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ABSTRACT
Semantic difference analyses support engineers in understanding model-changes on the semantic level and thereby assist
change management in Model Driven Development (MDD). A semantic differencing operator for Class Diagrams (CDs)
compares two input models based on their legal instances and outputs object structures that are permitted by the first but not
the second input-CD. Under the closed-world assumption only instances of explicitly-modeled elements are permitted. This
closed-world approach may be less suited for semantic refinement checking in early design phases, where new elements
are added to a CD in order to refine it. Instead, an open-world approach can be utilized. In this paper, we outline, evaluate
and compare two approaches for extending CDDiff, an existing closed-world semantic differencing operator for CDs, to
an open-world operator: The first approach reduces the open-world problem to a bounded search via Alloy. The second
approach transforms the input-CDs and reduces the open-world problem to closed-world semantic differencing. It also allows
for combining open- and closed-world interpretations of model-elements.

KEYWORDS class diagrams, uml, difference analysis, semantics, model-driven development, cddiff.

1. Introduction

Models are the primary artifacts of MDD. As such, they evolve
over the course of the development process. To assist in effec-
tive change management, differencing operators can be utilized.
While syntactic differencing operators are useful and common-
place (Alanen & Porres 2003; Kehrer et al. 2011; T. Kehrer, U.
Kelter, and G. Taentzer 2013; Küster et al. 2009, 2008; Taentzer
et al. 2014; Thüm et al. 2009), they do not necessarily reveal
the semantic difference of two models, i.e., the difference in
their ‘meaning‘ (Harel & Rumpe 2004). To better understand
model-changes on a semantic level, one may employ semantic
differencing operators.

Maoz et al. (2011b) introduced CDDiff, a semantic differ-
encing operator for UML/P CDs (Rumpe 2011). This operator
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is based on a formal semantics definition for UML/P CDs that
maps each model to a set of legal instances, i.e., the set of
object structures the CD permits. The (asymmetric) semantic
difference of two CDs is then given as the set of object struc-
tures permitted by the first and not the second CD. The object
structures in this set are also referred to as diff-witnesses. If
no diff-witness exists, i.e., if the semantics of the first CD is
contained in the semantics of the second CD, we say that the
first CD (semantically) refines the second CD (Herrmann et al.
2007; Kautz & Rumpe 2018a). The implementation of CDDiff
relies on a translation to Alloy (Jackson, Daniel 2006; Kautz et
al. 2017) in order to find diff-witnesses. These witnesses are
presented as textual UML/P Object Diagrams (ODs).

CDDiff originally only operated under the closed-world as-
sumption, i.e., object structures were not permitted to instantiate
types, attributes and associations not explicitly modeled in the
corresponding CD (Reiter 1978). As discussed by Nachmann et
al. (2022), this becomes less suitable in early design phases of
the development process. Here, new elements are often added
to models in order to refine them. This notion of refinement,
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however, does not correspond to semantic refinement under the
closed-world assumption. Instead, an open-world approach is
needed that considers each CD as underspecified. This way,
objects structures are permitted to instantiate types as well as
association not modeled in the CD. Thus, the addition of new
elements to the CD constitutes a semantic refinement.

The open-world assumption complicates the implementation
of a semantic differencing operator, as the semantics of a CD
now includes instances of infinitely many types and associations.
Fahrenberg et al. (2014) circumvent this problem by computing
a difference-CD that includes only those syntactic elements that
may induce a semantic difference. This, however, does not allow
for producing concrete diff-witnesses in the semantic domain
of the analyzed CDs.

In order to realize a semantic differencing operator for CDs
that can compute diff-witness under the open-world assumption,
we reduce the problem of open-world semantic differencing by
restricting diff-witnesses in size and scope, as typical to bounded
analyses such as the original implementation of CDDiff (Maoz
et al. 2011b).

Our contributions include two approaches for extending
CDDiff to an open-world semantic differencing operator for
finitely satisfiable CDs (Balaban & Maraee 2013) and are listed
as follows:

1. For our first approach, we extend CDDiff’s translation
of CDs to Alloy to allow for open-world semantic differ-
encing. Instead of fully specifying the CDs in Alloy, our
new translation encodes underspecification and thus it also
considers possible CD-expansions (Nachmann et al. 2022).

2. For our second approach, we reduce the problem of open-
world semantic differencing to its closed-world variant by
transforming the input-models.

3. We extend the transformation to allow for combining
closed-world and open-world interpretation of model-
elements via stereotypes.

The implementation of the extended CDDiff-operator is
part of the CD4Analysis-project which is publicly available at:
https://github.com/MontiCore/cd4analysis

The remainder of the paper is structured as follows: In Sect. 2,
we discuss related work concerning semantic differencing. Next,
in Sect. 3, we present a motivating example for open-world
semantic differencing in the context of designing a reference
model for digital twins. The abstract syntax and formal seman-
tics for the notion of CDs used in this paper is defined in Sect. 4.
In Sect. 5 we outline changes made to the translation of CDs to
Alloy in order to include additional type-information for objects.
We introduce our first approach for open-world semantic differ-
encing in Sect. 6. In Sect. 7 we present our second approach: a
reduction of the open-world problem of semantic differencing
of CDs to closed-world semantic differencing. We evaluate and
compare the diff-witnesses and performance of both approaches
in Sect. 8 and, finally give a conclusion and outlook in Sect. 9.

2. Related Work
Harel & Rumpe (2004) characterize the relationship between

syntax and semantics of modeling languages as a semantic
mapping that maps each syntactically valid model to a subset of
a well-defined and well-understood semantic domain. For CDs
we consider a semantic domain consisting of object structures
that correspond to possible data-states of a software system.

Maoz et al. (2011b) introduce CDDiff, a semantic differenc-
ing operator for UML/P CDs that can detect semantic differ-
ences of two CDs under a closed-world assumption. It produces
diff-witnesses in the form of UML/P ODs describing object
structures permitted by the first CD that are not permitted by
the second CD. The operator utilizes a translation to Alloy in
order to find these object structures using the Alloy Analyzer.
The translation rules are outlined in (Kautz et al. 2017).

Nachmann et al. (2022) suggest that open-world semantic dif-
ferencing might be well-suited for refinement-checking in early
design phases, were new elements might be added to the source-
models precisely in order to refine them. An expansion-based
semantics is proposed to more accurately reflect underspecifica-
tion of CDs and to prevent inconsistent type-inheritance within
object structures.

Fahrenberg et al. (2014) present a merge and differencing
operator for CDs. Open-world semantic refinement of the
component-CDs is considered as a soundness-condition for
the merge. The notion of syntactic refinement is used as a
sufficient condition for semantic refinement. This notion is sim-
ilar to that of CD-expansion (Nachmann et al. 2022). Unlike
CDDiff (Maoz et al. 2011b), the differencing operator presented
here does not produce witnesses in the semantic domain. In-
stead, it outputs a diff-CD that contains only syntactic elements
of the first input-CD that induce a semantic difference when
compared to the second input-CD. Moreover, the semantic im-
plications of association directions are not considered.

Drave, Kautz, et al. (2019) outline both a closed-world and an
open-world semantic differencing operator for Feature Models
(FMs). The latter is realized by reducing the problem of open-
world semantic differencing to a finite subset.

