
Journal of Object Technology | RESEARCH ARTICLE

Concern-Oriented Use Cases
Ryan Languay, Nika Prairie, and Jörg Kienzle

School of Computer Science, McGill University, Montreal, Canada

ABSTRACT Modelling languages often lack explicit support for reuse, and there are very few libraries of reusable models
available to developers. This is especially true for use cases, one of the most wide-spread modelling languages used to
describe systems at a high level of abstraction during requirements elicitation. This paper proposes Concern-Oriented Use
Cases (CoUC), a use case modelling language designed to support planned and opportunistic reuse. CoUC makes it possible
to create libraries of generic recurring interaction scenarios, provides means to modularize crosscutting interaction patterns and
supports feature-oriented scenario extensions. We provide a metamodel that defines the hierarchical structure and behavioural
scenario descriptions for use cases. We further elaborate a use case composition algorithm capable of combining the reusing
and reused use cases. To validate our approach, the CoUC language and composition algorithm have been implemented in the
TouchCORE modelling tool, and applied to model three examples which showcase feature-oriented use case extension, reuse
of a generic use case, as well as software product line development and evolution.

KEYWORDS Concern-Oriented Reuse, Use Cases, Use Case Composition, Feature Model, Software Product Lines.

1. Introduction
Already during the first NATO conference on software engi-
neering (SE) in 1968 (McIlroy 1969), software reuse (or “mass-
produced software components” according to McIlroy) was
recognised as crucial for the future of software development.
Reuse can increase the quality of software, while simultaneously
reducing development time and cost (Krueger 1992).

Reuse in Model-Driven Engineering (MDE) mostly focuses
on the reuse of modelling languages and associated model trans-
formations that are part of a MDE tool chain (Burden et al.
2014). Experience has shown that reuse of models is difficult
and seen as problematic in industry (Whittle 2012). Typically,
models for a system under development are created from scratch,
rather than reusing already existing models. Modelling lan-
guages often lack explicit support for reuse, e.g., constructs for
defining modules, interfaces, and composition (Herrmann et al.
2007; Kienzle et al. 2016), and there are very few libraries of
reusable models available to developers.

JOT reference format:
Ryan Languay, Nika Prairie, and Jörg Kienzle. Concern-Oriented Use
Cases. Journal of Object Technology. Vol. 22, No. 2, 2023. Licensed under
Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2023.22.2.a13

This is especially true for one of the most wide-spread mod-
elling languages used to describe systems at a high level of
abstraction during requirements elicitation: use cases (Jacobson
et al. 1992). Use cases describe the interactions between the
system under development and its environment to achieve user
goals, and hence are by nature application-specific. The benefits
of reuse are nevertheless prominent in use cases, because even
high-level interaction scenarios exhibit recurring interaction pat-
terns, e.g., to deal with common functional and extra-functional
concerns (Araujo & Moreira 2003; Jacobson & Ng 2004). Fur-
thermore, different products that are part of a Software Product
Line (Pohl et al. 2005) (SPL) also share common interactions
and/or patterns.

While there have been efforts to modularise recurring be-
haviour descriptions that cross-cut several use cases in the
aspect-oriented modelling community (Lu & Song 2008; Yue
& Ali 2012), none of them support the many reuse scenarios
found in modern software development, such as, hierarchical
reuse, genericity, unplanned extension of use cases, and feature-
oriented reuse as found in SPL. Furthermore, only very few
of the existing aspect-oriented use case approaches have been
described to the level of detail that is needed to implement a
functioning use case model composition algorithm in practice.

This paper proposes concern-oriented use cases (CoUC),

An AITO publication

http://dx.doi.org/10.5381/jot.2023.22.2.a13

a use case modelling language designed to maximize reuse.
Concretely, the contributions of this paper are:
• The CoUC metamodel for capturing the structure and

behaviour of CoUC use cases,
• A composition algorithm, describing how to combine

two CoUCmodels into a single resulting model, and
• A validation of the CoUC approach comprising three

application examples which cover various important
reuse patterns, including feature-oriented extension,
concern reuse, modelling and evolution of software
product lines, and unplanned use case extension.

The remainder of the paper is structured as follows. Section 2
presents the background on use cases. Section 3 elicits four
different reuse situations for use cases, and reviews how the
related work on aspect-oriented use cases supports those reuse
situations. Section 4 introduces the CoUC language, starting
with the metamodel and how it covers use case diagrams and
textual scenario descriptions. It further presents the details of the
structural and behavioural composition algorithm that combines
two CoUC models according to provided composition directives.
Section 5 validates CoUC by illustrating how it supports the
four reuse scenarios, hierarchical reuse and unplanned evolution.
Finally the last section draws some conclusions.

2. Background on Use Cases
Use case models are used to discover and document the re-
quirements and behaviour of a system during early software
development phases (Jacobson et al. 1992). Use case models
treat the software system under construction as a black box,
focusing on the goals that users have with the system, as well
as the interactions between the system and its environment to
achieve these goals (Rumbaugh et al. 1999). They are typi-
cally expressed in plain text, which makes it possible to involve
non-technical business resources in the requirements modelling
process. Thirty years after their inception they are being used
extensively in industry, and have even been adapted to fit agile
software development contexts (Jacobson et al. 2016).

Use case models are primarily defined by two concepts: ac-
tors and use cases. Actors are idealised representations of enti-
ties that the system under development is interacting with. They
describe humans, other software systems, hardware devices, or
any entity that is external to the system but that must interact
with the system in some way. They are displayed as stick figures
in a use case diagram (e.g., the Administrator actor in Figure 1.

Use cases are the units of functionality provided by the
system, as expressed by a sequence of interaction steps, but
not including a description of any system internals (Booch et al.
2005). They are displayed as ellipses in a use case diagram. The
internals of a use case are defined by use case interactions, and
are expressed in units called scenarios (W3 Computing 2020)
or flows (Booch et al. 2005).

Use cases typically contain multiple scenarios: a basic sce-
nario describing the ideal execution of the use case, and various
scenarios describing alternate executions that either achieve the
original goal, result in some alternate outcome, or deal with
situations in which the goal can not be successfully achieved.

Use cases and actors are connected via different types of
associations, which classify what role each actor plays in the
scenario. Primary actors typically are the ones that have a goal
with the system, and are hence typically the ones that trigger
the execution of a use case in the first place. Secondary actors
designate other actors that the system interacts with to achieve
the goal of the use case.

Use cases can also be connected to other use cases via one of
three possible relationships: include, extends and generalisation-
specialisation. When a use case describes a complex goal, it
often is possible to identify sub goals that can be modularized
in subfunction level use cases. In that case, the higher-level use
case explicitly invokes the subfunction use case at a particular
point in its flow, similar to a method call. From a behavioural
point of view, the higher-level use case is functionally incom-
plete on its own, as it depends on the lower level use case to
achieve the sub goal. This hierarchical dependency is repre-
sented by a dotted arrow with an «include» stereotype (e.g.,
Authenticate includes Entering Credentials in Figure 1).

Functionally complete use cases that achieve a specific goal
can also define explicit extension points in their flow to indi-
cate that under certain conditions some additional functionality
should or could also be achieved at these points. Another use
case, called an extending use case, can then define additional
behaviour to be executed at those extension points. Extension is
represented in the use case diagram with a dotted arrow with a
«extend» stereotype with the arrow pointing from the extending
use case towards the use case that is being extended.

Finally, use cases can also make use of generalisation-
specialisation relationships. In a similar way as polimorphism
in object-orientation, the key property of use case inheritance is
that a more specific child use case can be used in place of any
reference to a parent use case (e.g., Scan Retina is a specific
way of Entering Credentials in Figure 1).

