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ABSTRACT CONTEXT: Today’s industry heavily depends on the collaboration of multiple companies that have to exchange a lot
of information. When these companies use technology roadmapping and model-driven development, this leads to the exchange
of very large models, which is governed by competition laws, and the companies’ interest in protecting their intellectual property.
OBJECTIVE: We suggest an automated one-way model transformation approach to remove content worth protecting from a
given model in the context of the graphical technology-roadmapping modeling tool IRIS. METHOD: We elaborate constraints that
an obfuscated model must fulfill. Based on these, we systematically identify and analyze appropriate one-way transformations to
enable the desired level of obfuscation, implementing a proof of concept implementation in IRIS. Our approach first transforms
the model into a flattened constraint system and uses nine selected transformations—ranging from constant folding to the
tailoring of expressions—to create a new model without the sensitive content. We evaluate our transformations according to a
set of predefined properties and constraints regarding their effects on the behavior of the model and the inferable information.
LIMITATIONS: Our obfuscation concerns the model and the embedded formulas but does not deal with individual data, which
may be subject to privacy-related issues. RESULTS: We find that the identified transformations are applicable in practice and
that they can remove a lot of sensitive information from a given model. Future work includes dealing with individual data and
protecting against reverse-engineering attacks by domain experts.
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1. Introduction
Value chains are one of the fundamental concepts in modern
businesses, often implemented through technology roadmaps.
Those roadmaps enable collaboration and help to identify indus-
try needs, granting invaluable insights for businesses (Garcia
1997). They can be used to produce models that represent and
forecast the development and structure of innovation (Rinne
2004). Because of their omnipresence, there are a lot of dif-
ferent formats and types of technology roadmaps (Phaal et al.
2001; Garcia & Bray 1997).

Although many innovations require the collaboration of mul-
tiple parties, there are many reasons against distributing the
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complete model to everyone involved. Those include (a) sim-
plifications or complexity reductions so that the receiving party
can grasp the model more easily from its perspective, (b) the
removal of content that is worth protecting such as trade secrets
and intellectual property (IP), or (c) staying compliant with vari-
ous competition laws (BusinessEurope 2017). As a result, every
party only owns and knows pieces of one full model, which may
never be viewed or stored as a whole by anyone.

Nevertheless, these parties have to exchange information
when working together. As an example, consider a fuel tank
manufacturer that needs information about the upper weight
limit for a fuel tank—which may change over time due to
innovations—and, in return, an automotive OEM who has to
know the capacity of the fuel tank proposed. The state of the art
extracts the (relevant) parts by hand (e.g., in Microsoft Excel,
Microsoft Word, or Microsoft Visio). Afterward, the extracted
parts are sent to the fuel tank manufacturer, who in turn has to
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 [ ]:
 [ ]:

 [ ]:
:

:
:

The Car
Fuel Consumption l/km 8.75l/km 8.8 l/km
Range km Fuel Tank.Capacity / Fuel Consumption
Top Speed km/h (Engine Inhouse.Max RPS * PI * Chassis.Wheel.Diameter) / Chassis.Differential.Ratio 245.6 km/h
Demand linear(T, Jan2021, 3, Jan2026, 7, Dec2026, [25..60]) 4.5
Weight Engine Inhouse.Weight + Chassis.Weight + Doors.Weight + Fuel Tank.Weight + 800kg [1435.8 kg .. 1500 kg]
C1 Weight <= 2 * 750kg

 [ ]:
:

:

Engine Inhouse
Max RPS 1/s 3800/60 63.3 /s
Weight 258kg 258 kg
R1 T >= Jan2026

:
:

Chassis
Wheel Count 4 4
Weight Wheel.Weight * Wheel Count + 170kg 262.8 kg

: 50 cm 60 cm
: 22 kg 23.2 kg

Wheel Wheel A Wheel B
Diameter 60 cm
Weight 23.2 kg

:
Differential
Ratio 1.75 1.8

Wheel
:

:
:

Wheel A

Diameter 50cm 50 cm
Weight 22kg 22 kg

R1 T >= Jan2020

Wheel
:

:
:

Wheel B

Diameter 60cm 60 cm
Weight 23.2kg 23.2 kg

R1 T >= Jan2025

:
Doors
Weight 115kg 115 kg

 [ ]:
 [ ]:

:

Fuel Tank
Capacity l
Weight kg [0 kg .. 64.2 kg]
C1 Weight >= 0kg

Model

Model

Figure 1 A small model of a car in IRIS. It showcases the perspective of an OEM which needs a fuel tank (represented by the
“Fuel Tank” block) by a fuel tank manufacturer. While the OEM has certain constraints the fuel tank has to fulfill—the “Weight”
property must be in the range of 0 kg to 64.2 kg—due to the embedded intellectual property the OEM can not share the whole
model with the fuel tank manufacturer. When selecting “Fuel Tank” to be obfuscated, we must remove all other elements but keep
their impact on “Fuel Tank” intact (i.e., the inferred range of “Fuel Tank.Weight”). Figure 3 shows the resulting obfuscated model.

repeat the process to send a model back. This is a tedious and
impractical process. Moreover, with a lot of parties, commu-
nication, and changes, the manual (re-)creation of models for
specific partners is costly and error-prone, increasing the risk
of leaking unwanted or unauthorized information (Debreceni
2019).

Accordingly, there is the need for an automated model trans-
formation process. Given a model and a selection of parts of
the model, this process should produce an exported model that
contains the selected parts. Additionally, these parts should
behave equivalent to their counterpart in the original model (i.e.,
they should evaluate to the same results), while revealing as
little information as possible about the original model (Sihler
2023). To address this, we formulate one research question:

RQ1: What are necessary and adequate model transformations
that remove unselected parts from the model, but keep
the behavior of the selected parts?

The main contribution of this paper is the selection and im-
plementation of nine transformations as part of an automated
four-phase transformation process in the context of the technol-
ogy roadmapping tool IRIS. These transformations answer RQ1
and aim to satisfy four constraints which we derived together
with our industry partners. While we introduce all of them in
the context of IRIS, we exemplify their generalizability for other
use cases like the one-way transformation of Excel spreadsheets
which are omnipresent in the industry.

The remainder of this paper is as follows: with Section 2

as an introduction to IRIS, the problem definition in Section 3
presents a set of four constraints our transformations must fulfill,
and Section 4 differentiates our approach from the related work.
In Section 5 we present all nine selected transformations to
address RQ1, evaluate the approach in Section 6, and discuss its
limitations and its generalizability in Section 7. Section 8 sum-
marizes our contribution and considers potential future work.

2. Running Example with IRIS
IRIS is a graphical modeling tool for technology roadmaps
(TRM). Compared to other tools, IRIS not only supports domain
experts in modeling future innovative systems, their structure,
properties, and requirements but it also supports them in de-
riving the need for innovation (Pietron et al. 2022), e.g., if a
component is not available at a certain point in time or a com-
ponent can not fulfill the given requirements in the future. In
this case, IRIS allows to narrow down properties a solution must
have. IRIS treats time, time-dependency, and availability as a
first-class citizen and allows users to model uncertainty, with its
Excel-like domain-specific expression language supporting in-
tervals, ternary logic, types, units, and references to other model
elements. A built-in solver solves all equations and evaluates
the fulfillment of requirements.

We use IRIS as the basis for our one-way model transforma-
tion process. Hence, it is necessary to understand (i) how IRIS
represent models, and (ii) how the IRIS solver evaluates the
model. While Breckel et al. (2021) offer an in-depth discussion
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Figure 2 Simplified metamodel of the IRIS-Language with
blocks, properties, requirements, and constraints as model
elements.

of the domain-specific language of IRIS and the behavior of its
solver, this short overview focuses on the concepts relevant to
understand the following sections.

