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ABSTRACT Wastewater treatment is considered an essential industrial activity to protect the environment and human health.
Water quality monitoring and management in a wastewater treatment plant (WWTP) can be supported by decentralized Internet
of Things (IoT) systems (i.e., multi-layered systems that exploit edge and fog computing) deployed at the plant. However, the
design and management of these systems requires technologies and strategies to cover tasks such as plant and IoT system
modeling, deployment, and operation. In this paper, we propose an approach that includes a domain-specific language (DSL)
for the specification of the process block diagram of the WWTP and the IoT system involved, a code generator that produces
YAML manifests for deployment and configuration of the modeled IoT system, and a MAPE-K loop-based framework to operate
and monitor the WWTP at run-time. As an example, we have modeled the process block diagram of the Font de la Pedra
WWTP located in Spain.
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1. Introduction
Water scarcity has been and will continue to be a global-scale
environmental issue (Brusseau et al. 2019). This concern has
motivated strategies and solutions for water reuse/recycling
to treat and recover water from various sources for beneficial
purposes such as agriculture, water supply, groundwater replen-
ishment, industrial processes, and environmental restoration.

Wastewater treatment plants (WWTPs) are one of the solu-
tions for cleaning wastewater (urban or industrial) so that it can
be safely returned to the environment. Various physicochemical
and biological processes and treatments must be performed on
the wastewater to remove contaminants and suspended solids,
break down organic matter, and disinfect the liquid. Currently,
WWTPs use cyber-physical systems (CPSs) and the Internet
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of things (IoT) to monitor, control, and automate different pro-
cesses in the plants. Devices such as sensors (e.g., level, tem-
perature, or pH sensors), and actuators (e.g., motors, valves,
or alarms) are deployed in different water treatment processes
to collect real-time data and control operations. Additionally,
multi-layer IoT systems that leverage edge and fog computing
also deploy nodes or compute units (located in the plant) to run
lightweight applications and cloud servers for the deployment
and execution of the resource-intensive applications. An exam-
ple could be the collection and comparison of data coming from
different plants.

Although several unit operations (such as biological reactors,
decanters, thickeners, etc.) are involved in wastewater treat-
ment, the whole plant should be considered as an integrated
system to study improvements in processes such as sludge con-
trol, primary sedimentation effects, and energy and nutrient
recovery (Jeppsson et al. 2013). Therefore, WWTPs can be rep-
resented around a single process block diagram that illustrates
the treatments, stations, operation units, and flow of water and
sludge.
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There are several ways to design the process block diagrams
using multiple concepts, shapes, connectors, and notations such
as those used in the diagrams designed by (Solís et al. 2022;
Solon et al. 2017). However, there are challenges related to the
design of these block diagrams and the IoT system involved.
First, there is a need for a unified language for modeling WWTP
process block diagrams, including the IoT system integrated
in the different wastewater treatment stages. Second, not only
is the design of the IoT system a complex task, even more
complex is the management and adaptation of the system to
address functional requirements and quality of service (QoS) at
run-time.

Consequently, we propose a modeling-based solution con-
sisting of an extended version of our domain-specific language
(DSL) presented in (Alfonso et al. 2021a), and a extension of our
code generator presented in (Alfonso et al. 2023). This paper
extends our previous contributions in the following aspects:

– A domain-specific language (DSL). We have added new
concepts to the language to enable the modeling of the
process block diagram of a WWTP including the IoT sys-
tem involved in the wastewater treatment stages. We have
designed and implemented new editors to enable the mod-
eling of the plant diagram through a graphical notation.

– Well-formedness rules. We have defined well-formedness
rules applied to the design of the IoT system in general
and to the design of the WWTP process block diagram.
For example rules to restrict the modeling of some unit
operations of the block diagram.

– A code generator and MAPE-K based framework. We have
extended our code generator, which produces the code for
the deployment and execution of the IoT system. We have
designed and included new transformation rules to generate
code and support functional and adaptation rules involving
WWTP concepts such as unit operations (e.g, biological
reactors, filters, and decanters). Additionally, we have
reused a MAPE-K based framework (Alfonso et al. 2023)
to self-adapt the system and control devices—actuators—
at run-time.

– Evaluation. We have validated the modeling, code genera-
tion, and rule execution by implementing our approach in
a WWTP scenario. We have also conducted focus groups
with experts in the wastewater treatment domain to obtain
feedback on some specific aspects of our approach.

The rest of the paper is structured as follows. Section 2
presents an overview of our model-based solution. The design
of our DSL for modeling the WWTP and its IoT system is
introduced in Section 3. Our MAPE-K based framework for
self-adapting the system and controlling the actuators is pre-
sented in Section 4. Section 5 describes our code generator and
Section 6 presents the implementation of our DSL. In Section
7, we present the validation of our approach. Related work is
discussed in Section 8, and Section 9 concludes the paper.