2.1. Structured Use Cases
The explicit structure of how to textually specify the details of a
use case scenario is intentionally not specified. Many modelling
tools therefore offer general plain text editors to enter scenario
information, but several templates have also been proposed to
introduce additional structure to the textual elaboration of use
case details (Sendall & Strohmeier 2000; Jacobson et al. 2011).

The approach which provided the base for our work is the
Restricted Use Case Model (RUCM) proposed by (Yue et al.
2009). This approach restricts the structure of the use case
detail to containing one basic flow consisting of a sequence of
interaction steps, and zero or more alternate flows. The content
of a step is also restricted by the template; a step can either
represent an action or a keyword (Yue 2010). An action can
be one of five possible interactions, either between the system
and an actor (inputs from a primary actor, or outputs to either
a primary or a secondary actor), or internally to the system (in
the case of validation or modification of the internal state). A
keyword step typically represents control flow of surrounding
steps or a reference to an external use case. RUCM also places
certain restrictions on the language that can be used in step
definitions, e.g., that steps must be written in an active voice.

2 Languay et al.

Figure 1 Use Case Diagram of the Authentication Concern including all Features

3. Reuse Scenarios for Use Cases and
Related Work

Reuse has received relatively little attention in the context of use
cases, maybe because use cases typically describe user goals,
i.e., very application-specific scenarios. However, based on
examples in the literature and our own experience we have
identified four prominent reuse scenarios for use cases, depicted
in Figure 2. They can occur 1) within an application when
multiple usage scenarios share common interaction steps, 2)
within a software product line when multiple products share
common usage scenarios, and 3) across multiple applications.

Case A, shown at the top left of the figure, depicts the com-
mon case where a recurring scenario is encapsulated in a (prob-
ably subfunction-level) use case. Multiple user-goal use cases
can reuse the scenario by referring to the use case in one or
several of their steps. This is supported within a standard use
case model with the «include» dependency between use cases.
It can also be used when several features of a SPL need the
same scenario, or when the same scenario occurs in multiple ap-
plications. The reused scenario does not need to know whether
and how it is being reused, and hence «include» supports case
A for both planned and unplanned reuse.

Case B, depicted on the top right of Figure 2, illustrates the
case where a complete user use case is to be reused in a different
application or within a feature of a SPL, but some additional
application- or feature-specific interactions are needed. Stan-
dard use cases support case B for planned reuse only, i.e., when
the developer specifying the reused use case is aware that addi-
tional interactions are going to be added. This is the case, for
example, when developing different features of a SPL. If the
additional interactions form a coherent unit of subfunctional-
ity, then the reused use case can explicitly include an abstract
subfunction-level use case in one or several of its steps. The
reusing application or feature then specifies a concrete child use
case with the additional context-specific interactions as shown
in Case B3.

If the reuse is planned, but the additional interactions do not
form a unit of subfunctionality, then the reused use case can
specify one or several explicit extension points in its interaction

flow. The application or feature can then add new interaction
steps at these extension points by means of the «extends» mech-
anism. This is illustrated in Case B2.

However, unplanned reuse of a complete use case, illustrated
in Case B1, is not supported by standard use cases. It requires
a new use case composition mechanism, depicted in the figure
with a blue «augment» dependency. Advanced use case compo-
sition techniques are discussed in the following subsection.

Case C, shown at the bottom left of Figure 2, identifies the
situation where there is a recurring interaction pattern that a
developer wants to make reusable. This is useful when, for
example, a certain interaction pattern is required in order to deal
with a specific concern consistently. An example of such an
interaction pattern would be, for example, to consistently ask
for an acknowledgement message when communicating with an
unreliable actor. This kind of reuse is therefore always planned,
either because the concern is reused within several features of a
SPL, or because the concern is useful in several applications.

Standard use cases do not support Case C out-of-the-box.
First, a new unit of modularization is potentially required to
group the recurring interaction pattern (shown by the dashed
blue ellipsis). Furthermore, a new composition mechanism is
required to apply the pattern to the interaction scenarios in the
reusing use cases (depicted with the blue «apply» dependency).

Case D, depicted at the bottom right, highlights the opposite
reuse situation. In this situation, which can occur in planned
and unplanned reuse, a recurring pattern needs to be applied
to multiple use cases of an application, either to implement a
feature of an SPL, or to create a new version of an application
augmented with interactions related to a specific concern.

Again, this reuse case is not supported by standard use cases,
as they do not provide a module to specify a pattern (shown by
the dashed blue ellipses) nor do they support the application of
a pattern across multiple use cases (depicted by the «apply to»
dependency in the figure).

Finally, for any of the above cases, hierarchical reuse must
also be supported. In other words, reuse should not be limited
to only one level, i.e., it should be possible to build a use case
that can be reused on top of other reusable use cases.

Concern-Oriented Use Cases 3

Re
us

in
g

M
od

el

Complete
(Subfunction)

Use Case

(Feature)
Specific

Use Case

<<include>>

Complete Use
Case with

Extension Points
Complete
Use Case

(Feature) Specific
Extensions

<<extend>>

Abstract
Subfunction
Use Case

<<include>>

(Feature) Specific
Subfunction Use

Case

Concern-
Specific Use
Case Pattern

Specific
Complete

Use Case 1

<<apply>>

Specific
Complete

Use Case 2

Complete
Use Case 1

<<apply to>>

Concern- or
Feature-Specific

Pattern

Complete
Use Case 2

<<apply>> <<apply to>>

Complete
Use Case

(Feature)
Specific
Add-On

<<augment>>

Planned / Unplanned

Case B
Augmenting Interactions of a Reusable Use Case

Case C: Applying a Reusable Pattern

Case A
Including a Reusable Use Case

B1: Unplanned B2: Planned with Extension Points B3: Planned with Abstract Use Case

Case D: Augmenting Interactions with a Pattern

Planned Planned / Unplanned

Re
us

ed
M

od
el

Re
us

ed
M

od
el

Re
us

in
g

M
od

el

Re
us

ed
M

od
el

Re
us

in
g

M
od

el
Re

us
ed

M
od

el

Re
us

in
g

M
od

el

Figure 2 Use Case Reuse Situations

3.1. Aspect-Oriented Use Case Approaches

Use cases as defined by Jacobson (Jacobson et al. 1992) and
standardised in UML do not support reuse cases C and D, where
interaction patterns crosscut several use case scenarios. How-
ever, there have been several proposals aimed at modelling cross-
cutting interaction patterns in use cases in the aspect-oriented
modelling community (Aspect-Oriented Modeling Workshop
Series 2002–2010). The majority of these approaches focus on
non-functional concerns, which often tend to be cross-cutting.

The earliest approaches for aspect-oriented use cases focused
on extension and reuse within the context of a single model.
Araujo & Moreira (2003) propose a use case modelling process
that encouraged the discovery of “candidate aspects”, which
are use cases (both functional and non-functional) that contain
logic that is used in multiple other use cases. This is modelled
using the standard inclusion relationship.

Jacobson & Ng (2004) propose a more elaborate approach
which introduces the use case slice, which defines a partial use
case model. It contains partial use cases or patterns, which can
then be merged with other slices (matching by name) using
merging algorithms inspired by aspect-oriented programming.
They also discuss the use of aspect pointcuts, modelled just like
extension points. They allow for the insertion of content from
other use case slices. However, they do not elaborate a use case
composition algorithm that explains how (aspect) models can be
combined to generate a composed use case scenario description.
Furthermore, because they require the specification of pointcuts
in the base use case, they can not support unplanned reuse in
cases B and D.

