and Vi and in-
terface predicates Q′

i can always be constructed. This is shown
by a brute force argument in Fig. 19. This proves that a de-
composition of the pattern shown in Fig. 20 is always possible.
Of course, in practice, it is usually better to select more case-
appropriate abstractions for the histories ui and vi.

A typical example of feature interactions between the sub-
services of provided services are communication platforms.

Figure 21 Composition of the peers with the message passing
platform

Example: Message Passing Platform
We specify the provided service of the message passing platform
(see Fig. 21). Its syntactic interface and its interface behavior is
given by its provided service:

MPP ⊢ (u : U ▶ v : V) : MPPS(u, v)

where:

U = {u1 : TSTR M, . . . , un : TSTR M}
V = {v1 : TSTR M, . . . , vm : TSTR M}

Figure 22 Peer layer

and M is the type of messages, where each message has a sender
and a receiver and a content:

Sender : M → {1, . . . , n}
Receiver : M → {1, . . . n}
Content : M → Data

We define interface assertion MPPS(u, v) as follows:

MPPS(u, v) = ∃ z ∈ TSTR M : ∀ k, 1 ≤ k ≤ n :
{m ∈ M : Sender(m) = k}©z̄ = ūk

∧ {m ∈ M : Receiver(m) = k}©z̄ = v̄k

Here z̄ denotes, for a timed stream z, the untimed stream z̄
where all sequences of messages in z are concatenated into an
untimed stream. Also, for a set N ⊆ M and for a stream z, we
denote by N©z the stream deduced from z, where all messages
that are not in N are deleted.

We next specify a provided service for the Peerlayer (see
Fig.22).

Given two sets of typed channel names:

X = x1 : TSTR T1, . . . , xn : TSTR Tn

Y = y1 : TSTR S1, . . . , ym : TSTR Sm

let the interface behavior:

PPS = (x : X ▶ y : Y) : PP(x, y)

denote the provided service of the peer layer PeerPS.
We then get the following specification of the peer layer (see

Fig.22):

PL = (x : X, v : V ▶ y : Y , u : U) : MPPS(u, v) ⇒ PP(x, y)

It specifies that, if the required service MPPS is provided via
the channels in u and v, then the provided service PP is offered
via the channels x and y by the peer layer. In this description of
a layer, we do not specify a data flow between the provided and
the required service.

It is possible to specify, in addition, the provided service of
the peer layer explicitly, which, in general, would rely on the
required service as shown in Fig.23.

The provided service of the peer layer PeerPS may be decom-
posed in the provided services of the subservices Peerk with the
syntactic interface (xk : TSTR Tk ▶ yk : TSTR Sk) where there
is a massive highly intended feature interaction between them.
We may specify the behavior of Peerk as follows introducing

14 Broy, Selić

Figure 23 Provided service PPS of the peer layer PeerPS

interaction channels vk and uk as explained above to deal with
the feature interactions as shown above above:

Peerk ⊢ (xk : TSTR Tk, vk : Vk ▶ yk : TSTR Sk, uk : Uk) :
PPk(xk, vk, yk, uk)

Here PPk denotes the interface predicate for the system Peerk.
Then we can construct the specification provided service as
follows:

PPS = (x : X ▶ y : Y) : ∃ z ∈ TSTR M :
∀ k, 1 ≤ k ≤ n : PPk(xk, vk, yk, uk)

∧ {m ∈ M : Sender(m) = k}©z̄ = ūk

∧ {m ∈ M : Receiver(m) = k}©z̄ = v̄k

It is clear that only with the availability of the required ser-
vice of the peer layer PeerPS, which is the service MPP provided
by the of the message passing platform, can the peer layer of-
fer its provided service PPS. This is a typical example of an
expanded layer.

6.2. Hiding Feature Interactions by Means of Underspec-
ification

In certain cases, a simple (“brute force” without abstraction)
method of dealing with feature interactions is to hide their ef-
fects by replacing the precise description of the impact on the
outputs vi so that the result is an underspecified nondeterministic
behavior specification.

Consider subservices S′i with feature interactions occurring
through channels Ui and Vi, as illustrated in Fig. 20 for i = 1, 2:

S′i ⊢ (xi : X, vi : Vi ▶ yi : Yi, ui : U : i) : Q′
i(xi, vi, yi, ui)

If we replace the input channels in Ui with corresponding
underspecifications by abstracting out the influence of the Vi
channels, we get:

S′′i ⊢ (xi : X ▶ yi : Yi, ui : Ui) : ∃ vi ∈
→
Vi : Qi(xi, vi, yi, ui)

Note that subservice S′i is a refinement of subservice S′′i .
Going even further, we could even completely ignore the inter-
actions occurring via channels Ui and Vi, such that:

S−i ⊢ (xi : X ▶ yi : Yi) : ∃ ui ∈
→
Ui, vi ∈

→
Vi : Qi(xi, vi, yi, ui)

In this case, subservice S′i is a refinement of subservice S−i
(allowing increasing the syntactic interface).

This method may be appropriate in cases of unintended or
inconsequential feature interactions that result only in “weak”

Figure 24 Layer with sublayer and subservices connected
with subservices of the layer above

Figure 25 Provided service S1

differences which are semantically immaterial between behav-
iors of S′i and S−i . Of course, the practicality of such an approach
depends on the magnitude of the impact that the hidden feature
interactions have on the service. Consider, for example, the
situation where two subservices share a common resource, such
as a CPU. The overall effect of the contention for the CPU
might be only small delays in responses, which may not have
any material impact on the desired behavior.

