
Journal of Object Technology | RESEARCH ARTICLE

Extending the Object-Capability Model with
Fine-Grained Type-Based Capabilities

Roland Wismüller∗, Damian Ludwig∗∗, and Felix Breitweiser∗
∗University of Siegen, Germany

∗∗Federal Office for Information Security, Bonn, Germany

ABSTRACT Although the Principle Of Least Authority (POLA) is a well-recognized guideline for building secure software
systems, there is actually a lack of concepts that really encourage programmers to use POLA consequently. The best support
for POLA is currently offered by secure languages based on the Object-Capability (OCap) paradigm, where object references
serve as capabilities for accessing objects. However, the OCap model just controls the overall accessibility of objects, it does
not directly support fine-grained control over the use of specific operations on these objects. While access control at the
level of individual methods can be implemented by using the membrane pattern, this approach creates a heavy burden for
the programmer, may lead to performance problems, and suffers from the fact that it is difficult to determine the minimum
permissions that must be granted.
In this paper, we present a type-based split capability model, where the access permissions granted by a reference are restricted
by the type of the variables used to send and receive that reference. In this way, required and granted permissions are directly
represented in the type definition of a software component’s interface. Furthermore, compliance with access restrictions can
often be checked statically when a software component is deployed, thus avoiding the run-time overhead of using a membrane.
In the case where membranes are needed to enforce access control at run-time, these membranes are automatically built by
the run-time system.
As a foundation for this model, we specify type checking rules that prevent software components from from amplifying their
authority by downcasting a reference to a more permissive type. Finally, we identify the necessary requirements for the run-time
system as well as the run-time overhead induced by our security model.

KEYWORDS access control, object-capability model, capabilities, type system.

1. Introduction
There is a great deal of agreement in the scientific community
that software systems employing untrusted components should
be built on the Principle Of Least Authority (POLA), which
demands that a subject should receive just the authority it needs
to successfully achieve its intended purpose (Miller & Shapiro
2003). Surprisingly, there are nevertheless only few concepts,

JOT reference format:
Roland Wismüller, Damian Ludwig, and Felix Breitweiser. Extending the
Object-Capability Model with Fine-Grained Type-Based Capabilities. Journal
of Object Technology. Vol. 23, No. 1, 2024. Licensed under Attribution 4.0
International (CC BY 4.0) http://dx.doi.org/10.5381/jot.2024.23.1.a1

which really encourage and support the programmer to use
POLA. One of the most prominent paradigms in this area is the
object-capability (OCap) model (Miller 2006; Murray 2008).
OCap supports POLA in the sense that a subject (which in OCap
actually is an object in an active role) can access an object only
when it received a reference to that object from someone else.
The reference acts as a capability, which cannot be forged by
the subject itself. Thus, OCap allows to easily ensure that a
subject can only access the objects that it actually needs for
performing its task. However, a severe limitation of OCap is
that it essentially only limits the ability to access objects, but
not the ability to perform specific operations on these objects.

As a motivating (and drastic) example, consider a rocket

An AITO publication

http://dx.doi.org/10.5381/jot.2024.23.1.a1

base equipped with a number of rockets and two kinds of sub-
jects: the president and service technicians. There are two
possible operations for each rocket: getStatus() determines
the healthiness of the rocket, while launch() fires the rocket.
In an object oriented programming language, we may model
this as follows:1

1 class Rocket {
2 ...
3 public int getStatus() { ... }
4 public void launch() { ... }
5 }

The service technician is also modeled as an object:

1 class ServiceTechnician {
2 ...
3 public void service(Rocket r) { ... }
4 }

Now, the OCap model perfectly ensures that the service tech-
nician can access a rocket only if he receives a reference to
that rocket via a call to service() executed by an authorized
subject. However, OCap does not prevent him from invoking
launch() on that rocket!

We may be tempted to introduce an interface that only in-
cludes the relevant method getStatus():

1 interface Serviceable {
2 int getStatus();
3 }
4 class Rocket implements Serviceable {
5 ...
6 }
7 class ServiceTechnician {
8 ...
9 public void service(Serviceable r) {

10 ...
11 }
12 }

However, of course, in traditional OO languages, nothing pre-
vents the service technician from implementing service() like
this:

1 public void service(Serviceable r) {
2 ((Rocket)r).launch();
3 }

The way how this problem is traditionally solved in OCap is to
introduce a membrane (also called a facet) (Miller 2006; Mettler
et al. 2010), i.e., to use a forwarding object that only provides
the permitted methods. In our example, we would have to define
a new class:

1 class RocketMembrane
2 implements Serviceable {
3 private Rocket delegate;
4 public RocketMembrane(Rocket r) {

1 We use the widely-used OO language Java, rather than a special OCap lan-
guage like E (Miller 2006) for the best possible clarity. For simplicity, we
assume that the rocket status is simply encoded as an int value.

5 delegate = r;
6 }
7 public int getStatus() {
8 return delegate.getStatus();
9 }

10 }

We then would pass such a restricted membrane to the service
technician:

1 st.service(new RocketMembrane(rocket));

This practice is actually secure, but it has a number of serious
drawbacks:

1. The burden on the programmer for implementing POLA is
extremely high, since in the OCap model POLA demands
to provide an individually tailored membrane for each use
of an object. Thus, in practice, classes for many different
membranes must be written.

2. There is no safe way for the programmer to know what
kind of authority is actually required by a specific subject.
While in our example, the argument type Serviceable
of service() gives us some hint, a programmer can usu-
ally not rely on the fact that the subject only requires the
methods of this interface, as there sometimes are legal rea-
sons for downcasting an object reference. As an example,
assume that some subset of the rockets has an additional
operation test() for performing an extended self test:

1 interface Testable {
2 int test();
3 }
4 // TestableRocket also implements
5 // Serviceable
6 class TestableRocket extends Rocket
7 implements Testable {
8 public int test() { ... }
9 }

In this case, the service technician should be able to use
that method, if needed:

1 public void service(Serviceable r) {
2 ...
3 if (problem_detected &&
4 (r instanceof Testable)) {
5 int diag = ((Testable)r).test();
6 ...
7 }
8 }

This means that the class RocketMembrane must be ex-
tended to also allow the use of the method test(), al-
though the programmer cannot infer this fact from the
signature of service().

3. Since the programmer cannot be sure whether a subject is
honest or not, he must always create a membrane to restrict
the use of an object passed to that subject. In the case of a
honest subject, this results in an unnecessary overhead.

2 Roland Wismüller et al.

4. Finally, the explicit creation of membranes may lead to
an unacceptable overhead in large-scale systems, since
the membranes will typically cascade. As an example,
assume that we have a service assistant as another kind of
subject. The service technician can delegate some tasks
to his assistant, but the assistant is not allowed to execute
the self test. To enforce this restriction, service() must
wrap its argument into a membrane that just provides the
getStatus() method, before passing it to the assistant.
However, the argument is already a membrane, so we now
have two levels of indirection. Note that we cannot avoid
cascading, since for security reasons it obviously must not
be possible for the service technician to remove the old
membrane.

In this paper, we will show how all of these drawbacks can
be avoided by regarding types as specifications of access rights
at the level of individual methods, such that a reference together
with the static type of the variable containing it acts as a fine-
grained capability. In particular, we will present the following
contributions:

– We develop a model of split capabilities, where a certain
part of the capability (the object reference) can be freely
passed around between subjects while another part (the
static type of the variable containing the reference) is per-
manently located at a specific subject. This will provide a
clear view on how types can be regarded as capabilities.

– From the requirements imposed by this model, we derive a
type system that enables an easy and yet secure coopera-
tion of untrusted components. Besides enabling the split
capability model, the type system supports both structural
and nominal typing and also provides a generic way to
support unsafe covariance. We will present a formal model
of the type system, together with a proof of its fundamental
security property.

– Finally, we will identify the requirements for an execution
environment (i.e., a virtual machine) based on that type sys-
tem, together with an analysis of the sources of overhead
imposed by it.

2. A Type-Based Split Capability Model
In order to get a clearer understanding of the OCap model and
how it may be improved, we will now analyze the model in
more detail. As the main goal of OCap is to support POLA, we
first need to know what authority actually means.

Intuitively, we may describe the authority of a subject s as
the set of effects that s can cause on any object in the system of
consideration. I.e., in a pure object oriented model the authority
would be the set of pairs (m, o), such that s can achieve an
invocation of m on o. However, this is only half of the truth,
as authority may also be passed between subjects. Thus, the
authority of s also includes its ability to pass authority to other
subjects, as well as its ability to receive authority from other
subjects. In order to unify these different abilities, we will
use the generic term operation to denote any effect that can be
achieved on an object, i.e. calling a method as well as sending

and receiving of authority to / from it.2

However, the authority of s does not only include actions
performed by s itself, but also actions to which s may persuade
other subjects (confused deputy, c.f. (Miller et al. 2003)). As
the latter is virtually impossible to grasp, since it depends on
the behavior of all other subjects in the system, we need to
find a more restricted, but usable concept. We thus define the
direct authority of a subject s as the set of operations that s can
perform itself, i.e., without the help of another subject.

We can now analyze how the direct authority of a subject
s is extended, if another subject s′ passes s a capability for
some object o. In the traditional OCap model, this capability
just consists of a reference r to o. Since OCap requires a run-
time system that implements memory safety, it prevents s from
manipulating r in such a way that it references some other object
o′. As OCap does not induce any further limitations on the use
of r, the direct authority of s is extended by all operations on
o that are supported by that object. This includes the ability to
call any method provided by o,3 but we still have to analyze the
ability of s to send / receive capabilities to / from o. So how
can s pass a capability to o? The only way is to call a method
on o that accepts a reference as an argument. I.e., as soon as o
provides a method with a reference argument, s is able to pass
any capability to o. Likewise, if o provides a method returning
a reference, s is able to receive any capability from o.

In OCap, it is actually possible to restrict the direct authority
granted by a reference r by wrapping r’s target object o into
a membrane. This membrane may provide only a subset of
o’s methods, but it may also wrap method arguments and/or
results into other membranes, thereby restricting the authority
that s can send to / receive from o. The drawback here is that
the code for these membranes must be explicitly provided by
the programmer, and that the restriction of authority happens at
run-time, thus impeding static security analysis.

Now, how does the situation change, when our system is
programmed using a statically typed programming language?
In order to analyze the situation more thoroughly, let us consider
the case where subject s′ passes a reference r to subject s as an
argument of a method called on s.4 In order to do so, s′ must
have a reference rs to s, which has been declared with some
type T. Now, T is not necessarily identical to the actual type S
of s, but is usually some supertype of S, as shown in the code
snippet below.5

1 interface AT { // subtype of AS
2 void ma(AAT arg);
3 RAT mr();
4 }

2 Note that in the OCap model, an object can also act as a subject.
3 Depending on how strict the object model is implemented by the run-time

system, this may be limited to public methods or may also include protected
and private methods. E.g., in Java private methods can actually be called from
outside the class by using reflection.

4 The situation where r is passed as a result of a method called by s on s′ is
similar.

5 Despite the Java-like syntax, the example cannot be expressed in Java, as
Java does not support contravariant argument types when overriding methods.
Furthermore, to emphasize the influence of the types’ structure on subtyping,
the example is based on structural subtyping.

Extending the Object Capability Model with Fine-Grained Type-Based Capabilities 3

5 interface T { // supertype of S
6 void pass(AT arg);
7 }
8

9 interface AS { // supertype of AT
10 void ma(AAS arg);
11 RAS mr();
12 }
13 class S { // subtype of T
14 public void pass(AS arg) { ... }
15 }
16

17 ...
18 T rs = ...; // Reference to an
19 // instance s of class S
20 AT r = ...; // Reference to an
21 // instance of a class
22 // implementing AT
23 rs.pass(r); // pass r to s

This in turn means that the type AT, which s′ is using to
send r, is usually a subtype of the type AS used by s to receive
the reference. As the type AT actually restricts the operations
that can be performed using reference r, we can view AT as
a specification of the authority s′ is willing to pass to s. On
the other hand, AS is a specification of the requirements that
s imposes on the received reference (Hagimont et al. 1996).
Furthermore, via the argument type AAT of method ma() in
AT, s′ also specifies restrictions on references passed to the
target object of r, and via the return type RAT of mr() also on
references received from that object. Likewise AAS and RAS
specify the corresponding requirements of s.

However, in traditional programming languages, these speci-
fications are not binding, as it is allowed to downcast a reference
to a different type, provided that this type is a supertype of the
actual type of the referenced object. This is why classical OCap
is right in its analysis of authority and its use of membranes to
manifest any restrictions in the objects themselves.

So what we need is to restrict cast operations on references
in such a way that subjects are prevented from amplifying their
authority. Under this condition, the (dynamic) object refer-
ence r together with the static type AS used by s to receive
the reference in the above example forms a capability (r, AS),
where AS grants the authority to use the specified operations.
A notable aspect here is that the only information transferred
at run-time is the reference r, which is just the address of the
object and does not include any run-time type or other access
control information. The reference r just grants the permission
to use the referenced object, while the receiving type AS de-
fines how exactly the object may be used. On the one hand,
this drastically reduces the run-time overhead for implementing
fine-grained capabilities in comparison to a naïve capability-
based implementation where the information on the permitted
operations is explicitly passed alongside the reference. On the
other hand, as already mentioned above, AS and AT provide a
precise documentation of the authority actually required by s
and granted by s′, respectively.

So if the sender s′ has a capability (r, AT) and passes it on

Capability Capability

o

rs: T

r: AT arg: AS

ss’

pass(AT arg)

Reference

Figure 1 Subject s′ has a capability (r, AT) consisting of a
reference r and the static type AT of the variable containing r.
When this capability is passed on to s, only r is transferred.

Hardware

Components written in statically
typed high−level language

High−level language compilers

Components in native machine

inserted

Ahead−of−time or just−in−time compiler M
ac

h
in

e

V
ir

tu
alLoader/linker with static type checking

E
x
e

c
u

ti
o

n
 s

y
s
te

m

Components in bytecode with
static type information

code with run−time type checks

Figure 2 System model: Software components are repre-
sented by typed bytecode. When a component is loaded, a
static type check is performed and it is compiled into machine
code for execution.

to the receiver s, the capability is split, and only r is actually
transferred (see Fig. 1). When s successfully receives r, it has a
capability (r, AS). Traditional static type checking will ensure
that AT actually provides all the methods required by AS. In
addition, we must prevent s from casting r to a type that grants
more authority than AS. This can be achieved by designing
proper rules for permitted type casts in the programming lan-
guage. However, if security is just based on the properties of
the high-level programming language, this means that the com-
ponents integrated into a secure system must all be available as
source code, which is often infeasible due to the protection of
intellectual property rights. Thus, components should be deliv-
ered in a statically typed intermediate language, similar to the
Java bytecode. In that way, the virtual machine executing the
bytecode can perform static type checking when a component is
loaded. In addition, run-time type checks can be inserted where
required. Fig. 2 shows the system model assumed.

So far, the model restricts the interaction of any two objects in
a software system, which limits the expressiveness of any (high-
level or intermediate) language based on that model. However,
this is not necessary in practice, since within a single code unit
where all the code is written by the same group of programmers,
we will not have security concerns. Only when we deploy

4 Roland Wismüller et al.

software components from different, possibly untrusted sources,
we want to enforce security constraints for the interaction of
these components. To this end, we give up the requirement
that objects have a one-to-one correspondence with subjects,
which means that whenever an object is created, this object is
associated with a new subject. Rather, we also allow that a
newly created object is associated with the same subject than
the object creating it. In this way, we have the flexibility to
associate all objects belonging to a single code unit with the
same subject, thus, removing the need for security checks when
passing references between these objects. This concept is further
elaborated in Sect. 4.3.3.

To summarize: in the type-based split capability model, all
resources are realized as objects. An object can be accessed
only via a capability (r, S) which consists of a reference r to the
object and the static type S of the variable where that reference
is stored in. While r just controls whether or not the object
can be accessed at all, S determines which operations can be
performed on the object. When a capability is passed around,
only the reference r is transferred. After r has been received, the
receiver has a capability (r, T) where T is the static type of the
variable where r is stored into. A proper type system ensures
that this assignment is only successful, if the type cast from S
to T is legal, which implies that it does not amplify authority.
The type system further ensures that the receiver cannot cast the
reference to a type that is more permissive than T, so that the
direct authority granted by (r, T) is limited to the operations
that are permitted by both S and T.

3. Type System: Basic Ideas
We will now derive the basic ideas and structure of a type system
that allows to implement the type-based split capability model.
Since in this context, only references are relevant, we do not yet
include simple data types into our discussion. We further limit
this introductory discussion to interface types, i.e., we are just
considering (public) methods.

3.1. Assertions and Permissions
A traditional reference type actually specifies assertions on the
referenced object, i.e., in our context, which methods the ob-
ject must provide (including the methods’ argument and result
types). It is possible to “override” these assertions by downcast-
ing a reference. In this case, a run-time check ensures that the
assigned object actually provides the methods required by the
target type.