Figure 1 presents a small model of an OEM loaded in IRIS.
This model consists of a total of nine so-called “blocks” like
“The Car” (identified by the icon) which can be used to
represent products, concepts, or innovation in the modeling
domain. In this example, the OEM modeled a specific car, only
missing a concrete fuel tank which is to be produced by an
external fuel tank manufacturer.1

The very top of Figure 1 consists of a time-slider—with
currently located at December 2022—that can be used to con-
figure the currently simulated “global time” of the model state.
This time is represented by the symbol T within expressions.
These expressions are linked to model elements that, in turn, are
part of a block (cf. Figure 2). We differentiate three different
types of model elements aside from blocks:

– properties, like “Weight” in the “Chassis” block, have
a name (“Weight”) and a value (shown to the right of :
262.8 kg) described by an expression (Wheel.Weight
∗ Wheel Count + 170kg). They can be referenced by
their name in other expressions, with the blocks they are
contained in acting as scopes. The value can be set ex-
plicitly or derived by the solver due to one or many given
constraints.

– constraints have an expression that has to be fulfilled.
For example, “C1” in the block “The Car” restricts the
upper value of the “Weight” property to 1500kg. Due to
“C1”, the solver can evaluate the “Weight” of the “Fuel
Tank” to be in the range of 0 to 64.2 kg.

– requirements have a formula that is used to determine
if the block that contains them is available at the currently
simulated time (i.e., if the corresponding concept is avail-
able). “R1” in “Wheel B” is only fulfilled if the currently
simulated time is at least January 2025 (T >= Jan2025).

Blocks themselves can have two special types of relationships.
They can be children of a parent block—the blocks “Engine
Inhouse”, “Chassis”, “Doors”, and “Fuel Tank” are children of

1 The example is available online at: https://tinyurl.com/iris-ecmfa23

“The Car”—or implementation alternatives of a solution space,
like “Wheel A” and “Wheel B” of “Wheel”. Modeling a block
and letting implementation alternatives derive from that block
creates a solution space, which allows to compare the different
alternatives. “Wheel B” is the currently the manually selected
implementation in Figure 1. “Wheel” can be seen as an interface.
It consists of all required information and requirements the OEM
needs to build a (future) system. Consequently, such an interface
is suitable to be exchanged with suppliers which vice versa can
provide modeled implementations of that interface containing
all relevant information. These implementations, again, can be
added to the solution space to be compared and evaluated by
the OEM.

Furthermore, blocks have implicit properties, with the most
important one being an “Availability” property that is automati-
cally created based on all of the block’s requirements and the
requirements of its children. The value of this property is visu-
alized by the color of the background of the block’s name. As
an example, “Wheel A” is currently available (with T >= Jan
2020) as indicated by the green color, while “Engine Inhouse”
will become available in the future (January 2026) as indicated
by the yellow background. Blocks without requirements affect-
ing them do not have a special background.

Solving To infer correct values for all properties and require-
ments, IRIS uses a built-in solver which flattens the model
into a constraint system in the background, using unique IDs
for each model element and by repeatedly applying symbolic
transformations—as explained in further detail by Breckel et
al. (2021). For a property like “Demand” in “The Car” this pro-
duces the constraint: Demand(T) = linear(T, Jan2021,
3, Jan2026, 7, Dec2026, [25..60]) (with linear inter-
polating linearly between the value 3 for January 2021, 7 for
January 2026, and the interval [25..60] for December 2026).
The symbol “T” is added as an implicit parameter for each
property and defaults to the currently simulated time if not set
explicitly when referencing the name of a property.

3. Problem Definition
Based on requirements from our industry partners, we formalize
the problem as follows: Given an IRIS-model A with its set of
model elements EA and a selection of those elements S ⊆ EA,
we want to create another IRIS-model B which satisfies the
four following constraints that we consider important to ensure
that B no longer contains any content worth protecting while
keeping the behavior of the selection intact:

C1) Self-Containment. B has to be self-contained (i.e., it con-
tains no reference to any model element a ∈ EA).

C2) Selected. B contains all e ∈ S and none of those in EA \S.

C3) Inference. B allows no inference on any e ∈ EA \S. That
is, B should reveal as little information as possible regard-
ing the formulas or identifiers of any e ∈ EA \S.

C4) Behavior. All selected elements, in models A and B, have
to evaluate to the same value for every possible global time
(i.e., they have to be “behavioral equivalent” as explained
in Section 3.1).

One-way Model Transformations 3
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:
:

Collector
P29 [1435.8 kg .. 1500 kg]
C1 ((P29(T) + (-1 * #30(T))) = 1435.8kg) & (P29(T) <= 1500kg)

 [ ]:
 [ ]:

:

Fuel Tank
Capacity l
Weight kg [0 kg .. 64.2 kg]
C50 Weight >= 0kg

Model

V: 7.2ms 
O: 48.3ms

Report is valid 
4 Entries

Figure 3 Result of obfuscating the “Fuel Tank” block in Figure 1. While the “Collector” block, which we need to express the
remaining effect of unselected elements we were unable to fully obfuscate, is normally hidden, it is shown for completeness.
The icon shows that C1, C2, and C4 are satisfied (cf. the fourth phase in Section 5). If a modification by the user produces an
error (e.g., by invalidating C3), the icon changes to , problematic elements get highlighted in red and the hover-over of the icon
(currently reading “Report is valid”) gives more information regarding the problem. The example is intentionally kept simple to
allow manual verification of the produced result. See Figure 4 for another example.

:
:

:
:
:

:

Collector
A12 true
A18 true
A7 false
P42 22 kg
A27 true
C1 (A12 = (T

:
:

:

Chassis
Wheel Count 4 4
Weight (#42 * Wheel Count) + 170kg 258 kg
Availability #17 & #44 & #14 & #36 & true false

Please enter your name

Figure 4 Result of obfuscating the “Chassis” block in
Figure 1 (without the window shown in Figure 3). The
model alongside other examples can be explored at: https://
tinyurl.com/iris-ecmfa23-obf-chassis.

Dealing with each of these constraints individually is a trivial
task. For C1 it would be sufficient to create a copy of A, for
C2 to restrict this copy to all e ∈ S. Similarly, just solving
two or three of these constraints at a time is an obvious task.
For example, to satisfy C1, C2, and C3 we can simply copy
the e ∈ S from A and remove all references to elements in
a ∈ EA in the expressions of all e ∈ S. This way we have
a self-contained model, that contains all e ∈ S without any
mention of any model element e ∈ EA \S.

However, trying to satisfy all constraints C1–C4 elevates the
problem from “almost trivial” to impossible realms.We have
to retain aspects from A which are not selected but relevant
for the behavior of selected elements, without including any
critical information about their origin and without embedding
them directly, while keeping model B self-contained.2 For this,
we may need additional model elements in B, which summarize
the calculations of the unselected elements so that the results
of all e ∈ S remain the same. In Figure 3, we need the “P29”
property and the “C1” constraint in the “Collector” block, to
ensure that the allowed weight range for “Fuel Tank.Weight”
remains unchanged.

The resulting model shown in Figure 3 satisfies C1 (Self-
Containment) as it no longer holds any reference to the orig-
inal model shown in Figure 1. Furthermore, it satisfies
C2 (Selected) with none of the unselected elements (“Wheel”,

2 Because this is trivial for S = EA and S = ∅, by either creating B as a full
copy of A or by creating B as an empty model, we focus on cases where
S ̸= EA and S ̸= ∅.