Lu & Song (2008) propose a new aspect use case tem-
plate to describe non-functional use cases, while also defining
join points in use cases where aspect use cases can add addi-
tional content. Because of the distinction between standard use
cases and aspect use cases, the approach is asymmetric, which
adds significant accidental complexity and prevents hierarchical
reuse. Furthermore, the approach is also excessively restrictive
in terms of which use cases are permitted to extend or be ex-
tended, which requires careful planning and certainly prevents
most unplanned reuses.

In the SPL community, Eriksson et al. (2004) propose the
"Product Line Use case modelling for Systems and Software
Engineering" (PLUSS) approach, which introduces the concept
of use case parameters to capture the variability of a use case
model within the context of a complete software product line.
As such, it supports only limited parameter-based planned reuse
for cases A, B, C and D.

Somé & Anthonysamy (2008) introduce new relationships
between use cases. In particular, they propose a new one-to-
many «aspect» relationship, which links a single advice use case
(which need not be a well-formed use case) to potentially many
use cases from the base model, via a set of provided conditions
and locations. They also define a «variability» relationship to
support SPL development. The locations that can be targeted
can be any use case description model element (such as a step or
an extension point), and are called joinpoints. Unfortunately the
composition algorithm that combines use cases is not presented
in the paper, but the resulting use case executions are represented
as Petri nets.

4 Languay et al.

Approach Kind Unplanned Composition Alg. Hierarchy
Jacobson/Ng Asym. No Not Presented No

Lu/Song Asym. Partial No No
PLUSS Sym. No No Yes

Somé/Anthonysamy Asym. Yes No No
AoRUCM Asym. Partial Yes No

CoUC Sym. Yes Yes Yes

Table 1 Related Work Comparison Table

Most likely the approach by (Somé & Anthonysamy 2008)
can deal with all reuse cases mentioned above. However, be-
cause the composition algorithm is not presented we were not
able to verify this claim. Furthermore, the approach introduces
advice use cases, which makes the approach asymmetric. As a
result, hierarchical reuse, i.e., where a use case augments a use
case that in turn augments a third use case, is not supported. Ad-
ditionally, the approach defines new use case associations that
were not previously defined in the UML specification (namely
the «aspect» and «variability» associations). This introduces
additional modelling complexity compared to traditional use
cases. Finally, the proposed joinpoint model, while very pow-
erful and expressive, adds an additional level of complexity to
composition specifications.

The one approach that describes the proposed aspect-oriented
composition algorithm in detail is Yue and Ali’s Aspect-
Oriented Restricted Use Case Model (AoRUCM), an aspect-
oriented extension of the RUCM template discussed previ-
ously (Yue & Ali 2012). AoRUCM allows modellers of an
aspect use case model to define a pointcut, containing either
a set of actors (an actor pointcut), or a set of use cases with
additional specifications for flows and steps (a use case/flow
pointcut). Pointcuts are defined in OCL, and can therefore be
validated for correctness. AoRUCM defines a composition algo-
rithm which accepts two models and the relevant pointcuts and
combines them into a single combined model. The algorithm
supports both composition of inclusion or extension relation-
ships. AoRUCM also defines pre- and postconditions for flows,
and allows for composition of these conditions through the use
of “and” and “or” operators.

This approach is much more robust than the others mentioned
previously, and allows for a great degree of flexibility in defining
aspect use case models. Furthermore, aside from the inclusion
of new model elements in the use case diagram representing the
pointcuts, AoRUCM does not introduce any new notation or
base model elements to the standard RUCM template, making it
more straightforward to use when coming from a conventional
modelling background. However, AoRUCM is asymmetric, and
hence does not support hierarchical reuse. Also, the AoRUCM
composition algorithm does not allow for the merging of use
case flows. Instead, it only allows for the insertion of inclusion
or extension steps at various points in the text of the base use
case. Similarly, AoRUCM does not allow for an extending use
case to augment the existing base use case with new alternative
flows, i.e., it does not support Case B1 or some scenarios that
can occur in Case D.

The aforementioned related works and how they compare to
CoUC are summarised in Table 1.

4. Concern-Oriented Use Cases
None of the existing approaches reviewed in the previous sec-
tion support all four cases of reuse scenarios, and furthermore
the asymmetric aspect-oriented approaches do not support hier-
archical reuse. We therefore propose in this section Concern-
Oriented Use Cases (CoUC), a use case modelling language
that follows the Concern-Oriented Reuse (CORE) paradigm to
enable planned and unplanned reuse of use case models across
applications and across features within a SPL for all four reuse
scenarios as well as in hierarchical settings.

This section starts by reviewing the main concepts of CORE,
and then introduces the CoUC metamodel. The last subsection
then presents the CoUC model composition algorithm.

4.1. Concern-Oriented Reuse
Concern-Oriented Reuse (CORE) (Alam et al. 2013; Schöttle
et al. 2016) is a reuse paradigm for general-purpose software
development that combines best practices from Model-Driven
Engineering (MDE), Component-Based Software Engineering
(CBSE), Software Product Lines (SPL), advanced Separation of
Concerns (SoC) (including feature-oriented and aspect-oriented
software development), and goal modelling.

In CORE, software development is structured around mod-
ules called concerns. They are units of reuse that encapsulate
a variety of reusable solutions (i.e., models and code) for re-
curring software development issues in a versatile, generic way.
Applications are built by reusing existing concerns from a con-
cern library whenever possible, following a well-defined reuse
process supported by clear interfaces. To generate an executable
in which concerns exhibit crosscutting structure and behaviour,
CORE relies on additive software composition techniques, as
well as feature-oriented and aspect-oriented technology.

Concern Interface A concern provides a well-defined, three-
part interface (Kienzle et al. 2016). The Variation Interface (VI)
of a concern is composed of a feature model (Kang et al. 1990)
that expresses the closed variability (Svahnberg et al. 2005) of
solutions and techniques encapsulated within the concern by
the concern designer, similar to what is done in SPLs for a
specific application domain. Additionally, the VI specifies the
impacts of selecting a feature on non-functional goals and quali-
ties with an impact model that is expressed using a variant of the
Goal-oriented Requirements Language (International Telecom-
munication Union (ITU-T) 2012). This allows a concern user
to perform trade-off analysis between offered features, e.g., for
design-time exploration.

For example, Figure 3 shows the VI for an Authentication
concern. The feature model on the left specifies that the concern
offers the choice of three features for authenticating (Password,
Retinal Scan or Voice Recognition). Optionally, passwords can
be set to expire (feature Password Expiry), access for users can
be blocked when there were too many unsuccessful authenti-
cation attempts (feature Access Blocking), and the system can
also automatically log out users that are idle for too long (fea-
ture Auto Logoff). The impact model on the right shows how
each one of the features impacts the desired goals of increasing
security, decreasing cost and increasing user convenience.

Concern-Oriented Use Cases 5

Figure 3 Variation Interface of the Authentication Concern

The Customisation Interface (CI) of a concern designates
the generic, partially defined structural and/or behavioural el-
ements that enable open variability (Svahnberg et al. 2005),
and how these elements have to be connected to application-
specific elements when the concern is reused. For example, an
Authentication concern might define a generic User actor that is
designated as partial and needs to be mapped to one or several
application-specific actors, e.g., Administrator, ProjectManager,
and/or Developer, when it is being reused.

Finally, the Usage Interface (UI), similar to classic APIs,
designates the elements of the concern that can be accessed
by the reusing context. Any element that has its visibility set
to public is part of the usage interface and can therefore be
used. For example, an Authentication concern might offer public
services to authenticate or to update the credentials of users.