ADDiff, a semantic differencing operator for Activity Dia-
grams (ADs), was introduced in (Maoz et al. 2011a). It uses a
translation to SMV, outlined in (Maoz et al. 2011c), and com-
putes execution traces that constitute diff-witnesses. The paper
presents two algorithms for computing these diff-witnesses: a
concrete forward-search algorithm and a symbolic fixed-point
algorithm. Kautz & Rumpe (2018b) present an alternative
approach to ADDiff that considers a smaller subset of ADs
and reduces the problem of semantic differencing to language
inclusion checking and counterexample generation for finite
automata. Both approaches operate under a closed-world as-
sumption. Language inclusion checking and counterexample
checking for finite automata is also used in (Drave, Eikermann,
et al. 2019) to realize semantic differencing for UML/P State-
Charts (SCs) with finite input- and output-alphabets as well as
in (Kautz 2021) for Sequence Diagrams (SDs). Using a trans-
lation to Büchi automata instead, the same can be achieved
for Time-Synchronous Port-Automata (TSPA) with finite input-
/output-alphabets and state-space (Butting et al. 2017).

Langer et al. (2014) present a generic approach for seman-
tic differencing that utilizes existing semantics specification
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approaches in order to define the behavioural semantics of a
particular modeling language. The models are then executed
and compared regarding their execution traces. If additional
input is required for concrete execution, the authors propose
using symbolic execution to automatically generate relevant
inputs. Their approach is demonstrated using the semantics
specification language xMOF to realize a semantic differencing
operator for Petri nets. Moreover, with this generic approach
differencing operators for CDs and ADs were implemented ac-
cording to the specifications of ADDiff and CDDiff, as well.
Their performance was, however, ultimately weaker than the
original approaches in (Maoz et al. 2011b,a)

We observe relations between open-world CD semantics
and various meta-model extensions. Jiang et al. (2004) de-
fine four levels of meta-model extensions. Bruneliere et al.
(2015) present operators for meta-model extension and two
approaches for managing instances of modified meta-models.
Jácome-Guerrero & de Lara (2018) introduce rules to control
meta-model extensibility. The four levels from (Jiang et al.
2004) rely on extensions of meta-models that are also allowed
by open-world semantics of CDs. Most additive operations from
(Bruneliere et al. 2015) and four out of the eight meta-model
customization from (Jácome-Guerrero & de Lara 2018) are
supported by our open-world semantics. However, Bruneliere
et al. (2015) and Jácome-Guerrero & de Lara (2018) support
deletions of elements, which are not captured in the open-world
differencing semantics. It might be interesting future work to
investigate semantic differencing of CDs with case-specific cus-
tomization operations of meta-models instead of generic rules
for open-world semantics.

Finally, another line of work investigates model typing (Steel
& Jézéquel 2007) and subtyping (Guy et al. 2012) relations. In
contrast to most meta-model extensions, these works focus on
a type-like compatibility on the instance level. Comparing in-
stances of models with compatible types (Steel & Jézéquel 2007)
might be supported by CDDiff following similar adjustments
as we did for open-world semantics, while model subtyping
of (Guy et al. 2012) supports type adaptation, which is likely
difficult to discover automatically.

3. Motivating Example
We motivate the use of open-world semantic differencing for
CDs with an example: A team of engineers aims to design a CD
capturing a reference model for digital twins. Among others,
the engineers must represent the following requirements:

1. A digital twin has exactly 1 machine as its original.
2. A digital twin consists of a set of digital shadows and

models.

The engineers construct CD v1 shown in Figure 1 consisting
of the classes DigitalTwin, Machine, DigitalShadow and
Model with appropriate relations.

The following additional requirements are discovered:

1. A digital twin consists of at least 1 model and digital
shadow.

2. A digital shadow consists of a non-empty set of data traces.

Figure 1 Initial reference-CD for a digital twins.

3. A data trace corresponds to exactly 1 machine.
4. A model is either a data model or a process model.

As a consequence, the engineers add the classes DataModel,
ProcessModel and DataTrace as well as corresponding rela-
tions to the original CD v1. Class Model is changed into an
abstract class resulting in CD v2 shown in Figure 2.

Figure 2 Subsequent reference-CD for digital twins.

The team analyzes the semantic difference between CD v1
and CD v2 and learns that with closed-world semantics the
CDs are incomparable as each allows instances not allowed
by the other. However, the closed-world assumption might
not be appropriate here as one might expect that CD v1 is
incomplete and that further classes and relations may be added.
With the open-world assumption CD v2 depicted in Figure 2
is a refinement of CD v1 depicted in Figure 1. As an example,
objects of class DataModel are not permitted in the closed-
world semantics of v1, as the class is not part of the CD. They
are, however, included in both the closed-world and open-world
semantics of CD v2.

After some reconsideration, the team decides that machines
are not the only type of system to have a digital twin. They
attempt to refactor the CD by inserting the abstract class System
that is then extended by the class Machine. The association that
previously targeted Machine is now pulled up in the inheritance
hierarchy to class System in CD v3 shown in Figure 3.

This change indeed is a refactoring according to closed-
world semantics (Maoz et al. 2011b; Nachmann et al. 2022),
i.e., cddiff (v2, v3) = cddiff (v3, v2) = ∅. However, un-
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Figure 3 Attempted refactoring of the reference-CD for digi-
tal twins.

Figure 4 Object structure in the open-world semantics of
the CD v3 (Figure 3) that constitutes a diff-witness for the
semantic difference between the CD v2 (Figure 2) and CD v3.

der an open-world assumption, a DigitalTwin is permitted
to have an original in CD v3 that is not a Machine, i.e.,
cddiff (v2, v3) ̸= ∅, as demonstrated by the diff-witness, an
object structure, shown in Figure 4.

This contradicts the first requirement, which states that a
digital twin has exactly 1 machine as its original. Consequently,
the object structure in Figure 4 is not permitted by CD v1 nor
by CD v2, which accurately reflect the requirement. Thus, the
change does neither constitute a refinement in the closed world
nor in the open world. The object structure serves as a witness
for the semantic difference between the versions CD v2 and CD
v3 of the reference model depicted in Figure 2 and Figure 3,
respectively. The team has to either reverse the design step or
revise their initial requirements.

4. Syntax and Semantics of Class Diagrams
The following definitions closely follow the definitions provided
by (Nachmann et al. 2022) and (Maoz et al. 2011b). However,
some changes to the abstract syntax and semantics were in-
troduced, e.g., we extended the abstract syntax and semantics
from (Nachmann et al. 2022) to support anonymous, directed
associations and refined the semantic domain. Each subsec-

tion discusses the changes compared to (Nachmann et al. 2022)
motivated by new features that were added or features of the
differencing operator from (Maoz et al. 2011b).

4.1. Abstract Syntax of Class Diagram
CDs are widely used to model the structure of object-oriented
software systems. They define the set of all possible object struc-
tures that comprise a potential data state of a system (Rumpe
2011). In this section we review the abstract syntax of CDs
based on the UML/P variant defined in (Rumpe 2011).

A CD defines a finite set of classes, as well as a finite set
of associations between those classes. A class may extend
other classes, thus inheriting all associations of its super-classes.
Moreover, classes may be declared abstract such that they can-
not be instantiated directly. We consider unidirectional and
bidirectional binary associations. A binary association refer-
ences two classes and has a role name and a cardinality for
each side. The cardinality imposes constraints on the number of
allowed instances (i.e., links) from the same object.