6.3. Propagation of Feature Interactions through Multiple
Layers

When decomposing a large given service:

(X ▶ Y) : Q

into a set (Xj ▶ Yj)j∈J of subservices Sj where
⋃

j∈J Xj = X
and

⋃
j∈J Yj = Y , the cause of feature interactions may be some

kind of sharing of resources and exchanging messages between
the subservices inside the layer.

However, the feature interactions may occur in layers that
are further down the stack, as illustrated in Fig.24. In this case,
there are feature interactions between provided sub-services
S1

0, . . . , Sm
0 in lower levels of the stack hierarchy. However,

these services are connected as required services for higher
layers S1

1, . . . , Sm
1 . As a result, the provided services of the

sub-layers S1
1, . . . , Sm

1 may “inherit” the feature interactions of

Specifying and Composing Layered Architectures 15

Figure 26 Composition of layer L1 with bottom layer L0

services S1
0, . . . , Sm

0 . This explains how feature interactions may
propagate through sub-layers of a layered architecture.

If we compose layer Sj
0 with layer Sj

1 in the upper layer, we
get:

Sj
0 ⊗ Sj

1 = (xj
1 : Xj

1 ▶ yj
1 : Y j

1) :

∃ aj
0 ∈

→
Aj

0, bj
0 ∈

→
Bj

0, uj ∈
→
Uj, vj ∈

→
Vj :

Qj(a
j
0, vj, bj

0, uj) ∧ Pj(x
j
1, bj

0, yj
1, aj

0)

where Qj(a
j
0, vj, bj

0, uj) denotes the interface assertion that spec-
ifies the provided service of sub-layer Sj

0 and Pj(x
j
1, bj

0, yj
1, aj

0)
denotes the interface assertion that specifies the provided ser-
vice of sub-layer Sj

1. Service S1 = S0 ⊗ L1 is a refinement of
service ⊗1≤j≤m(S

j
0 ⊗ Sj

1) (see Fig. 24, Fig. 25, and Fig. 26).
There are cases where feature interactions occur in a lower

layer that are tolerable since they do not critically affect the
behavior of a subservice. As long as we are not interested in the
individual behavior of the feature interactions and may accept
them as underspecified in the way described in sect. 6.2 we may
accept using Sj

0 ⊗ Sj
1 instead of Sj ⊗ Rj.

The propagation of feature interactions for a DAG-like layer
architecture can be modelled the same way. Note that in the
decomposition of a large service into subservices we can always
identify feature interactions between the subservices just look-
ing at the service interface specifications according to sect. 6.1
– without inspection of possible sources of feature interactions
down the stack of layers.

7. Case Study: A Layered Architecture with
Feature Interactions at Deeper Layers

The example in Fig. 27 27 is rather simple and may appear
somewhat artificially contrived. However, it was chosen to
illustrate the feature interaction issue in a way that is both easily
understood and yet sufficiently close to a practical system to
be credible. In particular, it is intended to explain the effect of
feature interactions deep down in layers and how that effects
the provided services at higher layers.

7.1. The Architecture
The architecture of this layered system is inspired by one of
the original layered architecture designs: the T.H.E operating
system described by E.W. Dijkstra (see (Dijkstra 1983)).

The architecture is in the form of a hierarchy of software
layers designed to incrementally transform the underlying com-
puting hardware into a virtual machine/platform that targets a
specific category of concurrent applications:

– Layer L1: includes a set of standard OS capabilities and
services, but, for our purpose, we are only concerned with
the File System service.

– Layer L2: Transaction Service layer, which adds a
transaction-based interface to the underlying File System
service. It is realized in the form of a single concurrent pro-
cess, which supports a standard transaction type capability
to its clients.

– Layer L3: A “programming framework” layer that pro-
vides a set of services customized for the domain of the
applications in layer L4. This includes:

- Device Abstraction Services, which provide a con-
venient abstract view of individual input and output
devices (like the controller approach described in
sect. 5.3). These take the form of concurrent “device
handler” processes, which interact with their respec-
tive application clients through distinct concurrent
message queues/buffers. Separate queues are used
for receiving and sending messages. (These are suit-
able for modeling as channels for carrying message
streams of the appropriate type.)

- A Logging Services for keeping a record of communi-
cations between applications and their corresponding
input and output devices. To support clear separation
of communications associated with each application,
there is a dedicated Log Service Agent associated
with each application client. However, to allow crisp
separation of records maintained for the individual
application clients, the Transaction Service handles
only one transaction at a time. (This means that large
records may first need to be broken up into smaller
chunks so that the corresponding transactions don’t
take up excessive time.)4

– Layer L4: the “applications” layer, where multiple in-
dependently designed application programs can execute
concurrently.

In practical terms, all service calls between layers in this
system are executed by means of synchronous procedure calls.

7.2. The Applications
Two independently conceived and realized applications execut-
ing concurrently, each running on its own process/thread:

– AppA: This simple application accepts sporadic inputs
from the corresponding device handler (via the correspond-
ing message queue processes). When it receives a sufficient

4 Admittedly, this is a suboptimal design, but it is realistic enough to serve our
purpose.

16 Broy, Selić

Figure 27 Layered architecture of the case study

number of inputs, it bundles them (in order of arrival) into
a single message, and sends that to its corresponding Log
Service Agent for transmission to the File System via the
Transaction Service. Note that, because the inputs from the
device are sporadic, the time interval between successive
inputs is non-deterministic.