As our type system must not allow an amplification of author-
ity, a type must not only specify assertions, but also permissions,
such that a downcast for permissions is not possible. How can
we achieve this? For the sake of a clear discussion, we use the
following observation: A type T actually maps method names
to a corresponding state, i.e., in the traditional case, a method
m is either available in T with specified argument and return
types or it is not listed in the type. We will denote this state
as fT(m) and explicitly model a type as a function mapping
strings (i.e. possible method names) to a state. We now give the
two traditional states a refined meaning:

1. The type asserts that the method is provided by the refer-
enced object and permits the use of that method. We will
denote this state as avail, as an abbreviation for available.

2. The type does not assert that the method is provided by the
referenced object and also denies the use of that method.
This state is named denied.

Now, since we must not allow to downcast permissions, this
interpretation would mean that we cannot allow downcasting at
all. Thus, we introduce a third state:

3. The type does not assert that the method is provided by the
referenced object but permits the use of that method. We
call this state optional.6

In order to check whether this extension can lead to a consis-
tent type system, we should first consider the subtype relation.
Roughly speaking, S is subtype of T (S <: T), if S is “as least
as good” as T, i.e., every object (reference) of type S can be
regarded as also having type T. This means that S must provide
stronger assertions and/or more permissions than T, which in
our model translates to the requirement that for each m, fS(m)
must provide stronger assertions and/or more permissions than
fT(m), denoted as fT(m) ≤ fS(m). From the definition of our
states, it is obvious that we have denied < optional < avail.
Now let us check the cases where this definition of the ordering
prevents S from being a subtype of T. Note that S ≮: T implies
that an assignment of an object reference of type S to a variable
of type T (probably including an explicit type cast to T) is either
forbidden at all, or is only possible with some additional actions
at run-time.

– If we have some method m with fS(m) = denied and
fT(m) = avail, then we cannot allow such an assignment
at all, as it would result in an amplification of authority (S
denies the use of m while T permits it).

– If for some m we have fS(m) = optional and fT(m) =
avail, then we need to check at run-time whether the refer-
enced object actually provides a method m.7

– Finally, we may have a method m with fS(m) = denied
and fT(m) = optional. As in the first case, we must
prevent an amplification of authority. However, now T
does not require the referenced object to provide method m.
Thus, we actually can permit the type cast, provided that
at run-time we ensure that the object finally assigned does
not have this method. If the object to be assigned originally
had a method m, we can wrap it into a membrane that does
not provide m. Note that all the information needed to
construct this membrane is contained in the involved types
(S, T, and the type of the object to be assigned), thus, it
can be created transparently by the run-time system.

If we have a closer look at the last case, we may ask what type
the membrane should have, especially, what the status of m
6 Optional methods in a similar sense are provided by, e.g., Objective C and

Swift. Java’s default methods have a different semantics in that they just
allow that a class implementing an interface does not have to provide these
methods.

7 Actually, we also have to check whether the argument and return types are
consistent. This will be discussed in later sections of the paper.

Extending the Object Capability Model with Fine-Grained Type-Based Capabilities 5

Table 1 Semantics of method states

Type permits
the use of m

Type asserts
that m is
available in
the object

Type asserts
that m is un-
available in
the object

denied F F F

optional T F F

avail T T F

unavail F F T

should be. As the membrane is introduced just to give a guaran-
tee that m is not available, we need a new state asserting that the
referenced object does not provide m (and thus, does not permit
the use of that method). We call this state unavail, as an abbrevi-
ation for unavailable. As the type M of the membrane must be a
subtype of T (since the reference of type T will ultimately refer
to an object of type M), we must define optional < unavail,
thus resulting in a partial order for our method states. Table 1
summarizes the meaning of the four resulting states.

3.2. Back to the Example

Now that we have outlined the essential principles of our type
system, let us examine whether it can solve the example problem
from Sect. 1. To fulfill his duty, the service technician needs
access to the rocket’s getStatus() method, and its test()
method, if available. This can be easily and clearly specified in
the argument type of service():8

1 interface Serviceable {
2 int getStatus(); // state: avail
3 optional int test(); // state: optional
4 }
5 class ServiceTechnician {
6 ...
7 public void service(Serviceable r) {
8 ...
9 }

10 }

Since the state of method launch() is denied (the method is
not mentioned in the interface), the service technician will not
be able to downcast the received reference in such a way that
he can call that method. Thus, security is enforced just by
the static argument type of service(), not by wrapping the
rocket object into a membrane. Of course, the service technician
would be able to access launch(), if it were included in the
Serviceable interface, however, you would not hire a techni-
cian explicitly asking for the permission to launch the serviced
rocket, would you?

8 We introduce a new keyword optional to specify that the state of a method
is optional.

By including test() as an optional method in the interface,
the service technician will be able to call that method, if it is
available. In our implementation, we do not allow a direct call
to an optional method, as this may result in the call failing at run-
time. Rather, we restrict run-time errors to type cast operations
by forcing the programmer to first downcast the reference to a
type that specifies the method as avail, e.g.:

1 interface Testable {
2 int test(); // state: avail
3 }
4 ...
5 public void service(Serviceable r) {
6 ...
7 if (problem_detected &&
8 (r instanceof Testable)) {
9 int diag = ((Testable)r).test();

10 ...
11 }
12 }

Note that in this scenario, the caller of service() actually
can decide at run-time to deny the use of test() by simply
casting the passed reference to a type that does not include that
method:

1 interface NonTestable {
2 int getStatus(); // state: avail
3 }
4 ...
5 st.service((NonTestable)rocket);

In this case, the run-time system will automatically wrap the
rocket object into a membrane that misses the test() method.

So the idea of our type system nicely solves all the problems
discussed in the introduction. In the following subsections, we
will now provide a formal description of the type system based
on that idea, which also includes support for local object types
allowing unconstrained downcasts for objects owned by the
acting subject. After that, we will extend the type system with
support for unspecified reference types, unsafe subtyping, in-
cluding unsafe covariant types, and confined types. We will also
show how to compute adapters in order to implement coercions
for type casts.

4. Type System: Details and Formal Descrip-
tion

For a better understanding of the following presentation, we
will first clarify some assumptions and requirements on the
execution system that we have in mind. As already outlined
in Sect. 2, we assume a model very similar to that of the Java
language. Software components are written in a statically typed
programming language and are then compiled into bytecode
that preserves the relevant part of the static type information
(c.f. Fig. 2). The virtual machine can load new components at
run-time. When a component is loaded, a static type checker
first checks all assignments present in the loaded code unit. If
the type check succeeds, the intermediate code will be compiled

6 Roland Wismüller et al.

into native machine code incorporating additional run-time type
checks where necessary. In the following discussion, we assume
that the bytecode does not require explicit type cast operations,
but rather includes an implicit type cast operation whenever a
value is assigned to a variable (including passing arguments and
results to and from methods).

The ultimate goal of our approach is to allow the inclusion
of third party software components from possibly untrusted
sources in a secure way and thus, encourage software reuse.
As the interoperability of software components greatly benefits
from supporting both nominal and structural subtyping (Gil
& Maman 2008; Malayeri & Aldrich 2009), our type system
supports both of these typing disciplines.

4.1. Modeling of Types
In order to formalize the rules of the type system, especially
the subtype relation and the conditions for a legal downcast,
we model a type as a tuple comprising four components: the
machine’s representation of the type’s elements, a category
classifying the elements, the permissions granted by the type
and the protocol defining the available methods.

1. The representation specifies how the execution environ-
ment, e.g., the virtual machine or the processor, stores a
value of that type. For the following discussion, we distin-
guish simple data types, e.g., 8-bit integer or 64-bit floating
point numbers, and references to objects (or arrays). We
thus defineR = {int8, ..., float64, reference} as the set of
possible representations. The representation is important,
since the run-time system may have to change it when a
valid type cast is performed.

2. The purpose of the category is to capture all properties of
the type’s elements that are not explicitly modeled other-
wise. The type system does not impose any restrictions
on what exactly a category is, except that the set C of
categories must have an order ≤ with a smallest element
⊥ ∈ C, such that (C,≤) is a meet-semilattice. The in-
tended meaning of c1 ≤ c2 is that c2 provides more and/or
stronger assertions than c1, which means that c2 is a sub-
category of c1.

The main use of the category is to represent the explicit
relationships specified by nominal subtyping. E.g., when
a class c2 is declared as a subclass of c1, we use c1 and c2
with c1 ≤ c2 as the types’ categories.

The category is also used to identify arrays and to capture
the possible range of integer and floating point numbers.
E.g., we define a category Cint8 for integers in the range
[−128, 127], and similar for the other simple data types.
Note that this specification is different from the representa-
tion, as we may have a type with elements stored as 16-bit
values, which are nevertheless constrained to the range
[−128, 127].

3. The permissions are modeled as a mapping from identi-
fiers to the states avail, optional, denied and unavail intro-
duced above. For reference types, identifiers will include

method names, but in general they can also represent other
features of the type’s elements (see Sections 4.3.3 and 6.3).

4. Finally, for reference types, i.e., if the representation is
reference, the protocol specifies the argument and return
types9 for each (public) method of the referenced object.
Again, we model the protocol as a mapping from method
names to method signatures10, where the special value⊥ is
used, if the type does not specify a signature, e.g., because
the named method does not exist.

Our formal representation of types is summarized in Fig. 3.
As an example, the interface Serviceable discussed in

Sect. 3.2 will be represented like this:

TServiceable = (reference, CServ, fServ, pServ), with

fServ(x) =

avail if x ∈ N

∨ x = ”getStatus”

optional if x = ”test”

denied otherwise

pServ(x) =

((), (Tint)) if x = ”getStatus”

∨ x = ”test”

⊥ otherwise

Tint = (int32, Cint32, fint, λx.⊥), with

fint(x) =

 avail if x ∈ N

denied otherwise

In this example, the types do not restrict any features that may
be defined by N (see Sections 4.3.3 and 6.3 for examples). The
category CServ allows to control the subtyping behavior: A sub-
type of Serviceable must have a category C with CServ ≤ C.
So, if CServ = ⊥, any type can be a subtype of Serviceable,
as long as it is structurally compatible (structural subtyping).
If CServ ̸= ⊥, any subtype must have a category C that was
explicitly declared as a subcategory of CServ (nominal subtyp-
ing).

4.2. Subtyping Rules
The formal rules defining the subtype relation in our type system
are shown in Fig. 4. Note that since our focus is on the permis-
sions granted and the assertions given by a type, we prefer the
notation T ≤ S rather than S <: T to denote that S is a subtype
of T.

We have already explained how the refined method states
influence the subtype relation in Section 3.1. In addition, we re-
quire the usual contravariance in argument types and covariance
in return types for all methods that are defined (i.e., permitted)
by both S and T.

9 We do not restrict our type system to a single return type.
10 The type system does not include special support for method overloading.

Overloading can be implemented by using a name mangling scheme as in
C++.

Extending the Object Capability Model with Fine-Grained Type-Based Capabilities 7

Type: T = R× C ×F ×P
A type is a tuple (representation, category, permissions, protocol).

Representation: R = {int8, int16, int32, int64, float32, float64, reference}
Specifies, how elements of this type are stored in the execution environment.

Category: any meet-semilattice (C,≤) with

- {⊥, Cint8, Cint16, Cint32, Cint64, Cfloat32, Cfloat64, Cclass, Cadapter, Carray} ⊆ C
- ∀x ∈ C : ⊥ ≤ x
- Cint64 < Cint32 < Cint16 < Cint8; Cfloat64 < Cfloat32 < Cint16; Cfloat64 < Cint32
- Cclass < Cadapter; Cclass < Carray

The predefined categories Cclass, Cadapter, and Carray will be explained in Sect. 4.4 and following.

The other predefined categories represent the value ranges for integer and floating point numbers. Since the order is
based on assertion strength we have, e.g., Cint64 < Cint32, which actually means that each value allowed by Cint32 is
also allowed by Cint64.

Types can freely introduce new categories, as needed. However, subcategories of Cadapter and Carray may only be
created by the type system itself (see Sections 4.4 and 4.6).

Permissions: F = AN∪A∗

The permissions granted by a type are defined by a total functiona mapping feature identifiers and strings (i.e., possible
method names) to assertions.

Here N is an arbitrary finite set of feature identifiers, A∗ denotes the set of all strings (i.e., possible method names)
and A = {denied, optional, avail, unavail} is the set of possible states.

Protocol: P = (M∪{⊥})A∗

A protocol is a total functiona mapping a method name to a method signature or ⊥.

HereM = T ∗ × T ∗, representing the method’s argument types and its return types.

As an invariant, we require that for any given method name, a type’s protocol specifies a method signature, if and only
if the type permits that method, i.e., its permissions map the method to one of the states avail or optional.

a Although A∗ is an infinite set, using a wild-card entry still allows the implementation of this function as a lookup-table.

Figure 3 Formal modeling of types.

8 Roland Wismüller et al.

Given the order of states s, t ∈ A specified by the following table:

POA

↓ t ≤ s→ denied optional avail unavail
denied T T T T
optional F T T T
avail F F T F
unavail F F F T

Then, the relation ≤ ⊆ T × T is the greatest fixed point of the following rules:

POT

T = (rT , cT , fT , pT) ∈ T
S = (rS, cS, fS, pS) ∈ T

rT = rS

cT ≤ cS

∀x ∈ N ∪A∗ : fT(x) ≤ fS(x)
∀x ∈ A∗ : (pT(x) ̸= ⊥∧ pS(x) ̸= ⊥) ⇒ pT(x) ≤ pS(x)

T ≤ S

POM

t = (At, Rt) ∈ M
s = (As, Rs) ∈ M
|At| = |As|
|Rt| = |Rs|

∀i ∈ [1, |As|] : (As)i ≤ (At)i

∀i ∈ [1, |Rt|] : (Rt)i ≤ (Rs)i

t ≤ s

Figure 4 Subtype relation: S is subtype of T, if and only if T ≤ S.

Extending the Object Capability Model with Fine-Grained Type-Based Capabilities 9

There are two other extensions compared to traditional struc-
tural subtyping rules. First the condition rT = rS in rule POT
indicates that we can only regard an element of type S as also
being an element of T, if it already is represented in the way
required by T. In all other cases, e.g., when we assign from an
8-bit integer variable to a 16-bit integer variable, the assignment
may still be legal as shown in the next section, however, it will
definitely require a conversion at run-time.

Second, the condition cT ≤ cS in POT enables us to handle
structural and nominal subtyping in a single framework. As
just explained above, a type T supporting structural subtyping
has cT = ⊥. Thus, the condition will always be satisfied and
subtyping is just based on structural compatibility.

For nominal subtyping, we extend C with a new element c
for each class C defined in a program. If a class C′ has been
declared as a subclass of C, we also extend the order≤ on C with
the element (c, c′), thus ensuring c ≤ c′ for the representative
c′ ∈ C of class C′. The same is true for nominal interfaces. This
means that if T has been declared as a nominal type, another
type T′ can only be subtype of T, if it is structurally compatible
and was explicitly declared as extending T.

4.3. Legal Casts
As we have seen in Sect. 2, the security of the type-based split
capability model depends on the fact that all assignments exe-
cuted at run-time are type-safe. Thus, we have to answer the
question under which conditions an assignment is legal. In
the following, we assume that (explicit or implicit) type casts
only occur as part of an assignment, including assignments of
arguments and results during a method call.

In general, there are two situations when a type check may
be performed:

– When a code unit, i.e., a component is loaded, the loader
must perform a static type check for all assignments in
the loaded code unit.11 In that way, most type errors will
already be detected at load-time rather than later at run-
time. Among others, the static type check will verify that
the component’s code conforms to the specification of the
required permissions given by the component’s interface.
Likewise, if a new component B is connected to another,
already loaded component A, i.e., the main class of B is
instantiated12 and a reference to that instance is passed to a
method in A, the static type check ensures that B does not
require more permissions than A is willing to grant (and
vice versa). This means that subsequent run-time errors
due to missing permissions are precluded.
The static type check can have three results: When the
checked assignment is illegal, loading the code unit will
be aborted with an error. Otherwise, if the type checker
determines that there is a chance for the assignment to fail
with a type error at run-time, e.g., in case of a downcast, a
proper run-time check is inserted into the code. Finally, if
the type checker can prove that there cannot be any type

11 Even though the high-level language compiler also performs a static type
check of the code, a malicious programmer may create the bytecode in some
other way, so it must be (re-)checked at load-time.

12 Remember that we consider a purely object oriented programming model.

error at run-time, the overhead for a run-time type check is
avoided.

– At run-time, an inserted type check for an assignment from
a variable s of type S (denoted as s : S) to another variable
t : T ensures that the value in / the object referenced by s
can actually be assigned to t. In contrast to the static type
check, the run-time check also has access to the type of the
actual value or object that is to be assigned.

4.3.1. Static type checks When performing static type
checks while loading a code unit, we consider the situation
that a variable s : S is assigned to another variable t : T. If the
static type check permits the assignment, we must ensure that
whenever the assignment is executed at run-time, the value or
object o′ : O′ that is ultimately assigned to t has type T, which
means that O′ <: T must hold.