Extending (Nachmann et al. 2022), we also consider anony-
mous as well as directed associations. As such, let C be a
universe of class names and N a universe of role names. More-
over, let I be the set of all finite unions of finite or unbounded
intervals of natural numbers. We formally denote the abstract
syntax of CDs as follows:

Definition 4.1 (Abstract Syntax of Class Diagrams). Given a
Class Diagram cd we declare that

1. cd.classes ⊆ C: denotes the finite set of class declarations
in cd,

2. cd.abstract ⊆ cd.classes: denotes the subset of classes
declared abstract in cd,

3. cd.assoc ⊆ cd.classes ×N ×N × cd.classes: denotes
the finite set of directed associations in cd,

4. cd.bidir ⊆ cd.assoc: denotes the finite subset of bidirec-
tional associations with (c1, r1, r2, c2) ∈ cd.bidir ⇐⇒
(c2, r2, r1, c1) ∈ cd.bidir,

5. cd.cardL : cd.assoc → I and cd.cardR : cd.assoc → I
define the cardinality for the left side and the right side of
an association respectively,

6. c1 ≺cd c2: denotes that a class c1 directly extends another
class c2 in cd.

The reflexive transitive hull of the extends-relation ≺cd is de-
noted by ≺∗

cd and must define a partial ordering on cd.classes.

Consider for example the CD v3 depicted in Fig-
ure 3, the set of class declarations is then denoted as
v3.classes and contains the classes DigitalTwin and System.
The class System is declared abstract and thus also in-
cluded in v3.abstract. The unidirectional association con-
necting DigitalTwin and System is denoted by the tu-
ple a := (DigitalTwin, twins, original, System) with
v3.cardL(a) = [0, ∞) and v3.cardR(a) = [1, 1]. The bidi-
rectional association between classes System and DataTrace
is denoted by tuples (System, of, traces, DataTrace) and
(DataTrace, traces, of, System), which are contained in
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v3.bidir. The class Machine directly extends the abstract class
System which is denoted by Machine ≺v3 System.

We have omitted elements of UML/P CDs from this defi-
nition to fit the scope of this paper. In the following, we list
these model-elements and justify their exclusion. Note that the
majority of these elements are supported by our implementation.

– Attributes and composition are handled analogous to asso-
ciations.

– Interfaces are handled analogous to abstract classes.
– CDDiff considers enumerations as sets of values. Under

the open-world assumption new enumerations can be added
to the CD, and existing enumerations can be expanded by
introducing arbitrary new constants. Thus, they do affect
the open-world semantics of a CD.

– Underspecified cardinalities were not included in the ab-
stract syntax as they are semantically equivalent to [0, ∞)
when considering valid instances of the CD.

– Additionally, we do not consider underspecification of
association direction and role names. These are given a
default specification by our implementation.

– Finally, CDDiff does not consider method-signatures as
they are not part of the data-structure instances. As such,
they are not included here, either.

4.2. Semantics of Class Diagrams
We consider a semantics for CDs that maps each model to a
set of legal instances, i.e., the set of objects structures that it
permits (Harel & Rumpe 2004; Maoz et al. 2011b; Nachmann et
al. 2022). Moreover, we distinguish between the closed-world
semantics, which only permits instances of explicitly modeled
elements, and open-world semantics, which considers CDs to be
underspecified and thus permits instances of other, undeclared
types and associations, as well.

4.2.1. Semantic Domain Object structures represent poten-
tial data states of an object-oriented system and thus form the
semantic domain for CDs. An object structure consists of a
finite set of objects, as well as a finite set of directed links. Each
object instantiates a set of classes and has a most-specific type.
Formally, we denote object structures as follows:

Definition 4.2 (Abstract Syntax of Object Structures). An object
structure os consists of

1. a finite set of objects os.obj such that for each o ∈ os.obj
(i) o.types ⊆ C denotes the set of all types that o instan-

tiates,
(ii) and o.type ∈ o.types denotes its most-specific type,

2. as well as a finite set of links between objects:
os.links ⊆ os.obj ×N × os.obj.

Consider for example the object structure witness mod-
elled by the OD in Figure 4 with witness.obj =
{tw0, sys0, m0, sh0, tr0}. The most-specific type of the ob-
ject m0 is m0.type = DataModel and since witness is an in-
stance of the CD v3 depicted in Figure 3, we can infer that
Model ∈ m0.types. The object m0 is also target of a link from
tw0, i.e., (m0, models, tw0) ∈ witness.links.

4.3. Closed-World Semantics
An object structure is a legal instance of a CD according to its
closed-world semantics iff the following conditions hold: Each
object within the object structure only instantiates classes of
the CD, (2) the most specific type of each object corresponds
to a non-abstract class, (3) each link corresponds to an associa-
tion and (4) the cardinality constraints of each association are
respected. More formally:

Definition 4.3 (Closed-World Semantics of Class Diagrams).
An object structure os is a closed-world instance of a Class
Diagram cd iff os satisfies the following constraints:

1. For every object o ∈ os.obj, it holds that

(i) o.type ∈ cd.classes\cd.abstract,
(ii) o.types ⊆ cd.classes.

2. For every object o ∈ os.obj, it holds that
t ∈ o.types ⇐⇒ o.type ≺∗

cd t.
3. For every link (o1, r2, o2) ∈ os.links, there is an asso-

ciation a ∈ cd.assoc with a = (c1, r1, r2, c2) such that
c1 ∈ o1.types and c2 ∈ o2.types.

4. For each association a := (c1, r1, r2, c2) ∈ cd.assoc
and each o2 ∈ os.obj with c2 ∈ o2.types, it holds that
|{(o1, r2, o2) ∈ os.links : c1 ∈ o1.type}| ∈ cd.cardL

5. For each association a := (c1, r1, r2, c2) ∈ cd→.assoc
and each o1 ∈ os.obj with o1.type ≺∗

cd c1, it holds that:

(i) (o1, r2, o2) ∈ os.links =⇒ c2 ∈ o2.types

(ii) |{(o1, r2, o2) ∈ os.links}| ∈ cd.cardR

6. For a = (c1, r1, r2, c2) ∈ cd.bidir and o1, o2 ∈ os.obj
with c1 ∈ o1.type and c2 ∈ o2.types, we have:
(o1, r2, o2) ∈ os.links ⇐⇒ (o2, r1, o1) ∈ os.links.

The closed-world semantics JcdKcw of cd is the set of all
closed-world instances.

Consider again our motivating example from Sect. 3, unless
OtherSystem is included in v3 (Figure 3), the object-structure
witness (Figure 4) would not constitute a closed-world instance,
since sys0.type ̸∈ v3.classes.

With the previous definition of CD semantics, we may now
characterize a closed-world refinement of a CD as follows:

Definition 4.4 (Closed-World Refinement). We say that a Class
Diagram A is a refinement of a Class Diagram B under the
closed-world assumption iff JAKcw ⊆ JBKcw.

We assume that the open-world operator’s input-CDs are
finitely-satisfiable under a closed-world assumption, i.e., that
each class of an input-CD can be instantiated according to the
closed-world semantics (Balaban & Maraee 2013). We use this
assumption for proving the completeness of the reduction from
open-world semantic differencing to closed-world semantic dif-
ferencing in Sect. 7. This ensure the existence of diff-witnesses
in the open world iif they are present for the reduced problem
instance in the closed world.

Definition 4.5 (Finite Satisfiability (Balaban & Maraee 2013)).
A class c ∈ C is finitely-satisfiable in a CD cd iff there exists
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an object structure os ∈ JcdKcw with an object o ∈ os.obj such
that c ∈ o.types. CD cd is finitely-satisfiable iff every class
c ∈ cd.classes is finitely-satisfiable.

4.4. Open-World Semantics
We consider an expansion-based open-world semantics for CDs
(Nachmann et al. 2022). This not only ensures consistency of
type-inheritance within object structures, but also more accu-
rately reflects the notion of underspecification.

Definition 4.6 (Open-World Semantics of Class Diagrams).
An object structure os is an open-world instance of a Class
Diagram cd iff there exists an expansion cdx of cd (see Def. 4.8)
with os ∈ JcdxKcw. The open-world semantics of cd, denoted
as JcdKow, is the set of all open-world instances.