“Wheel.Diameter”, . . . ), but all of the selected (“Fuel Tank”,
“Fuel Tank.Capacity”, . . . ) included. Regarding C3, the result-
ing model reveals rather little information about the original
model. There are no wheels and, hence, no information regard-
ing what kind of wheel is used. The car itself and information
about all other blocks are missing, and the formulas like “The
Car.Weight” have been massively reduced. We can not even
(definitively) reason, what numbers like 1500kg mean, as we
only know, that this weight affects the weight of our fuel tank.
In consequence, we consider C3 to be satisfied. Finally, all
remaining elements (most notably “Fuel Tank.Weight”) behave
exactly as in the original model, which satisfies C4 (Behavior).

With this, we structured the problem into four constraints
that must hold for the output model. We use these constraints to
analyze the selected transformations in Section 5.

3.1. Behavioral Equivalence
To compare the initial model with its obfuscated counterpart we
use the concept of “behavioral equivalence” which is required
by C4 (Behavior). Regarding the comparison of models, the
authors Yücesan & Schruben (1992) present various definitions
for sensible equivalence constructs based on simulation graph
models. Within this paper, we define the behavior of a model
resembling their definition of “input/output behavior”. This
behavior includes the values to which model elements evaluate,
the availability of specific components, and more. In short,
every behavior that is perceivable by the user for a given input.

We restrict the term of behavioral equivalence to model el-
ements both IRIS-models A and B have in common—which
allows both models to define additional elements to influence
their behavior—which we denote as the intersection of their ele-
ments: EA ∩EB. Therefore, with T being the set of all allowed
simulated global times, we define two A and B as “behavioral
equivalent” if:

∀t ∈ T ∀e ∈ EA ∩EB : eA(t) = eB(t).

eA(t) and eB(t) refer to the common model-element e from the
models A and B, evaluated for the current point in time t, respec-
tively. The behavioral equivalence is always trivially fulfilled
for two models that have a disjoint set of model elements.
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3.2. Disclaimer
Considering C3 (Inference), we focus on obfuscating the model
alongside all contained formulas but our approach ignores in-
dividual data. That is, we do not consider the scramble of
employee names in formulas—as it is done by “ARX” (Prasser
et al. 2014)—or the distortion of integer values— done by
AnonymousXL (Van Veen & Hermans 2014). This is due to
the amount of existing research on this topic in the area of
privacy-preserving data mining (Bakken et al. 2004).

4. Related Work
While there exists a lot of research on related problems, we are
not aware of any research dealing with the very same problem
as described in Section 3.

We read several extensive literature surveys and systematic
literature reviews in the area of obfuscation and extracted over
100 surveys, papers, and technical reports (Balakrishnan &
Schulze 2005; Hosseinzadeh et al. 2018; Ab. Rahim & Whittle
2015; Zhou et al. 2008). However, following up with papers
mentioned in those sources and their related work, most of
them focus on the obfuscation of complete programs (i.e., have
no concept of a selection to be retained) or the removal of
personal information from large datasets. Furthermore, many
obfuscations and anonymization techniques do not require the
output to be readable or in the same format. They either only
retain metadata required for subsequent analysis or use an as-
sembler or binary format for representation (Hosseinzadeh et
al. 2018). Those operating differently almost exclusively use
a single trusted entity or a set of multiple parties that receive
extracted parts of a program or model to answer requests in
an oracle fashion. However, none of these approaches yield
a standalone program. Instead, they require online work to
communicate with the other parties.

We list a subset of those closely related to one-way model
transformations so that they cover a broad range of perspec-
tives. We have loosely divided the related work into two groups:
(i) model obfuscation, and (ii) obfuscation of code.

4.1. Model Obfuscation
Research in this field deals with the uni- and bidirectional trans-
formation of one or several models into one or several models
of a comparable abstraction level (Czarnecki & Helsen 2006).

Goettelmann et al. (2015) propose an approach to obfuscate
business process models (BPM) at design time. In their paper,
they present a block-based fragmentation of BPM using obfus-
cation constraints. While their goal resembles ours as they want
to avoid, that a single cloud provider used by the company can
understand critical fragments of a BPM, their way of achieving
this goal differs as they do not obfuscate any contents or remove
any information from the whole model. Instead, they split a
single BPM into several fragments that can be distributed to
different cloud providers which have to communicate with each
other during the execution. Therefore, any fragment sent to a
cloud service provider or another company requires commu-
nication with other model parts to be executed and to behave
equivalently. This contradicts C1 which requires the model to

be self-contained so it works without this communication with
other parties. Additionally, there is no comparable “selection”
mechanism (making C2 and C3 not applicable).

The goal of Gupta et al. (2017) is to protect CAD models
against counterfeiting to protect intellectual property. However,
they introduce additional spheres into the CAD models that
do not dilute or obfuscate the present information but rather
“sabotage” reproductions based on this model. Hence, most of
the information of the original model remains but changes the
“behavior” of that model when reproducing (contradicting C4
that wants to keep the behavior of selected parts unchanged).

Fill (2012) has the same goal of supporting IP-preserving
collaboration in the context of models. Although he focuses
on conceptual models (Karagiannis & Kühn 2002), a lot of
transformations he describes are adaptable to the context of our
problem definition (like “information hiding” which removes
information from the model). However, he remains on an ab-
stract level presenting abstract examples of what could be done
but not when to apply or how to perform such transformations
automatically, or what problems their application implies.

Functional Mockup Interfaces (Blockwitz et al. 2012) are
similar to our approach in that they allow to define FMUs which
serve as a black box that can be used by others without knowing
the details of the implementation. However, FMUs (by default)
still contain most of the formulas, although the compiler has
obfuscated parts of them automatically by applying compiler
optimizations (Cooper & Torczon 2011). Still, we could use our
approach to generate an FMU as output.

4.2. Code related obfuscations
Code-related obfuscations do not deal with models or static data
in tables (e.g., inside an Excel spreadsheet) but with code. The
acquired methods make use of access restriction, control flow,
and information obfuscation (Balakrishnan & Schulze 2005).

The authors Debreceni, Bergmann, Ráth, & Varró describe
the insufficient administrative capabilities of source code repos-
itories and introduce their MONDO-framework for rule-based
access control policies (Debreceni et al. 2017, 2018). They
essentially provide views of a source code repository that reveal
only parts of the whole underlying model so that several crucial
or secret aspects of a code are not revealed to industry partners.

However, their approach differs on several crucial points.
First of all, they assume the existence of a so-called “gold
model” that contains all of the information. Additionally, they
describe the “front models” as mere secure views on this gold
model and not as standalone and independent versions of it. That
contradicts the constraint C1, requiring the one-way transformed
model to be self-contained (cf. Section 3). While views of the
model can be materialized (Preuß 2016) to achieve a similar
effect, materialization would require the creation and adaption
of similar transformations. Moreover, we assume that a “gold
model” does not exist. Furthermore, their concept of a “lens” as
a bidirectional model transformation is not guided by a selection
of elements but by a collection of access rules (Bergmann et al.
2016).

While compilers usually do not obfuscate the code they
compile, they use several transformations that aid our one-way
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model transformation purpose (Cooper & Torczon 2011). Es-
pecially optimizations that remove unreachable or dead code
and that already pre-evaluate parts of a program. They hide
calculations and remove origin information by inlining constant
values. For example, we adapt the well-known compiler op-
timizations of constant folding and constant propagation and
introduce them as T1 Arithmetic Simplification and T2 Inline
Definitions in the following Section 5.