In the easiest case, we have S <: T, which means that for all
objects o : O to which s may refer at run-time (or, for all values
which s may contain, respectively),13 we can simply assign o
to t without the need for any further action. This is because
we have O <: S by induction hypothesis, which in this case
implies O <: T.

If S ≮: T, we may be able to amend the assignment with a
type coercion performed at run-time. I.e., we can transform o
into an o′ : O′ with O′ <: T and then assign o′. Traditional
type systems usually just introduce coercions for value types, in
order to convert the value’s representation.

As we have seen in Sect. 3, we sometimes also need to in-
troduce coercions for objects, in the form of a membrane. A
membrane o′ : O′ for an object o : O provides a subset of the
methods available in o and delegates them to o. If necessary,
the membrane can also create other membranes for arguments
and/or return values of the methods. Such a membrane is neces-
sary when the status of some method is denied in S, but optional
in T.

Actually, coercions for objects do not have to be limited to
membranes, but can be arbitrary adapters that meet the following
properties:

– The adapter must have a subtype of T.
– The adapter can modify the type’s representation, its per-

missions (method states) and the argument and result types
of the methods in its protocol, but it cannot modify the
category or the methods’ semantics.

This means that the adapter delegates some or all of the avail-
able methods to o, while applying legal type conversions to the
arguments and results. In that way, the type system gains an in-
creased flexibility for supporting code reuse. E.g., it is possible
to assign an object with a method m(int) to a variable whose
type declares m as m(short). The adapter will take care of
converting the argument from short to int, which will always
succeed.

We intentionally restrict the possibility to create adapters
to cases where the type conversion of arguments and results

13 To simplify the language, we will refrain in future from explicitly mentioning
values contained in variables and rather just speak of objects referenced by
variables.

10 Roland Wismüller et al.

cannot fail at run-time. Otherwise, a programmer may be
highly astonished, if a method call fails with a type error, al-
though the method was called with the declared argument and
result types. E.g., with the types defined in the example of
Sect. 3.2, we are in principle able to create an adapter for a
method testRocket(Testable d) that accepts an argument
of type Serviceable and casts it to Testable before forward-
ing the method call. However, if a programmer now calls the
adapter’s method, passing a Rocket object as an argument, the
call would fail with a type error (since the Rocket object cannot
be assigned to a variable of type Testable), although Rocket
is a subtype of Serviceable.

4.3.2. Run-time type checks In general, even if a static
cast from S to T is allowed, it may be possible that a variable
s : S can refer to some object o : O that cannot be properly con-
verted for a legal assignment to t : T. If the static type checker
cannot rule out this possibility, it augments the assignment with
an additional run-time type check, which determines whether
there is some way to convert o into an object of type T. This
basically requires that o provides all methods required by T and
that the arguments and results of these methods can be properly
converted.

4.3.3. Handling Downcasts In order to prevent an ampli-
fication of authority, our type system must be more restrictive
than traditional ones. This actually limits the expressiveness
of programming languages based on that type system, as for
instance, it does not permit a downcast to a subtype. However,
if we use the justified assumption that the result of creating a
new object o, which should be associated with the subject s
creating it, results in a reference r allowing unrestricted access
to o, then we can actually allow s to downcast any reference to
that object o without restrictions, as this will not result in more
authority than s already has by means of r. Exploiting this fact
will basically remove all security-related restrictions of the type
system, if we stay in the context of a single subject (c.f. the
next-to-last paragraph of Sect. 2).

In order to implement this idea, the run-time system must be
able to determine the subject s associated with each object o,
which can be achieved by storing a subject-ID in each object.
At run-time, we then can determine whether o is associated with
the same subject that executes the assignment currently being
checked.

A meaningful static type checking is enabled by introducing a
feature local ∈ N (c.f. Fig. 3). For a reference type T involved
in a checked assignment, the assertion fT(local) = avail means
that the referenced object is guaranteed to be associated with
the subject that performs that assignment, while fT(local) =
optional means that this guarantee cannot be given. At run-time,
we now use two different types for an object, depending on
whether or not it is associated with the subject executing the
assignment being checked. In the first case, the object’s type O
asserts fO(local) = avail, while in the second case, it asserts
fO(local) = unavail.

With that, we can allow an unrestricted downcast from type
S to type T, whenever fT(local) = avail and fS(local) ̸=
unavail, i.e., T asserts that the referenced object is owned by

the subject performing the cast and the cast actually will succeed
or, in case of a static type check, at least has a chance to succeed
at run-time.

Note that we must now take special care when performing
a static type check of an assignment that transfers a reference
to some other object o′, e.g., when checking the assignment
to an argument in a method call. In this case, the assertion
fS(local) = avail of a source type S just guarantees that the
referenced object is local for the subject s performing the call.
For the subject s′ owning o′, it is local only if we have s = s′.
This is guaranteed, if and only if the type R of the reference
used for calling the method asserts fR(local) = avail. Thus,
if fR(local) ̸= avail, we must use a modified type S′ as the
source type of the type check, where S′ differs from S just by
having fS′(local) = optional. The same consideration applies
to the assignment of the results of a method call.

4.3.4. Type checking rules Fig. 5 shows the definition of
the relation isLegal(T, S, a, u) that determines whether a type
conversion from a type S to a type T is permitted. The parameter
a is always set to F in top-level calls of isLegal(). It is set to
T in rule LEGALT in the cases where an unrestricted downcast
is possible. Parameter u determines whether the cast may be
unsafe, i.e., is allowed to fail at run-time. Thus, for static type
checks, we use u = T, for checking a type conversion at run-
time u = F.

The type cast is permitted, if and only if the following four
conditions hold:

– S and T have the same representation, or both types are
value types. In the latter case, we can convert the value
into the required representation. Note that a possible range
check for values is based on the value type’s category, not
its representation.

– If the cast is not allowed to fail at run-time, the category cS
of S must be a subcategory of (i.e., a category with stronger
or equal assertions than) the category cT of T. Otherwise,
we can ignore the relationship of the category in S and T,
since even if cS is not a subcategory of cT , there is still a
chance that the object assigned at run-time actually has a
subcategory of cT .

– All features and methods that are guaranteed to be available
by T must also be guaranteed to be available by S, unless
we allow run-time errors. In that case, we have a chance
for the cast to succeed at run-time, even if T guarantees
that some feature or method x is available, but S does
not, provided that S at least allows the use of x or we are
allowed to perform an unrestricted downcast.

– For all methods m specified (i.e., permitted) by both S and
T, we require that all arguments and results can be legally
casted.

A static type check may actually have three different results:

– If we have S <: T, the cast is unconditionally legal, and
we do not need a check at run-time. Note that S <: T
implies isLegal(T, S, F, T).

– If we have isLegal(T, S, F, T), but S ≮: T, some run-time
action is required to convert the type. This conversion

Extending the Object Capability Model with Fine-Grained Type-Based Capabilities 11

The relation isLegal ⊆ T × T ×B is the greatest fixed point of the following rules:

LEGALT

T = (rT , cT , fT , pT) ∈ T
S = (rS, cS, fS, pS) ∈ T

a, u ∈ B

a′ = a ∨ (fT(local) = avail∧ fS(local) ̸= unavail)
rT = rS ∨ rT ̸= reference∧ rS ̸= reference

cT ≤ cS ∨ u
∀x ∈ N ∪A∗ : isLegal(fT(x), fS(x), a′, u)

∀x ∈ A∗ : (pT(x) ̸= ⊥∧ pS(x) ̸= ⊥) ⇒ isLegal(pT(x), pS(x), a′, u)
isLegal(T, S, a, u)

LEGALA

t, s ∈ A
a, u ∈ B

t = avail ⇒ (s = avail ∨ u ∧ (s ̸∈ {denied, unavail} ∨ a))
isLegal(t, s, a, u)

LEGALM

t = (At, Rt) ∈ M
s = (As, Rs) ∈ M

a, u ∈ B

|At| = |As|
|Rt| = |Rs|

∀i ∈ [1, |As|] : isLegal((As)i, (At)i, a, u)
∀i ∈ [1, |Rt|] : isLegal((Rt)i, (Rs)i, a, u)

isLegal(t, s, a, u)

Figure 5 Type checking rules: static type checking permits an assignment, if isLegal(T, S, F, T), while a run-time type checks
requires isLegal(T, S, F, F).

12 Roland Wismüller et al.

may succeed or may fail, depending on the concrete value
or object that is assigned. The details of computing this
run-time action are presented in Sect. 4.4.

– Finally, if ¬isLegal(T, S, F, T), there is no chance that the
cast can succeed at run-time, thus, the system may flag an
error and refuse to load the code unit.

For static type checks, the equations in Fig. 5 do not impose
any restrictions on the category. This is acceptable, since in the
case where cT ̸≤ cS, we have S ≮: T and thus, a run-time check
will be performed. However, it is desirable that the static type
check is as strict as possible. In principle, the run-time check can
only succeed, if the type O of the object that is actually assigned
has a category cO with cT ≤ cO. By induction hypothesis, we
must always have O <: S, which implies cS ≤ cO. This means
that if the static type check can prove that there is no x ∈ C
such that cT ≤ x and cS ≤ x (i.e., there is no least upper bound
for cT and cS), it can flag a type error. The problem here is that
(C,≤) may be extended by code units loaded at a later time.
However, in the case where cT and cS are visible only in their
local code unit, the condition for checking the category can be
tightened.

4.4. Computing Coercions
Let us again consider the situation where at run-time an object
v referenced by a variable s : S should be assigned to another
variable t : T. So far, we have only discussed whether or not
such an assignment is allowed. If the assignment is actually
allowed, we may still have to determine a suitable coercion that
converts v into an object w that can be directly assigned to t,
i.e., the type of w must be a subtype of T.

Note that due to the extension defined in Sect 4.3.3, the type
Vr = (rVr , cVr , fVr , pVr) of v actually depends on the subject r
receiving v, i.e., the subject that is performing the assignment.
I.e., if r is the owner of v, we have fVr (local) = avail, other-
wise fVr (local) = unavail. Thus, in the following, Vr and Wr
are the types of v and w as seen by that subject, denoted as
Vr = typer(v), Wr = typer(w).

From the three possible results of the assignment’s static
type check defined in Sect. 4.3.4, we only need to consider
the second case, where isLegal(T, S, F, T) but S ≮: T. If
S <: T, we can directly assign v to t, as (by induction hypothe-
sis) V <: S and thus V <: T must hold. On the other hand, if
¬isLegal(T, S, F, T), the assignment fails.

Now, if T is a value type, it is easy to see that also S and Vr
must be value types (rules LEGALT and POT). Thus, we just
need to convert the value of v into the representation required by
T, e.g., from int32 to float64. We also may (and should) perform
a range check during this conversion, based on the actual value
of v and the category of T.

Otherwise, T, S and Vr must be reference types. In this
case, we may have to build an adapter that properly converts
the interface of v. The adapter is an object w that delegates all
method calls to the object v, possibly converting the arguments
and results as needed. Thus, the code of a method in w typically
looks something like this:

1 RW method(AW arg) {

2 RV result = delegate.method((AV)arg);
3 return (RW)result;
4 }

Here, RW and AW are the result and argument types defined by
w, while RV and AV are the result and argument types used in
the implementation of v. Note that w does not necessarily need
to provide all the methods implemented by v.

The main question now is: how can we determine the exact
type Wr (and thus, also the class, i.e., the code) of the adapter
object w? Obviously, Wr must be a subtype of T. Since an
assignment is not allowed to amplify the authority of the subject
r executing the assignment, Wr must not provide more authority
than S, except in the case where the object v is owned by r,
i.e., fVr (local) = avail. On the other hand, if an operation is
provided by v and is actually permitted by S, w should also
provide it.

We use a two-step approach to compute Wr. First, if nec-
essary, we determine a restricted subtype R of T that does not
provide more authority than S. As this step does not depend on
v, it can be executed during static type checking when a code
unit is loaded. Later, at run-time, we determine the type Wr
from R and Vr.

For a type T and a type S with isLegal(T, S, F, T), the re-
stricted subtype R = T ∩r S <: T is computed using the
rules shown in Fig. 6. If T is a value type, there is no au-
thority to restrict, thus, R = T (rule RSUBT1). For reference
types, we have to restrict T’s permissions, such that R does
not grant more authority than S (rule RSUBT2). This is done
in the following way (c.f., rule RSUBA): If an operation x is
not allowed by T or is allowed by S, there is no need for a
restriction, thus, fR(x) = fT(x). However, if x is allowed by
T, but is not allowed by S (i.e., fS(x) ∈ {denied, unavail}),
the restricted subtype must also not allow it. As T ∩r S is
only defined if isLegal(T, S, F, T), we just have to consider
the case fT(x) = optional. A look at rule POA shows that
we have to set fR(x) = unavail (since optional ≤ unavail).
The last equation in rule RSUBT2 ensures that the invariant
pR(x) ̸= ⊥ ⇔ fR(x) ∈ {avail, optional} specified in Fig. 3
is met.

Note that the restriction of permissions must be done re-
cursively, i.e., also for all argument and results types of the
methods specified in T (rules RSUBM and RSUBTS). Since
argument types are contravariant, we also need to define a re-
stricted supertype R′ = T ∩r S of S that does not provide more
authority than T. The rules for this restricted supertype are
shown in Fig. 7. Similar as before, we can leave the permis-
sions of S unchanged, if an operation is not allowed by S or is
allowed by T (rule RSUPA). The restricted supertype must not
allow an operation x, if is allowed by S, but not by T. In these
cases, we set fR′(x) = denied (since denied ≤ optional and
denied ≤ avail).

When the actual assignment is performed at run-time, in
addition to S, T and R = T ∩r S, we also know the object v and
its type Vr as seen by the receiving subject r. We then follow
the procedure outlined in Algorithms 1 and 2. Note that the
algorithms also include the case where v is transferred to another
subject, via an assignment to an argument or result value of a

Extending the Object Capability Model with Fine-Grained Type-Based Capabilities 13

Given the relation t ∩r s for states s, t ∈ A specified by the following table:a

RSUBA

↓ t ∩r s→ denied optional avail unavail
denied denied denied denied denied
optional unavail optional optional unavail
avail — avail avail —
unavail unavail unavail unavail unavail

Then, for two types S and T = (rT , cT , fT , pT), such that fT(local) ̸= avail and isLegal(T, S, F, T), the restricted subtype
T ∩r S is defined by the largest fixed point of the following rules:

RSUBT1

T = (rT , cT , fT , pT) ∈ T
S = (rS, cS, fS, pS) ∈ T

rT ̸= reference

T ∩r S = T

RSUBT2

T = (reference, cT , fT , pT) ∈ T
S = (rS, cS, fS, pS) ∈ T

R = (reference, cT , fR, pR) ∈ T
∀x ∈ N ∪A∗ : fR(x) = fT(x) ∩r fS(x)

∀x ∈ A∗ : pR(x) =

{
pT(x) ∩r pS(x) if pT(x) ̸= ⊥∧ pS(x) ̸= ⊥
⊥ otherwise

T ∩r S = R

RSUBM

t = (At, Rt) ∈ M
s = (As, Rs) ∈ M

t ∩r s = (As ∩r At, Rt ∩r Rs)

RSUBTS

T, S, R ∈ T ∗

|T| = |S| = |R|
∀i ∈ [1, |R|] : Ri = Ti ∩r Si

T ∩r S = R
a Note that t ∩r s is undefined for t = avail and s ∈ {denied, unavail}. However, this combination does not occur when computing a restricted subtype due to

the restricted domain of this operation.

Figure 6 Restricted subtype.

Algorithm 1 Run-time assignment from variable s to variable t.

Require: The static type check for the assignment t← s succeeded
1: r ← the subject owning the variable t
2: T ← the type of t
3: S← the type of s
4: v← the value of / object referenced by s
5: v′ ← castr,T,S(v)
6: if v′ = ⊥ then
7: raise run-time error
8: else
9: t← v′

14 Roland Wismüller et al.

Given the relation t ∩r s for states s, t ∈ A specified by the following table:

RSUPA

↓ t ∩r s→ denied optional avail unavail
denied denied denied denied unavail
optional denied optional avail unavail
avail denied optional avail unavail
unavail denied denied denied unavail

Then, for two types S and T, such that isLegal(T, S, F, T), the restricted supertype T ∩r S is defined by the largest fixed point
of the following rules:

RSUPT1

T = (rT , cT , fT , pT) ∈ T
S = (rS, cS, fS, pS) ∈ T

rS ̸= reference

T ∩r S = S

RSUPT2

T = (rT , cT , fT , pT) ∈ T
S = (reference, cS, fS, pS) ∈ T
R = (reference, cT , fR, pR) ∈ T

∀x ∈ N ∪A∗ : fR(x) = fT(x) ∩r fS(x)

∀x ∈ A∗ : pR(x) =

{
pT(x) ∩r pS(x) if pT(x) ̸= ⊥∧ pS(x) ̸= ⊥
⊥ otherwise

T ∩r S = R

RSUPM

t = (At, Rt) ∈ M
s = (As, Rs) ∈ M

t ∩r s = (As ∩r At, Rt ∩r Rs)

RSUPTS

T, S, R ∈ T ∗

|T| = |S| = |R|
∀i ∈ [1, |R|] : Ri = Ti ∩r Si

T ∩r S = R

Figure 7 Restricted supertype.