The notion of open-world refinement is then defined analo-
gous to its closed-world counterpart:

Definition 4.7 (Open-World Refinement). We say that a Class
Diagram A is a refinement of a Class Diagram B under the
open-world assumption iff JAKow ⊆ JBKow

Intuitively, a CD-expansion preserves all existing classes,
associations and extends relations, but it permits additions.

Definition 4.8 (Expansion). A Class Diagram cdx is an expan-
sion of a Class Diagram cd iff

1. cd.classes ⊆ cdx.classes,
2. cd.abstract ⊆ cdx.abstract,
3. cd.assoc ⊆ cdx.assoc
4. cd.bidir ⊆ cdx.bidir
5. ∀c1, c2 ∈ cd.classes : c1 ≺cd c2 =⇒ c1 ≺cdx c2,
6. ∀a ∈ cd.assoc : cd.cardL(a) = cdx.cardL(a) ∧

cd.cardR(a) = cdx.cardR(a)

Referring back to our motivating example in Sect. 3, adding
OtherSystem as a subclass to System in CD v3 constitutes
an expansion of CD v3. The object structure witness from
Figure 4 is an instance of this expansion in the closed world
according to Def. 4.3, and thus it is an open-world instance
of v3. On the other hand, when considering CD, v2, the link
(tw0, original, sys0) violates the semantics of the associ-
ation (Digital, twins, original, Machine) as Machine ̸∈
sys0.types (see Def. 4.3). This might not be immediately clear
when looking at Figure 4, as super-types are usually not de-
picted in ODs. To avoid ambiguity, our implementation uses the
stereotype «instanceo f = . . . » in diff-witnesses produced by
the open-world operator to list all types an object instantiates.

4.5. Overlapping Associations
Overlapping associations are permitted by the abstract syntax
we defined in Sect. 4.1. Concerning our previous semantics
definitions, we distinguish between refining/super-associations
and conflicting association.

Definition 4.9 (Refining and Super-Association). An associ-
ation a′ = (c′1, r′1, r2, c′2) refines another association a :=

(c1, r1, r2, c2) with respect to a class diagram cd iff
(1) c1 ≺∗

cd c′1, c2 ≺∗
cd c′2 and (2) a, a′ ∈ cd.bidir =⇒ r1 = r′1.

In this case, we also refer to a′ as a refining association and to
a as a super association of a.

Refining association are a valid concept with regards to set-
theory: an association restricts the set of objects that can be
accessed via the role name, a refining association further re-
stricts this set for a subclass. However, for implementation
purposes, this type of overriding is unfortunately not supported
by most object-oriented programming languages (e.g., Java).

Note special cases of redundant super-associations whose
constraints are implied by their refining associations and con-
flicting associations as defined in Def. 4.10.

Definition 4.10 (Conflicting Associations). An association
a = (c1, r1, r2, c2) conflicts with another association a′ =
(c′1, r′1, r2, c′2) with respect to a class diagram cd iff c1 ≺∗

cd c′1
and either (1) c2 ̸≺∗

cd c′2 or (2) a, a′ ∈ cd.bidir and r1 ̸= r′1.
We say that a class diagram cd is conflict-free, if it contains no
conflicting associations.

Unlike refining associations, conflicting associations cannot
be instantiated as they induce contradicting constraints on the
formal semantics of a CD.

5. Alloy-Based Semantic Differencing
Alloy is a textual modeling language based on relational first-
order logic (Jackson, Daniel 2006). Models are defined in Alloy
modules and consist of signature declarations, fields, predicates,
and facts. The Alloy Analyzer can be used to find instances of
signatures that satisfy predicates and facts within a specified
search-space.

CDDiff translates two CDs into an Alloy module in order to
find diff-witnesses using the Alloy Analyzer (Maoz et al. 2011b;
Kautz et al. 2017). The semantics of each CD are expressed by a
predicate in the Alloy module. When computing a diff-witness
the predicate of the first CD has to hold, while the predicate
of the second CD must not. In the translation of (Kautz et al.
2017), an abstract signature Obj is used to represent objects in
the semantic domain of a CD. Each class in the input-CDs is
translated into a signature that extends Obj. Role names and
attribute names in the input-CDs are translated to signatures
extending an abstract signature FName (field name). The sig-
nature Obj contains the function get that given a field name,
returns a set of objects, values and enumeration-values. Predi-
cates restrict the get-function such that it accurately encodes
the semantics of associations and attributes.

Note that for executing CDDiff, a diff-size has to be specified
that limits the number of instances for each top-level signature
(e.g., Obj). If not specified by the user, a heuristic based on the
number of classes and associations in the input-CDs is used.

In order to accommodate open-world semantic differencing,
we add an abstract signature Type, as shown in Listing 1, that
allows us to specify and track the types instantiated by an object.
The Type signature is extended by a singleton signature for each
class in the input-CDs. Furthermore, an additional predicate is
generated that allows specifying the reflexive transitive hull of
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the extends relation via the super-attribute for each input-CD,
respectively. For the translation to ODs, we utilize the stereotype
«instanceo f = ”...”» to depict all types of an object.

For example, the class DataModel in the CD v3 (Fig-
ure 3) would be translated into a sub-signature of Obj. A
corresponding lone sub-signature of Type, with the name
Type_DataModel, would also be generated, containing both it-
self and Type_Model in field Type_DataModel.super. A full
example-module cwdiff_DT3_DT2_module.als is included
in the doc-folder of the GitHub-project.

1 // object signature now includes a type-attribute
2 abstract sig Obj {
3 get : FName -> {Obj + Val + EnumVal},
4 type: Type }
5

6 // introduce new abstract sig Type
7 abstract sig Type {
8 super: set Type,
9 inst : set Obj}

10

11 // define the super-types for a set of objects
12 pred ObjTypes[obj: set Obj, types: set Type]{
13 all o:obj| o.type.super = types}
14

15 // specify the instances of a type
16 fact InstancesOfTypes {
17 all t: Type |
18 t.inst = {o:Obj | t in o.type.super}
19 }

Listing 1 Modifications to the generic part of the Alloy
Module to enable multi-instance CD-semantics.

The complete, modified translation from CDs to Alloy with
signature Type (e.g., for closed-world semantic differencing) is
is implemented in class CD2AlloyGenerator1.

6. Solution I: Open-World Semantic Differenc-
ing with Alloy

In order to realize open-world semantic differencing in Alloy,
we reduce the problem to a more restrictive, finite version of
itself. This is possible since elements that are absent from both
input-CDs cannot by themselves induce a semantic difference,
hence we need, for the most part, only consider elements that are
modelled in either CD. As such, we only use existing class and
role names and permit Alloy to add new elements to the set of
associations and the extends-relation. To ensure completeness,
we add a new non-abstract subclass to each abstract class in
the CD as well as an additional dummy class to each input-
CD beforehand. This allows the Alloy Analyzer to consider
all relevant expansions of the input-CDs and thus detect any
semantic differences in the open world.

Note that the added non-abstract sub-classes allow indirect
instantiation of abstract classes without additional constraints.
Moreover, the added dummy class represents an arbitrary new
class previously not present in either input-CD and is needed
for certain edge cases, e.g., consider the situation in Figure 5

1 https://github.com/MontiCore/cd4analysis/tree/
develop/src/cddiff/java/de/monticore/cddiff/
cd2alloy/generator

where adding the class Dummy to CD P1 and reusing the role-
name knows from P2 allows the operator to detect the semantic
difference from P1 to P2 exemplified by the OD PDi f f . In
PDi f f , we find that Person bob knows d0, which is invalid
according to P2, as b0 is not an instance of Person.