Sosonkin et al. (2003) focus on a subset of program obfusca-
tions by hiding the design intents embedded in object-oriented
applications. They present three transformations called (i) class
coalescing, (ii) class splitting, and (iii) type hiding. Further-
more, they provide a design obfuscator for Java using all three
obfuscation techniques. Even though the formalized models we
use do not have the concept of classes, similar transformations
can be applied to the structure. For example, by splitting a block
in two or merging two blocks (cf. Section 8).

5. One-Way Model Transformations
To solve the problem as formulated in the problem definition
in Section 3, we propose a one-way model transformation pro-
gram that is split up into four distinct and sequentially executed
phases. They are as follows (cf. Figure 5):

Phase 1: Normalize the input model and selection.
Phase 2: Prepare and populate supporting data structures.
Phase 3: Obfuscate by repeatedly applying transformations.
Phase 4: Verify the produced result.

First Phase – Normalization The first phase is closely related
to the implementation domain—which is IRIS in our case—as
it must know the syntax and semantics (like the automatically
generated Availability-properties) of the modeling language.
It transforms the input IRIS-model into a (finite) flattened con-
straint system, marking every constraint generated from a model
element that is part of the selection. To achieve this phase, we
make use of the IRIS-solver which flattens the model for us, as
described in detail by Breckel et al. (2021).

Second Phase – Preparation The preparation phase is respon-
sible for the initialization of all data structures necessary for
the obfuscation phase. The most important part is its refer-
ence tracing—which creates a graph linking all references (e.g.,
names of properties) within the constraints—and its tracing
model, which is used to trace all changes by the transformations
of the next phase.

Third Phase – Obfuscation This is the main phase of the ob-
fuscation process and described in detail in Section 5.2. Given
the constraint system of the first phase and the additional data
from the second phase, it (i) obfuscates the constraint system
(C2, C3, C4), and (ii) creates a new model based on the ob-
fuscated constraint system (C1) by the repeated application
of nine transformations. These transformations work in four
obfuscation subphases:

– 3.1 Outer: Works only on unselected constraints.
– 3.2 Inner: Works on the effects of unselected on selected

constraints.

Transformation Dete
rm

inist
ic

Reve
rsi

ble

Glob
al

Loc
al

Phase

T1 Arithmetic Simplification ○ ○ 1, 2
T2 Inline Definitions ○ ○ ○ ○ 1, 2
T3 Expression Normalization ○ ○ ○ 1, 2
T4 Tailor Expressions ○ ○ 1
T5 Reduce Constants ○ ○ 1, 2
T6 Identifier Obfuscation ○ ○ 3
T7 Remove Orphaned ○ ○ 3
T8 Rebuild Hierarchy ○ ○ 3
T9 Remove Implicit ○ ○ ○ ○ 4

Table 1 Relevant properties of all nine transformations.
(○: Required/Fulfilled, ○: Can exploit / fulfill, Default: Does
not require/fulfill).

– 3.3 Structure: Works on the hierarchical structure (e.g., the
block relationships) and builds the output model.

– 3.4 Cleanup: Removes redundant information and refines
the models’ appearance.

The main goal of the obfuscation phase is to use the input model
and the selection to create the output model satisfying C1–C4.

Fourth Phase – Verification After the model is obfuscated,
a domain expert may want to conduct manual changes (e.g.,
change the layout of the model or some expressions). In gen-
eral, we allow for any change to the obfuscated model which
allows the user to (accidentally) violate any of the constraints.
Therefore, we use the obfuscated model (with potential changes
by the user), the initial model, and a mapping of the selected
elements in both models, to continuously and automatically
verify the constraints C1, C2, and C4.

For the behavioral equivalence, we have implemented a
checking function that is restricted (i) to the time interval de-
fined by the time slider (in Figure 1 this would be the range
from 2019 to 2040), and (ii) only checking for discrete time
steps (e.g., on a monthly basis). While this is not the same as
proving that both models are behavioral equivalent (as IRIS uses
a floating point number to represent time), this implementation
seems to be sufficient for the applications of our industrial part-
ners (because in their technical roadmaps they plan and operate
on a time scale of months).

5.1. Transformation Properties
We recognize a set of properties to be analyzed for each trans-
formation individually. These properties are based on the works
of Amrani, Dingel, et al. (2012) and Collberg et al. (1997).

Deterministic: A transformation is considered to be determin-
istic if it always performs the same modifications for the
same input.

Reversible: A transformation is “reversible” if its modification
can be reversed without any or with relatively little guess-
ing. Alternatively, we consider it reversible as well if it
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(a) Selection to obfuscate (b) Generated constraint system (c) Obfuscated constraint system (d) Obfuscated model

:
Block1
A 2 * Block2.B 42

:
:
:

Block2
B 3 * C 21
C 7 7
C1 Block1.A >= 12



Block1.A = (2 ∗ Block2.B)
Block1.availability = true
Block2.B = (3 ∗ Block2.C)
Block2.C = 7
Block1.A >= 12 (Block2.C1)
Block2.availability = true



Collector.P4 = 21
Collector.availability = true

Block1.A = (2 ∗ Collector.P4)
Block1.availability = true



:
:

Collector
P4 21
C1 (P4 = 21)

:
Block1
A 2 * Collector.P4 42

Figure 5 Phases of the one-way model transformations. With “Block1” selected in (a), (b) shows the constraint system generated
by the first phase (simplified for this example). Afterward, the second phase traces all references (e.g., recognizes all locations of
“Block1.A”). The third phase generates the new constraint system shown in (c) and builds the model shown in (d). The automatic
verification of the fourth phase is visualized in Figure 3.

does not have to be reversed at all to grasp the meaning of
the source (e.g., a reordering of b + a to a + b). We use the
property to mark transformations that alone are insufficient
to obfuscate the model but serve different purposes (like
allowing other transformations to function).

Our definition of the term “reversible” is a weaker version
of “resilience” as defined by Collberg et al. (1997).

Scope: The scope categorizes the specific subphase(s) (cf. the
third phase in Section 5) in which the transformation is to
be applied: 1) outer, 2) inner, 3) structure, and 4) cleanup
represented by the numbers 1 to 4 respectively.

Additionally, it specifies if the application of the trans-
formation is Local (it operates on a single constraint) or
Global (it modifies multiple constraints, or requires infor-
mation on/from other constraints).

5.2. Transformation Catalog

From an abstract perspective, all transformations considered
are to be executed in the obfuscation phase and are applied
according to the execution order proposed in Section 5.3. They
form the basis of the model-to-model approach to deal with
the problem definition of Section 3. We consider two kinds of
transformations: (i) those that change the constraints created
with the normalization phase ( T/1 – T/7 ), and (ii) those that
create and modify the structure of the output model ( T/8 , T/9 ).

Table 1 lists all transformations that are implemented in IRIS
and discussed in this section, alongside a summary of their
properties as described in Section 5.1. After discussing each
transformation individually, we describe how they work together
in Section 5.4. We have selected these transformations from a
pool of transformations based on the following criteria:

– Necessity: Some transformations are required to achieve
certain obfuscations. For example, if we want to obfuscate
the hierarchy of a model, we need a transformation that
modifies the model hierarchy (like T8 Rebuild Hierarchy).

– Intuition: Some transformations, as the evaluation of con-
stants, are intuitive for a one-way transformation approach.
If we evaluate −2 · 7.5 to −15, it is impossible to recover
the original formula as there are infinitely many terms that
evaluate to −15.