– AppB: This is a time sensitive application, which takes
periodic inputs from its corresponding device handler (via
its input message queue process) and reacts to them by
sending an appropriate control command to the device (via
its output message queue process). This application is time
sensitive, and the output must be returned within a fixed
time interval T, or an error situation will occur.

7.3. The Feature Interaction Scenario
The interleaving between transactions driven by AppA and those
driven by AppB is non-deterministic, since the inputs sent to
AppA from its device are sporadic rather than periodic. Thus,
it may happen that an excessively large logging transaction
initiated by AppA takes place just before a logging transaction
from AppB is supposed to commence. Because all inter-layer
service calls are realized by synchronous procedure calls, this
will block the AppB process from executing its response to the
most recent input. If the timing of the near-simultaneous logging
requests is just right, the result may be a missed deadline and
an error state for AppB.

The result is a classic example of unintended feature in-
teraction, whereby two independently designed applications
interfere with each other because they share a common resource
(the Transaction Service process in L2). Note that, formally, this
error occurs at the application layer (L4), although it is caused
by a shared resource conflict that occurs at two layers down
(L2).

Figure 28 Fragment from the layered architecture of the case
study in Fig. 27

7.4. Modelling the Effects of the Feature Interaction
We consider the fragment shown by Fig. 28 of the architecture
shown in Fig. 27.

For a timed stream s we use the following notation where
n ∈ N (also see the Appendix):

#x number of messages in stream x

x(n) the nth message in x (1 < n ≤ #x)

n@x time of the nth message in x (1 < n ≤ #x)

The example introduced above works via procedure calls.
We model a procedure call in the frameworks of streams by
two messages: the call as a message issued by the caller over
a call channel cc from the caller to the callee, and the reply by
a message sent in response by the callee over a return channel
cr from the callee to the caller. Because message processing
takes time, for each call (calls are numbered, and we assume at

Specifying and Composing Layered Architectures 17

least n calls), we get for the timing of the call number n and the
corresponding return message

n@cc < n@cr

It specifies that a return message for a call is issued after the
call has been received. Next, we specify the call protocol that
contains a specification Cspec for the caller and a specification
Rspec for the callee:

Cspec(cc, cr) = (#cc ≤ 1 + #cr ∧
∀ n ∈ N : 1 < n ≤ #cc ⇒ n@cc > n − 1@cr)

Rspec(cc, cr) = (#rc ≤ #cc ∧
∀ n ∈ N : 1 ≤ n ≤ #cr ⇒ n@cr > n@cc)

Note that in the procedure call interaction between a caller C
and a callee B over call channel cc and return channel cr, the
callee B assumes Cspec(cc, cr) and guarantees Rspec(cc, cr),
while the caller C assumes Cspec(cc, cr) and guarantees
Rspec(cc, cr). We then obtain the following two parts of their
specification:

Rspec(cc, cr) ⇒ Cspec(cc, cr) Caller

Cspec(cc, cr) ⇒ Rspec(cc, cr) Callee

This looks strange at a first sight, since their composition (a
conjunction), yields:

(Rspec(cc, cr) ⇒ Cspec(cc, cr))∧
(Cspec(cc, cr) ⇒ Rspec(cc, cr))

which does not appear very helpful to conclude anything.
However, when we apply induction over a series of calls, and
take into account the specification of the timing, and the rule of
strong causality, we can show that this leads to:

Cspec(cc, cr) ∧ Rspec(cc, cr)

The above can be simplified in the case where calls are
always returned. Hence, #cr = #cc so that the call protocol can
be specified as follows:

Cprot(cc, cr) = (#cr = #cc∧
∀ n ∈ N : 1 ≤ n ≤ #cc ⇒
((1 < n ⇒ n@cc > n − 1@cr) ∧ n@cr > n@cc))

Figure 29 Fragment of the composition of transaction Ser-
vice TS with the file system service FSS

We model the layer containing the Transaction Service TS
as follows (note that we only consider the time flow but not the
data flow):

TS ⊢(tsin : TSCall, fsout : FSReC ▶

tsout : TSReC, fsin : FSCall) :
Cspec(tsin, tsout) ∧ Rspec(fsin, fsout) ⇒

Rspec(tsin, tsout)

∧ Cspec(fsin, fsout)

∧ #tsin = #fsin

∧ ∀ n ∈ N : 0 < n ≤ #fsout ⇒
(∃ e ∈ N : e ∈ exectimets(tsin(n))∧

n@tsout = (n@fsout) + e)

where:

– TSCall denotes the type of calls to the Transaction Service
TS,

– TSReC denotes the type of returns from the Transaction
Service TS,

– FSCall denotes the type of calls to the File System Service
FFS,

– FSReC denotes the type of returns from the File System
Service FFS

– tsin denotes the call channel for calls to the Transaction
Service TS,

– tsout denotes the return channel for return messages of the
Transaction Service TS,

– fsin denotes the call channel for calls to the File System
Service FFS,

– fsout denotes the return channel for return messages of the
File System Service FFS

– exectimefs(c) denotes the set of execution times for the File
System Service FFS TS for input c

– exectimets denotes the set of execution times for the Trans-
action Service TS

– exectimeabts denotes the set of execution times for the
transaction service ABTS