Figure 5 Example for semantic difference induced by exist-
ing association and the added dummy-class.

The correctness and soundness for this approach follow di-
rectly from the correctness and soundness of the reduction-based
approach introduced in Sect. 7.

In order to implement the Alloy-based approach, we
extend the class CD2AlloyGenerator via the subclass
OpenWorldGenerator1 and override some of the existing
translation-procedures. First and foremost, we no longer re-
strict the get-function to associations (and attributes) defined
in the respective CD, nor do we restrict objects to instances
of classes in the first input-CDs. The inheritance-relation
is also left underspecified. Instead, we now need to ensure
anti-symmetry, reflexivity and transitivity of any inheritance-
relation, as well as consistent use of field names across all
objects of the same type (see Listing 2). A full example-module
owdiff_DT3_DT2_module.als is included in the doc-folder
of the GitHub-project.

1 // ensures inheritance remains anti-symmetric
2 fact NoCyclicInheritance {
3 all t1: Type | all t2: Type |
4 {t2 in t1.super} && {t1 in t2.super} => {t1 = t2}
5 }
6

7 // reflexivity and transitivity of inheritance
8 fact ReflexiveTransitiveInheritance {
9 all t1: Type | t1 in t1.super

10 all t1: Type | all t2: Type |
11 {t2 in t1.super} => {t2.super in t1.super}
12 }
13

14 // consistent use of field names for all objects
15 // of the same type
16 fact ConsistencyOfGet {
17 all src: Obj | all q : FName |
18 some src.get[q] => {
19 {src.get[q] in EnumVal and
20 {one e:Enum |
21 ObjAttrib[src.type.inst,q,e.values]}} or
22 {src.get[q] in Val and
23 {one v:Val | ObjAttrib[src.type.inst,q,v]}} or
24 {src.get[q] in Obj and
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25 {some target : Type | all o : src.type.inst |
26 o.get[q] in target.inst}}}
27 }

Listing 2 Additional type-related facts for open-world
semantic differencing.

7. Solution II: Open-to-Closed-World Reduc-
tion

Our second approach for open-world semantic differencing
reduces the analysis to closed-world semantic differencing via
a transformation of the input-CDs. The transformation relies
on the existence of a common abstract super-class Object. We
specify the transformation as follows:

Transformation Let tra f : CD × CD → CD × CD such
that for tra f (A, B):

1. Every class exclusive to B is added to A as a non-abstract
class without extends-relations.

2. We set c ≺A Object for every class c in A without extends-
relation.

3. We add a new non-abstract subclass csub to every abstract
class c in A.

4. For each association (c1, r1, r2, c2) in B, we add an associ-
ation (c1, r1, r2, Object) with underspecified cardinalities
to A, unless this conflicts with existing associations.

5. Every class exclusive to A is added to B as a non-abstract
class without extends relations.

6. For each class in B and each of its super-classes in A we
add an extends-relation, unless this causes inheritance cy-
cles. Afterwards we remove redundant extends-relations.

7. We add each associations from A to B but leave cardi-
nalities underspecified, unless this conflicts with existing
associations.

The purpose of this transformation is to (1) prevent the exis-
tence of closed-world witnesses that are not also open-world wit-
nesses by copying elements from A to B without causing syntac-
tical errors and (2) add elements to A that induce a closed-world
witness iff a semantic difference exists under an open-world
assumption. The latter is achieved by, e.g., adding the exclusive
classes from B to A without extends relation in order to induce
type-differences as well as introducing super-associations of
associations exclusive to B to A that target the common abstract
super-class. Moreover, the addition of a non-abstract subclass
to each abstract class in A allows their indirect instantiation
without additional constraints.

Consider the CDs A and B depicted in Figure 6 as a concrete
example: The transformation adds the class Task from B to
A to allow its instantiation via the closed-world operator. The
common abstract super-class Object and its non-abstract sub-
class ObjSub are added, as well. Moreover, an association from
Employee to Object with role name todo is also added to A.
This association allows the closed-world operator to create cor-
responding links between objects of type Employee and objects
of any other type. To prevent incorrect witnesses, the elements
of the resulting CD A′ that are missing in CD B are copied.

This includes the classes Object, ObjSub and Manager, as
well as corresponding associations and extends-relation. The
OD todoDi f f presents a potential diff-witness found by the
closed-world operator after transforming the input CDs. Note
that the Task accounting is not a todo for any Employee.
Instead, we find that the Employee bob has a todo that is not
a Task. Both of these circumstances are in violation of the
semantic constraints implied by the association in the CD B. As
such, we find that todoDi f f ∈ JAKow\JBKow.

We now demonstrate that this transformation in combina-
tion with a closed-world differencing operator is sufficient to
detect open-world semantic differences in conflict-free finitely-
satisfiable CDs.

Figure 6 Example for reduction-based diff.

In the following let A and B be arbitrary conflict-free finitely-
satisfiable CDs and let (A′, B′) := tra f (A, B). We first show
that finite satisfiability of the first input-CD A is preserved by
the transformation.

Lemma 7.1. A′ is conflict-free and finitely-satisfiable.

Proof. By construction A′ is conflict free. Since all associations
in A′ that are not present in A have no cardinality constraints, it
follows that for every object structure os ∈ JAKcw, we find that
os ∈ JA′Kcw holds, as well. Thus, any class that is both in A
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and A′ is finitely-satisfiable in A′. Furthermore, any class in A′

that is not present in A, extends at most 1 class. We conclude
that these classes must also be finitely-satisfiable in A′.

Next we proof that the reduction is sound, i.e., that any
witness produced by the closed-world semantic differencing op-
erator for the transformed input-CDs is a witness for a semantic
difference under the open-world assumption.

Theorem 7.2 (Soundness). If os ∈ JA′Kcw\JB′Kcw then os ∈
JAKow\JBKow.

Proof. Since A′ is by construction an expansion of A, it follows
that for every os ∈ JA′Kcw, we also have os ∈ JAKow. Next,
we proof by contradiction that for any os ∈ JBKow ∩ JA′Kcw,
we also have os ∈ JB′Kcw. Assume this is not the case. Then
there exists an object structure os ∈ JBKow ∩ JA′Kcw such that
os ̸∈ JB′Kcw. First, we conclude that there exists an expansion
Bx of B such that os ∈ JBxKcw ∩ JA′Kcw. Second, it follows
that os violates at least one condition outlined in Def. 4.3 with
regards to B′. We now show that this cannot be the case:

1. A′ and B′ contain the same classes.
2. Since os ∈ JBxKcw ∩ JA′Kcw, for all o ∈ os.obj and all

c ∈ A′.classes, it holds that o.type ≺∗
A′ c

⇐⇒ c ∈ o.types
⇐⇒ o.type ≺∗

Bx c.
Moreover, since ≺∗

Bx induces no inheritance-cycle, it then
follows from the transformation tra f that
o.type ≺∗

A′ c ⇐⇒ o.type ≺∗
B′ c.

3. For every (o1, r2, o2) ∈ os.links there exists an association
a = (c1, r1, r2, c2) ∈ A′.assoc with c1 ∈ o1.types and
c2 ∈ o2.types that does not conflict with any association
in B. Consequently, B′ then also contains this association.

4./5. Every association in B′ that is not also present in B has no
cardinality constraints and is present in A′, instead.

6. Every bidirectional association in B′ is also a bidirectional
association in B.

Now all that is left is to demonstrate completeness of the
reduction, i.e., under the assumption that the closed-world se-
mantic differencing operator finds a diff-witness if and only if
a semantic difference in the closed world, the transformation
ensures that an open-world diff-witness is found if a semantic
difference exists in the open world.