:
:

Block A
Selected1 12 12
Selected2 Block B.Unselected 24

:
Block B
Unselected Block A.Selected1 * 2 24

Figure 6 Showcase of potential problems when executing
T1 Arithmetic Simplification on functions with references.
Here, the evaluation of Block A.Selected1 ∗ 2 which
would break the link between Selected1 and Selected2
(assuming only the latter two are part of the selection).

5.2.1. Disguise of Computing Paths Transformations of
this group hide details about the computation of values. There-
fore, for an inferred result of x, these transformations obfuscate
parts of the required calculations to receive x. The simplest
form of this obfuscation is evaluating the equations beforehand
as performed by T1 Arithmetic Simplification.

T1 Arithmetic Simplification Essentially, this transformation
performs constant folding (Cooper & Torczon 2011, Chp. 8)
by evaluating functions when all of their arguments are free of
any references (like names of other properties and blocks). For
example, this transforms 2 + 5 to 7 and ceil([1.3..2.7])
to [2..3] with “+” and “ceil” as the functions which are
simplified (with “+” written in infix-notation).

To perform this transformation, it is enough to look at the
constraint that is to be simplified. Therefore, we consider it
to be local. Furthermore, because all functions in IRIS are
deterministic, this transformation is deterministic as well (as
long as we evaluate every applicable function).

The following points discuss the influence of T1 Arithmetic
Simplification on all four constraints from Section 3:

C1) Self-Containment. Functions in IRIS can not evaluate to ex-
pressions that include other references. Even if they could,
we essentially break all references to A (by constructing
a new model based on the transformed constraints in the
structure obfuscation subphase). Therefore, this transfor-
mation is (by construction) unable to produce any reference
to a ∈ EA.

C2) Selected. This transformation does only operate on a single
constraint at a time. Furthermore, it does not perform any
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structural modification (restricting itself to the evaluation
of expressions). Therefore, it can not alter the elements
that are contained in B.

C3) Inference. In general, showing that evaluating a function
does not reveal more about the model than the function
itself, is hard. Consider a hypothetical function “dump()”
that produces a human-readable string containing the orig-
inal model. While the result may be removed (cf. T7
Remove Orphaned) if the result of dump() is not required
by any selected constraint, we can not future-proof this
transformation against all functions potentially added to
IRIS. For now, none of the functions provided by the
domain-specific expression language of IRIS have a prob-
lematic behavior similar to dump() and we can therefore
evaluate them without any problems.

C4) Behavior. As all functions in IRIS are deterministic and we
evaluate them only if their arguments are reference-free,
their result is indifferent no matter if they are evaluated
now or later.
The restriction to reference-free arguments is neces-
sary as exemplified by Figure 6. If both properties in
“Block A” are selected, we can not simply transform
“Block B.Unselected”. Because when we simplify the
value to 24, further changes of “Block A.Selected1” do
no longer affect “Block A.Selected2”.

T2 Inline Definitions The inline definitions transformation is
executed in the outer and inner obfuscation subphases. In the
outer phase, only unselected constraints are considered as tar-
gets for inlining, in the inner phase it is allowed to inline values
from unselected to selected constraints (but never to inline the
other way around). It is similar to the constant propagation com-
piler optimization (Cooper & Torczon 2011, Chp. 8). As IRIS
does not allow user-defined functions with its domain-specific
language, we do not consider the inlining of functions (Chang
& Hwu 1989).

To ensure that we can safely inline a value, we have to be sure
that we lose no impact (cf. T7 Remove Orphaned). With the
constraints (i) B = [5..6], (ii) B = 5, and (iii) A = B + 2
we can not inline (i) into (iii), as we would lose the impact of
(ii) on (iii) (as IRIS offers no mechanism to trace that the inlined
interval is connected to B).

To solve this problem, we refer to the solver which can infer
the closest bounds for each variable. If those bounds are not
dependent on the currently simulated time, we can simply inline
the closest bound (B = 5 in the example above). Otherwise, we
have to perform an impact analysis—which uses the data flow
of the expression language—to retrieve all constraints that affect
B in A = B + 2 and only inline if there is no other constraint
impacting the reference to inline.

With this, we can define the transformation as follows: For
each selected and unselected reference r (e.g. a reference to a
property) in each unselected constraint c in the outer subphase
and each unselected reference r in each selected constraint c in
the inner subphase: If there is a value v for r that can be inferred
without removing any necessary impact, replace r in c with v.

We use a deterministic variant of the inline definitions trans-
formation by inlining whenever possible. If one restricts the
approach to only apply inline definitions, the transformation
may not be necessary to be reversed by an attacker. That is,
while it conceals information about the origin of values, it does
not remove the formulas the inlined value is based on. As an ex-
ample, consider a property Factor which is assigned the value
3 and intellectual property that is to be removed. Simply inlin-
ing Factor into the constraint Outcome = Factor ∗ Input
to Outcome = 3 ∗ Input does not remove the value 3 from
the model. However, by inlining all the direct effects of such
a formula, this transformation can make them obsolete for the
behavior so they get removed by T7 Remove Orphaned. Fur-
thermore, the inlined values can be diluted further by applying
T1 Arithmetic Simplification.

It may be required to check for the effects of the currently
simulated time to determine the impact. As this transformation
has to look at other constraints to extract values, it is global.

We argue for the following effects on the four constraints by
applying inline definitions:

C1) Self-Containment. Because this transformation only re-
moves references, it does not reintroduce any reference
to a ∈ EA. However, this behavior may change if we
allow the expressions to be inlined to contain additional
references. Nevertheless, all of them can be obfuscated by
T6 Identifier Obfuscation leaving no reference to A.

C2) Selected. The transformation does not use selected vari-
ables as a basis for inlining. Therefore, it only makes
unselected constraints applicable for removal by T7 Re-
move Orphaned, never removing selected elements.

C3) Inference. This transformation removes origin informa-
tion but retains the information of unselected elements.
However, as discussed alongside the reversibility, the ap-
plication of this transformation lays the groundwork for
removing inferable information by other transformations.

C4) Behavior. Because we only inline values whenever it does
not break the impact of other constraints, applying inline
definitions does not affect behavior.

T3 Expression Normalization The expression normalization
transformation is required to reorder constraints into a standard-
ized form to drastically reduce the complexity of the patterns to
be matched by other transformations and to remove information
potentially embedded in the ordering of operations. We use this
transformation to deterministically normalize constraints to an
IRIS-internal normal form (Breckel et al. 2021).

For each selected and unselected constraint, this transforma-
tion exchanges the order (and sometimes the type of) operations
while preserving behavior (e.g., 2 < x + 2 to 2 − 2 < x).

Because we only change the order of operations, there is noth-
ing that has to be reversed, making the transformation reversible.
Nevertheless, by transforming all constraints into a standardized
form, we can still hide some intent embedded in the original
notation. This transformation neither changes model elements
nor does it affect behavior. Therefore, we do not discuss the
constraints in any greater detail, as C1–C4 remain unaffected.
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:
:
:

Block
p T >= Jan2020 & T <= Jan2022 false
a if p then 5 else 0 0
b a(T - months(5)) 5

Figure 7 Tailoring with local time dependence in IRIS. The
set time is April 2022. Suppose we restrict the domain of
global T to lie between January 2021 and December 2023. In
that case, we can not simply tailor the expression as described,
as b accesses a for a different local time.