Algorithm 2 Run-time cast.

1: function castr,T,S(v)
2: (rT , cT , fT , pT)← T
3: (rS, cS, fS, pS)← S
4: Vr ← typer(v) ▷ The type of v as seen by the receiving subject
5: if rT ̸= reference then
6: return coercer,T(v) ▷ Convert the value
7: else if fT(local) = avail then ▷ No access restrictions
8: return coercer,T(unwrap(v))
9: else

10: R← T ∩r S
11: if v = unwrap(v) then ▷ Enforce access restrictions imposed by S
12: return coercer,R(v)
13: else if isLegal(R, Vr, F, T) then ▷ Enforce access restrictions imposed by both S and the previous adapter
14: R′ ← R ∩r Vr
15: return coercer,R′(unwrap(v))
16: else
17: return ⊥

Extending the Object Capability Model with Fine-Grained Type-Based Capabilities 15

Algorithm 3 Auxiliaries: Unwrap an adapter, compute the coercion of a value or object, create an adapter.

1: function unwrap(v)
2: (rV , cV , fV , pV)← type(v) ▷ The type of v as seen by its owner
3: if v ̸= null ∧ Cadapter ≤ cV then
4: return the object wrapped by v
5: else
6: return v
7: function coercer,R(v)
8: (rR, cR, fR, pR)← R
9: if rR = reference∧ v = null then

10: return null
11: else
12: Vr ← typer(v) ▷ The type of v as seen by the receiving subject
13: if ¬isLegal(R, Vr, F, F) then
14: return ⊥ ▷ Assignment will raise a run-time error
15: else if R ≤ Vr then
16: return v ▷ v already has type R
17: else if rR ̸= reference then
18: if v fits into the representation rR then
19: return the value of v converted into the representation rR
20: else
21: return ⊥
22: else
23: return wrapR(v)
24: function wrapR(v)
25: (rR, cR, fR, pR)← R
26: (rV , cV , fV , pV)← type(v) ▷ The type of v as seen by its owner
27: cW = new category with cV ≤ cW ∧ Cadapter ≤ cW

28: fW = λx.

{
avail if x = local ∨ (fV(x) = avail∧ fR(x) ̸∈ {denied, unavail})
unavail otherwise

29: pW = λx.

{
pR(x) if fV(x) = avail
⊥ otherwise

30: w← new object with the following properties:
31: − type(w) = (rR, cW , fW , pW)
32: − owner(w) = owner(v)
33: − w forwards all its method calls to v
34: return w

16 Roland Wismüller et al.

method call. As explained at the end of Sect. 4.3.3, an assertion
fS(local) = avail given by the source type S may no longer
be valid for the receiving subject. Thus, in principle we might
have to remove that assertion by setting fS(local) = optional.
However, since S is only used to compute the restricted subtype
R, this difference is irrelevant here, since rule RSUBA gives the
same result for avail and optional.

In addition to the assignment of a simple object, we also
need to handle the case where v already is an adapter. Now,
if the assignment’s target type T specifies fT(local) = avail,
we have the guarantee that either v is owned by the receiving
subject r or the assignment will fail in the process. Thus, we
should not impose any access restrictions on v, which means
that we can ignore the restrictions specified by S, but also those
enforced by a potential adapter. I.e., if v actually is an adapter,
we can unwrap it and continue with the original object instead.
In any case, we still need to convert the object to the target
type T, which may require a new adapter that properly converts
argument and return values of some methods. Using the two
auxiliary functions defined in Algorithm 3, this means that
we just assign coercer,T(unwrap(v)) (line 8, Alg. 2). The
function coerce may return the special value ⊥, which denotes
that a run-time error must be raised (line 6-7, Alg. 1). Thus, if v
actually is not owned by the receiving subject, the assignment
fails.

If the target type T does not assert fT(local) = avail, we
must take care that the access restrictions imposed by the source
type S are still enforced after the assignment. For this effect, we
use the restricted subtype R = T ∩r S as the new target type.
So, if v is not an adapter, we can just assign coercer,R(v) (line
11-12, Alg. 2). In the other case, we do not wrap the adapter into
another one, but rather compute a new adapter for the original
object that performs the function of both of them. To that end,
we must include the access restrictions of the old adapter in the
target type, i.e., we have to use R′ = R ∩r Vr as the new target
type (note that Vr manifests the old adapter’s access restrictions).
As R∩r Vr only exists if isLegal(R, Vr, F, T), we need to check
this condition and raise a run-time error, if it is not fulfilled.14

Otherwise, we assign coercer,R′(unwrap(v)) (line 13-17).
Algorithm 3 shows how a coercion of a value or object v of

type Vr to a target type R is computed. Lines 9-16 handle the
trivial cases, where no coercion is required or the assignment
is illegal. Otherwise, if v is a value, it is converted into the
required representation, if possible (lines 17-21). If v is an
object, we return an adapter with type R (line 23). To do so,
we create a new category cW that is a subcategory of both cV
and Cadapter (line 27), in order to mark w as being an adapter.
The adapter is owned by the same subject as the original object
(line 32) and provides all features and methods that are both
available in v and permitted by R. (lines 28, 29, and 31). All
methods are just forwarded to v, however, this may include type
casts for arguments and results.

Note that setting owner(w) = owner(v) implies that if
owner(v) = r, typer(w) will assert local, which means that

14 In contrast to the statement given in Sect. 4.3.4, we can and must allow
an unsafe cast here, since even if v cannot be converted to R without the
possibility of a run-time error, we still may have a chance after unwrapping v.

we cannot create a coercion for the case where fR(local) =
unavail. While this case could be handled by setting owner(w)
to some reserved subject, we simply disallow that any type
T of a variable specifies fT(local) ∈ {denied, unavail}, as
restricting a reference’s target to non-local objects does not
make much sense, anyway.

4.5. Classes
Up to now, we have restricted our discussion to reference types,
where we only considered the public methods offered by the
referenced objects. I.e., we just looked at interface types. How-
ever, we also must be able to adequately express the type of
an object as an instance of a class, including things like non-
public methods and attributes. As a security constraint, we
require that these elements of an object can only be accessed
by the subject owning that object. In other words, they are only
accessible via a reference with type T = (rT , cT , fT , pT) and
fT(local) = avail. Since these non-public elements are not
otherwise relevant in the context of access control, our type
system is independent of their exact nature and does not need
to model them explicitly. Rather, we just represent classes as
categories. Any instance of a class C created via new C then
receives the type type(C) := (reference, C, fC, pC) with

– fC(x) = avail for x = local and all other features or
methods that are actually provided by class C, otherwise
fC(x) = unavail,

– pC(m) = (Am, Rm), where Am and Rm are the argument
and return types of the method m as implemented by class
C.

The owner of the new instance usually is the subject execut-
ing the new operation. However, we can also allow to extend
the new operator in such a way that a new subject is created
together with the new object.

For consistency reasons, we require a number of constraints
for classes and class types:

– First, for each class C ∈ C, the relation Cclass ≤ C must
hold in order to mark C as being a class.

– If D is defined as being a subclass of C, i.e., Cclass ≤
C ≤ D, type(D) must be a subtype of type(C), i.e.,
type(C) ≤ type(D).

– For any type T = (rT , cT , fT , pT) with Cclass ≤ cT ,
the type T′ that only differs from T by specifying
fT′(local) = avail must be a supertype of type(cT), i.e.,
T′ ≤ type(cT).

The second constraint ensures the consistency between subclass-
ing and subtyping, while the last one safeguards consistency
between classes and the reference types using them. If a type
T specifies that the referenced object must be an instance of a
given class cT , it actually doesn’t make sense to require at the
same time some conditions on features or methods that cT does
not meet. The only exception here is the feature local which
does not depend on the object itself, but its owner.

A subtle problem with classes is the construction of adapters
based on delegation as shown in Algorithm 3. The adapter is
an object of a class cW with cV ≤ cW by definition. However,

Extending the Object Capability Model with Fine-Grained Type-Based Capabilities 17

cW can not really be a subclass of cV , because the non-public
elements of cV cannot be accessed via the adapter. We show
in the appendix (Theorem 7) that this situation can only occur
for assignments with a target type T where fT(local) ̸= avail,
which means that T does not allow to access the non-public
elements anyway.

4.6. Arrays
In order to smoothly integrate arrays into the type system, we
model arrays as objects of special classes implementing the
array’s access methods. E.g., the type for a one-dimensional
array of float values will provide the methods

1 float read(int index);
2 void write(int index, float value);
3 int length();

and will specify a category c with Carray ≤ c. The big advantage
of this representation is that we do not need any special handling
within the type system. This also implies that arrays can be
assigned to any reference with a type permitted by the rules in
Fig 5, thus, e.g. also allowing read-only array types. It is also
easily possible to support multidimensional arrays or to add
additional methods, like

1 void swap(int index1, int index2);

The latter enables the definition of a restricted type, which
allows to modify the order of the array elements while still
denying arbitrary write access to the array.

A consequence of this modeling is, of course, that the byte-
code based on the type system must represent array accesses
as explicit method calls. Without some special handling, this
would be prohibitively expensive at run-time. However, when
compiling the bytecode to machine code, we can avoid the over-
head of a method call by replacing it with a direct memory
access, provided that static type checking proves that the target
object of the call must always be a native array. As the prede-
fined category Carray is not exposed to the bytecode, array types
can only be created via constructors in the type system. Thus, if
the reference used for the call has a type T = (rT , cT , fT , pT)
with Carray ≤ cT , we can be sure that the target object is a
native array.

5. An Extended Example
In order to illustrate the working of the proposed type system,
we extend the example given in the introduction as shown in
Fig. 8. The service technician now receives a reference to a
rocket base that allows to get access to all the rockets in that
base. The service technician specifies an interface to the rocket
base that only allows to call the getStatus() method, and the
test() method, if available. This means that the president can
pass a reference to the rocket base without any further action at
run-time, and can still be sure that the service technician cannot
launch any of the rockets.

Furthermore, if the president wants to deny access to the
test() method, he can simply “cast away” that method when
passing the rocket base, as shown in the middle right sec-
tion of Fig. 8. Since the status of test() in Serviceable

is optional, the assignment of the reference is still legal (c.f.
rule LEGALA in Fig. 5). However, as NonTestable is no
longer a subtype of Serviceable, NonTestableBase is not
a subtype of ServiceableBase. Thus, the assignment of
the argument in the call to service() must be handled at
run-time according to Algorithms 1 and 2. Since the method
does not require its argument to be local15 and the actual ar-
gument is not already wrapped into an adapter, we coerce it
into the type R = ServiceableBase ∩r NonTestableBase

(c.f. lines 10-12 of Algorithm 2). The computation of this type
first does two covariant recursions before it finally computes
Serviceable ∩r NonTestable. Since the status of test()
is optional in Serviceable and denied in NonTestable, the
resulting status is unavail (rule RSUBA). So the result for R is
the type shown in the lower left of Fig. 8.

The adapter class computed according to the rules in Al-
gorithm 3 is just an implementation of this interface, where
all methods are simply delegated to the adapter’s delegate ob-
ject. The method service() now receives an instance of
BaseAdapter as its argument. When it calls getRockets()
on this adapter, the type cast of the return value (from Rocket[]
to rServiceableArray) will result in the creation of an
ArrayAdapter instance via the same argumentation as above.
Finally, reading an element via the read() method will return
a RocketAdapter that does not provide the ability to invoke
the test() method.

6. Extensions
In the following subsections, we present some extensions that
we have implemented in the type system presented in Sect. 4.

6.1. Unspecified Reference Type
In practice, there is a need for a type system to also support
an unspecified (generic) reference type. This is required, for
instance, if a subject requests the run-time system to dynam-
ically load a new component specified by its name. In that
case, the run-time system must return a reference to some object
contained in that component, otherwise, OCap will not allow
to interact with it. As there is no way to know the type of
this reference in advance, we need a generic reference type.
Generic references also are required for implementing generic
containers, etc.

In languages with traditional type systems, a reference type
not defining any (application-specific) methods can be used for
that purpose, e.g., void* in C++ or Object in Java. In our
type system, however, such a type would forbid to call any
(application-specific) method on the referenced object. Down-
casting the reference is only possible for the owner of the object,
so this is not a solution. E.g., for a component loaded at run-
time, the run-time system should create a new subject owning
that component, in order to isolate it from its environment.

Thus, we need to introduce a new reference type Tref =
(reference,⊥, f , p) that does not specify any required method

15 The status of the feature local is actually not shown in Fig. 8, however, it
should be clear that the service technician does not require the rocket base to
be owned by himself.

18 Roland Wismüller et al.

1 // Interface as provided by the
2 // rocket base
3 class Rocket {
4 public int getStatus() { ... }
5 public int test() { ... }
6 public void launch() { ... }
7 }
8 class RocketBase {
9 public Rocket[] getRockets() { ... }

10 }

1 // Interface as required by the service
2 // technician
3 interface Serviceable {
4 int getStatus();
5 optional int test();
6 }
7 interface ServiceableArray {
8 int length();
9 Serviceable read(int i);

10 }
11 interface ServiceableBase {
12 ServiceableArray getRockets();
13 }
14 class ServiceTechnician {
15 public void service(ServiceableBase b) {
16 ...
17 }
18 }

1 // Interface used by the president in
2 // order to further restrict authority
3 interface NonTestable {
4 int getStatus();
5 }
6 interface NonTestableArray {
7 int length();
8 NonTestable read(int i);
9 }

10 interface NonTestableBase {
11 NonTestableArray getRockets();
12 }

1 // Code executed by the president
2 // to mandate the service technician
3 ServiceTechnician st;
4 RocketBase base;
5 ... // Initialize st and base
6 ...
7 // The cast results in creating a membrane
8 st.service((NonTestableBase) base);

1 // Restricted subtypes
2 interface rServiceable {
3 int getStatus();
4 unavail test(); // status: unavail
5 }
6

7

8 interface rServiceableArray {
9 int length();

10 rServiceable read(int i);
11 }
12

13

14

15

16 interface rServiceableBase {
17 rServiceableArray getRockets();
18 }

1 // Adapter classes
2 class RocketAdapter { // implements
3 Rocket delegate; // rServiceable
4 int getStatus() {
5 return delegate.getStatus();
6 }
7 }
8 class ArrayAdapter { // implements
9 Rocket[] delegate; // rServiceableArray

10 int length() { ... }
11 rServiceable read(int i) {
12 // cast will create a RocketAdapter
13 return (rServiceable)delegate[i];
14 }
15 }
16 class BaseAdapter { // implements
17 RocketBase delegate; // rServiceableBase
18 rServiceableArray getRockets() {
19 // cast will create an ArrayAdapter
20 return (rServiceableArray)
21 delegate.getRockets();
22 }
23 }

Figure 8 An example for restricting authority at run-time.

Extending the Object Capability Model with Fine-Grained Type-Based Capabilities 19

signature, but still allows to call all methods of the referenced
object. An obvious way to achieve this is to let f map all meth-
ods to a new method state permitted, while p maps all methods
to⊥. The state permitted does not provide any guarantee on the
method’s signature, but still allows to call it, which means that
we have denied < permitted < optional. With this definition,
handling this state properly in the rules for subtyping, legal
assignment and restricted types requires no further modification
for the covariant part of these rules:

– An assignment where Tref is the target and S the source
type is always legal, but we may need to introduce a mem-
brane that enforces the access restrictions imposed by S.

– In the reversed case, we always need a run-time type check
to ensure that the assigned object actually has type S.

The contravariant case, which occurs when Tref is used as
an argument type of a method, however, is more complicated.
Recall the example from Sect. 2 and assume that we assign
rs : T to some variable u : U with U defined as

1 interface U {
2 void pass(ref arg);
3 }

Since AT may provide less authority than AS, we need to intro-
duce an adapter (i.e., membrane) that prevents an amplification
of authority when passing the argument to the method pass().
As this adapter will be assigned to u, its type W must be a
subtype of U. This in turn means that the argument type AW
of pass() in W must be a supertype of Tref. More concrete,
the construction of the adapter outlined in Sect. 4.4, where the
adapters for arguments (and results) of methods are (implicitly
and recursively) built by type-casting these arguments, requires
that AW = AT ∩r Tref.

How can we construct such a type? Obviously, the methods
in AW must specify a signature, otherwise we are not able to
represent the access restrictions imposed by AT. So we need a
new method state, named restricted, that requires a signature
and fulfills the condition restricted < permitted. This state
permits to call the method, but only via the specified signature,
and only if the actually called method has a compatible signature.
This means that when we cast from a type S to a type T where
the state of some method m is restricted in S, we have to check
the signature specified in S versus the signature in T. As a
result, we may have to build a membrane in order to enforce the
access restrictions specified by S. On the other hand, if the state
of m is restricted in T, the signature specified in T must not
influence the result of the type check. To see that, consider the
situation where T has been constructed as a supertype of Tref,
i.e., T ≤ Tref. Now, S can be casted to Tref, independent of
the signature of m in S. This, however, also means that S can
be casted to the supertype T, independent of the signature of m
in both S and T.