CORE Reuse Process The reuse process in CORE is based on
three steps guided by the VCU interface: 1) Choose the desired
solution among the available encapsulated alternatives from the
VI, 2) Map any generic or partial elements of the realisation
of the chosen solution (generated based on the selection made
in step one) to the specific reuse context using the CI, and 3)
Use the chosen, customised realisation (generated based on the
mappings from step 2) for the targeted purpose via the UI.

4.2. CoUC Metamodel
In this subsection, we elaborate the metamodel definition of the
CoUC modelling language.

4.2.1. Use Case Diagram Figure 1 shows an example use
case diagram that encapsulates different ways of Authentication.
It contains actors, use cases and relationships between them.

Figure 4 shows the CoUC metamodel that captures the con-
cepts of use case diagrams. It is inspired by the use case meta-
model of UML (Object Management Group 2017). The root of
any model in CoUC is a UseCaseModel, which contains both
Actors and UseCases. Actors and UseCases can be connected
to one another via a primary, secondary, or facilitator role.

We allow Actors and UseCases to have a parent, as well as
to be declared abstract, which enables inheritance and poly-
morphism within use case models. The use of inheritance for
use cases is purposefully left ambiguous in UML. In practice,
in concern-oriented use cases, we use inheritance primarily to
model cases where there is a high-level, abstract goal that can
be achieved in different concrete ways. This type of situation

occurs very frequently in concerns, typically when a feature
model contains an OR group of features that represent different
ways to accomplish a particular goal. In this case, the base
feature defines an abstract use case representing a high-level
goal, and then each feature in the OR group defines a concrete
use case that inherits from the abstract one and achieves the
goal with feature-specific interaction steps. For example, in the
Authentication concern in Figure 1, the Authenticate use case
includes an abstract subfunction use case Enter Credentials.
How credentials are actually entered depends on the features
that are activated. In our case, three features are available, each
one modelled as a concrete child use case involving different
secondary actors. For example, Voice Recognition might re-
quire using a microphone, whereas Password requires entering
a password using a keyboard. Each concrete child use case can
specify what Condition has to be verified so it executes1.

4.2.2. Use Case Details One of the goals of CoUC is to
enable the analysis of use case behaviour, as well as generate
new artefacts from the use case models using model transforma-
tions, e.g., Use Case Maps (International Telecommunication
Union (ITU-T) 2012) or BPMN (Object Management Group
2014). It is therefore important that the flow of input and output
interactions is clearly expressed in the text.

We chose to follow the textual templates proposed in (Sendall
& Strohmeier 2000) and (Yue et al. 2009). As an example,
Figure 5 shows the textual details of the Authentication base
model. The metamodel that defines the language elements to
capture the details for the textual scenarios in CoUC is shown
in Figure 6. It is inspired by the RUCM approach as proposed
by (Yue & Ali 2012).

The details of a use case are primarily defined by their main
success scenario, which is an instance of a Flow. Flows contain
a sequence of Steps, which define the sequence of interactions
that describe the use case behaviour. There are four possible
kind of steps:

1. CommunicationStep is used to model interactions between
the system and one or more actors in the environment.
Communication step descriptions must contain the name
of at least one actor associated with the use case. The
direction of the communication (input to the system, or
output from the system) is also stored. For example, in
Figure 5, step 2 is an output communication step.

1 Conditions are explained further in the following subsection.

6 Languay et al.

name: String
NamedElement

abstract: boolean
lowerBound: int
upperBound: int

Actor
abstract: boolean

UseCase

MappableElement

0..*
annotatedElements

name: String
CoUCModel

0..* notes
content: String

Note

0..* actors useCases 0..*

primaryActors
0..* secondaryActors

0..*0..*
facilitatorActors

parent
0..1

parent
0..1

includedUseCases
0..*

ConditionselectionCondition

0..1

Figure 4 CoUC Metamodel - Use Case Diagram Part

Figure 5 Authenticate Use Case Details

2. UseCaseReferenceStep is used when one use case wants
to execute the behaviour of another one, thus creating a
dependency. Referencing a use case causes an «include»
relationship to be drawn in the use case diagram. For
example, in Figure 5, step 1 is a use case reference step
that references the Enter Credentials use case.

3. ContextStep is used to describe actions or interactions that
do not cross the system boundary. This includes inter-
nal system logic (to validate a condition of the system’s
state, for example), steps executed by actors external to the
boundaries of the system, or control flow instructions.

4. AnythingStep is the only metamodel element in CoUC that
specifically supports generic or partial scenarios. It is used
as a placeholder to represent any number of steps of any
kind. When composing two flows, the CoUC composition
algorithm uses the AnythingStep to locate where to insert
steps from a source flow (see subsection 4.4). Visually, the
AnythingStep appears in the text as an ellipsis (“...”).

Each Flow instance can also contain a set of nested alter-
nateFlows. Alternate flows have to specify for which steps in
the parent they are alternates for. If an alternate flow does not
explicitly list any steps for which it is an alternate for, it is as-
sumed to be global and applies to all steps in the parent flow.
All communication, use case reference, and internal context

steps are implicitly assigned a unique step number based on
their position in the flow hierarchy using a Dewey numbering
system. Alternates are highlighted with letters of the alphabet.

Each alternate flow also has a triggeringCondition, which is
a step that describes the internal condition, input communica-
tion or timeout that triggers the alternative. The Authenticate
example in Figure 5 has one alternate flow, where the internal
context step 2a is the triggering condition. Finally, alternate
flows can optionally define a postCondition.

4.2.3. References to Actors in the Text The text of the
majority of use case steps references one or several actors. It
is important to ensure that actor names are kept consistent be-
tween the use case diagram and the text in the steps of all use
cases. For example, renaming an actor in the use case diagram
should propagate the new name to all steps automatically, rather
than requiring tedious manual updates. To this aim, the CoUC
metamodel defines a metaclass TextWithActor that is used in-
stead of primitive strings whenever the model needs to store a
string of text. The class internally stores the text, but replaces
actor references by tokens. It also stores a list of the actors
referenced in the text, which is used to query the name of the
actor whenever the text content is accessed.

4.3. Customization and Usage Interface
Following the CORE paradigm, the unit of reuse in CoUC is the
concern, and hence it needs a VCU interface. The VI always
takes the form of a feature model and associated goal model,
and is provided by the CORE framework. The CI and UI on the
other hand are different for each modelling language and need
to be carefully designed so that the composition algorithm can
support all the reuse scenarios outlined in section 3.

Customisation Interface To define the CI for CoUC, we need
to decide which model elements from the reused use case model
can be designated as partial (generic), and therefore can be
mapped during the reuse process to (reuse context-specific)
model elements in the reusing use case model. For example,
the generic User actor of the Authentication concern might be
mapped to a specific BankManager during reuse. Furthermore,
in order to support composition of behaviour for reuse scenarios
B, C and D, we must allow the concern users to specify in which

Concern-Oriented Use Cases 7

level: Level
UseCase

Actor{ordered} 0..*

actorReferences

type: ConditionType
Condition

1
intentionText

1
multiplicityText

conditionText 1

0..1
selectionCondition

ending: ConclusionType
Flow

Success
Failure
Step
Abandon
WhereInterrupted

<<enumeration>>
ConclusionType

postCondition 0..1

Step

stepText 1

Input
Output

<<enumeration>>
Direction

type: ContextType
ContextStep

UseCaseReferenceStep

AnythingStep

direction: Direction
CommunicationStep

Internal
External
ControlFlow
Timeout

<<enumeration>>
ContextType

steps
{ordered} 0..*

triggeringCondition
0..1

0..1
conclusionStep

text: String
TextWithActors

mainScenario
0..1

re
fe

re
nc

ed
U

se
C

as
e 1

Summary
UserGoal
Subfunction

<<enumeration>>
Level

Figure 6 CoUC Metamodel - Use Case Textual Details

order the steps of the flows of the reused and reusing use case
are combined. This can be achieved by establishing mappings
between flows, and mappings between steps.