5.2.2. Disguising the Result Transformations of this group
hide details about the results themselves by exploiting several
domain limitations of external or internal factors (i.e., variables).
This applies for infinite domains (e.g., [3, ∞)) as well.

T4 Tailor Expressions The goal of the tailor expression trans-
formation is to tailor functions to the domains of their input
vectors. Consider an expression like linear(x, 0, 5, 10,
100) which interpolates a result for the value of x between 5 for
x ≤ 0 and 100 for x ≥ 10. For x = 8 this expression evaluates
to 5 + (100 − 5)/10 · 8 = 81. If x is limited to x ∈ [0, 8], we
can tailor the given linear expression to linear(x, 0, 5,
8, 81), hiding calculation details outside of the domain and
therefore impeding extrapolation.

Considering time in IRIS, there are two features affecting
this transformation: (i) the possible values for the global time
can be restricted by a closed interval, and (ii) the global value
of T can be shadowed when using references. The restriction
of the global time can be seen to the left and right of the time
slider in Figure 1—dates before 2019 and after 2040 (which
is the exclusive upper limit) are not considered for this model.
Shadowing by using a different local time allows referencing
“The Car.Demand” from Figure 1 as The Car.Demand(T −
months(2)) ( 4.4 for the currently simulated time of Dec
2022). This does not impede tailoring in general—it even bene-
fits the process—however, it requires greater care when tailoring
an expression.

Consider the example in Figure 7. The global time T is
restricted to lie between January 2021 and December 2023.
If we just look at the property “p”, tailor expression could
try to replace Jan2020 by Jan2021 (as dates before Jan-
uary 2021 are not considered due to the time restriction). How-
ever, this would result in a wrong evaluation for b which
uses a(T − months(5)) to access a in the time interval
[Aug2020..Jul2023].

Hence, we can not tailor the expression without taking into
account all potential local bindings for T. We address this issue
by using the solver to infer the closest domain that contains
all possible values for the local binding of T. In this exam-
ple, the closest domain would be the union of both intervals:
[Aug2020..Dec2023].

For tailor expressions to work, we provide a predefined tai-
loring function for each IRIS-function that is applicable for
tailoring. All of these tailoring functions ensure termination.
For example, they take care to prevent replacing the expression e
with f (e) (which may result in an infinite recursion if f (e) is to

be tailored again). The tailor functions can access the closest
domain for all references and external factors as inferred by the
solver. As these functions are deterministic and because there
is only one tailoring function per applicable IRIS-function, the
property propagates to the tailor expressions transformation.

In general, this transformation is irreversible albeit external
semantics by the modeling domain may allow educated guesses.
If we know that the function is linear for [a, b] and [c, d] with
b < c it may be safe to guess the values for [b, c] and use this
information to extrapolate for values outside of [a, d]. Because
we need the closest domain for all references in question and
for T, the transformation is considered to be global.

We argue for the following effects on the four constraints:

C1) Self-Containment. This transformation updates only parts
of an expression, with the tailoring functions never creating
any unknown reference. Therefore, tailor expressions is
incapable of invalidating this constraint. Otherwise, it
has the same problems as T1 Arithmetic Simplification
(regarding the addition of new functions to IRIS).

C2) Selected. Because this transformation does not perform
any structural modification, it can not alter the elements
contained in the output model.

C3) Inference. As we have already argued with the reversibility
of this transformation, its application does impede potential
extra- and interpolation.

C4) Behavior. The tailor expression transformation only re-
moves information for inputs that lie outside of the domain
of the global time. Because behavioral equivalence re-
spects this domain, removing information outside of it
does not affect it.

T5 Reduce Constants The goal of the reduce constant trans-
formation extends on T2 Inline Definitions. While the latter one
restricts itself to inline only if we know that we do not lose any
calculation information, reducing constant makes use of the fact
that we know constraints outside of the selection are not subject
to change.

For example, consider two constraints in the form x >= 2
and x <= 5 that require x to lie in the closed interval [2..5].
If both constraints are unselected and therefore not be changed,
we can simply intersect the domain of x by their restrictions.
If x is currently (−∞, ∞) (i.e., unbound), this would result in
a new constraint: x = [2..5]. In other words: we replace
the value for x with the closest domain inferred by the solver
(as long as the global time is not affecting this closest domain,
cf. T2 Inline Definitions). After the application of the reduce
constants transformation, the value x is applicable for inlining
by T2 Inline Definitions.

We can describe the transformation like this: For every unse-
lected (outer subphase) and selected reference (inner subphase) r
in the constraints, infer the closest possible bound βr using only
unselected constraints. For each βr, produce a new unselected
constraint r = (βr). Because there is only one closest possible
βr for each reference, we consider the transformation to be de-
terministic. By considering all unselected constraints to infer
the closest bound, this transformation is global.

Due to the transformation not modifying the already existing
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constraints in the model we can summarize the effects on the
four constraints based on the arguments before, as none of the
constraints are contradicted.

5.2.3. Disguising Structure Transformations of this group
deal with the structural modification of a model, including
the obfuscation of reference, hierarchy, and usage information.
The most important of those transformations is T7 Remove
Orphaned, which removes constraints and model elements that
are no longer required. Additionally, this phase is responsible
for the recreation of a model based on the constraints.

T6 Identifier Obfuscation The goal of the identifier obfusca-
tion transformation is the exchange of identifiers (i.e., the names
of properties, blocks, . . . ) with new and randomly created ones
so that it is impossible to reason about the original identifiers.

For this transformation to work, we add a mapping func-
tion m in the preparation phase (cf. Section 5), that maps
identifiers from the input model to the obfuscated output.

We can describe the transformation like this: For each refer-
ence r in the constraint, we check first if the mapping function m
does already contain a mapping for r. If it does, we replace r
by m(r), otherwise, we randomly generate a new unique identi-
fier r′, store it in m so that m(r) = r′ and, replace r with r′.

Because there is no way of linking the newly generated
identifiers to the input model, this transformation is irreversible.

It should be noted that it is possible to create a deterministic
variant of the identifier obfuscation. For example, by increment-
ing a counter for each newly encountered reference (we use this
within the examples to keep them consistent). As long as the
process itself does not allow an attacker to make any guesses
about, e.g., the number of elements in the original model, the
impact of this transformation remains the same—in IRIS we
have implemented both variants.

Applying the identifier obfuscation on the four constraints
has the following consequences:

C1) Self-Containment. This transformation creates only new
references that, by construction, are unable to reference
any a ∈ EA.

C2) Selected. This transformation does neither remove nor
add a new model element. Yet, it exchanges their unique
identifiers.

C3) Inference. By removing potential information introduced
by aliases or the identifier generation process of the model-
ing language, this transformation reduces the potentially
inferable information.

C4) Behavior. As this transformation exchanges all identifiers
consistently, this does not affect the behavioral equiva-
lence.

T7 Remove Orphaned This remove orphaned transformation
is critical for hiding unwanted information as it is responsible
for the removal of constraints that have no longer any influence
on the behavior of the selected variable. It uses impact analysis
(similar to T2 Inline Definitions) to identify constraints that do
not affect any selected constraint.

This method may determine, depending on the method we
use to identify the impact of unselected constraints. In general, it

does not have to. Whenever there are two redundant constraints
like x >= 3 and x >= 3 whereas either one of them affects the
domain of x, while the other one does not—the one to remove
can be chosen randomly. Because we remove the constraints
completely, we consider the transformation to be irreversible.

Removing orphans has the following consequences on the
four constraints:

C1) Self-Containment. Because we only remove constraints we
reduce the number of references to a ∈ EA at most.