For the File System Service FSS, given the set of possible
execution times exectimefs(c) for each call c ∈ FSCall, we get:

FFS ⊢ (fsin : FSCall ▶ fsout : FSReC) :
Cspec(fsin, fsout) ⇒ (Rspec(fsin, fsout)

∧ ∀ n ∈ N : 0 < n ≤ #fsin ⇒
(∃ e ∈ N : e ∈ exectimefs(fsin(n))∧

n@fsout = (n@fsin) + e))

This specification asserts that each call arriving over tsin is
forwarded at some later time to the File System Service FSS
and, as soon as the answer is received, it is sent back.
These conditions are combined by the composition of TS with

18 Broy, Selić

Figure 30 Fragment from the layered architecture with two
separated copies of FFS without feature interaction

FFS, as explained in sect. 4.2:

TS⊗FFS ⊢ (tsin : TSCall ▶ tsout : TSReC) :
∃ fsout ∈ FSReC, fsin ∈ FSCall :

Cspec(tsin, tsout) ∧ Rspec(fsin, fsout) ⇒
Rspec(tsin, tsout)

∧ Cspec(tsin, tsout)

∧ #tsin = #fsin

∧ (∀ n ∈ N : 0 < n ≤ #fsout ⇒
∃ e ∈ N : e ∈ exectimets∧

n@tsout = (n@fsout) + e)

∧ Cspec(fsin, fsout) ⇒ (Rspec(fsin, fsout)

∧ ∀ n ∈ N : 0 < n ≤ #fsin ⇒
∃ e ∈ M : e ∈ exectimefs(fsin(n))

∧ n@fsout = (n@fsin) + e)

which implies (by induction proof):

∃ fsout ∈ FSReC, fsin ∈ FSCall :
Cspec(tsin, tsout) ⇒

Cprot(tsin, tsout)

∧ #tsin = #fsin

∧ (∀ n ∈ N : 0 < n ≤ #fsout ⇒
∃ e ∈ N : e ∈ exectimets ∧ n@tsout = (n@fsout) + e)

∧ Cprot(fsin, fsout)

∧ ∀ n ∈ N : 0 < n ≤ #fsin ⇒
(∃ e ∈ N : e ∈ exectimefs(fsin(n))

∧ n@fsout = (n@fsin) + e)

It is straightforward to define a similar architectural fragment
with the two services dedicated to AppA and AppB respectively
(see Fig. 30).

This gives us information about the specified timing for the
case without feature interaction (see Fig. 30).

To model the feature interaction, we give a specification of

Figure 31 Fragment from the layered architecture with shar-
ing of FFS with feature interaction

the transaction service ABTS (see Fig. 31):

ABTS ⊢ (Atsin, Btsin : TSCall, fsout : FSReC ▶

Atsout, BTsout : TSReC, fsin : FSCall) :
Cspec(Atsin, Atsout) ∧ Cspec(Btsin, Btsout)

∧ Rspec(fsin, fsout) ⇒
Rspec(Atsin, Atsout)

∧ Rspec(Btsin, Btsout)

∧ Cspec(fsin, fsout)

∧ Scheduling(Atsin, Btsin, fsout, Atsout, Btsout, fsin)

where Scheduling(Atsin, Btsin, fsout, Atsout, Btsout, fsin) repre-
sents the scheduling function, which is defined as follows.

Scheduling(Atsin, Btsin, fsout, Atsout, Btsout, fsin) is specified as a
first come first served strategy as follows:
Here we use two functions ha and hb to indicate in which order the
incoming messages on the streams Atsin and Btsin are scheduled into
the stream fsin. Furthermore, an and bn represent natural numbers that
correspond to time instants of the corresponding streams. The notation
[1 : n] represents an interval of naturals from 1 to n ∈ N. There exist
functions:

ha : [1 : an] → [1 : (an + bn)]

hb : [1 : bn] → [1 : (an + bn)]
that fulfill the following equations (ha and hb are strictly increasing and
their images are distinct):

∀ i, j ∈ [1 : an] : i < j ⇒ ha(i) < ha(j)

∀ i, j ∈ [1 : bn] : i < j ⇒ hb(i) < hb(j)

∀ i ∈ [1 : an], j ∈ [1 : bn] : ha(i) ̸= hb(j)
This ensures, that ha and hb define a schedule. It has to preserve the
timing constraints:

∀ i ∈ [1 : an], j ∈ [1 : bn] :

(i@Atsin < j@Btsin ⇒ ha(i) < hb(j))

∧ (j@Btsin < i@Atsinimplieshb(j) < ha(i))
The calls arising on Atsin and Btsin are scheduled as soon as possible,
which means as soon as they arrive and the last call has returned (in case
this is not the first call to be scheduled):

∀ i ∈ [1 : an], k ∈ [1 : (an + bn)] :

ha(i) = k ⇒ ∃ e ∈ N : e ∈ exectimeabts

(k = 1 ∧ k@fsin = (i@Atsin) + e)

∨ (k ̸= 1 ∧ k@fsin = max(k − 1@fsout, i@Atsin) + e)

∀ i ∈ [1 : bn], k ∈ [1 : (an + bn)] :

hb(i) = k ⇒ ∃ e ∈ N : e ∈ exectimeabts

(k = 1 ∧ k@fsin = (i@Btsin) + e)

∨ (k ̸= 1 ∧ k@fsin = max(k − 1@fsout, i@Btsin) + e)