In the CI of a CoUC use case model, we therefore include:

1. Actors and UseCases, to specify which structural elements
of two use case models should be composed.

2. Flows and Steps, to designate the behavioural elements
that should be combined.

Usage Interface The UI for CoUC is straightforward, since
the only usable elements in a use case model are the use cases.
By default, all use cases defined in a concern are public, i.e.,
they are visible and accessible when the concern is being reused.
However, we allow the modeller to change the visibility to
concern if so desired. This makes sense, for example, when a
model defines subfunction level use cases that should not be
invoked by a concern user.

4.4. Concern-Oriented Use Case Composition
This subsection describes the CoUC use case composition al-
gorithm, which in accordance with aspect-oriented modelling
terminology is called a weaver.

4.4.1. Weaving of the Use Case Structure In CORE, a
weaver takes as an input a source model, a target model, and
a set of customisation mappings. The algorithm composes all
model elements from the source model into the target model
according to the customisation mappings, thus modifying the
target model. When weaving across concern boundaries, the
reused model is the source model, and the reusing model is the
target. When weaving within a concern, the reusing model is
the source, and the reused model is the target.

Previous work has shown that structural weaving can be
reduced to a merge operation: when two structural model ele-
ments A and B are to be composed, they are replaced with a
single model element that contains the union of the properties
of both A and B (Kienzle et al. 2019). When the two model
elements that are composed both have the same property that
stores a single value, then typically one value is kept and the

other discarded. If one of the model elements is partial, i.e.,
part of the customisation interface, then the value of the non-
partial one is kept. In the case where none of them is partial, the
weaving algorithm needs to know whether it is weaving with
a concern or across concern boundaries to correctly determine
which value to keep. In case of cross-concern weaving, the
reusing model is more specific, hence the target model value
takes precedence. In case of weaving within a concern, the child
feature model value is more specific, hence the source model
value takes precedence.

Algorithm 1 shows how this structural merge is achieved
for CoUC using pseudo-code. Lines 2 to 10 copy use cases,
actors and conditions that have not been mapped from the source
model to the target model.

Lines 11 to 30 describe how a use case is merged. In the case
where the algorithm composes within a concern and the source
use case has not been designated as partial, the first two lines
copy the name, intention and multiplicity values of the source
into the target. Otherwise the name, intention and multiplicity
of the target use case are kept. In case the target use case has
no parent, the following two lines copy the inheritance relation
from the source to the target, if any. Then, the primary actors,
secondary actors and facilitator actor references from the source
are added to the ones already existing in the target.

Finally, the algorithm iterates through all the flows in the
source use case in hierarchical order, i.e., starting with the main
success scenario and then going through the nested flows. If
a flow is not mapped, no composition of behaviour is actually
required. This is the case for reuse case A in Figure 2. The
reusing model includes a placeholder use case (i.e., a use case
which does not have a main success scenario), and the place-
holder is mapped to the use case in the reused model. It suffices
therefore in this case to copy the main success scenario (and
any contained alternate flows) from the source into the target.

For correctly dealing with reuse situations B, C, and D, how-
ever, behavioural composition is required. In this case, the
source flow is mapped to a flow in the target, and depending on
the situation the concern user has also specified mappings from
steps of the source to steps of the target. For these cases, the
structural weaving algorithm triggers the behavioural weaving

8 Languay et al.

Algorithm 1 Structural Use Case Weaving
1: procedure WEAVEMODEL(targetModel, sourceModel, mappings, isWithinConcern)
2: for unmapped sourceUseCase in sourceModel.useCases do
3: newUseCase← copy of sourceUseCase
4: add newUseCase to targetModel
5: for unmapped sourceActor in sourceModel.actors do
6: newActor← copy of sourceActor
7: add newActor to targetModel
8: for unmapped sourceCondition in sourceModel.conditions do
9: newCondition← copy of sourceCondition

10: add newCondition to targetModel
11: for mapped sourceUseCase in sourceModel.useCases do
12: targetUseCase← get mapped use case for sourceUseCase from mappings
13: if isWithinConcern and sourceUseCase is not partial then
14: copy name, intention, multiplicity from sourceUseCase to targetUseCase
15: if targetUseCase intention / multiplicity is not set then
16: copy intention / multiplicity from sourceUseCase to targetUseCase
17: if targetUseCase has no parent use case and sourceUseCase has a parent then
18: targetUseCase.parent← sourceUseCase.parent
19: for primaryActor in sourceUseCase.primaryActors do
20: add primaryActor to targetUseCase.primaryActors
21: for secondaryActor in sourceUseCase.secondaryActors do
22: add secondaryActor to targetUseCase.secondaryActors
23: for facilitatorActor in sourceUseCase.facilitatorActors do
24: add facilitatorActor to targetUseCase.facilitatorActors
25: for sourceFlow in all flows contained in sourceUseCase do
26: if sourceFlow is mapped then
27: targetFlow← get mapped flow for sourceFlow in mappings
28: WEAVEFLOWS(targetFlow, sourceFlow, mappings, isWithinConcern)
29: else
30: copy sourceFlow to targetUseCase
31: for mapped sourceActor in sourceModel.actors do
32: targetActor← get mapped actor for sourceActor from mappings
33: if isWithinConcern and sourceActor is not partial then
34: copy name and multiplicity from sourceActor to targetActor
35: if targetActor has no parent and sourceActor has a parent then
36: targetActor.parent← sourceActor.parent
37: for unmapped sourceCond in sourceModel.conditions do
38: targetCond← get mapped condition for sourceCond from mappings
39: if isWithinConcern then
40: copy text from sourceCond to targetCond

algorithm by calling weaveFlows as shown in line 28. The
specifics of composing flows are described in section 4.4.2.

Once the use cases and their flows have been composed,
lines 31 to 36 merge actors that are mapped. Again, in case
an extension is being woven and the source actor is not partial,
the name and multiplicity values from the source replace the
ones in the target. If the target actor has no parent actor but the
source has, then the parent relationship is also copied. Finally,
lines 37 to 40 copy the source condition to the target use case in
case an extension is being woven.

4.4.2. Behavioural Weaving of Flows Previous work has
stipulated that behavioural weaving can be reduced to event
scheduling: two behavioural models that each define a partial
order of events are composed by establishing a combined partial
order respecting the original order as well as any additional
constraints introduced by the composition instructions (Kienzle
et al. 2019).

In CoUC the events are steps. Each flow is a sequence of
steps, and the customisation mappings designate the steps that
the concern user has designated as "equal". As a result, and
since we are weaving the source flow into the target flow, the
algorithm only has to determine for each unmapped step in the
source flow where to insert it into the target flow. The insertion
points in the target are either right before or right after a mapped
step.