C2) Selected. As only unselected constraints are removed, noth-
ing selected is affected.

C3) Inference. In combination with other transformations, like
T2 Inline Definitions, this transformation is key in imped-
ing the inferable information on unselected elements.

C4) Behavior. By construction, we only perform removals that
do not affect the behavioral equivalence.

T8 Rebuild Hierarchy The goal of the rebuild hierarchy trans-
formation is to create the output model based on the set of
constraints transformed by the previously employed transforma-
tions. While its main purpose is to produce an IRIS-model, it
serves the purpose of creating a new hierarchy, ensuring that the
constraints C1–C4 hold.

When recreating the model hierarchy there are several special
cases to deal with. Take a look at Figure 1 and assume that the
blocks “The Car” and “Wheel” are selected. When recreating
the model, the unselected “Chassis” block—the parent block of
“Wheel” and the child block of “The Car”—should not be recre-
ated. When removing “Chassis” we must re-parent “Wheel”
and deal with all references like Chassis.Wheel.Diamater
in the “Top Speed”-property of “The Car”.

As another example, consider constraints that can not be
fully removed to keep the behavior of the output model intact.
We can not simply add them to the model because, in IRIS, all
properties, requirements, and constraints need a block that con-
tains them (cf. Figure 2). Therefore, we produce a new so-called
“Collector” block to contain all these constraints (cf. Figures 3
and 5).

As a third case, note that IRIS does not create constraints for
elements that are neither referenced nor assigned to an expres-
sion which would invalidate C2. To cope with this, we manually
ensure the existence of all selected model elements by an extra
pass over the selection, recreating all missing elements. In Fig-
ure 5, this results in the creation of the property “Collector.P4”
so that the formula of “Block1.A” can reference it.

Furthermore, there is an essential point to be made about
implicit assumptions, as they can make the process more dif-
ficult if they can not be expressed directly in the modeling
environment. Consider the Availability-property in IRIS. As it
is generated based on the hierarchy of the model (including the
requirements of child blocks), we have a problem if some of
these requirements are not selected as we have to remove them
due to C2 (Selected) but keep their influence to satisfy the fourth
constraint (C4, Behavior). To deal with this problem, we have
extended the IRIS expression language so that it is capable of ex-
pressing all implicit assumptions (like the Availability-property)
explicitly by special model elements. This allows us to remove
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unselected requirements and blocks while retaining their impact
within these special elements, satisfying both C2 and C4.

Because this transformation finally creates the output model
in question, the discussion about its effects on the four con-
straints is of special interest:

C1) Self-Containment. Assuming, T6 Identifier Obfuscation
already operated on the constraints (which it does with our
execution order as explained in Section 5.3), all unique
identifiers are newly generated. Therefore, the model does
not reference or use any model element from A.

C2) Selected. The effect on the selected elements depends on
the transformations employed before. If all of them remain
in the model—which is what we expect—this transforma-
tion ensures that all e ∈ S are present.

C3) Inference. The major purpose of this transformation is to
produce a model and not to reduce the inferable informa-
tion. Therefore, it does not remove any information. On
the contrary, it may even re-induce some information by
creating hierarchical structures removed by the selection.
Nonetheless, if the exact model structure is crucial for the
modeling language syntax, this can not be helped.

C4) Behavior. By essentially just reformatting the constraints
to be set inside an IRIS-model that re-generates similar
constraints, we do not change the behavioral equivalence.
All implicit assumptions—like the Availability-property of
blocks—are now expressed explicitly whenever necessary.

T9 Remove Implicit The remove implicit transformation is
of use if any implicit assumptions—like the Availability prop-
erty of blocks—remain in the model produced by T8 Rebuild
Hierarchy. In other words, it removes each (unselected) model
element that is already covered by implicit assumptions. For
the availability properties, we simply compare the normalized
constraint with the implicitly created one.

Similar to T7 Remove Orphaned, there may be situations
in which, for example, one of two redundant model elements
may be chosen at random. Hence, the transformation may be
indeterministic. However, we only remove model elements that
are already covered by implicit assumptions.

As we do not remove any information from the model but
rather hide information that could be used to identify what
has been obfuscated, we consider this transformation to be
reversible.

The transformation is global because we have to consider the
impact of other model elements in combination with their hier-
archy to determine if they are covered by implicit assumptions.
Removing the implicit assumptions has the following impact on
the four constraints:

C1) Self-Containment. Because the model is already built by
T8 Rebuild Hierarchy and because we only remove ele-
ments, we can not re-introduce references to a ∈ EA.

C2) Selected. We do only remove elements stemming from
unselected constraints. Therefore, we never remove the
elements from the selection.

C3) Inference. Using the same arguments made for the transfor-
mations’ reversibility, we do neither improve nor impede
the theoretically inferable information on any e ∈ EA \S.

T/5 T/3 T/1 T/2 T/4

[any constraint changed]

T/2
[else]

T/5 T/3 T/1

T/7 T/6 & T/8

T/9

3.1 Outer

3.2 Inner

3.3 Structure

3.4 Cleanup

Figure 8 Activity diagram of a potential execution order of
the transformations. Each line represents one of the obfusca-
tion subphases 3.1–3.4 (as indicated by the small numbers to
the right).

C4) Behavior. By only removing model elements that are cov-
ered by implicit assumptions we do not affect the behavior.

5.3. Execution Order of Transformations
While there are many possible execution orders for the trans-
formations presented in Section 5.2, Figure 8 gives a brief
overview of the order implemented in IRIS. Starting with
T5 Reduce Constants, setting (whenever possible) the closest
bounds for all constants. After that, we repeatedly normal-
ize the constraints ( T/3 ), simplify and inline where applica-
ble ( T/1 & T/2 ) followed by tailoring them ( T/4 ), until we
reach a fixpoint (i.e. the constraints do not change anymore).
Moving on to the inner obfuscation subphase, we start with T2
Inline Definitions, inlining values of unselected model elements
into selected elements whenever applicable, calculate the clos-
est bound for all selected references by using only unselected
constraints ( T/5 ), normalize the constraints ( T/3 ), and finally
simplify inlined parts in the selected constraints ( T/1 ). For the
structure obfuscation subphase, we first remove all orphaned
constraints ( T/7 ), followed by a combined application of T8
Rebuild Hierarchy and T6 Identifier Obfuscation (i.e., T/6 is
executed as a part of T/8 ). After that, we run T9 Remove
Implicit on the newly created model.

5.4. Obfuscation Workflow
Within IRIS, we decided to restrict the input selection to blocks—
automatically selecting all of the properties, requirements, and
constraints they contain—to improve usability.

To exchange relevant information with the fuel tank manu-
facturer, the OEM of the running example in Section 2 would
select the “Fuel Tank”-block and start the obfuscation process
as explained at the start of Section 5. This results in a preview
of the obfuscated model as shown in Figure 3. In this preview,
the OEM can review the export and manually validate whether
only relevant information and no intellectual property are in-
cluded. If desired, the OEM can change the exported model,
supported by an automatic and continuous evaluation of C1,
C2, and C4. Furthermore, the OEM can export and send the
obfuscated model to the fuel tank manufacturer which in turn
imports the obfuscated model into its model. Now, the fuel
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Figure 9 Required time to perform the obfuscation
(phases 1–3) and the verification (phase 4) with a variable
number of model elements selected.

tank manufacturer models one or many solutions which exactly
provide the information requested by the OEM and also can
aim at fulfilling the given requirements and constraints. After
this, the fuel tank manufacturer runs the obfuscation process to
not share IP with the OEM and sends back the exported fuel
tanks to the OEM. The OEM, finally, imports the provided fuel
tanks into the OEM model and evaluates the provided solution
(in place).