Specifying and Composing Layered Architectures 19

For of streams Atsout and Btsout that are the output of ABTS the timing is
determined by the output on fsout:

∀ i ∈ [1 : an] : ∃ e ∈ N :

e ∈ exectimeabts ∧ (i@Afsout) = (ha(i)@fsout) + e

∀ j ∈ [1 : bn] : ∃ e ∈ N :

e ∈ exectimeabts ∧ (j@Bfsout) = (hb(j)@fsout) + e

The scheduling is done in a first come first served order.
If we compare the two specifications for systems shown in

Fig. 30 and Fig. 31, they deliver different provided services
ATS and BTS. For the latter case, the feature interaction is vis-
ible in the interface behavior of the subservice provided by
(Btsin, Btsout). This is easy to seen by a simple example: as-
sume that we have

(1@Atsin) + 1 = 1@Btsin

(i.e., Btsin occurs after Atsin). Then ha(1) < hb(1) and, conse-
quently

hb(1)@tsout > (ha(1)@fsin) + e + e′

for some e, e′ ∈ exectimeabts and thus

1@Btsout > (1@fsin) + e + e′

while in the case of the feature free architecture we get

1@Btsout = (1@fsin) + e′

for some e′ ∈ exectimeabts. The higher delay of the service
ATS as offered by ABTS due to the sharing of service FFS is,
of course, visible at the interface of the Transaction Service,
and consequently also at the interface of the Log Service. If
1@Atsin > 1@Btsin then there is no delay for Btsout(1). Con-
versely, too long a delay may result in a missed deadline and
an error state in AppB. This demonstrates that we can detect
a feature interaction simply by examining the interface speci-
fication of a system, without having to delve into its internal
implementation.

Note that here we mapped remote procedure calls onto data
flow and stream processing. In addition, there are examples
beyond remote procedure calls that can be handled by this kind
of model. As noted in sect. 5.1 in this example we have specified
an explicit time flow between the provided and the required
service.

8. Concluding Remarks
The approach that we have presented provides an abstract, ide-
alized view of layered architectures. It does not cover a number
of more specific technical issues that might arise if layered
architectures are not completely described in a modular style
as discussed in sect. 4 (although, even such effects can be de-
scribed directly in our approach). However, what we feel is
most important is that we have provided a precise syntactic and
semantic description of layered architectures.

8.1. Related Work
Plenty of work on system architecture deals with layered sys-
tems, tiered architectures, client/server architectures, hierarchi-
cal and vertical composition – all terms and concepts related
somewhat to layering. However, the terminology used in the
literature is often vague and confusing.

Following (Schmidt et al. 1996), the term “layer” designates
a logical structuring of groups of components in a software sys-
tem. In contrast, “client/server” refers to a generic invocation
relationship between services offered within a system and their
clients, independent of their respective placements within the
structure of the system or their deployment. That is, it simply
characterizes a generic invocation relationship, whereby a client
requests another server to perform a service task for its benefit.
Therefore, the two are distinct concepts, despite the fact that
both deal with relationships. For example, in a layered archi-
tecture, when a service in one layer invokes a service of a layer
directly below, these two services are in a “vertical” client/server
relationship (see sect. 1 and also sect. 5.2). However, the same
client/server pattern also applies in the “horizontal” case when
a service in a layer calls another service within the same layer.

Layered architectures are often confused with tiered architec-
tures, although the latter are defined in terms of their physical
deployment structure. In this case, a tier stands for a (cluster of)
computing nodes, with each tier providing a set of specialized
services. A client residing in one tier invokes the services of
a remote server in a different tier, in what constitutes a “hori-
zontal” client/server relationship. For example, for their Java
Enterprise technology, Sun Microsystems has developed a 4-tier
architecture comprising a Client Tier, Presentation Tier, Busi-
ness Services Tier, and a Data Tier, each residing on a separate
computing node5.

Our work is a continuation of (Herzberg & Broy 2005). Of
course, we can think even further here and move on from tier
architecture to mesh architecture. There is clearly potential for
significant future research in this domain, in terms of suitable
architectural patterns, reference architectures, and much more.

8.2. On Modeling Layers
In the example in sect. 7 we have demonstrated that classical
remote procedure call mechanism can be modeled using FOCUS
streams; i.e., by representing them as streams of invocations
and matching streams of responses. This is a typical example of
an expanded layer. Of course, procedure calls are just one way
of how the interaction between layers of a layered architecture
could be realized. Due to the high expressive power of this
specification technique, we can represent different kinds of
protocols by the stream processing data flows.

We distinguish basic and expanded layers. Basic layers fol-
low the platform idea, where layers are seen simply as platforms
that support implementations of their upper-layer clients. They
follow the idea of information hiding, where the specifics of
how required services are used by the upper layer makes no
observable difference to its own provided services. However, in
contrast, expanded layers include explicit specifications of data

5 https://docs.oracle.com/cd/E19636-01/819-2326/aavdm/index.html

20 Broy, Selić

flow between the provided and required service interfaces of a
layer.

8.3. On the Formal Model
The logical view we have introduced and used allows us to
describe and deal with a large number of concepts, patterns, and
issues connected to layered architectures at a relatively high
level of abstraction. We do not consider more implementation-
oriented technical issues of communication but rather used the
more abstract concepts of channels and streams. We also con-
sidered effects of feature interactions with systems and their
services residing on the same platform, leading to corruption
of required services (see the example in sect. 7). However, we
did not delve into quality of service aspects, such as response
times and the like, which might be pertinent in time-sensitive
applications, such as in the case study in sect. 7.