Although the method signature is not specified with the state
permitted and is ignored in the rules where the target state is
restricted, we cannot simply omit the recursive inspection of
the method’s argument and return types during a type check,
because this would result in ignoring the access restrictions im-
posed by these types. In fact, the unspecified signature denotes

that the argument and return types are not restricted. Thus, for
the recursive inspection, we can replace the unspecified signa-
ture with the most general signature that still is compatible with
the other signature, thus avoiding the introduction of a large
number of special cases in the typing rules in Figures 4 to 7.
Fig. 9 shows the two functions that replace the method signa-
ture at the source and the target position of the typing rules, if
needed. E.g., the last condition of the rule POT is then modified
to

∀x ∈ A∗ : (sT ̸= ⊥∧ sS ̸= ⊥) ⇒ sT ≤ sS

with sT = sDst(fT(x), pT(x), fS(x), pS(x))

and sS = sSrc(fT(x), pT(x), fS(x), pS(x))

A careful look at Fig. 4 and 5 as well as Algorithms 1 to
3 shows that every reference type can be assigned to Tref,
although not every reference type is a subtype of Tref, because
in case that the source type maps a possible method name to
state denied, we may need to introduce a membrane in order to
avoid an amplification of authority. On the other hand, when
Tref is assigned to some other reference type T, the static type
check always succeeds (i.e., isLegal(T, Tref, F, T) holds), but
since normally we have T ̸≤ Tref, there will be a run-time
action computing a coercion. This will perform the necessary
run-time type check between the actually assigned object and T
(c.f. line 13 in Algorithm 3).

6.2. Unsafe Subtyping
Especially when using arrays or other containers, it is often
desirable that a type system supports unsafe covariance. I.e.,
a variable of type S can be assigned to a variable of type T,
although the co- and contravariance rules for the results and
arguments for some method declared by S and T are not met
(Meijer & Drayton 2004). For instance, in Java, an assignment
like

1 Object[] a = new String[10];

is permitted. While this is not a problem when reading from the
array, writing with a wrong type, as in

1 a[0] = new Integer(1);

will result in a run-time error.
In the presented type system, we can support a generic

form of unsafe subtyping by the following extension (see Ap-
pendix B):

– Method signatures are extended by two sets specifying
(the indices of) the arguments and return values that are
required to be safe. Here, “safe” means that no run-time
type error will be raised when a subtype of the argument
type is passed to the method or a supertype of the result
type is used to receive the result.
In Fig. 3, we then haveM = T ∗×℘(N)×T ∗×℘(N).

– In the subtyping rule POM, where we now have t =
(At, at, Rt, rt) and s = (As, as, Rs, rs), we add the condi-
tions at ⊆ as and rt ⊆ rs. This ensures that for T ≤ S
to hold, the methods of S must be at least as safe as the

20 Roland Wismüller et al.

unspec : T → T

unspec((r, c, f , p)) :=

 Tref if r = reference

(r,⊥, f , p) otherwise

This function returns the most general type with the same representation as the given one.

unspec :M→M
unspec((A, R)) := ((unspec(Ai))i=1..|A|, (unspec(Ri))i=1..|R|)

This function returns a method with the same number of arguments and results as the input, but with the most general
types.

sDst : A× (M∪{⊥})×A× (M∪{⊥})→ (M∪{⊥})

sDst(aT , mT , aS, mS) :=

unspec(mS) if aT = permitted
∧ aS ∈ {restricted, optional, avail}
∨ aT = restricted
∧ aS ∈ {optional, avail}

mT otherwise

For given method states and method signatures in a target type T and a source type S, sDst(aT , mT , aS, mS) returns the
signature that should be checked against the signature mS in the source type. If the method is permitted in T and the
source type specifies a signature, the returned signature is the most general one compatible with mS. The same is true if
the method is restricted in T and optional or avail in S in order to ensure transitivity of the subtype relation.

sSrc : A× (M∪{⊥})×A× (M∪{⊥})→ (M∪{⊥})

sSrc(aT , mT , aS, mS) :=

unspec(mT) if aS = permitted

∧ aT ∈ {restricted, optional, avail}

mS otherwise

For given method states and method signatures in a target type T and a source type S, sSrc(aT , mT , aS, mS) returns the
signature that should checked against the signature mT in the target type. If the method is permitted in S and the target
type specifies a signature, the returned signature is the most general one compatible with mT .

Figure 9 Creating a matching unspecified signature.

Extending the Object Capability Model with Fine-Grained Type-Based Capabilities 21

corresponding methods in T, ensuring that objects of type
S can be used wherever type T is required.

– As the rules for legal type casts in Fig 5 already cover
the case where subsequent run-time errors are permitted,
we just need to set u = T in the recursive calls when
checking an unsafe argument or result. I.e., we replace the
corresponding conditions in LEGALM with

∀i ∈ [1, |As|] : isLegal((As)i, (At)i, a, u ∨ i ̸∈ at)

∀i ∈ [1, |Rt|] : isLegal((Rt)i, (Rs)i, a, u ∨ i ̸∈ rt)

– Finally, rules RSUBM and RSUPM in Fig. 6 and 7 must
be modified such that each method in the restricted type
receives the safety attributes of the corresponding method
in the target type:

t ∩r s = (As ∩r At, at, Rt ∩r Rs, rt)

t ∩r s = (As ∩r At, as, Rt ∩r Rs, rs)

6.3. Confined Types
In order to demonstrate the benefits of having introduced addi-
tional features to a type, we show how to implement confined
types (Bokowski & Vitek 1999; Clarke et al. 1998; P. Müller
& Poetzsch-Heffter 1999) in our type system. Expressed in the
terms introduced in Sect. 2, a confined type gives the guarantee
that a reference of that type can never be passed to another
subject. This means that under all circumstances an object with
a confined type cannot be accessed by any other subject than its
owner.

All we need to do for that is to extend the set N of feature
identifiers in Fig 3 with a new element transferable. In addition,
we perform the following static check at load-time: whenever
a method is called using a reference variable with a type T =
(rT , cT , fT , pT) where fT(local) ̸= avail (i.e., the call may
pass arguments to or receive results from a different subject),
the types of all the passed actual arguments as well as all the
return types of the called method must map the transferable
feature to avail. The rest, including the potential creation of an
adapter when the transferable feature is “cast away”, is handled
by the type system without any modifications.

In a similar fashion, it is also possible to integrate other
reference annotations, like read-only or borrowed (Boyland et
al. 2001) into the type system.

7. Execution Environment
A type system alone is of course not sufficient to ensure security
properties at run-time. There are some additional requirements
that the run-time system has to meet.

First of all, it must provide type safety. This implies that
the run-time system must enforce the use of a typed interme-
diate representation (bytecode) as the only means to introduce
new code into the system. The bytecode must be type-checked
according to the rules outlined in Sect. 4.3.4. Ideally, the code
should be statically type checked at load time and rejected in
case of a type error, in order to avoid excessive type checking

at run-time. A specific issue in this context is the stack used
for passing arguments and results to and from methods. As
the stack is a generic data structure, its elements cannot be
statically typed. While static checking is still possible using
verification techniques (Leroy 2003), our COSMA virtual ma-
chine (Wismüller & Ludwig 2019) avoids exposing the stack to
the intermediate language by providing a call instruction that
explicitly specifies the argument and result variables, together
with their types.

Second, the run-time system must provide object encap-
sulation and memory safety (Miller 2006). This means that
(except for value types), data in memory can only be accessed
via references that cannot be forged. I.e., the only way to create
a reference is by creating a new object. It must not be possible
to create or modify a reference at will, using e.g. an integer-to-
pointer conversion or pointer arithmetic. Also, accessing data by
exceeding the bounds of an array must be prevented by proper
bound-checks. Another problem is static mutable state that can
be accessed without having a reference, as this allows to pass
information, especially capabilities, between subjects without
having a capability permitting that. Instead of forbidding static
mutable state, i.e. static class members, at all, COSMA deals
with this problem by providing each subject defining or using a
class with its own private copy of the static members.

Finally, the run-time system must be able to create the code
for the adapter classes as needed. This may be done on demand
only or can already be done when loading a code unit, using
data flow analysis to determine which value or object types may
reach a given assignment in the code.

A possible realization of the run-time system is to use an
ahead-of-time compiler, as implemented in COSMA. When
a code unit is loaded, we create all possibly required adapter
classes in advance after the static type check of the code. Then,
the intermediate code is compiled into native machine code. As
long as we do not require a run-time action for an assignment
(see Sect. 4.3.4), the efficiency of this machine code is not
restricted by the type system.

If there is a need for a run-time action, the compiler amends
the assignment with the code computing the coercion. For
reference types, this code is outlined in Algorithm 4. Using
a unique ID identifying the assignment and the type of the
assigned object as the key, a description of the necessary actions
is fetched from a precomputed hash table (line 4). If there is
no entry, the source object cannot be assigned, i.e., one of the
type checks in line 13 of Algorithm 2 or line 13 of Algorithm 3
failed when the required adapter classes were computed for this
assignment. Otherwise, any old adapter is removed and the
object is wrapped into a new adapter, if necessary.

In order to execute the run-time cast action, the virtual ma-
chine must be able to determine the owner and the type for each
object. Since the required adapter classes are precomputed at
load time, the type is just used as a hash table key, so no de-
tailed type information is required at run-time. Thus, types can
simply be represented by integer numbers. For value types, we
additionally need the representation for computing conversions,
while for reference types actually adopted by objects, we also
have to store the corresponding non-local type.

22 Roland Wismüller et al.

Algorithm 4 Run-time cast action for assigning a reference to an object o to a variable t.

1: if o ̸= null then
2: id = unique integer identifying this assignment
3: r = owner(o)
4: a = castAction(id, typer(o)) ▷ Hash-table lookup
5: if a = null then ▷ Precomputing of adapter classes has determined that the assignment must fail
6: raise run-time error
7: else
8: if a.removeAdapter then ▷ Boolean: do we need to unwrap the object?
9: o = unwrap(o)

10: if a.instantiateAdapter ̸= null then ▷ Function creating an adapter for object o owned by subject r
11: o = a.instantiateAdapter(o, r)
12: t = o ▷ Perform the actual assignment

8. Overhead
It is a well known fact that security never comes for free. So we
will carefully analyze all sources of overhead induced by our
proposal, both in terms of time and memory.

First, we need to maintain a type identifier for each ob-
ject, resulting in a memory overhead of typically 32 bits per
object. However, most modern object oriented languages al-
ready include run-time type information (RTTI). E.g., RTTI was
introduced into C++ already in 1993 (Stroustrup 1994), so it
should no longer be considered as additional overhead.

In addition, we require a mapping from objects to their
owners. Depending on the maximum number of subjects sup-
ported, this adds a memory overhead of 16 to 32 bits per object.
An exception would be objects that are confined to a single
subject (c.f. Sect. 6.3).

Since our type system is not solely based on nominal typing,
but also supports structural typing, dynamic dispatch of meth-
ods may become more complex, since it is no longer possible to
use simple virtual function tables as it is done in C++. However,
efficient dynamic dispatch is an issue in most modern object
oriented languages, so there has been a lot of research in appro-
priate methods (M. Müller 1995; Gil & Zibin 2007; Milton &
Schmidt 1994).

Obviously, also the introduction of adapters during the
execution of certain type casts creates an overhead both in terms
of memory and time. Adapters not only need memory for the
adapter objects themselves, but also for the code associated
with the adapter’s class. In addition, accessing an object via an
adapter requires an additional method call due to the indirection.
However, as we will show below, the overhead introduced by
the proposed type system is actually much smaller than the
overhead required by using traditional type systems and security
enforcing patterns.

Adapters are created for two reasons:

1. In order to introduce a type conversion, if source and target
type have a mismatch in the value type of some argument
or result, c.f. Sect. 4.3.2. Unless the programmer is able
to modify one of the interfaces involved, even with tradi-
tional type systems, a (manually created) adapter would be
necessary for handling that mismatch.

2. To enforce access restrictions when passing an object ref-
erence to another subject. Again, this situation requires to
introduce a membrane even in the traditional OCap model,
provided that the programmer cares about implementing
security in the sense of POLA.

As traditional type systems allow an unrestricted type cast of
references, implementing POLA actually requires to introduce
a membrane whenever any access restriction should be applied
for an object passed to another subject. In contrast, the proposed
type-based split capability model does not create an adapter, if
the receiving type already enforces that access restriction. An
adapter is only needed if the target type permits some feature
that is available in the assigned object, but denied by the source
type. In addition, adapters will not be cascaded, while a manual
application of the membrane pattern inherently will lead to
cascaded membranes (c.f. Sect. 1).

Finally, the static type check when loading a code unit is a
significant overhead in time. However, as it occurs only once,
this is not really an issue for the run-time performance.

In summary, we can conclude that the type-based split capa-
bility model based on the proposed type system does not induce
more run-time overhead than other modern object oriented lan-
guages, while providing a significantly higher level of security
with much less burden on the programmer than the traditional
OCap model.

9. Related Work

9.1. Object-Capability Model
A good introduction into the object-capability model, as well
as a motivation for the principle of least authority is given by
Miller et al. (Miller et al. 2004). The authors also argue that
access control concerns should be considered directly when
designing a system. A detailed discussion of the properties of
capability systems, as well as a couple of misconceptions about
them is given in (Miller et al. 2003). Two of these misconcep-
tions, concerning the revocation of capabilities and confinement
guarantees, are further discussed in (Miller & Shapiro 2003)
and (Miller 2006). A formal analysis of the security properties
of the OCap model, especially of some of the security-enforcing

Extending the Object Capability Model with Fine-Grained Type-Based Capabilities 23

patterns like the membrane pattern, is presented in (Murray
2008).

An extension of the classical OCap model towards fine-
grained access control at the level of individual methods has
been implemented in the Oviedo3 system (Díaz-Fondón et al.
1999), which consists of an object oriented abstract machine
and an accompanying operating system. However, Oviedo3 im-
plements capabilities as explicit, protected data structures and
thus induces overhead both in memory usage and in execution
time required for checking the permissions prior to each method
invocation.

9.2. Secure Languages
The goal of secure languages is to provide support for the secure
composition of possibly untrusted software components. A
pioneer in this area is the work of Miller on the E language
(Miller 2006), which provides access control on the basis of the
OCap model. Miller also presents the use of security-enforcing
patterns, like membranes, in order to enable access control
at a finer granularity. In addition, the thesis points out the
requirements that must be met by a secure language: memory
safety, object encapsulation, no ambient authority, no static
mutable state, and an API without security leaks.

Joe-E is an adaptation of the Java language with the goal to
meet the stated requirements (Mettler et al. 2010). Especially,
Joe-E verifies that static state only contains immutable data, but
no capabilities. Joe-E also introduces the concept of immutable
interfaces to guarantee that methods cannot keep or leak any
information between invocations. Security in Joe-E is based on
compile-time checking and the use of hardened libraries that
do not provide insecure features like reflection and ambient
authority, which are present in the standard Java class library.

In a very similar way, a secure version of OCaml is provided
by the Emily language (Stiegler 2007). A difference to the pre-
vious approaches is the fact that Emily does not use dynamically
loaded components, but uses the powerbox pattern to restrict
the authority of applications launched at run-time.

Finally, Maffeis et al. define a secure subset of JavaScript
supporting the mutual isolation of web applications (Maffeis
et al. 2010). The paper also provides a formal proof that a
capability safe language also is authority safe and thus can
provide isolation guarantees.

A general limitations of these approaches is that they can
provide security guarantees only in the case where all software
integrated into a system has provably been written in a secure
language, because otherwise, the system may be attacked from
below the high-level language level (Stiegler 2000). As this is
not practical for reasons of licensing and protection of intellec-
tual property, using a secure intermediate language or bytecode
is a more feasible solution.

9.3. Type-Based Security
The idea of specifying required capabilities as part of a compo-
nent’s interface was first elaborated by Hagimont et al. (Hagi-
mont et al. 1996). In this work, capabilities were not yet consid-
ered to be part of a type and were still implemented traditionally
in the operating system kernel.

The starting point for considering types as capabilities is the
work done in the area of alias protection (Clarke et al. 1998;
P. Müller & Poetzsch-Heffter 1999; Dietl & Müller 2008). The
goal here is to ensure that compound objects cannot leak ref-
erences to internal objects to the outside world. E.g., in an
implementation of a sorted tree, code outside of the tree imple-
mentation should not be allowed to modify the tree nodes, as
this can destroy the tree’s invariant of being sorted.

Clarke et al. introduce a rep keyword as a part of an own-
ership type to denote that a given reference is not allowed to
leave the context of the containing object (Clarke et al. 1998).
Müller and Poetzsch-Heffter introduce an explicit hierarchical
structure of contexts called universes, as well as the notion of
read-only references (P. Müller & Poetzsch-Heffter 1999). A
type can be parameterized with the universe, to which its ob-
jects belong. The typing rules then ensure that an object cannot
be referenced from outside its universe, except when using a
read-only reference. In (Dietl & Müller 2008), the authors show
that ownership types and universes can also be implemented by
dependent classes that are parameterized with a reference to a
superordinate class.