By ĉd we denote a minimal extension of CD cd to include
super-class Object (if not already included).

Theorem 7.3 (Completeness). If JA′Kcw\JB′Kcw = ∅ then
JÂKow\JB̂Kow = ∅.

Proof. This follows from Lemmas 7.4 and 7.5.

Lemma 7.4. If JA′Kcw ⊆ JB′Kcw, then JA′Kow ⊆ JB′Kow.

Proof. Assume that JA′Kcw\JB′Kcw = ∅. Since A′ and B′

share the same classes and A′ is finitely-satisfiable, B′ must
also be finitely-satisfiable. It follows that B′.abstract ⊆

A′.abstract. This also means that c1 ≺A′ c2 ⇐⇒ c1 ≺B′ c2,
i.e. both CDs must have exactly the same inheritance hierarchy.
Furthermore, every association in A′ must also be in B′. The
same must hold for bidirectional associations, as well. Other-
wise there would be an association in A′ that is in conflict with
an association in B′. Since A′ is conflict-free, we would then be
able to find an os ∈ JA′Kcw\JB′Kcw. This, however, contradicts
our assumption. By the same argument, it must follow that any
non-redundant b ∈ B̂.assoc is also in Â.assoc. Additionally,
for every b = (c1, r1, r2, c2) ∈ B′.assoc, there is a sub-set of
associations

S = {(c′1, r′1, r2, c′2) ∈ A′.assoc : c1 ≺∗
B′ c′1}

such that
⋂

a∈S A′.cardL(a) ⊆ B′.cardL(b) as well as⋂
a∈S A′.cardR(a) ⊆ B′.cardR(b).
Since any abstract class c ∈ A′.abstract has a unique sub-

class, we conclude that any addition done equally to both A′

and B′ will have no effect on the semantic difference, and thus
for every expansion (A′)x of A′ and every os ∈ (A′)x, we can
find an expansion (B′)x of B′ such that os ∈ (B′)x, as well.

Lemma 7.5. If JA′Kow\JB′Kow = ∅, then JÂKow\JB̂Kow = ∅

Proof. Since B′ is an expansion of B̂ and any expansion of B′ is
also an expansion of B̂, it follows that for all osb ∈ JB′Kow,
we have osb ∈ JB̂Kow, as well. Now consider a di f f ∈
JÂKow\JB̂Kow. Without loss of generality, let csub ̸∈ o.types
for all o ∈ di f f .obj, then di f f ∈ JA′Kow\JB̂Kow

Note that, however, in the implementation of the closed-
world operator CDDiff (Maoz et al. 2011b) all object mod-
els are bounded by a finite and typically small scope, which
consequently also bounds the completeness of the open-world
operator in practise.

Extension: Variability Open-/Closed-World Differencing
We have extended our transformation with a variability mech-
anism allowing the combination of open- and closed-world
semantics interpretation of elements in both input-CDs. The ex-
tension is configured via UML/P stereotypes. Individual classes
can be marked as «complete», then no super-classes and outgo-
ing associations can be added. Furthermore, the CD itself can be
marked as «complete», as well. This prevents any additions to
the set of classes, the set of associations and the extends relation.
In this manner, we are able to select an input-CD or specific
elements of the CD that should be considered under a closed-
world assumption. This is useful when comparing a predecessor
version of a CD to a final version that should not be expanded,
or alternatively if specific class declarations should not be ex-
panded from a predecessor to a successor version, because it
might constitute a breaking change with respect to a current
implementation or violate existing requirement specification.

For example, consider the CD v3 depicted in Figure 3: If we
consider this CD as our final version and mark it as «complete»,
then no additions to the extends relation can be made. As such,
any instance of the abstract class System must also be and
instance of Machine (note that the class OtherSystem is not
part of the CD at this point). Consequently, we have refined the
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CD v2 depicted in Figure 2. This would otherwise not be the
case as explained in Sect. 3.

In order to preserve completeness of the differencing opera-
tor, we extended the transformation to add outgoing dummy as-
sociations to classes in A that were only marked as «complete»
in B. This necessarily will induce a diff-witness.

8. Implementation and Evaluation
The implementation of our open-world semantic differencing
approaches have been integrated into the CDDiff-tool which
is part of the larger CD4Analysis-project developed at the
Chair of Software Engineering at RWTH Aachen University.
The project is publicly available at https://github.com/
MontiCore/cd4analysis. CDDiff can be used as Java-
library via the public methods that are provided by the CDDiff
class or as a CLI-Tool via the MCCD.jar.

8.1. Running CDDiff for Open-World semantics
Recall the CDs from our motivating example in Sect. 3. Our
implementation of the semantic differencing operator operates
on the textual CD notation of CD4Analysis (Schindler 2012)
with cd-files as input. We provide the files DigitalTwin1.cd,
DigitalTwin2.cd and DigitalTwin3.cd in the doc folder
of the CD4Analysis project.

Executing the MCCD.jar with the the following CLI-
command, we can compute the semantic difference of
DigitalTwin2.cd and DigitalTwin1.cd.

java -jar MCCD.jar -i DigitalTwin2.cd --semdiff \
DigitalTwin1.cd --open-world

As expected, no diff-witnesses are produced as
DigitalTwin2.cd is a refinement of DigitalTwin1.cd
under the open-world assumption. The output message reads:
************* No diff-witnesses **************.

The option --open-world uses the reduction-based ap-
proach introduced in Sect. 7 by default. Users may also specify
the approach by choosing reduction-based or alloy-based
as an argument.

Next we want to check whether DigitalTwin3.cd is a re-
finement of DigitalTwin2.cd. In order to reduce the potential
size of diff-witnesses and thereby the search-space of the diff-
operation, we may use the option --diffsize. If this option is
not used, the maximum size of Alloy-solutions is set to twice
the number of classes (and interfaces) in the input-CDs. We
may also output the diff-witness as an od-file by specifying
an output-directory with -o. More configuration options are
documented in the README file. A link for downloading the
MCCD.jar is also provided there.

java -jar MCCD.jar -i DigitalTwin3.cd --semdiff \
DigitalTwin2.cd --open-world reduction-based \
--diffsize 5 -o target/DT

A witness produced by the reduction-based implementation
when executing this command is given in Listing 3. In addition
to the witness, the implementation also outputs the transformed
CDs for inspection.

1 objectdiagram witness_0 {

2

3 <<instanceof="Object, SystemSub4Diff, System">>
4 SystemSub4Diff0:SystemSub4Diff;
5

6 <<instanceof="DigitalTwin, Object">>
7 DigitalTwin0:DigitalTwin;
8

9 <<instanceof="DigitalShadow, Object">>
10 DigitalShadow0:DigitalShadow;
11

12 <<instanceof="DataTrace, Object">>
13 DataTrace0:DataTrace ;
14

15 <<instanceof="DataModel, Model, Object">>
16 DataModel0:DataModel ;
17

18 link DigitalTwin0 -> (models) DataModel0;
19 link DigitalTwin0 -> (original) SystemSub4Diff0;
20 link DigitalTwin0 -> (shadows) DigitalShadow0;
21 link DigitalShadow0 -> (traces) DataTrace0;
22 link DataTrace0 (traces)<->(of) SystemSub4Diff0;
23 }

Listing 3 A reduction-based diff-witness in the open-world
semantics of DigitalTwin2.cd but not in the open-world
semantics of the DigitalTwin3.cd

A witness produces by the Alloy-based implementation when
executing the same command with the argument alloy-based
instead of reduction-based is shown in Listing 4.