6. Evaluation
Our main goal was to answer RQ1 to perform a technical feasi-
bility study of the respective transformations. For RQ1, we al-
ready analyzed all transformations regarding the constraints C1–
C4 and discussed their properties from Section 5.1 as summa-
rized in Table 1.

For the implementation, we created an automated check
which validates the behavioral equivalence of two models to
verify C4 explicitly (cf. the verification phase in Section 5). We
use this check to validate every possible selection for a given set
of models—consisting of IRIS-examples and specifically crafted
edge cases—as well as randomly generated models. Four of
the large IRIS-examples in use have been crafted by domain
experts of our industry partners. By passing these tests, we
gain a baseline confidence for the effectiveness of our approach
regarding C1, C2, and C4.

Furthermore, we created 204 unit tests which achieve a (state-
ment) test coverage of 94.7 %, systematically covering the ob-
fuscation of all language features of IRIS—including their edge-
cases—in combination with every possible input selection to
ensure the quality of our implementation. Unchecked statements
contribute to type-safety and the IRIS-frontend.

To assess if the implementation in IRIS is applicable, we
measured the performance by benchmarking selections of vari-
ous sizes for different models using an average office computer.
The benchmarking revealed maximum obfuscation times rang-
ing between 16.32 ms for small models of 32 model elements
and 789.2 ms for a larger model with 165 model elements—the
full plot of the benchmark for the latter model can be exam-
ined in Figure 9. It shows greatly varying obfuscation times.
This variation is attributed to the (naïvely implemented) im-
pact analysis required by T7 Remove Orphaned and T2 In-
line Definitions (therefore, it depends on the number of unse-
lected time-dependent constraints that require this analysis as

explained with T/2 ). As expected, the verification time scales
linearly with the number of elements both models have in com-
mon.

Regarding the overall effectiveness, we conducted several
demonstrations with domain experts from the industry using
example scenarios, with subsequent discussions and feedback
rounds. We can report positive feedback from our industry
partners. However, a case study regarding C3 with real-world
scenarios (e.g., domain experts trying to reverse engineer the
original model from the obfuscated output) remains future work.

7. Discussion
In examining the approach’s applicability, we will first inves-
tigate its limitations in practice in Section 7.1, followed by a
discussion of its generalizability in Section 7.2.

7.1. Limits
Furthermore, we used the publications gathered during our re-
search (cf. Section 4) as a basis for a discussion of the theoretical
limitations of the proposed approach. Even considering all nine
transformations presented, they can not obfuscate every model
for every selection to not reveal any more than oracle access
for unselected elements—the existence of a general obfuscator
achieving this has been proven to be impossible by Barak et al.
(2001). We have examined the following four limitations to be
the most serious:

1. We can not prevent attackers from having a more detailed
understanding of the domain. As an example, consider a
domain expert in the automotive industry. Even though
the concrete formulas for the wheels of the cars may be
obfuscated, their indirect effect on the behavior of the
remaining model may be enough to identify known key
characteristics of a specific wheel manufacturer.
Additionally, competition laws could pose a problem as
well. Even law experts have difficulties evaluating specific
scenarios because “the legality of a certain conduct is of-
ten also dependent on factual circumstances which might
be difficult to evaluate” (BusinessEurope 2017, p. 8)—so
whether a specific obfuscation is “compliant” may be de-
cided by legal decisions on a case-by-case basis.

2. For some functions (like point functions), it has been
proven that it is impossible to obfuscate them into a form
that reveals nothing more than oracle access (Narayanan &
Shmatikov 2006; Wee 2005; Barak et al. 2001).

3. While we have based our properties on other work focused
on characterizing obfuscating transformations and model
transformations in general (Amrani, Dingel, et al. 2012;
Amrani, Lucio, et al. 2012; Collberg et al. 1997), they
could be insufficient in identifying all relevant aspects.

4. Furthermore, we did not focus on transformations that
deal with the obfuscation of data. This could result in
further problems when applying additional transformations
dealing with that (cf. Section 8).

7.2. Generalizability
While we introduce all transformations in the context of IRIS,
a lot of them are useful in the context of other tools as well.
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Nevertheless, future research is necessary regarding their ap-
plication. The most obvious alternative is Microsoft Excel (as
well as other spreadsheet tools like LibreOffice Calc), as IRIS
shares a lot of similarities regarding the expression language and
the semantics. Moreover, as indicated by or industry partners,
Microsoft Excel is a prominent tool in the context of technology
roadmapping (Rinne 2004). By interpreting the input as well
as the output model as a complete spreadsheet, and a selection
of elements as a selection of cells (identified by their position
in the spreadsheet or an accompanying cell), T/1 – T/3 , and
T/5 – T/7 can be adapted directly. Two things to care about are:

– Functions like RAND() which produce a different result
with each calculation. If they are to be evaluated at obfus-
cation time may be dependent on the context.

– Functions like WEBSERVICE(url), custom functions in
other languages, or anything that deals with information
from the outside world may introduce unforeseen conse-
quences that have to be dealt with separately (as we did not
have to deal with these problems in the context of IRIS).

However, since Microsoft Excel does not have intervals as they
are present in IRIS, T4 Tailor Expressions can not be directly
adapted in the context of Excel formulas as it uses the concept
of intervals, although it could be used in combination with
data validation that restricts the values of cells. Similarly, T8
Rebuild Hierarchy could be adapted for cells that are used in
combination. For example, one cell describes a name and the
other cell describes the value. Regarding the obfuscation of
data, this could be combined with AnonymousXL by Van Veen
& Hermans (2014).

Another more different use case would be, for example, the
obfuscation of Modelica models (Otter 2000), which allow the
calculation of values, connecting them with connectors. Inter-
preting the selection as a selection of basic models, T/1 – T/3 ,
and T/5 – T/7 can be applied to the equation sets within these
models, similar to the constraints in IRIS, with the connectors
linking variables. T/8 can be adapted to reconstruct the hierar-
chy of the obfuscated output model, and T/9 to remove asserts
that are covered implicitly.

8. Conclusion and Future Work
In this paper, we addressed the problem of removing content
worth protecting from a model while leaving the behavior of se-
lected elements intact, by proposing a four-phase transformation
program that applies nine one-way model transformations in the
context of the graphical roadmapping tool IRIS. For this, we de-
rived four constraints so that the output model is self-contained
(C1), contains the selected elements (C2), allows no inference
on the unselected elements (C3), and is behavioral equivalent
to the input model. For RQ1 we selected nine relevant trans-
formations (cf. Table 1) and evaluated them according to their
properties and their effects on C1–C4.

Furthermore, we evaluated our implementation in Section 6,
demonstrating that the approach is applicable in practice. While
we were able to show that these transformations are capable of
satisfying C1, C2, and C4, they are insufficient of additionally
satisfying C3 completely (cf. Section 7.1). To address C3 we

plan on extending the approach by several other transformations
that (Sihler 2023):

– generate noise, like other model elements and expressions
that do not change the selected behavior.

– approximate functions by other functions, allowing to ob-
fuscate unselected formulas (that are critical for the behav-
ioral equivalence) by approximating replacements.

– distort individual data as done by Bakken et al. (2004),
Van Veen & Hermans (2014), and others.

– modify structure by merging and splitting blocks (e.g., the
collector block).

Furthermore, we plan on evaluating the effectiveness of the exist-
ing and new transformations by examining reverse-engineering
attacks by domain experts.
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