Algorithm 2 Behavioural Weaving of Flows
1: procedure WEAVEFLOWS(targetFlow, sourceFlow, mappings, isWithinConcern)
2: currentTargetIndex← 0, stepsBetweenMapped← false, anythingFound← false
3: for i = 0; i < sourceFlow.size; i++ do
4: sourceStep←get step at index i from sourceFlow
5: if sourceStep is mapped then
6: mappedTargetStep← get corresponding mapped step from mappings
7: assert(not stepsBetweenMapped or anythingFound)
8: stepsBetweenMapped← false, anythingFound← false
9: currentTargetIndex← index of mappedTargetStep

10: if isWithinConcern and sourceStep not partial then in targetFlow
11: replace mappedTargetStep with copy of sourceStep in targetFlow
12: else if sourceStep is AnythingStep then
13: currentTargetStep←get step at index currentIndex from targetFlow
14: nextMappedStep←get next mapped step in targetFlow
15: while currentTargetStep != nextMappedStep do
16: currentTargetStep←get step at index currentTargetIndex
17: currentTargetIndex++
18: anythingFound← true
19: else
20: add copy of sourceStep to targetFlow at position currentTargetIndex
21: stepsBetweenMapped← true
22: currentTargetIndex++

Target Flow
Main Scenario
1. System displays list
 of cases to Officer.
2. Officer requests details
 of a case from System.
3. System shows details
 of case to Officer.
4. Officer informs System
 that they are done.
5. System acknowledges
 logout to Officer.

Source Flow
Main Scenario
| 1. Last unlogged step
2. System notifies Monitor that
 interaction is going to start.
3. …
4. System notifies Monitor that
 interaction ended.
| 5. First unlogged step

Result Flow
Main Scenario
1. System displays list of cases to Officer.
2. Officer requests details of a case from System.
3. System notifies Monitor that interaction is going to start.
4. System shows details of case to Officer.
5. Officer informs System that they are done.
6. System notifies Monitor that interaction ended.
7. System acknowledges logout to Officer.

W
eave

Figure 7 Example Weaving of Flows

When multiple steps are mapped, the placement of the Any-
thing step is required to determine the insertion point unam-
biguously as illustrated in Figure 7. In the example, a generic
monitoring interaction pattern is applied to a user goal use case
describing an interaction between a police officer and a juridical
system. It illustrates reuse case C (if the monitoring pattern
is reused from a concern) or case D (if the monitoring pattern
is a feature of the juridical system). The first step from the
customisation interface |1. Last unlogged step was mapped to
step 2 in the target model, and |5. First unlogged step is mapped
to step 5. If the Anything step would not be present in the source
flow, it would not be clear whether only step 2 from the source
should be inserted after step 2 in the target, or whether step 2
and step 4 should be inserted after step 2. The Anything step
matches the steps between 2 and 5 in the target, i.e., steps 3 and
4. Hence step 2 of the source must be inserted just after step 2
in the target, and source step 4 just before target step 5.

Algorithm 2 presents the pseudo code of the behavioural
weaving algorithm that composes a sourceFlow into a target-
Flow according to provided composition mappings. The algo-

Concern-Oriented Use Cases 9

Figure 8 Authentication Root Model

rithm starts at the beginning of the target flow by initializing
currentTargetIndex to 0. Then it loops successively through the
steps of the source flow. There are three possible cases:

1. If the source step is mapped to the target flow, then a check
is made that the composition specification is unambiguous
(line 7). If the check passes, and the algorithm is compos-
ing within a concern and the source step is not partial, then
the step content from the source replaces the target step, as
it contains the more specific description (line 11). Other-
wise nothing needs to be done, as the target step already
contains the more specific description of the step.

2. If the source step is an Anything step, then the algorithm
skips over steps in the target until the next mapped step or
the end of the flow is reached by incrementing currentTar-
getIndex (lines 15 to line 18) and then remembering that
an Anything step has been encountered.

3. In any other case, the unmapped source step is simply
added to the targetFlow at position currentTargetIndex.
The algorithm then remembers that it has encountered
steps in the source that were not mapped.

5. Validation
To validate CoUC, we have implemented the language and the
composition algorithm in the TouchCORE tool (TouchCORE
Website 2023). We used TouchCORE to design three example
concerns. They showcase all of the reuse cases elicited in
section 3, as well as hierarchical reuse. All of the figures shown
in this section are screenshots of models created or generated
by TouchCORE.

5.1. Authentication Concern
The Authentication concern that was already partially introduced
in the previous sections demonstrates model reuse between
features. The root model for Authentication, shared between all
features, is shown in Figure 8. It defines the base Authenticate
use case, which calls the abstract Enter Credentials use case as
shown in the use case details presented in Figure 8.

Figure 9 shows how the use case model of the Password
feature defines a concrete child use case Enter Password and a
new Keyboard actor. This model illustrates reuse scenario B3
of Figure 2. This model only requires structural weaving, as no
flows are mapped. The figure also shows the use case diagrams
for the Retinal Scan and Voice Recognition features, but the
textual details have been omitted for space reasons.

Figure 10 shows the use case model of the AutoLogoff fea-
ture. It illustrates case A, because the feature-specific use case
Authenticated Interaction includes the Authenticate use case that
is defined in the root feature. It also illustrates case C, because

the Authenticated Interaction use case defines a generic, Au-
toLogoff -specific pattern. When Authentication is reused with
the AutoLogoff feature enabled, the concern user will map the
partial Authenticated Interaction use case and in particular step
1 "System is in an authenticated action." to all the steps in the
reusing model that are to be performed in an authenticated state.
When the reuse is woven, steps 1a, 1a.1 and 1a.2 are added as
alternative flows to all the mapped steps of the reusing model.

Figure 11 shows the use case diagram of the Access Blocking
and Password Expiry features. The textual details of Access
Blocking illustrate reuse case B1. The Authenticate use case is
not aware of the feature-specific addition to it, i.e., it does not
specify extension points. The mapping step 1→ step 1 instructs
the weaver to insert after the step that requests the credentials a
check to determine whether the authenticating user’s account
is locked. If it is, a new alternative flow (2a) notifies the user
about the situation and ends the use case in failure.

A second step mapping (2a -> 2b) ensures that the weaver
adds a new step 2b.1 into the original alternative 2a that keeps
track of the number of failed authentication attempts. It also
adds an extension to the newly introduced step that deals with
notifying the user that their account is blocked in case three
unsuccessful attempts have been made.

Finally, the AccessBlocking model also introduces a com-
pletely new, stand-alone Unlock User Account use case. The
textual details are not shown for space reasons.

The result of weaving all features of the Authentication con-
cern (Password, Password Expiry, Retinal Scan, Voice Recog-
nition, Access Blocking and Auto Logoff) is shown in Figure 1.
The result of composing the textual details is not shown here
for space reasons, but the interested reader can consult them
in (Languay 2022).

5.2. Online Payment Concern
The Online Payment concern allows a user to pay for goods us-
ing any of the common payment paradigms accepted in typical
e-commerce applications today. Figure 12 shows the feature
model of the concern, depicting all the different payment vari-
ants that are supported.

The use cases for this example have been adapted from the
use case maps described in (Siow 2018). For space reasons, we
only show the use case model for the Third Party feature. The
interested reader is invited to consult (Languay 2022) to look at
the other detailed use case models for this concern.

The textual details of the Third Party Payment use case in
Figure 13 reuse the Authentication concern described in the
previous subsection with all of its features. This illustrates reuse
case A with hierarchy support, since the generic Authenticate
use case and User actor are reused, and then exposed as Au-
thenticate Customer and Customer, respectively, to users of the
Online Payment concern. This reuse also showcases reuse case
C. By mapping the generic step "1. System is in an authenti-
cated action." from the Auto Logoff feature (see Figure 10) to
step 3 and 4 of the main success scenario, an alternate flow is
added to the Third Party Payment main success scenario that
automatically logs customers out of the system in case they are
idle for too long during the payment process.