The key intent of our approach is to give a formal definition
of a layered architecture that goes beyond conventional implicit
or ambiguous definitions and explanations, such as those based
on graphical placement, which are open to misinterpretation.
They are simply insufficient to fully define what makes layering
unique.

8.4. Methodology
In our model, one can see that, in a layered architecture, the
higher layers are only guaranteed to produce their provided
services if the required services are delivered correctly by its
supporting layers. This specification method can be used in a
number of ways: supporting modular design, doing proofs about
layered architectures that involve specific data flows, feature
interactions, and as a basis for defining tests.

Using the proposed method for a formal specification of
layers, a specification of a concrete layer can be given, which
consists of a specification of the provided and the required
service. When constructing the implementation of the layer, the
provided service can be implemented assuming that the required
service is given. Then, the layer can be verified, for example,
by defining test cases based on the specification of the provided
and the requested services. Thus, the implementation of layer
can be realized and verified in modular way, independent of the
implementations of the layers above and below.

Another interesting aspect is that, in this model, it is clear
and formally provable that we can replace layers in a layered
architecture by different equivalent layers. That is, it is guaran-
teed that replacing layers in a layered architecture will not affect
the overall correctness of the layered architecture as long as its
original pattern of provided and required services, as specified,
is still guaranteed. After all, layering introduces a discipline in
system design (see (Sarkar et al. 2009)).

8.5. Future Work
The key idea in formalizing the layering pattern is the introduc-
tion of required services. This idea is not just restricted to the
pattern of layering. We may, in general, look at specifications
of systems which provide certain services and require certain
services: The composition of those systems is not necessarily
restricted to layering and could be done in a number of different

ways. It seems sufficient to guarantee that, when composing
systems, the services that are required by one of the systems are
provided by the other systems. Therefore, it would be interest-
ing to study more general patterns of system composition based
on relationships between provided and required services.

The design pattern of a layer is an instance of an assump-
tion/commitment specification (see (Broy 2018)). The idea of
required services therefore can be applied in a more general way
to architectures, not only for the case of layered systems, called
layers, but also in more general architectural structures such as,
for instance, mesh architectures.

Appendix: Streams, Time, and Behaviors
Throughout this paper, we use the terms system and service in
a specific way. We address discrete systems, more precisely,
models of discrete concurrent time-critical systems with input
and output. In this appendix, we introduce a corresponding
model of concurrent, distributed interactive systems according
to FOCUS (see (Broy & Stølen 2012)). In this model, the inter-
face behavior of systems is described by relations between input
and output streams. This way, for us, a system is an entity that
shows some specific interface behavior by interacting over its in-
terface with its surrounding operational context. This behavior
can be structured into services also called functional features. A
system has a boundary, which defines what is inside and what
is outside the system. Inside the system there is an encapsulated
internal structure, often consisting of states or state attributes
and an architecture composed of subsystems. This structure
is hidden following the principle of information hiding. The
set of actions and events that may occur in the interaction of
the system with its operational context determines the syntactic
(“static”) interface of the system or the service. At its inter-
face, a system shows a specific interface behavior. We specify
interface behavior by interface assertions.

There are general logical properties that we assume for inter-
face assertions. We require that system behaviors fulfill proper-
ties such as strong causality and realizability which are manda-
tory for a specification to be implementable. Causality requires
that an output is only generated after a corresponding input
has been received. Realizability requires the existence of an
interaction strategy within the system such that, for an arbitrary
input from the environment, the system will produce the correct
output according to its specification (see (Broy 2023b)). How-
ever, not all interface assertions guarantee these two properties
explicitly. Nevertheless, in such cases, causality or realizability
can be added by a rule resulting in system specifications with
these additional properties.

In FOCUS, being distributed, components of systems run in
parallel and systems, in general, operate in parallel, evolving in
a common physical time frame. We choose an interface concept
to describe services in a property-oriented way, services that are
interactive, time-critical, and run in parallel. In the following,
we briefly introduce the concepts, models, and notations of
FOCUS.

By M∗ we denote the set of finite sequences of elements
from set M which formally can be represented by functions (N

Specifying and Composing Layered Architectures 21

denotes the natural numbers including 0, N+ = N − {0}; N+

denotes the set of natural numbers without 0; [1 : n] ⊆ N+
denotes finite intervals of natural numbers for n ∈ N):

M∗ =
⋃

n∈N

([1 : n] → M)

By Mω we denote the set of infinite sequences over M:

Mω = (N+ → M)

The empty sequence as well as the empty stream is denoted
by ⟨⟩.

By (M∗)ω of infinite timed streams over a message set M
we denote the set:

(M∗)ω = (N+ → M∗)

In both cases, we use functions on the set of natural numbers
or intervals thereof to define timed streams as well as time free
streams. A stream x ∈ (M∗)ω is called a timed stream, since we
understand the set N+ to represent time in terms of an infinite
sequence of time intervals. Each time interval is numbered
by a number t ∈ N+. Then x(t) with t ∈ N+ denotes the
sequence of messages communicated by the timed stream x in
time interval t. For m ∈ M, we denote the one element sequence
and the one element time free stream by:

⟨m⟩

Note that the role of natural numbers in N+ in the two
expressions (N+ → M) and (N+ → M∗) is quite different.
In case of timed streams x, the number n ∈ N+ denotes the
sequence x(n) transmitted in the nth time interval, whereas in
time free streams n ∈ N+ simply denotes the ordinal position
of a message z(n) in a stream and does not represent time.