Bokowski and Vitek (Bokowski & Vitek 1999) explore a
similar idea, but with a context in security: references to objects
with confined types are not allowed to leave their protection
domain, e.g., a Java package. In (Fong 2005), Fong shows
that confined types can be enforced at link time by the code
consumer, thus being useful for secure cooperation of untrusted
components.

Boyland et al. made the step towards understanding types
as capabilities by generalizing existing reference annotations
for sharing, like read only, unique, or borrowed as combina-
tions of different access rights (Boyland et al. 2001). Likewise,
also confined types can be understood using the concept of
capabilities that are represented by types (Fong 2005). This
idea is further elaborated by Fong in (Fong & Zhang 2004),
(Fong 2006), (Fong 2008), and (Fong & Orr 2006). In the first
paper, an additional type system is introduced that allows to
specify the permitted operations on an object as it is passed from
one method to the next. For that purpose, the programmer can
(and must) specify a labeled transition system that determines
how the permissions evolve when a reference is passed from
one method to another. In the later publications, a hierarchy
of confinement domains is used to determine how capabilities
can be passed on. The programmer must explicitly define this
hierarchy in the form of trust relationships between domains
and must assign a confinement domain to each reference type
and each method implementation. Fong then defines a number
of constraints that must be met by the type system in order to
allow types being used as capabilities granting calling rights for
individual methods. Among others, a domain not trusted by a
target type is not allowed to perform a downcast operation. The
constraints have been implemented via a static type checker and
also by restricting the visibility of symbols at load time.

The approach presented in this paper differs from the afore-
mentioned ones in providing a single comprehensive type sys-
tem that combines traditional type information with capabilities.
In addition, it permits a limited downcast even in untrusted do-

24 Roland Wismüller et al.

mains by introducing optional methods and automatic creation
of membranes. Thus, the type system encourages a discipline
of programming, where component interfaces specify both the
strictly required permissions, as well as the optionally desired
ones. Another major difference is the fact that in the men-
tioned approaches, subjects are uniquely associated with types
or classes and thus are static. Thus, multi-client software cannot
be modeled adequately, since no distinction is made between
instances of the same class, even when they are acting on behalf
of different clients. In our system, there is the choice to dynami-
cally create a new subject whenever an object is instantiated.

Type systems have also been used to implement information-
flow security, i.e., to prevent classified data to be leaked to a
domain with a lower security level. To do so, reference types
are basically augmented with the security level of the referenced
object. A survey on this topic is provided in (Sabelfeld & Myers
2003), recent research is presented, e.g., in (Toro et al. 2018),
(Gollamudi & Chong 2016), and (Runge et al. 2023).

9.4. Nominal and Structural Subtyping

Currently, most programming languages are based on either
nominal or structural subtyping. With structural subtyping, S
is a subtype of T, if S provides at least all the methods (and
attributes) of T with a compatible signature (i.e., covariant result
types and contravariant argument types). Nominal subtyping
in addition requires that S has been explicitly declared to be a
subtype of T. Both subtyping schemes have their advantages
and disadvantages, which are discussed, e.g., in (Gil & Maman
2008) and (Malayeri & Aldrich 2008). An empirical evaluation
of the usefulness of structural subtyping has been conducted by
Malayeri and Adrich (Malayeri & Aldrich 2009).

A substantial advantage of structural subtyping is that code
reuse is much easier. However, structural subtyping completely
ignores the semantics of the type’s objects. Liskov and Wing
have shown that meaningful subtyping must also take into ac-
count the behavior (i.e. semantics) of objects and methods
(Liskov & Wing 1994). With nominal subtyping, the explicit
declaration of subtype relationship implicitly provides the re-
quired guarantees. Thus, for integrating both subtyping disci-
plines, the semantics should not be hidden in the type name but
represented explicitly.

Previous approaches for integrating nominal or structural
subtyping did not fully conform to this observation. The Java
extension Whiteoak (Gil & Maman 2008) just provides struc-
tural typing in addition to the nominal subtyping used by stan-
dard Java. In brand types (Malayeri & Aldrich 2008; Jones et
al. 2015), a type may specify a brand, which is using nomi-
nal subtyping similar to a class, as well as additional methods,
which are structurally subtyped. Osterman defines a flexible
type system that allows (nominal) subtyping of classes without
inheriting the implementation (including the attributes), struc-
tural subtyping of interfaces, and the declaration of supertypes
(Ostermann 2008). However, the type system has the serious
flaw that the subtype relation is no longer transitive.

10. Conclusion and Future Work
The principle of least authority is an established guideline for
developing secure software systems from mutually untrusted
components. A well researched way to implement POLA is the
use of the object-capability model. However, OCap alone is
not sufficient, as by itself it only enforces coarse-grained access
control at the level of objects. In this paper, we have shown that
fine-grained access control at the level of individual methods
can efficiently be implemented by extending OCap with the
concept of split capabilities. In this model, only one part of
the capability, the object reference, is explicitly passed between
subjects. While the object reference just permits to access the
referenced object at all, the second part of the capability, the
static type of the variable storing the reference, determines
which methods can be invoked. This part of the capability is not
transferred between subjects, rather, strict type checking of the
receiver’s type with respect to the sender’s type ensures that no
amplification of authority is possible.

By including a type assertion that restricts a reference vari-
able to only refer to objects owned by the local subject, it is
possible to define a type system that does not limit the code’s
expressiveness within a single component, but only enforces
access restrictions at the interface between mutually untrusted
components.

Implementing fine-grained access control via the type system
is also inherently more efficient than using traditional OCap
together with the membrane pattern. First, if the receiver or a
reference specifies that it does not need permission for a certain
operation, the type system guarantees that the reference does
not grant the authority for that operation. So in that case, no
membrane is needed. Even if a membrane is required because
the receiver requests an optional permission and the sender
doesn’t want to grant it, the type system guarantees that there
will be no cascading of membranes.

The automatic creation of adapters for objects also enhances
the flexibility when re-using components, as it allows type casts
of references even if the return types or argument types of some
method does not fulfill the covariance or contravariance condi-
tions. This also includes unsafe subtyping. Furthermore, the
type system gains additional flexibility by adding permissions
for an extensible set of features, thus allowing to easily extend
the type system with support for additional type capabilities,
e.g., confined types.

As a proof of concept, the type system has been fully im-
plemented and tested as part of the COSMA virtual machine
(Wismüller & Ludwig 2019). The virtual machine dynamically
loads software components represented by a statically typed
bytecode and either directly interprets the code or uses an ahead-
of-time compiler to translate it into native machine code. The
current release of the virtual machine is publicly available in
the WWW.16 The virtual machine is complemented by a com-
piler for a high-level language that incorporates the extended
facilities of the presented type system by supporting additional
type modifiers.

Our future work focuses on extensions of the type system as

16 https://www.bs.informatik.uni-siegen.de/forschung/cosma

Extending the Object Capability Model with Fine-Grained Type-Based Capabilities 25

https://www.bs.informatik.uni-siegen.de/forschung/cosma

well as widening the applications of the virtual machine.
We have argued above that in some cases we do not need to

create a membrane, if the authority is already suitably restricted
by the target type of an assignment. This also means that there
are situations where during an assignment an existing membrane
could be removed without any impact on security or function-
ality, thus reducing the overhead for accessing the object. The
problem with this optimization is that it requires a run-time
check in assignments that otherwise would not need one. I.e.,
we need to trade the overhead of the additional run-time check
against the overhead of accessing the object via a membrane.
Using static analysis to estimate how often the assignment and
the subsequent accesses are executed will enable a reasonable
decision.

The COSMA virtual machine is currently based on implicit
memory reclamation via a garbage collector to avoid the prob-
lem of dangling references. Some modern programming lan-
guages, especially Rust, avoid the necessity for a garbage col-
lector by using the concept of reference borrowing (Jung et al.
2021). In future work, we will try to integrate reference borrow-
ing with the concepts presented in this paper, since a safe way
to ultimately delete an object without affecting other software
components also provides a security benefit.

Another future extension will concern the underlying trust
model. In the presented approach, all subjects are mutually
suspicious. In some situations, it will be more appropriate to
consider a hierarchical trust relationship as in the work of Fong
(Fong 2008). As in contrast to Fong’s approach, subjects are
created dynamically in our model, we need to establish new
trust relationships whenever a new subject is created. This
happens either when a new software component is loaded, or
when a new subject is created while instantiating an object
using the special new operator mentioned in Sect. 4.5. In the
first case, the trust relationship may be based on the identity of
the component’s author, which requires a secure authentication
based on a cryptographic signature. In the second case, the
code of the instantiated class that is executed by the newly
created subject s′ is provided by the creating subject s, which
means that s′ inherently trusts s. On the other hand, s does
not (need to) trust s′, which enables the programmer to realize
sub-components with reduced authority.

The implementation of the COSMA virtual machine is cur-
rently extended in several ways. First of all, we are modifying
the Java compiler provided by OpenJDK, such that it creates
bytecode for COSMA. The extended features of our type sys-
tem are implemented using annotations, thus avoiding a need to
modify the Java syntax. The current prototype already allows
to compile parts of the Java Collection framework, which will
enable us to use a reasonably large code base for benchmarking.
Based on this compiler, we will prepare a quantitative evaluation
of the overheads presented in Sect. 8 in the near future.

We are also designing and implementing an object-oriented
operating system kernel based on COSMA. In contrast to tradi-
tional operating systems, we do not need any hardware support
for protection. Memory protection is ensured by the type-based
capability model, while the higher privileges of the kernel are
realized by the fact that it is the only software component loaded

as native machine code rather than COSMA bytecode. Access
to the kernel is provided (and controlled) by passing a reference
as an argument to the constructor of a component’s top-level
class.

Since the protection mechanisms presented in this paper do
not rely on any hardware support, the model is especially useful
for embedded systems based on low-power microcontrollers.
For this application scenario, we are currently implementing a
host/target environment, where the host computer is responsible
for checking and linking software components. It will then
compile the linked bytecode into native machine code and flash
the resulting image into the micro-controller. In that way, we
can realize strict access control for software components while
avoiding to burden the microcontroller with the code and run-
time overhead for extensive checking of types or permissions.

References

Bokowski, B., & Vitek, J. (1999, November). Confined Types.
In Proc. 14th ACM SIGPLAN Conf. on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA

’99) (p. 82-96). Denver, CO, USA: ACM.
Boyland, J., Noble, J., & Retert, W. (2001, June). Capabilities

for Sharing - A Generalisation of Uniqueness and Read-Only.
In 15th European Conf. on Object-Oriented Programming
(ECOOP ’01) (p. 2-27). Budapest, Hungary: Springer Ver-
lag.

Clarke, D. G., Potter, J. M., & Noble, J. (1998, October). Owner-
ship Types for Flexible Alias Protection. In Object-Oriented
Programming Systems, Languages, and Applications (OOP-
SLA’98) (p. 48-64). Vancouver, CA: ACM.

Dietl, W., & Müller, P. (2008, January). Ownership Type
Systems and Dependent Classes. In Intl. Workshop on Foun-
dations of Object-Oriented Languages (FOOL’08). San Fran-
cisco, CA, USA: ACM.

Díaz-Fondón, M. A., Álvarez Gutiérrez, D., García-Mendoza-
Sánchez, A., Álvarez García, F., Tajes-Martínez, L., & Cueva-
Lovelle, J. M. (1999, September). Integrating Capabilities
into the Object Model to Protect Distributed Object Systems.
In Proc. Intl. Symp. on Distributed Objects and Applications
(p. 374-383). Edinburgh, GB: IEEE. Retrieved from http://
dx.doi.org/10.1109/DOA.1999.794067

Fong, P. W. L. (2005, October). Link-Time Enforcement of
Confined Types for JVM Bytecode. In Proc. 3rd Annual Conf.
on Privacy, Security and Trust (PST’05) (p. 191-202). St.
Andrews, Canada: IEEE.

Fong, P. W. L. (2006, September). Discretionary capability con-
finement. In Proc. 11th European Symposium On Research
In Computer Security (ESORICS’06) (Vol. 4189, p. 127-144).
Hamburg, Germany: Springer.

Fong, P. W. L. (2008, April). Discretionary Capability Confine-
ment. International Journal of Information Security, 7(2),
137-154.

Fong, P. W. L., & Orr, S. A. (2006, December). A Mod-
ule System for Isolating Untrusted Software Extensions. In
Proc. 22nd Annual Computer Security Applications Conf.

26 Roland Wismüller et al.

http://dx.doi.org/10.1109/DOA.1999.794067
http://dx.doi.org/10.1109/DOA.1999.794067

(ACSAC’06) (p. 203-212). Miami Beach, Florida, USA:
IEEE.

Fong, P. W. L., & Zhang, C. (2004, April). Capabilities as
alias control: Secure cooperation in dynamically extensible
systems (Technical Report No. CS-2004-3). Regina, Canada:
Dept. of Computer Science, Univ. of Regina.

Gil, J., & Maman, I. (2008, October). Whiteoak: Intro-
ducing Structural Typing into Java. In Proc. 23rd Annual
ACM SIGPLAN Conf. on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’08) (p. 73–90).
Nashville, TN: ACM. Retrieved from https://dl.acm.org/doi/
10.1145/1449764.1449771

Gil, J., & Zibin, Y. (2007, November). Efficient Dynamic
Dispatching with Type Slicing. ACM Transactions on Pro-
gramming Languages and Systems, 30(1), Article 5.

Gollamudi, A., & Chong, S. (2016, November). Automatic
Enforcement of Expressive Security Policies using Enclaves.
In Proc. 2016 ACM SIGPLAN Intl. Conf. on Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA ’16) (p. 494-513). Amsterdam, Netherlands: ACM.

Hagimont, D., Mossière, J., de Pina, X. R., & Saunier, F. (1996,
May). Hidden Software Capabilities. In Proc. 16th Intl. Conf.
on Distributed Computing Systems (ICDCS ’96) (p. 282-289).
Hong Kong: IEEE.

Jones, T., Homer, M., & Noble, J. (2015, July). Brand Objects
for Nominal Typing. In J. T. Boyland (Ed.), 29th European
Conference on Object-Oriented Programming (ECOOP’15)
(p. 999–1023). Prague, CZ: Schloss Dagstuhl - Leibniz-
Zentrum für Informatik.

Jung, R., Jourdan, J.-H., Krebbers, R., & Dreyer, D. (2021,
March). Safe Systems Programming in Rust. Communica-
tions of the ACM, 64(4), 144–152.

Leroy, X. (2003). Java bytecode verification: algorithms and for-
malizations. Journal of Automated Reasoning, 30, 235–269.

Liskov, B. H., & Wing, J. M. (1994, November). A Behavioral
Notion of Subtyping. ACM Transactions on Programming
Languages and Systems, 16(6), 1811-1841.

Maffeis, S., Mitchell, J. C., & Taly, A. (2010, May). Object
Capabilities and Isolation of Untrusted Web Applications.
In Proc. of IEEE Symp. Security and Privacy (p. 125-140).
Oakland, CA, USA: IEEE.

Malayeri, D., & Aldrich, J. (2008). Integrating Nominal
and Structural Subtyping. In J. Vitek (Ed.), ECOOP 2008 -
Object-Oriented Programming (p. 260-284). Paphos, Cyprus:
Springer.

Malayeri, D., & Aldrich, J. (2009, March). Is Structural Sub-
typing Useful? An Empirical Study. In G. Castagna (Ed.),
Programming Languages and Systems, 18th European Sym-
posium on Programming, ESOP 2009 (p. 95–111). York, UK:
Springer-Verlag.

Meijer, E., & Drayton, P. (2004, October). Static Typing Where
Possible, Dynamic Typing When Needed: The End of the
Cold War Between Programming Languages. In OOPSLA’04
Workshop on Revival of Dynamic Languages. Vancouver, CA:
ACM.

Mettler, A., Wagner, D., & Close, T. (2010, February). Joe-E:
A Security-Oriented Subset of Java. In 17th Network and

Distributed Systems Symposium (p. 357-374). San Diego,
CA: The Internet Society. Retrieved from https://www.cs
.berkeley.edu/~daw/papers/joe-e-ndss10.pdf

Miller, M. S. (2006). Robust composition: Towards a unified
approach to access control and concurrency control (Ph.D.
Thesis, Johns Hopkins University, Baltimore, Maryland).
Retrieved from http://erights.org/talks/thesis/markm-thesis
.pdf

Miller, M. S., & Shapiro, J. S. (2003, December). Paradigm
Regained: Abstraction Mechanisms for Access Control. In
Advances in Computing Science - ASIAN 2003. Progamming
Languages and Distributed Computation (Vol. 2896, p. 224-
242). Mumbai, India: Springer.