1 objectdiagram witness_0 {
2

3 <<instanceof="DigitalShadow, DataTrace, Dummy4Diff
, SystemSub4Diff, System">>

4 SystemSub4Diff0:SystemSub4Diff;
5

6 <<instanceof="ProcessModel, ModelSub4Diff,
DigitalTwin, Dummy4Diff, Model">>

7 ModelSub4Diff0:ModelSub4Diff;
8

9 link SystemSub4Diff0 -> (original) SystemSub4Diff0;
10 link SystemSub4Diff0 -> (original) ModelSub4Diff0;
11 link SystemSub4Diff0 -> (of) SystemSub4Diff0;
12 link SystemSub4Diff0 -> (traces) SystemSub4Diff0;
13 link ModelSub4Diff0 -> (models) ModelSub4Diff0;
14 link ModelSub4Diff0 -> (original) SystemSub4Diff0;
15 link ModelSub4Diff0 -> (of) SystemSub4Diff0;
16 link ModelSub4Diff0 -> (of) ModelSub4Diff0;
17 link ModelSub4Diff0 -> (shadows) SystemSub4Diff0;
18 }

Listing 4 An alloy-based diff-witness in the open-world
semantics of DigitalTwin2.cd but not in the open-world
semantics of the DigitalTwin3.cd

Unlike the witness from Listing 3, the one produced by the
alloy-based implementation and shown in Listing 4 contains
only two objects. These two objects instantiate multiple classes
that were originally not related by inheritance in the input-CDs.
This is a consequence of the Alloy Analyzer choosing to expand
the extends-relation. Similarly, the role names of associations in
the input-CDs have been reused for additional associations that
are instantiated by links in the diff-witness, e.g., the role name
original is used to target the object ModelSub4Diff despite
it not being an instance of type System. These additions may
be considered to hinder browsing the diff-witness for relevant
information on the semantic difference between the two input-
CDs. In comparison, the diff-witness in Listing 3, which was
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produced by the reduction-based implementation, contains no
superfluous instances. We assume that, in general, the likeli-
hood of superfluous instances is reduced for the reduction-based
approach as the transformation employed by the reduction is
deterministic and the closed-world operation that follows is not
permitted to re-use role names or expand the extends-relation.

Before we conclude this sub-section, let us demonstrate
a potential use of the stereotype «complete». If we add
«complete» at the start of line 3 in DigitalTwin3.cd and
repeat the analysis, then no diff-witness is found. This is be-
cause now no additions to the extends-relation are permitted in
the first input-CD and thus any instance of type System must
also be an instance of type Machine.

8.2. Evaluation
We are interested in two research questions:

– RQ1: How does the size and readability of computed wit-
nesses differ between the encoding and the translation
approach?

– RQ2: How does the performance differ between the encod-
ing and the translation approach?

First, our translations employ different approaches to adding
classes and relations between classes for computing open-world
semantics. These might have an impact on the size and readabil-
ity of computed diff witnesses.

Second, we believe that a performance evaluation is worth-
while as our two implementations of an open-world CDDiff
operator are quite different in the techniques employed. We
compare the performance of the operators in terms of ratios of
their running times. Note that a comparison to the closed-world
CDDiff from (Maoz et al. 2011b) would not be very meaningful,
as open-world and closed-world semantic differencing are quite
different problems.

Finally, we present our validation of both implementations
in Sect. 8.3 and discuss threats to validity in Sect. 8.4.

We performed all experiments on an 11th Gen Intel Core
i7-1185G7 CPU, 3.0 GHz, with 32 GB RAM, running Windows
10. Our implementation of the CDDiff operator uses the latest
stable release of Alloy 6.0 with SAT4J as a SAT solver in its
default configuration.

8.2.1. Corpus of CDs To evaluate our work, we have col-
lected 25 pairs of consecutive versions of CDs (38 individual
CDs) from different sources2. These sources are:

– 7 pairs of (11 individual) CDs from (Maoz et al. 2011b),
– 5 pairs of (10 individual) CDs manually created as part of

this work to validate and evaluate general performance and
edge cases, and

– 5 pairs of (10 individual) CDs of the CD4Analysis project3

2 All CDs are available at: https://github.com/MontiCore/
cd4analysis/tree/develop/src/cddifftest/resources/
validation.

3 These are all CDs with at least two revisions from https://github
.com/MontiCore/cd4analysis/tree/develop/doc at commit
5f48096.

Minor, syntactic modification had to be made to the latter
two sets of CDs due to recent changes in the cd4analysis
project.

8.2.2. RQ1: Size and Readability It is not straight for-
ward how to evaluate the size and readability of generated diff-
witnesses. A user-study is not in the scope of this work and
we, instead, propose objective measures that may be taken as
proxies for the readability of diff-witnesses. First, we consider
the diff-witnesses with many objects and many links to be more
difficult to read than those with fewer. Second, we consider CDs
with object with low numbers of types per object to be easier to
read than those with many types, i.e., more instances of objects
in complex inheritance hierarchies.

Note that the numbers of objects and types per diff-witness
are constrained by the diff-size parameter as an upper bound,
which is not the case for the number of links. The latter is only
constrained by the elements of the CDs. For our experiments we
use diff-size = 5 as a reasonable default parameter of CDDiff.
Also note that the diff-witnesses produced by our implementa-
tion are not necessarily unique, as the implementation relies on
Alloy, which gives no guarantees in this regard.

For the translation-based open-world semantics, computed
diff-witnesses across all CDs of our corpus have an average of
1.750 objects, 4.517 links, and objects are of 2.754 types on
average. For the Alloy-based open-world semantics, computed
diff-witnesses have an average of 2.133 objects, 2.033 links, and
objects are of 2.195 types on average. The direct comparison be-
tween the two approaches shows that the Alloy-based approach
produces diff-witnesses with less objects and more links, as well
as more types per object. We presume that this is (1) because
the Alloy Analyzer can arbitrarily expand the extends-relation
and (2) because role names can be reused for new associations.
The results are witnesses that are less readable.

8.2.3. RQ2: Performance We first tested the performance
of both approaches using 5 pairs of synthetic CDs of increasing
size. Each of these CDs was constructed to contain an equal
number of classes and associations, as well as a proportional
number of syntactic differences. Each diff operation was per-
formed with two CDs of equal size ranging from 5 to 25 classes
(in steps of 5). Table 1 (Alloy-based) and Table 2 (reduction-
based) show the number of classes and associations of both
input-CDs, as well as the corresponding running time in sec-
onds for each open-world approach and various diff-sizes (ds,
an upper limit on the size of diff-witnesses). Note that because
of the Alloy Analyzer’s non-determinism the reported running
times may vary on different machines.

In order to better compare the two approaches regarding their
performance we computed the running-time-ratios of Alloy-
based to reduction-based diff and displayed them in Table 3.
Note that while the running times of the reduction-based ap-
proach start out slightly worse than for the Alloy-based ap-
proach, as the diff-size increases, the former overtakes the latter
in terms of performance. Moreover, it appears that running-
times-ratio of Alloy-based diff to reduction-based diff worsens
as the input-CDs increase in size. This seems to indicate a
greater running time complexity of the Alloy-based approach.
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CD size ds=3 ds=5 ds=10 ds=15

5 0.847s 1.031s 1.969s 3.155s

10 0.516s 1.018s 3.068s 9.411s

15 1.120s 2.755s 12.091s 3.1360s

20 2.148s 5.833s 23.240s 72.002s

25 3.313s 8.210s 38.890s 142.491s

Table 1 Running times of CDDiff for the Alloy-based open-
world approach for increasing diff-sizes ds from 3 to 15 and
increasing sizes of CDs from 5 to 25 classes

CD size ds=3 ds=5 ds=10 ds=15

5 0.704s 0.837s 1.005s 2.084s

10 0.866s 1.203s 2.186s 3.530s

15 1.659s 3.037s 4.713s 11.599s

20 2.550s 3.314s 7.851s 17.140s

25 3.684s 4.759s 14.083s 27.199s

Table 2 Running times of CDDiff for the reduction-based
open-world approach for increasing diff-sizes ds from 3 to 15
and increasing sizes of CDs from 5 to 25 classes

We continued testing the performance of both approaches
using the CDs from (Maoz et al. 2011b). More, specifically
we performed the diff operations by comparing the successor
version of each diagram to its direct predecessor. We display
the running-time-ratios in Table 4. Here, we found the same
trends as before: increases in diff-size and size of the CD led to
a better running-times-ratio for the reduction-based approach.