By #x ∈ N ∪ {∞} we denote the number of elements from
M occurring in a timed stream x ∈ (M∗)ω or in a time free
stream x ∈ M∗|ω . For a timed stream x ∈ (M∗)ω or a time free
stream x ∈ M∗|ω over set M and a subset D ⊆ M we denote by:

D#x

the number of copies of elements from D in x; we also write
a#x for {a}#x and #x for M#x.

Given a sequence s of elements from M (or in the case of
timed streams of elements, from M∗) and a stream x over M
(finite or infinite, in the case of time streams of elements over
M∗) we denote by:

sˆx

the concatenation of sequence s with stream x.
Given x ∈ (M∗)ω and t ∈ N we denote a time cut of length

n as follows:

x ↓ t ∈ ([1 : n] → M∗)

where:

(x ↓ t)(n) = x(n) ⇐ 1 ≤ n ≤ t

x ↓ t denotes the first t sequences in the timed stream x, repre-
senting the messages transmitted in the first t time intervals.

Streams are send over channels that connect systems. Given
a set X of typed channel names cj with types Tj:

X = {c1 : T1, . . . , cm : Tm}

X is called a signature. By
→
X we denote channel histories given

by families of timed streams, one timed stream for each channel:

→
X = (X → (M∗)ω)

where we assume that, for x ∈
→
X , the timed stream x(ck),

1 ≤ k ≤ m, for the channel ck ∈ X carries messages of
type Sk. All introduced notations, such as time abstraction x̄,
concatenation sˆx, time slice x ↓ t, continuation x ↑ t, and prefix

order carry over to channel histories x ∈
→
X , as well.

Given signatures X and Y , a function on histories (the defini-
tion can be easily translated to functions on streams):

f :
→
X →

→
Y

is called strongly causal, if:

∀ t ∈ N, x, x′ ∈
→
X : x ↓ t = x′ ↓ t

⇒ f (x) ↓ t + 1 = f (x‘) ↓ t + 1

Then we write SC[f].
An interface predicate Q (see sect. 4) for the syntactic inter-

face (X ▶ Y) is called strongly causal if

∀ t ∈ N, x, x′ ∈
→
X , y ∈

→
Y :

Q(x, y) ∧ x ↓ t = x′ ↓ t ⇒ ∃ y′ ∈
→
Y :

Q(x′, y′) ∧ y ↓ t + 1 = y′ ↓ t + 1)

Then we write SC[Q].
An interface predicate Q for the syntactic interface (X ▶ Y)

is called realizable, if the there exists a strongly causal function
f such that:

∀ x ∈
→
X : Q(x, f (x))

Then the function f is called realization of Q. A system
specification (X ▶ Y) : Q is called fully realizable if for all

x ∈
→
X and y ∈

→
Y for which Q(x, y) holds, there exists a

realization f for (X ▶ Y) : Q such that y = f (x). Every
realization:

f :
→
X →

→
X

has exactly one fixpoint which can be proved by Banach’s fix-
point theorem since f is a contractive function (see (Banach
1922)).

An interface predicate Q for the syntactic interface (X ▶ Y)
is called fully realizable if:

Q(x, y) = (∃ f :
→
X →

→
Y : y = f (x) ∧ Q[f])

22 Broy, Selić

where Q[f] holds if f is a realization for Q:

Q[f] = (SC[f] ∧ ∀ x ∈
→
X : Q(x, f (x)))

We assumed that systems are implemented (realized) by gen-
eralized Moore machines (see (Moore et al. 1956)) which serve
as the operational model. Since Moore machines compute in-
terface behaviors that are fully realizable, every fully realizable
interface predicate Q corresponds to a Moore machine that com-
putes for input history x the output history y. If Q(x, y) is a fully
realizable specification, it is a correct and complete logical de-
scription of the behavior of the Moore machine that implements
Q.

If an interface predicate Q for the syntactic interface (X ▶ Y)
is not fully realizable, we define the weakest fully realizable
interface predicate Q® that is a refinement of interface predicate
Q as follows (see (Broy 2023b)):

Q®(x, y) = ∃ f :
→
X →

→
Y : y = f (x) ∧ Q[f]

The predicate Q® always exists – but may be equal to the
specification false in case of a unrealizable specification Q. A
fully realizable interface predicate is always strongly causal.

We assume that an interface specification:

S ⊢ (x : X ▶ y : Y) : Q(x, y)

specifies a system S where S is realized by a Moore machine
(see (Broy 2023b)). Since the behavior of every Moore ma-
chine is fully realizable, system S is fully realizable, so we can
conclude that:

S ⊢ (x : X ▶ y : Y) : ∃ f :
→
X →

→
Y : y = f (x) ∧ Q[f]

Since a fully realizable specification is strongly causal, this
implies:

S ⊢ (x : X ▶ y : Y) :
(Q(x, y)

∧ ∀ t ∈ N, x′ ∈
→
X :

∃ y′ ∈
→
Y : R((x ↓ t)ˆx′, (y ↓ (t + 1))ˆy′))

since the proposition:

(Q(x, y) ∧ ∀ t ∈ N, x′ ∈
→
X : ∃ y′ ∈

→
Y :

R((x ↓ t)ˆx′, (y ↓ (t + 1))ˆy′))

is the weakest refinement of Q(x, y) that is strongly causal. In
most practical cases, a strongly causal specification is fully
realizable. Therefore, in such cases the weakest strongly causal
refinement is already sufficient to prove all properties that hold
for all Moore machines that realize the specification.