Miller, M. S., Tulloh, B., & Shapiro, J. S. (2004). The Structure
of Authority: Why Security Is not a Separable Concern. In
Proc. 2nd Intl. Conf. on Multiparadigm Programming in
Mozart/Oz (p. 2-20). Charleroi, Belgium: Springer. Retrieved
from http://erights.org/talks/no-sep/secnotsep.pdf

Miller, M. S., Yee, K.-P., & Shapiro, J. S. (2003). Capabil-
ity Myths Demolished (Technical Report No. SRL2003-02).
Baltimore, MD: Systems Research Laboratory, Johns Hop-
kins University. Retrieved from http://srl.cs.jhu.edu/pubs/
SRL2003-02.pdf

Milton, S., & Schmidt, H. W. (1994, January). Dy-
namic Dispatch in Object-Oriented Languages (Tech.
Rep.). Department of Computer Science, The Aus-
tralian National University, Canberra. Retrieved
from https://www.researchgate.net/publication/2459095
_Dynamic_Dispatch_in_Object-Oriented_Languages

Müller, M. (1995). Message Dispatch in Dynamically-Typed
Object-Oriented Languages (Unpublished master’s thesis).
Univ. of New Mexico, Albuquerque, NM 87131.

Müller, P., & Poetzsch-Heffter, A. (1999). Universes: A
type system for controlling representation exposure. In
A. Poetzsch-Heffter & J. Meyer (Eds.), Programming Lan-
guages and Fundamentals of Programming (p. 131-140). Ger-
many: Fernuniversität Hagen. (Technical Report 263)

Murray, T. (2008, June). Analysing object-capability security.
In Joint Workshop on Foundations of Computer Security,
Automated Reasoning for Security Protocol Analysis and
Issues in the Theory of Security (p. 177-194). Pittsburgh, PA,
USA. Retrieved from https://www.cs.ox.ac.uk/files/2690/
AOCS.pdf

Ostermann, K. (2008, January). Nominal and Structural
Subtyping in Component-Based Programming. Journal of
Object Technology, 7(1), 121-145. Retrieved from http://
www.jot.fm/issues/issue_2008_01/article4

Runge, T., Servetto, M., Potanin, A., & Schaefer, I. (2023,
March). Immutability and Encapsulation for Sound OO In-
formation Flow Control. ACM Transactions on Programming
Languages and Systems, 45(1), Article 3.

Sabelfeld, A., & Myers, A. C. (2003, January). Language-Based
Information-Flow Security. IEEE Journal on Selected Areas
in Communications, 21(1), 1-15.

Stiegler, M. (2000). The E Language in a Walnut. Retrieved
from http://www.skyhunter.com/marcs/ewalnut.html

Stiegler, M. (2007, January). Emily: A High Performance

Extending the Object Capability Model with Fine-Grained Type-Based Capabilities 27

https://dl.acm.org/doi/10.1145/1449764.1449771
https://dl.acm.org/doi/10.1145/1449764.1449771
https://www.cs.berkeley.edu/~daw/papers/joe-e-ndss10.pdf
https://www.cs.berkeley.edu/~daw/papers/joe-e-ndss10.pdf
http://erights.org/talks/thesis/markm-thesis.pdf
http://erights.org/talks/thesis/markm-thesis.pdf
http://erights.org/talks/no-sep/secnotsep.pdf
http://srl.cs.jhu.edu/pubs/SRL2003-02.pdf
http://srl.cs.jhu.edu/pubs/SRL2003-02.pdf
https://www.researchgate.net/publication/2459095_Dynamic_Dispatch_in_Object-Oriented_Languages
https://www.researchgate.net/publication/2459095_Dynamic_Dispatch_in_Object-Oriented_Languages
https://www.cs.ox.ac.uk/files/2690/AOCS.pdf
https://www.cs.ox.ac.uk/files/2690/AOCS.pdf
http://www.jot.fm/issues/issue_2008_01/article4
http://www.jot.fm/issues/issue_2008_01/article4
http://www.skyhunter.com/marcs/ewalnut.html

Language for Enabling Secure Cooperation. In Fifth Intl.
Conf. on Creating, Connecting and Collaborating through
Computing C5’07 (p. 163-169). Kyoto, Japan: IEEE.

Stroustrup, B. (1994). The Design and Evolution of C++.
Addison-Wesley.

Toro, M., Garcia, R., & Tanter, E. (2018, December). Type-
Driven Gradual Security with References. ACM Transactions
on Programming Languages and Systems, 40(4), Article 16.

Wismüller, R., & Ludwig, D. (2019, June). Secure Cooperation
of Untrusted Components Using a Strongly Typed Virtual
Machine. International Journal on Advances in Security,
12(1&2), 53-68. Retrieved from http://www.iariajournals.org/
security/sec_v12_n12_2019_paged.pdf

About the authors
Roland Wismüller is a full Professor for Operating Systems
and Distributed Systems at the Department of Electrical En-
gineering and Computer Science, University of Siegen, Ger-
many. His research interests include techniques for building
secure component-based systems, including virtual machines,
programming languages and type systems, as well as paral-
lel and distributed systems and the application of machine
learning techniques for the analysis of network data. You can
contact the author at roland.wismueller@uni-siegen.de or visit
https://www.bs.informatik.uni-siegen.de.

Damian Ludwig is a security analyst at the Federal Office
for Information Security, Germany. Prior to that, he had
been a research assistant to Prof. Wismüller at the Univer-
sity of Siegen, Germany, where he contributed to COSMA.
He is interested in advanced separation techniques and next-
generation operating systems. You can contact the author at
jonas-damian.ludwig@bsi.bund.de.

Felix Breitweiser is a research assistant at the Department
of Electrical Engineering and Computer Science, Univer-
sity of Siegen, Germany. His main research interests are
type systems and programming language design, as well as
the didactics of computer science. You can contact the au-
thor at felix.breitweiser@uni-siegen.de or visit https://www.bs
.informatik.uni-siegen.de/mitarbeiter/breitweiser.

28 Roland Wismüller et al.

http://www.iariajournals.org/security/sec_v12_n12_2019_paged.pdf
http://www.iariajournals.org/security/sec_v12_n12_2019_paged.pdf
mailto:roland.wismueller@uni-siegen.de?subject=Your paper "Extending the Object-Capability Model with Fine-Grained Type-Based Capabilities"
https://www.bs.informatik.uni-siegen.de
mailto:jonas-damian.ludwig@bsi.bund.de?subject=Your paper "Extending the Object-Capability Model with Fine-Grained Type-Based Capabilities"
mailto:felix.breitweiser@uni-siegen.de?subject=Your paper "Extending the Object-Capability Model with Fine-Grained Type-Based Capabilities"
https://www.bs.informatik.uni-siegen.de/mitarbeiter/breitweiser
https://www.bs.informatik.uni-siegen.de/mitarbeiter/breitweiser

A. Appendix: Operational Semantics
In the following, we present a small-step semantics for the bytecode instructions of our virtual machine. As we are only concerned
about object references and invocations of methods, we omit all other details of the machine, e.g., numerical instructions, jump
instructions, and object field access. Furthermore, we restrict the presentation to methods with exactly one argument and one return
value. We use the following abstract types:

– Γ for the type environment
– V for the set of variables
– T for the set of types
– Class for classes
– Stmt for the set of statements:

load0 dst load null into variable dst
new c dst instantiate class c and store the object reference in variable dst
mov src dst load the value from variable src into variable dst
call ref m arg res call method m on the object referenced by ref with the argument value stored in variable arg

and store the return value in variable res
ret src Return the value stored in variable src

– Impl : (arg : V)× (ret : T)× (var : V∗)× (code : Stmt∗) for method implementations, where arg is the method’s argument,
ret its return type, var the method’s local variables, and code the actual code of the method

– Obj : (methods : ImplA
∗
) for objects, where methods is the object’s method table

– Val = Obj∪ {null}

A Frame is defined as a tuple (obj : Obj)× (method : Impl)× (pc : N)× (var : ValV)× (res : V)× (resT : T), where obj
represents the current object, method the currently executing method with the program counter pc, var the variable storage with the
current values of the method’s argument and local variables, res is the caller’s variable that receives the method’s result, and resT the
result type expected by the caller.

The semantic rules are formulated as state transitions of one stack configuration to another. Stacks are written as s :: t where s is
the topmost frame and t is the rest of the stack. If a frame s is changed, we use the notation s[f ield← value] to indicate an update.
var[l := o] denotes an update of location l in the variable storage, such that its new value is o.

The three auxiliary functions used in the semantic rules have the following meaning:

– instantiate : Obj× Class→ Obj returns a new instance of a given class owned by a given subject.
– vars : Impl×Val→ ValV is the initial variable mapping for a given method when called with a given argument value:

vars(m, a) = λv.
{

a if v = m.arg
null if v ∈ m.vars

– relocate : T × T → T takes care of adapting the assertion for the feature local when method arguments or results may be
passed between objects with different owners. With τ = (rτ , cτ , fτ , pτ) and t = (rt, ct, ft, pt), we have

relocate(τ, t) =
{

t if fτ(local) = avail
(rt, ct, f ′t , pt) otherwise , where f ′t = λx.

{
optional if x = local
ft(x) otherwise

In the following rules, a short line on the right hand side separates the conditions that are solely based on static type information
from conditions that can only be evaluated at run-time. The conditions above this marker can already be checked when the code
unit containing the instruction is loaded into the virtual machine. For the last rule, this is possible, as the method containing the ret
instruction is known from its context.

LOAD0
Γ ⊢ dst : (reference, cτ , fτ , pτ) = τ

s :: t load0 dst−→ s[pc← pc + 1, var← var[dst := null]] :: t

NEW

c : Class
type(c) = τ1

Γ ⊢ dst : τ2

isLegal(τ2, τ1, F, T)
owner(s.obj) = r

instantiate(r, c) = o
castr,τ2,τ1(o) = o′ ̸= ⊥

s :: t new c dst−→ s[pc← pc + 1, var← var[dst := o′]] :: t

Extending the Object Capability Model with Fine-Grained Type-Based Capabilities 29

MOV

Γ ⊢ src : τ1

Γ ⊢ dst : τ2

isLegal(τ2, τ1, F, T)
s.var(src) = o

owner(s.obj) = r
castr,τ2,τ1(o) = o′ ̸= ⊥

s :: t mov src dst−→ s[pc← pc + 1, var← var[dst := o′]] :: t

CALL

Γ ⊢ ref : (rτ , cτ , fτ , pτ) = τ

Γ ⊢ arg : τ1

Γ ⊢ res : τ2

fτ(m) = avail
pτ(m) = (Am, Rm)

isLegal(Am, relocate(τ, τ1), F, T)
isLegal(τ2, relocate(τ, Rm), F, T)

s.var(ref) = o
s.var(arg) = a
owner(o) = r

o.methods(m) = m′

castr,Am ,relocate(τ,τ1)
(a) = a′ ̸= ⊥

s :: t
call ref m arg res−→ (o, m′, 0, vars(m′, a′), res, relocate(τ, Rm)) :: s[pc← pc + 1] :: t

RET

Γ ⊢ src : τ1

isLegal(s.method.ret, τ1, F, T)
Γ ⊢ s.res : τ2

s.var(src) = o
owner(s.obj) = r
owner(s′.obj) = r′

castr′ ,τ2,s.retT(castr,s.method.ret,τ1
(o)) = o′ ̸= ⊥

s :: s′ :: t ret src−→ s′[var← var[s.res := o′]] :: t

B. Appendix: Complete Specification of Types and Typing Rules

B.1. Representation of Types
Type: T = R× C ×F ×P

Representation: R = {int8, int16, int32, int64, float32, float64, reference}

Category: a meet-semilattice (C,≤) with

- {⊥, Cint8, Cint16, Cint32, Cint64, Cfloat32, Cfloat64, Cclass, Cadapter, Carray} ⊆ C
- ∀x ∈ C : ⊥ ≤ x
- Cint64 < Cint32 < Cint16 < Cint8; Cfloat64 < Cfloat32 < Cint16; Cfloat64 < Cint32
- Cclass < Cadapter; Cclass < Carray

Permissions: F = AN∪A∗ where

- N is a finite set of feature identifiers,
- A∗ is the set of all strings (i.e., possible method names),

30 Roland Wismüller et al.

- A = {denied, restricted, permitted, optional, avail, unavail} is the set of assertions with the following meaning:

Type permits the
use of m

Specifies signa-
ture of m

Asserts that m
has specified
signature

Type asserts that
m is available in
the object

Type asserts that
m is unavailable
in the object

denied F F F F F
restricted T T F F F
permitted T F F F F
optional T T T F F
avail T T T T F
unavail F F F F T

Protocol: P = (M∪{⊥})A∗ where

- M = T ∗ × ℘(N)× T ∗ × ℘(N) specifies the argument types, the safe arguments, the result types, and the safe results
of a method,

- A method name m is mapped to a value different from ⊥, if and only if the assertion associated with m is optional, avail,
or restricted.

B.2. Subtyping Relation
The order of states s, t ∈ A is defined by the following table:

POA

↓ t ≤ s→ denied restricted permitted optional avail unavail
denied T T T T T T
restricted F T T T T T
permitted F F T T T T
optional F F F T T T
avail F F F F T F
unavail F F F F F T

With that, the relation ≤ ⊆ T × T is the greatest fixed point of the following rules:

POT

T = (rT , cT , fT , pT) ∈ T
S = (rS, cS, fS, pS) ∈ T

rT = rS

cT ≤ cS

∀x ∈ N ∪A∗ : fT(x) ≤ fS(x)
∀x ∈ A∗ : (sT ̸= ⊥∧ sS ̸= ⊥) ⇒ sT ≤ sS

with sT = sDst(fT(x), pT(x), fS(x), pS(x))
and sS = sSrc(fT(x), pT(x), fS(x), pS(x))

T ≤ S

POM

t = (At, at, Rt, rt) ∈ M
s = (As, as, Rs, rs) ∈ M

|At| = |As|
|Rt| = |Rs|

∀i ∈ [1, |As|] : (As)i ≤ (At)i

∀i ∈ [1, |Rt|] : (Rt)i ≤ (Rs)i

at ⊆ as

rt ⊆ rs

t ≤ s

S is subtype of T, if and only if T ≤ S.

Extending the Object Capability Model with Fine-Grained Type-Based Capabilities 31

B.3. Type Checking Rules
We define the relation isLegal ⊆ T × T ×B×B as the greatest fixed point of the following rules:

LEGALT

T = (rT , cT , fT , pT) ∈ T
S = (rS, cS, fS, pS) ∈ T

a, u ∈ B

a′ = a ∨ (fT(local) = avail∧ fS(local) ̸= unavail)
rT = rS ∨ rT ̸= reference∧ rS ̸= reference

cT ≤ cS ∨ (u ∧ (isPublic(cT) ∨ isPublic(cS) ∨ ∃x ∈ C : cT ≤ x ∧ cS ≤ x))
∀x ∈ N ∪A∗ : isLegal(fT(x), fS(x), a′, u)

∀x ∈ A∗ : (sT ̸= ⊥∧ sS ̸= ⊥) ⇒ isLegal(sT , sS, a′, u)

with sT = sDst(fT(x), pT(x), fS(x), pS(x))
and sS = sSrc(fT(x), pT(x), fS(x), pS(x))

isLegal(T, S, a, u)

LEGALA

t, s ∈ A
a, u ∈ B

t = avail ⇒ (s = avail ∨ u ∧ (s ̸∈ {denied, unavail} ∨ a))
isLegal(t, s, a, u)

LEGALM

t = (At, at, Rt, rt) ∈ M
s = (As, as, Rs, rs) ∈ M

a, u ∈ B

|At| = |As|
|Rt| = |Rs|

∀i ∈ [1, |As|] : isLegal((As)i, (At)i, a, u ∨ i ̸∈ at)

∀i ∈ [1, |Rt|] : isLegal((Rt)i, (Rs)i, a, u ∨ i ̸∈ rt)

isLegal(t, s, a, u)

B.4. Restricted Subtype
The relation t ∩r s for states s, t ∈ A is defined by the following table:

RSUBA

↓ t ∩r s→ denied restricted permitted optional avail unavail
denied denied denied denied denied denied denied
restricted unavail restricted restricted restricted restricted unavail
permitted unavail optional permitted optional optional unavail
optional unavail optional optional optional optional unavail
avail — avail avail avail avail —
unavail unavail unavail unavail unavail unavail unavail

Note that t ∩r s is undefined for t = avail and s ∈ {denied, unavail}. However, this combination does not occur when computing a
restricted subtype due to the restricted domain of this operation.