Finally, we evaluated the performance of both approaches
on CDs from the CD4Analysis-project. We compared two
versions of each CD. The running-time-ratios are displayed in
Table 5 and confirm the trend observed before.

CD size ds=3 ds=5 ds=10 ds=15

5 1.203 1.231 1.959 1.514

10 0.596 0.846 1.403 2.666

15 0.675 0.907 2.565 2.704

20 0.842 1.760 2.960 4.201

25 0.899 1.723 2.761 5.239

mean 0.843 1.293 2.330 3.265

Table 3 Ratio of running times between the Alloy-based and
the reduction-based analyses reported in Table 1 and Table 2.

CD pair ds=3 ds=5 ds=10 ds=15

DE 3.644 4.327 3.398 2.865

EA 0.636 0.821 1.149 1.633

EMT 0.524 0.457 1.132 0.981

Library v2/v1 1.428 2.477 3.383 3.123

Library v3/v2 1.301 1.764 1.440 1.311

Library v4/v3 1.148 2.539 3.736 4.363

Library v5/v4 2.047 1.78 1.475 1.676

mean 1.290 1.804 2.234 2.291

Table 4 Ratios of running times for the alloy-based and the
reduction-based CDDiff analysis on CDs from (Maoz et al.
2011b) and different diff-sizes ds ranging from 3 to 15.

CD pair ds=3 ds=5 ds=10 ds=15

Management 1.708 1.627 2.114 2.402

MyCompany 0.972 1.281 1.565 1.425

MyExample 0.695 0.554 1.461 2.094

MyLife 1.611 1.621 1.824 2.411

Teaching 0.623 0.870 1.608 1.923

mean 1.121 1.191 1.714 2.051

Table 5 Ratios of running times for the alloy-based and the
reduction-based CDDiff analysis on the CD4Analysis CDs
and different diff-sizes ds ranging from 3 to 15.

8.3. Validation
To ensure correct implementation of the extensions presented
in Sect. 6 and Sect. 7, we have validated our work on many
CD pairs, including the ones listed as the corpus of our evalua-
tion. In particular, we have performed the following automated
checks for diff-sizes 3, 5 and 10:

– Each CD is semantically equivalent to itself, i.e., no diff-
witnesses are produced (automatically determined).

– Each CD is a refinement of the empty CD, i.e., no diff-
witnesses are produced (automatically determined).

– Both implementations of open-world semantic differencing
always agree on the existence and absence of diff-witnesses
(automatically determined).

– No diff-witnesses are produced when comparing a refining
successor version of a CD to its predecessor (determined
by manual inspection).

– Diff-witnesses are produced when comparing a non-
refining successor version of a CD to its predecessor (de-
termined by manual inspection).

– All diff-witnesses produced are sound (automatically de-
termined, see below).

To verify the soundness of the produced witnesses, we devel-
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oped the OD2CDMatcher4, a tool which can determine whether
an object-structure in the form of an OD is in the semantics
of a CD. Note that this tool relies on an alternative implemen-
tation and is independent of the encoding of CD semantics in
Alloy used by the CDDiff operators. OD2CDMatcher can oper-
ate under both the closed-world and open-world assumption. As
such, we not only verified the soundness of the witnesses with
respect to the open-world semantics of the original input-CDs
for both approaches, but for the reduction-based approach, we
also checked the closed-world semantics of the transformed
input-CDs. In this manner, we were able to identify and correct
several issues in our implementation.

8.4. Threats To Validity

First, the UML CD standardization (Object Management Group
2017) only describes the semantics of CDs using natural lan-
guage and gives no formal definition of semantics. Our approach
is built upon previous definitions of CD semantics, but other
modelers might have a different interpretation. Similarly, other
modelers may disagree with us permitting overlapping associ-
ations in CDs or our handling of underspecified associations.
Overlapping associations are easily handled by a model ana-
lyzer such as Alloy, as they simply constitute a conjunction of
logical constraints. They allow refinement of associations for
sub-classes consistent with set logic and permitting them sim-
plifies our implementation. Another assumption is the implicit
existence of the super-type Object, on which the validity of
our reduction-based approach depends. To mitigate the threat
of ambiguity in semantics of CDs, we base our work on previ-
ously published implementations (Maoz et al. 2011b; Kautz et
al. 2017) and make all new implementations publicly available.

Second, regarding our evaluation, we cannot guarantee that
the legibility of diff-witnesses and running time of operations
for larger CDs and greater diff-size will always be improved for
the reduction-based approach compared to the Alloy-based ap-
proach. This was simply the case for the examples in this paper
and further evaluation might be necessary to make generalized
claims. To mitigate the threat of a biased selection we have
included previously published CDs in our evaluation that were
not created specifically for open-world semantic differencing.

Third, our experiments use a single SAT solver in the default
configuration as provided by Alloy. It is well-known that differ-
ent SAT solver may lead to different performance results (Wang
et al. 2019). To mitigate this threat of varying performance re-
sults, we have selected SAT4J for all experiments as the default
and reportedly most stable SAT solver bundled with Alloy.

Finally, the answer to RQ1 relies on the diff-witnesses pro-
duced by Alloy. These diff-witnesses are not unique and may
be different on different machines and software configurations.
To mitigate the threat of different possible solutions, we have
calculated averages over multiple pairs of CDs, we have cap-
tured the diff-witnesses produced on our machine, and we make
all data available for inspection and comparison.

4 The tool is included in the CD4Analysis-repository on GitHub at:
https://github.com/MontiCore/cd4analysis

9. Conclusion and Outlook
In this paper, we outlined two approaches for open-world seman-
tic differencing for UML/P CDs to assist change management in
the early design phases of MDD. Both approaches extend the op-
erator CDDiff introduced in (Maoz et al. 2011b). Furthermore,
we demonstrated that the problem of open-world semantic dif-
ferencing can be reduced to closed-world semantic differencing
by comparing appropriate CD-expansions of the input-CDs, a
fact that both approaches exploit: The first approach uses the
Alloy Analyzer to implicitly construct and consider these ex-
pansions, while the second approach directly transforms the
input-CDs based on a deterministic transformation algorithm.
Our evaluation found that the transformation-based approach
yields more readable diff-witnesses in shorter time.

We extended our approach to enable modelers to specify
individual input-CDs or elements of a CD that should be con-
sidered under the closed-world assumption when computing
an open-world difference: Marking a class with the stereotype
«complete» forbids additional super-classes and additional out-
going associations. Marking the whole CD with the stereotype
«complete» forbids additions to the set of classes, set of associ-
ations, and the inheritance relations of classes.

As future work, additional stereotypes could be introduced
to allow for more semantic variability, e.g., a class might be
marked as «sealed» to forbid additional sub-classes. In the
future, we also intend to conduct a case-study on the usefulness
of automatic refinement checking and semantic differencing
with CDDiff when designing object-oriented software.
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