10 Languay et al.

Figure 9 Password Feature of Authentication (and Structure of Retinal Scan and Voice Recognition Feature

Figure 10 AutoLogoff Feature of Authentication

5.3. Elfenroads Product Line

Elfenroads (Rio Grande Games 2010) is a board game designed
by Alan R. Moon The Elfenroads box set provides a version
of the original base game, Elfenland, as well as the expansion
Elfengold. The objective of Elfenland is to traverse the board
using roads to visit as many towns as possible within for rounds.
Roads can be made traversible through the use of transportation
markers placed by any of the players, and on a player’s moving
phase they can traverse any adjacent marked road using travel
cards. Elfengold adds the concept of gold to the game. Gold is
awarded when visiting a town, and it can be used to purchase
transportation markers in an auction at the start of each round.
Elfengold also introduces spells, which can be used, e.g., to
immediately transport a player to a particular town.

In McGill University’s Software Engineering Project class
for 2021/2022, students were tasked with designing and imple-
menting a networked version of Elfenroads. The game had to
be playable by multiple players, and support both the Elfenland
ruleset and the Elfengold ruleset. Players should be allowed
to create their own game lobby, which can then be joined by
other players to play the selected game. To assist in the imple-
mentation, a generic game lobby service was provided to all
students (Schiedermeier 2021). This lobby service offers func-
tionality for user authentication and game session management,
including creation, joining, starting, ending, saving and loading
sessions.

We used CoUC to design the use cases of an Elfenroads SPL
with an Elfenlands and an Elfengold feature. Figure 14 shows
the woven use case model for a game configuration where both
features were selected. The colouring of the use cases and actors

illustrates the provenance of each model element. The white use
cases and actors are defined in the root model, i.e., are common
to both versions of the game. Elfenland and Elfengold have
very different rules regarding the distribution of resources at
the beginning of a round, hence an abstract use case Distribute
Resources is specified in the base, planning for feature-specific
extensions. Following the same reasoning, an abstract End
Round use case is defined to deal with the different game rules
that are applied at the end of a round depending on the chosen
game version. The orange use cases are concrete child use cases
related to the Elfenland feature (Case B3), whereas the purple
use cases are introduced by the Elfengold feature (Cases A
and B3). The purple stripe in the two use cases Plan Route and
Move Boots defined by the root model indicate that the Elfengold
feature used behavioural weaving to compose some additional
behaviour and alternate flows into the root model to deal with
the interactions required by the Elfengold game rules (Case B1).
Finally, the green model elements come from a reused concern
that encapsulates the functionality and interactions of a generic
game lobby service (Case A).

For space reasons we do not show the individual use case
models for the Elfenroads product line with the textual details.
The interested reader is referred to (Languay 2022).

Elfenroads SPL Evolution Alan R. Moon subsequently re-
leased another variant of the game called Elfensea that is played
on a different board with more towns. As an experiment, a
student who had not worked on the Elfenroads SPL was asked
to add an additional Elfensea feature to it to see how CoUC
deals with this unplanned addition.

Again, the way Elfensea distributes resources and the rules

Concern-Oriented Use Cases 11

Figure 11 AccessBlocking Feature of Authentication (as well as Structure of Password Expiry)

Figure 12 Feature Model of the Online Payment Concern

for ending a round differ significantly from the other two ver-
sions of the game. It was easy to deal with this by adding
Elfensea-specific child use cases to Distribute Resources and
End Round, respectively (Case B3).

Elfensea also introduces bonus markers which can be ob-
tained when travelling to a town, and discarded during travel
to obtain additional travel cards. To integrate these interactions
into the SPL, the Move Boot use case was augmented to include
additional alternative flows for obtaining and discarding bonus
counters (Case B1 and Case D).

There was only one case that unfortunately required restruc-
turing of the base use case. It turns out that while both Elfenland
and Elfengold use obstacle markers, Elfensea does not. To max-
imize reuse between features, the Plan Route use case of the
base model of the 2-feature version of the SPL included an
interaction step for placing obstacle markers. This step had to
be removed from the base model. To still maximize reuse, this
step was moved into a new model that is shared only by the
Elfenland and Elfengold features, and adds obstacle markers
back into Plan Route (Case B1).

5.4. Discussion

The presented examples have been chosen because they illus-
trate all of the identified reuse scenarios. The CoUC metamodel,
the customization mappings and weaver were powerful enough
to allow the concern designer to modularize use case models

according to features, and make them reusable within a concern
in all three examples. Both the Online Payment and Elfenroads
examples showed that it is possible for a concern user to reuse
generic concerns and adapt them to a concrete context. Finally
the Online Payment example demonstrated hierarchical reuse.

The examples also showcase the significant reuse potential
of CoUC thanks to the integration of CORE. The Authentication
concern, for example, contains 7 use case models. With the help
of the CoUC weaver and the CORE reuse process, 72 different
configurations of the Authentication use case model can be
generated automatically, simply based on a feature selection of
the concern user. For Online Payment, which also contains 7
use case models, 120 configurations can be generated. Since the
Third Party feature of Online Payment reuses Authentication, a
combined total of 8640 use case models can be generated.

Finally, the Elfenroads example shows the benefits of CoUC
for non-technical stakeholders. Thanks to the modularization
provided by CoUC it is possible to generate a textual description
of the game interactions that can be read by the players either for
just one version of the game, or for all game versions combined.

We also demonstrated that CoUC supports SPL evolution,
as we were able to add all additional functionality of Elfensea
to the Elfenroads SPL easily. The only difficulty encountered
was due to the fact that some interactions that were shared by
all features in the first version of the SPL were not required
for the new Elfensea feature. CORE only supports additive
composition (positive variability), and hence to deal with this
situation the unneeded interactions had to be removed from
the existing use case models. In case CORE in the future also
supports model slicing (negative variability) then this might not
be necessary any more.

6. Conclusion

This paper presented concern-oriented use cases (CoUC), a use
case modelling language designed to support flexible reuse of

12 Languay et al.

Figure 13 Use Case Model of the Third Party Feature of the Online Payment Concern

use case structure and behaviour. We presented a metamodel
for the CoUClanguage, and detailed the algorithm of a model
weaver capable of composing the use case structure and be-
haviour of two use case models, covering all possible reuse
situations that can occur during standard and software product
line development.

Following the concern-oriented paradigm, reusable use cases
are encapsulated within a concern that exposes the different
features the concern designer has planned for with a variation
interface. Thanks to CoUC, the concern designer can share use
case structure and behaviour among features (Case A), specify
additional functionality introduced by a feature (Case B), or
apply interaction patterns introduced by a feature consistently
(Case D). The concern designer can also reuse other concerns
internally if needed (hierarchical reuse). When a concern user
reuses a concern, they can customize generic elements to spe-
cific ones, refer to the reused behaviour when needed (Case A),
or apply reusable partial behaviour to one or many places in
their use case models (Case C).

We validated CoUC by providing a complete implementation
of the language, a GUI editor and a use case weaver in the
TouchCORE tool (Schöttle et al. 2015). All figures in this paper
were modelled using TouchCORE. We used this implementation
successfully to model three different example concerns: an
Authentication concern, an Online Payment concern that reuses
the Authentication concern, and a software product line for the
Elfenroads series of board games.

References

Alam, O., Kienzle, J., & Mussbacher, G. (2013). Concern-
Oriented Software Design. In A. e. a. Moreira (Ed.), Models
(pp. 604–621). Berlin.

Araujo, J., & Moreira, A. (2003). An Aspectual Use-Case
Driven Approach. Jisbd Journal(January), 463–468.

Aspect-Oriented Modeling Workshop Series. (2002–2010).
Booch, G., Rumbaugh, J., & Jacobson, I. (2005). The Unified

Modeling Language User Guide (2nd ed.). Addison-Wesley.

Burden, H., Heldal, R., & Whittle, J. (2014). Comparing and
contrasting model-driven engineering at three large compa-
nies. In Esem. ACM.