With that, for two types S and T = (rT , cT , fT , pT), such that fT(local) ̸= avail and isLegal(T, S, F, T), the restricted subtype
T ∩r S is defined by the largest fixed point of the following rules:

RSUBT1

T = (rT , cT , fT , pT) ∈ T
S = (rS, cS, fS, pS) ∈ T

rT ̸= reference

T ∩r S = T

32 Roland Wismüller et al.

RSUBT2

T = (reference, cT , fT , pT) ∈ T
S = (rS, cS, fS, pS) ∈ T

R = (reference, cT , fR, pR) ∈ T
∀x ∈ N ∪A∗ : fR(x) = fT(x) ∩r fS(x)

∀x ∈ A∗ : pR(x) =

{
sT ∩r sS if sT ̸= ⊥∧ sS ̸= ⊥
⊥ otherwise

with sT = sDst(fT(x), pT(x), fS(x), pS(x))
and sS = sSrc(fT(x), pT(x), fS(x), pS(x))

T ∩r S = R

RSUBM

t = (At, at, Rt, rt) ∈ M
s = (As, as, Rs, rs) ∈ M

t ∩r s = (As ∩r At, at, Rt ∩r Rs, rt)

RSUBTS

T, S, R ∈ T ∗

|T| = |S| = |R|
∀i ∈ [1, |R|] : Ri = Ti ∩r Si

T ∩r S = R

B.5. Restricted Supertype
The relation t ∩r s for states s, t ∈ A is defined by the following table:

RSUPA

↓ t ∩r s→ denied restricted permitted optional avail unavail
denied denied denied denied denied denied unavail
restricted denied restricted restricted optional avail unavail
permitted denied restricted permitted optional avail unavail
optional denied restricted restricted optional avail unavail
avail denied restricted restricted optional avail unavail
unavail denied denied denied denied denied unavail

With that, for two types S and T, such that isLegal(T, S, F, T), the restricted supertype T ∩r S is defined by the largest fixed point
of the following rules:

RSUPT1

T = (rT , cT , fT , pT) ∈ T
S = (rS, cS, fS, pS) ∈ T

rS ̸= reference

T ∩r S = S

RSUPT2

T = (rT , cT , fT , pT) ∈ T
S = (reference, cS, fS, pS) ∈ T
R = (reference, cT , fR, pR) ∈ T

∀x ∈ N ∪A∗ : fR(x) = fT(x) ∩r fS(x)

∀x ∈ A∗ : pR(x) =

{
sT ∩r sS if sT ̸= ⊥∧ sS ̸= ⊥
⊥ otherwise

with sT = sDst(fT(x), pT(x), fS(x), pS(x))
and sS = sSrc(fT(x), pT(x), fS(x), pS(x))

T ∩r S = R

RSUPM

t = (At, at, Rt, rt) ∈ M
s = (As, as, Rs, rs) ∈ M

t ∩r s = (As ∩r At, as, Rt ∩r Rs, rs)

Extending the Object Capability Model with Fine-Grained Type-Based Capabilities 33

RSUPTS

T, S, R ∈ T ∗

|T| = |S| = |R|
∀i ∈ [1, |R|] : Ri = Ti ∩r Si

T ∩r S = R

C. Appendix: Theorems and Proofs
Theorem 6 states the fundamental security property of our approach, i.e., a subject that receives a capability cannot amplify that
capability, unless it actually owns the object the capability refers to. The proof of this theorem relies on some auxiliary theorems,
which are also presented and proven. In particular, Theorem 3 essentially states that our type system is sound. As only reference
types are relevant for the security properties, the theorems and proofs do not explicitly deal with value types.

In addition, Theorem 7 shows that defining an adapter’s category as a subcategory of the wrapped object’s category does not
induce any problems (see last paragraph of Sect. 4.5).

Theorem 1 (Restricted subtype and supertype). ∀T, S ∈ T : T ≤ T ∩r S, T ∩r S ≤ S.

Proof. As the recursive structure of ≤ and ∩r (or ∩r) is identical (the contravariance in method arguments is accounted for by
swapping ∩r and ∩r), we only have to examine the rules POA, RSUBA and RSUPA: Comparing RSUBA with POA shows that for all
s, t we have t ≤ t ∩r s, while comparing RSUPA with POA shows that for all s, t we have t ∩r s ≤ s.

Theorem 2 (Coercion results in a subtype). Let v be an object, r be a subject, and T ∈ T . Then coercer,T(v) = ⊥ ∨
T ≤ typer(coercer,T(v)).

Proof. Let T = (rT , cT , fT , pT), V = (rV , cV , fV , pV) = type(v), Vr = (rVr , cVr , fVr , pVr) = typer(v), w = coercer,T(v),
W = (rW , cW , fW , pW) = type(w), and Wr = (rWr , cWr , fWr , pWr) = typer(w).

Consider Alg. 3. If ¬isLegal(T, Vr, F, F), then w = ⊥. If T ≤ Vr, then w = v, thus T ≤ typer(w). Otherwise, we have
w = wrapT(v) with

rW = rT

cV ≤ cW ∧ Cadapter ≤ cW

fW(x) =

 avail if x = local ∨ (fV(x) = avail∧ fT(x) ̸∈ {denied, unavail})

unavail otherwise

pW(m) =

 pT(m) if fV(m) = avail

⊥ otherwise

owner(w) = owner(v)

Since V and Vr only differ in the state of feature local, isLegal(T, Vr, F, F) implies cT ≤ cV (LEGALT) and thus cT ≤ cW .
Let x ∈ N \ {local}. If fV(x) = avail∧ fT(x) ̸∈ {denied, unavail}, then fW(x) = avail. Thus, fT(x) ≤ fW(x) (POA).

Otherwise, we have fT(x) ̸= avail (if fV(x) ̸= avail, this follows from isLegal(T, Vr, F, F) and LEGALA). Thus, fT(x) ≤
unavail = fW(x) (POA).

Let m ∈ M with pT(m) ̸= ⊥ ∧ pW(m) ̸= ⊥. Then pW(m) = pT(m), thus pT(m) ≤ pW(m).
Now isLegal(T, Vr, F, F) implies fT(local) ̸= avail ∨ fVr (local) = avail (LEGALA). Since Vr is the type of a real object, we

have fVr (local) ∈ {avail, unavail}. Together with the fact that for target types we only allow avail and optional as possible states
for the feature local, this means that we always have fT(local) ≤ fWr (local) (POA).

Since W and Wr only differ in the state of feature local, in sum we have T ≤Wr.

Theorem 3 (Assignment results in a subtype). Let t be a variable of a subject r with type T that references some object o. Then
T ≤ type(o) and T ≤ typer(o). Especially, if fT(local) = avail, then o is owned by r.

Proof. Let T = (rT , cT , fT , pT). When t has been assigned to, the run-time system proceeded according to Algorithm 1. I.e.,
it has assigned o = coercer,R(unwrap(v)), where R is either T, T ∩r S, or T ∩r S ∩r Vr (lines 8, 12, 15, Alg. 2). In any case,
we have T ≤ R (Theorem 1). By Theorem 2 we have coercer,R(unwrap(v)) = ⊥ ∨ R ≤ typer(coercer,R(unwrap(v))). So
either the assignment failed (which is precluded by the assumption that t actually references an object), or we have T ≤ R ≤
typer(coercer,R(unwrap(v))) = typer(o).

The only difference between O = (rO, cO, fO, pO) = type(o) and Or = (rOr , cOr , fOr , pOr) = typer(o) is that fO(local) =
avail, while fOr (local) ∈ {avail, unavail}. If fOr (local) = avail, then O = Or, so T ≤ Or implies T ≤ O. Otherwise, if

34 Roland Wismüller et al.

fT(local) ̸= avail, T ≤ Or still implies T ≤ O. If fT(local) = avail and fOr (local) = unavail, then o is not owned by r,
which means that unwrap(v) is not owned by r (line 32, Algorithm 3). This makes the type check in line 13 of Algorithm 3
fail (fT(local) = avail also means that fR(local) = avail, thus ¬isLegal(R, typer(unwrap(v)), F, F) due to LEGALA), which
contradicts the assumption that t actually references an object.

In the following proofs on security properties, we just consider the direct authority provided by a single variable (reference), i.e.,
we only consider operations that are invoked using the variable under consideration. Since the theorems hold for all variables of a
subject, this means that they also hold for the direct authority of that subject as defined in Sect. 2.

Theorem 4 (Type restricts authority). A variable s of reference type S = (rS, cS, fS, pS) owned by a subject r grants the authority
to use an operation x, if and only if fS(x) = avail or r can successfully assign s (directly or indirectly) to a variable t of type
T = (rT , cT , fT , pT), such that fT(x) = avail.

Proof. Let v be the object referenced by s and Vr = (rVr , cVr , fVr , pVr) = typer(v).
“If”: If fS(x) = avail, the run-time system will allow to use x via s. If s can successfully be assigned to t, the run-time system

will allow to use x via t, since fT(x) = avail. Note that in both cases fVr (x) = avail must hold, i.e., v actually provides x.
“Only if”: Assume that fS(x) ̸= avail and r cannot successfully assign s to some variable t : T with fT(x) = avail. Since the

run-time system will allow the use of x only via a reference where the state of x is avail, r cannot use x.

Theorem 5 (Membrane restricts authority). Let s be a variable with reference type S owned by a subject r that references an object
v with owner(v) ̸= r. Then s grants the authority to use an operation x, if and only if x ̸= local, S permits the use of x , and v
provides x (i.e., fS(x) ̸∈ {denied, unavail} and fV(x) = avail, where S = (rS, cS, fS, pS) and V = (rV , cV , fV , pV) = type(v)).

Proof. We show that fS(x) = avail or s can successfully be assigned to a variable t of type T = (rT , cT , fT , pT), such that
fT(x) = avail, if and only if x ̸= local, fS(x) ̸∈ {denied, unavail}, and fV(x) = avail. The proposition then follows from
Theorem 4.

In the following, let Vr = (rVr , cVr , fVr , pVr) = typer(v). Vr and V are identical with the exception that fV(local) = avail,
while fVr (local) = unavail.

“If”: Assume that x ̸= local, fS(x) ̸∈ {denied, unavail}, and fV(x) = avail. If fS(x) = avail, the conclusion immediately
follows. Otherwise, let t be a variable of type T, such that T is identical to S, except that fT(x) = avail. We show that an assignment
from s to t will always succeed.

Inspection of rules POA and LEGALA proves that we have T ̸≤ S and isLegal(T, S, F, T). This means that the static type check
succeeds and the run-time system will execute Algorithm 1 to perform the assignment to t.

As owner(v) ̸= r, fS(local) ̸= avail by Theorem 3. Since T is identical to S except for fT(x) and x ̸= local, this means that
also fT(local) ̸= avail.

– If v = unwrap(v): Let R = T ∩r S. Since S and T are identical except for fT(x) = avail, we have fR(x) = avail (RSUBA)
and thus T = R. Furthermore, since S ≤ Vr (Theorem 3), and fVr (x) = fV(x) = avail, we have T ≤ Vr, i.e. R ≤ Vr, which
implies isLegal(R, Vr, F, F). Thus, the assignment succeeds (line 15, Alg. 3).

– If v ̸= unwrap(v): Let u = unwrap(v) and Ur = (rUr , cUr , fUr , pUr) = typer(u). Since s references v and v is an adapter,
the run-time system at some point assigned coercer,R(u) with R = S ∩r X for some type X to s (c.f. Alg. 2). Thus, we must
have isLegal(R, Ur, F, F) (line 13, Alg. 3), which implies isLegal(S, Ur, F, F), since S ≤ R (Theorem 1). Since S and T are
identical except for fT(x) = avail, and fVr (x) = fV(x) = avail, which implies that fUr (x) = avail (line 28, Alg 3), we have
isLegal(T, Ur, F, F). Thus, also isLegal(T ∩r Y, Ur, F, F) for any Y (RSUBA, LEGALA). Thus, the assignment succeeds.

“Only if”: Assume that x = local or fS(x) ∈ {denied, unavail} or fV(x) ̸= avail. Let t be a variable owned by r with type T,
where T is an arbitrary type with fT(x) = avail.

Since owner(v) ̸= r, fVr (local) = unavail and fS(local) ̸= avail by Theorem 3. If fT(local) = avail, this implies T ̸≤ S. If
¬isLegal(T, S, F, T), the assignment fails due to the static type check. Otherwise, Alg 2 will assign coercer,T(unwrap(v)). Since
owner(unwrap(v)) = owner(v) ̸= r, this assignment fails, because ¬isLegal(T, typer(unwrap(v)), F, F) (LEGALA, line 13,
Alg. 2). So for the following, we can assume fT(local) ̸= avail and thus, x ̸= local.

– If fS(x) ∈ {denied, unavail}: Then T ̸≤ S (POA) and ¬isLegal(T, S, F, T) (LEGALT, LEGALA), so the assignment fails due
to the static type check.

– If fS(x) ̸∈ {denied, unavail} and fV(x) ̸= avail: Then also fVr (x) ̸= avail, i.e., fVr (x) = unavail as Vr is the type of a
real object. Since s references v, this also implies that fS(x) ̸= avail (Theorem 3), i.e., T ̸≤ S. If ¬isLegal(T, S, F, T),
the assignment fails due to the static type check. Otherwise, Alg. 1 will be executed at run-time. Let R = T ∩r S. Since
fT(x) = avail, also fR(x) = avail. This implies both ¬isLegal(R, Vr, F, T) and ¬isLegal(R, Vr, F, F) (LEGALT, LEGALA),
which means that the assignment fails either in line 13 of Alg. 3 (if v = unwrap(v)) or in line 13 of Alg. 2 (if v ̸= unwrap(v)).

Extending the Object Capability Model with Fine-Grained Type-Based Capabilities 35

Theorem 6 (No amplification of authority). Let t be a variable of a subject r with type T and s be a variable (of an arbitrary subject)
with type S, referencing an object v with owner(v) ̸= r. When s is assigned to t, t does not grant more authority than s.

Proof. Assume that the assignment is successful, so that after the assignment t contains a reference to some object v′. Let
S = (rS, cS, fS, pS), T = (rT , cT , fT , pT), V = (rV , cV , fV , pV) = type(v), and V′ = (rV′ , cV′ , fV′ , pV′) = type(v′). Further
assume that t grants the authority to use some operation x, but s does not. We will show that this leads to a contradiction.

If x = local, then according to Theorem 4, fT(local) = avail or r can successfully assign t to a variable u of type U =
(rU , cU , fU , pU), such that fU(local) = avail. However, since owner(v) ̸= r, the run-time assignment defined in Algorithms 1 to 3
will always assign an object v′ with owner(v′) = owner(v) ̸= r. This contradicts Theorem 3.

If x ̸= local, according to Theorem 5, we have fT(x) ̸∈ {denied, unavail} ∧ fV′(x) = avail ∧ (fS(x) ∈ {denied, unavail} ∨
fV(x) ̸= avail).

– If fS(x) = denied, then T ̸≤ S (POA). Thus, the run-time system has assigned a value v′ according to Algorithms 1 to 3,
where v′ = coercer,R(unwrap(v)) and R = T ∩r S or R = T ∩r S ∩r typer(v). As fT(x) ̸∈ {denied, unavail}, we have
fR(x) = unavail in both cases (RSUBA). Let u = unwrap(v) and Ur = (rUr , cUr , fUr , pUr) = typer(u). If R ≤ Ur, then
v′ = u (line 15, Alg. 3). Since then Ur and V′ are identical except the status of feature avail, R ≤ Ur implies fV′(x) = unavail
(POA). Otherwise, v′ = wrapR(u). fR(x) = unavail again implies fV′(x) = unavail (line 28, Alg. 3).

– If fS(x) = unavail, then fV(x) = unavail by Theorem 3 and POA. The same is true, if fV(x) ̸= avail, since V is the type of a
real object.
The run-time system will assign either v or a value v′ according to Algorithms 1 to 3. In the first case, we get an immediate
contradiction, since v′ = v. In the second case, v′ = coercer,R(unwrap(v)) and either v = unwrap(v) ∧ R = T ∩r S or
v ̸= unwrap(v) ∧ R = T ∩r S ∩r typer(v). If v = unwrap(v), v′ will be either v or wrapR(v) (lines 16, 23 of Alg. 3).
In both cases, we get fV′(x) = unavail (c.f. line 28 of Alg. 3). Otherwise, we have R = T ∩r S ∩r typer(v), which implies
fR(x) = unavail (RSUBA). With the same argumentation as in the item above, we again get fV′(x) = unavail.

Thus, we get a contradiction in all cases.

Theorem 7 (No adapter for local class type). Let t be a variable of type T = (rT , cT , fT , pT) with Cclass ≤ cT and fT(local) = avail.
A legal assignment to t will never result in the generation of an adapter.

Proof. We assume that t is owned by a subject r and is being successfully assigned from a variable that references some object o (or
from the result of executing the new operator creating some object o). Since fT(local) = avail, the value coercer,T(unwrap(o)) will
be assigned to t at run-time (line 8, Alg. 2).

Let v = unwrap(o), V = (rV , cV , fV , pV) = type(v), and Vr = (rVr , cVr , fVr , pVr) = typer(v). Since v is not an adapter,
but a real object (which ultimately has been created by the new operator), we must have Cclass ≤ cV and V = type(cV). As we
assume that the assignment is successful, we must have isLegal(T, Vr, F, F) (line 13, Alg. 3). Since cVr = cV , this implies cT ≤ cV
(LEGALT). Further, fT(local) = avail implies that fVr (local) = avail (LEGALA), i.e., Vr = V.

Now, the requirements stated in Sect. 4.5 imply T ≤ type(cT), and (since cT ≤ cV) also type(cT) ≤ type(cV). I.e.,
T ≤ type(cV) = V = Vr. Thus, v will be directly assigned to t (line 16, Alg. 3).

36 Roland Wismüller et al.