Note that for a system S specified by an interface predicate
Q:

S ⊢ (x : X ▶ y : Y) : Q(x, y)

we can deduce a strongly causal specification:

S ⊢ (x : X ▶ y : Y) :

(Q(x, y) ∧ ∀ t ∈ M, x′ ∈
→
X : ∃ y′ ∈

→
Y :

R((x ↓ t)ˆx′, (y ↓ (t + 1))ˆy′))

and even to a fully realizable specification:

S ⊢ (x : X ▶ y : Y) : ∃ f :
→
X →

→
Y : y = f (x) ∧ Q[f]

A fully realizable interface predicate then permits derivation
of all interface properties of implementations. Therefore, the
calculus that comprises the rule to refine interface predicates
into fully realizable ones is sound and relative complete.

Acknowledgments
The authors express their heartfelt gratitude to the "superhero"
LaTex expert who helped convert the complex and intricate
text of this document from its original MS Word format into
the LaTex format required by the Journal. In addition, we are
also extremely grateful to those who did such a professional
and thorough job of completing what was undoubtedly a most
daunting task.

References
Banach, S. (1922). Sur les opérations dans les ensembles

abstraits et leur application aux équations intégrales. Funda-
menta mathematicae, 3(1), 133–181.

Broy, M. (2010). Multifunctional software systems: Struc-
tured modeling and specification of functional requirements.
Science of Computer Programming, 75(12), 1193–1214.

Broy, M. (2018). Theory and methodology of assumption/-
commitment based system interface specification and archi-
tectural contracts. Formal Methods in System Design, 52,
33–87.

Broy, M. (2023a). A calculus for the specification and verifica-
tion of distributed concurrent systems.
(To appear)

Broy, M. (2023b). Specification and verification of concurrent
systems by causality and realizability.
(Submitted for publication)

Broy, M., Krüger, I. H., & Meisinger, M. (2007). A formal
model of services. ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), 16(1), 5–es.

Broy, M., & Stølen, K. (2012). Specification and development
of interactive systems: focus on streams, interfaces, and
refinement. Springer Science & Business Media.

Clements, P., Garlan, D., Little, R., Nord, R., & Stafford, J.
(2003). Documenting software architectures: views and be-
yond. In 25th international conference on software engineer-
ing, 2003. proceedings. (pp. 740–741).

Dijkstra, E. W. (1983). The structure of “THE”-
multiprogramming system. Communications of the ACM,
26(1), 49–52.

Herzberg, D., & Broy, M. (2005). Modeling layered distributed
communication systems. Formal Aspects of Computing, 17,
1–18.

Specifying and Composing Layered Architectures 23

Hofmeister, C., Nord, R., & Soni, D. (2000). Applied software
architecture. Addison-Wesley Professional.

Mary, S., & David, G. (1996). Software architecture: Perspec-
tives on an emerging discipline. Prentice-Hall.

Mietzner, R., Fehling, C., Karastoyanova, D., & Leymann, F.
(2010). Combining horizontal and vertical composition of
services. In 2010 ieee international conference on service-
oriented computing and applications (soca) (pp. 1–8).

Moore, E. F., et al. (1956). Gedanken-experiments on sequential
machines. Automata studies, 34, 129–153.

Sarkar, S., Maskeri, G., & Ramachandran, S. (2009). Discovery
of architectural layers and measurement of layering violations
in source code. Journal of Systems and Software, 82(11),
1891–1905.

Schmidt, D., Stal, M., Rohnert, H., & Buschmann, F. (1996).
Pattern-oriented software architecture, volume 1: a system of
patterns. John Wiley & Sons Chichester, UK.

Selic, B. (2020). The forgotten interfaces: A critique of
component-based models of computing. J. Object Technol.,
19(3), 3–1.

Selić, B. (2021). On the precise semantics of the software
layering design pattern. Journal of Object Technology, 20(2),
2:1-13.

Zdun, U., & Avgeriou, P. (2005). Modeling architectural pat-
terns using architectural primitives. ACM SIGPLAN Notices,
40(10), 133–146.

About the authors
Manfred Broy is professor emeritus for Software and Systems
Engineering at the Faculty of Informatics at the Technische
Universität München. He is doing research at the foundation and
practice of software intensive cyper-physical systems. You can
contact the author at broy@in.tum.de or visit https://wwwbroy
.in.tum.de/~broy/.

Bran Selić is President of Malina Software Corp. and Adjunct
Professor of Software Engineering at Monash University. He
has over 50 years of industrial and research experience, fo-
cusing primarily on cyber-physical systems and model-based
engineering technologies. In 2022, he was awarded an hon-
orary doctorate from Mälardalen University in Sweden. You
can contact the author at selic@acm.org.

24 Broy, Selić

mailto:broy@in.tum.de?subject=Your paper "Specifying and Composing Layered Architectures"
https://wwwbroy.in.tum.de/~broy/
https://wwwbroy.in.tum.de/~broy/
mailto:selic@acm.org?subject=Your paper "Specifying and Composing Layered Architectures"