Eriksson, M., Börstler, J., & Borg, K. (2004). Marrying Features
and Use Cases for Product Line Requirements Modeling of
Embedded Systems. In Serps. doi: 10.1.1.438.6729

Herrmann, C., Krahn, H., Rumpe, B., Schindler, M., & Völkel,
S. (2007). An algebraic view on the semantics of model
composition. In Proceedings of the 3rd european conference
on model driven architecture-foundations and applications
(p. 99–113). Berlin, Heidelberg: Springer-Verlag.

International Telecommunication Union (ITU-T). (2012). Rec-
ommendation Z.151 (10/12): User Requirements Notation
(URN) - Language Definition.

Jacobson, I., Christerson, M., Jonsson, P., & Overgaard, G.
(1992). Object-oriented software engineering: A use case
driven approach. Addison Wesley.

Jacobson, I., & Ng, P.-W. (2004). Aspect-Oriented Software
Development with Use Cases. Addison-Wesley.

Jacobson, I., Spence, I., & Bittner, K. (2011). USE-CASE
2.0 The Guide to Succeeding with Use Cases. Ivar Jacobson
International.

Jacobson, I., Spence, I., & Kerr, B. (2016, apr). Use-case 2.0.
Communications of the ACM, 59(5), 61 – 69.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., &
Peterson, A. S. (1990, November). Feature-Oriented Do-
main Analysis (FODA) Feasibility Study (Technical Report
No. CMU/SEI-90-TR-21). Pittsburgh, Pennsylvania, USA:
Carnegie Mellon University.

Kienzle, J., Mussbacher, G., Alam, O., Schöttle, M., Belloir,
N., Collet, P., . . . Rumpe, B. (2016, June). VCU: The three
dimensions of reuse. In Icsr 2016 (pp. 122–137). Springer.

Kienzle, J., Mussbacher, G., Combemale, B., & Deantoni, J.
(2019, Jan 03). A unifying framework for homogeneous
model composition. Software & Systems Modeling, 18(5),
3005–3023.

Krueger. (1992). Software reuse. CSURV: Computing Surveys,
24.

Concern-Oriented Use Cases 13

Figure 14 Woven Use Case Diagram for the Elfenroads Software Product Line

Languay, R. (2022). Concern-Oriented Use Case Modelling
(Masters thesis). Montreal, Canada: McGill University.
(https://escholarship.mcgill.ca/concern/theses/rn3016607)

Lu, C., & Song, I.-Y. (2008). A Comprehensive Aspect-Oriented
Use Case Method for Modeling Complex Business Require-
ments. In Lncs 5232 (pp. 133–143).

McIlroy, M. D. (1969). “Mass Produced” Software Components.
In P. Naur & B. Randell (Eds.), Software engineering (pp.
138–155). Brussels: NATO.

Object Management Group. (2014). Business Process Model
And Notation. Retrieved from https://www.omg.org/spec/
BPMN/2.0.2/PDF

Object Management Group. (2017). OMG Unified Modeling
Language. Retrieved from https://www.omg.org/spec/UML/
2.5.1/PDF

Pohl, K., Böckle, G., & van der Linden, F. J. (2005). Soft-
ware product line engineering: Foundations, principles and
techniques. Secaucus, NJ, USA: Springer-Verlag.

Rio Grande Games. (2010). Elfenroads. Retrieved 2021-12-22,
from https://www.riograndegames.com/games/elfenroads/

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The Unified
Modeling Language Reference Manual. Addison-Wesley.
Retrieved from www.awl.com/cseng/

Schiedermeier, M. (2021). LobbyService: Generic board game
functionality. Retrieved 2021-12-22, from https://github.com/
kartoffelquadrat/LobbyService

Schöttle, M., Alam, O., Kienzle, J., & Mussbacher, G. (2016,
mar). On the Modularization Provided by Concern-Oriented
Reuse. In Companion proceedings of modularity (pp. 184–
189). ACM. doi: 10.1145/2892664.2892697

Schöttle, M., Thimmegowda, N., Alam, O., Kienzle, J., & Muss-
bacher, G. (2015). Feature modelling and traceability for
concern-driven software development with TouchCORE. In
Modularity 2015 Demonstration (pp. 11–14).

Sendall, S., & Strohmeier, A. (2000). From Use Cases to
System Operation Specifications. Lecture Notes in Computer
Science, 1939, 1–15.

Siow, C. C. (2018). Concern-Oriented Use Case Maps (Tech.
Rep.). Montreal, Canada: McGill University.

Somé, S. S., & Anthonysamy, P. (2008). An approach for
aspect-oriented use case modeling. In Icse (pp. 27–33).

Svahnberg, M., Van Gurp, J., & Bosch, J. (2005). A taxonomy
of variability realization techniques. Software: Practice and
Experience, 35(8), 705–754.

Touchcore website. (2023).
https://djeminy.github.io/touchcore/.

W3 Computing. (2020). Use Case Modeling. In IS Management
Handbook (pp. 519–530).

Whittle, J. (2012). The Truth about Model-Driven De-
velopment in Industry - and Why Researchers Should
Care. http://www.slideshare.net/jonathw/whittle-modeling-
wizards-2012/.

Yue, T. (2010). Restricted Use Case Modeling Approach User
Manual.

Yue, T., & Ali, S. (2012). A Practical and Scalable Use
Case Modeling Approach to Specify Crosscutting Concerns:
Industrial Applications (Tech. Rep.). Oslo, Norway: Simula
Research Laboratory.

Yue, T., Briand, L. C., & Labiche, Y. (2009). A Use Case Mod-
eling Approach to Facilitate the Transition towards Analysis

14 Languay et al.

https://www.omg.org/spec/BPMN/2.0.2/PDF
https://www.omg.org/spec/BPMN/2.0.2/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.riograndegames.com/games/elfenroads/
www.awl.com/cseng/
https://github.com/kartoffelquadrat/LobbyService
https://github.com/kartoffelquadrat/LobbyService

Models: Concepts and Empirical Evaluation. In Models (pp.
484–498). Denver: Springer.

About the Authors
Ryan Languay holds a master degree in Computer Science
from the School of Computer Science of McGill Univer-
sity, Montreal, Canada. You can contact the author at
Ryan.Languay@mail.mcgill.ca or visit https://www.linkedin
.com/in/ryan-languay/.

Nika Prairie is an undergraduate student of the School of Com-
puter Science of McGill University, Montreal, Canada. You
can contact the author at Nika.Prairie@mail.mcgill.ca or visit
https://www.linkedin.com/in/nika-prairie-5b0b0317a/.

Jörg Kienzle is full professor at the School of Computer Sci-
ence of McGill University, Montreal, Canada. He holds a Ph.D.
and Engineering Diploma from the Swiss Federal Institute of
Technology in Lausanne (EPFL). His current research interests
include model-driven engineering, concern-oriented software
development, reuse of models, software development methods
in general, aspect-orientation, distributed systems and fault tol-
erance. You can contact the author at Joerg.Kienzle@mcgill.ca
or visit http://www.cs.mcgill.ca/~joerg/.

Concern-Oriented Use Cases 15

mailto:Ryan.Languay@mail.mcgill.ca?subject=Your paper "Concern-Oriented Use Cases"
https://www.linkedin.com/in/ryan-languay/
https://www.linkedin.com/in/ryan-languay/
mailto:Nika.Prairie@mail.mcgill.ca?subject=Your paper "Concern-Oriented Use Cases"
https://www.linkedin.com/in/nika-prairie-5b0b0317a/
mailto:Joerg.Kienzle@mcgill.ca?subject=Your paper "Concern-Oriented Use Cases"
http://www.cs.mcgill.ca/~joerg/