2. Approach Overview
Our model-based approach involves multiple technologies, tech-
niques, components and tasks categorized in two stages: design

time for the specification of the WWTP process block diagram
and the self-adaptive IoT system, and run-time to support the
operation and adaptation of the system. Figure 1 summarizes an
operational view of our architecture by distinguishing design-
time (left-hand side), run-time (right-hand side), and a code
generator component linking them.

Design-time stage. At design time, the user must specify
the design of the WWTP diagram, the IoT system, and the rules
governing the adaptability and functionality of the system. To
support the user with this task, we have designed and provided a
DSL for modeling WWTP process block diagrams, multi-layer
IoT architectures (including devices and nodes of the physi-
cal, edge/fog and cloud layers), container-based applications
deployed on the nodes, and rules to ensure system operation.

As shown in the Figure 1, the user builds a model—using our
DSL—that describes the WWTP processes and the IoT system
implied. The code generator then transforms the model into text,
producing the code for the deployment of the IoT applications
and the code required to support the execution of the system
at run-time (including the code for infrastructure monitoring
and system management tools). Both the DSL and the code
generator are implemented using MPS 1, a language workbench
developed by JetBrains to design DSLs.

Run-time stage. In the run-time stage, the operation and
self-adaptation of the IoT system is performed. To achieve
this, we have designed the architecture based on the MAPE-K
loop (Kephart & Chess 2003), which has been widely employed
for the design of self-adaptive systems. The four stages of the
MAPE-K loop enable the Monitoring or collection of infor-
mation on the current state of the system, the Analysis of the
collected information, the Planning of the list of actions or adap-
tations to be performed on the system, and the Execution of the
adaptation plan.

Our approach leverages different technologies and tools
for each stage of the MAPE-K loop. For example, we use
Prometheus2—a time-series database—to store infrastructure
metrics, QoS information, and the data that will be collected by
the WWTP sensors. These technologies and components are
described in Section 4.

3. Design-time stage: Modeling WWTPs

To better understand and analyze the characteristics of com-
plex domains such as software systems and their application
domains, the definition of models—abstractions or generalized
representations of a real world system—is often used (Bram-
billa et al. 2017). When dealing with complex domains, models
are often built using DSLs, which provide a set of abstractions
and vocabulary closer to that already used by domain experts,
facilitating the modeling of new systems for that domain. This
is the strategy we follow to model WWTPs.

We have developed a new version of our DSL for self-
adaptive IoT systems (Alfonso et al. 2021a) to enable the spec-
ification of WWTPs and the IoT systems deployed in them.

1 https://www.jetbrains.com/mps/
2 https://prometheus.io/
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Specifically, this new version of the DSL enables the modeling
of three key types of elements:

WWTP process block diagram — We enable the specifica-
tion of the main operating units such as filters, grit cham-
bers, biological reactors, and the flow—either water or
sludge—between these operating units.

IoT system — This DSL enables the modeling of the IoT sys-
tem (infrastructure and container-based software), includ-
ing sensors, actuators, nodes (edge, fog, and cloud), physi-
cal regions, applications, and other main concepts of the
system.

Adaptation and functional rules —The modeling of func-
tional rules to cover functional requirements—e.g., trig-

gering alarms upon detection of unusual states—and adap-
tation rules for self-adaptation of the IoT system—e.g.,
recovery from failures—are also addressed by this DSL.

Our WWTP extension affects the first point but it also
touches the other two as we will see in the next subsections.

3.1. Abstract syntax
The abstract syntax is usually represented by a metamodel that
defines the domain concepts and its relationships. Figure 2
shows an excerpt of the metamodel that covers the relevant con-
cepts for the specification of the process block diagram and the
IoT system—the entire metamodel can be found in the project
repository (DSL for IoT systems in WWTPs 2022). A WWT-
PRegion may encompass a set of unit operations that together

Figure 1 Solution overview

Figure 2 Metamodel of WWTP and IoT system

A model-based framework for IoT systems in WWTPs 3



Figure 3 Rules metamodel

perform some type of wastewater treatment—such as physical,
chemical, biological, or hybrid. For example, a biological treat-
ment with activated sludge, which might involve unit operations
such as decanters and biological reactors. The UnitOperation
concept represents an operation to remove pollutants present
in water and wastewater. The fluid (water or sludge) treated
by the UnitOperation is specified by its parameter fluid. The
different types of UnitOperations are represented by the meta-
classes Decanter, BioReactor, DegreaseChamber, and all other
metaclasses that inherit from UnitOperation.

The Flow concept represents the inflows and outflows—
either sludge or water—to each UnitOperation. An UnitOpera-
tion can have several inflows and outflows represented by the
relationships from and to. The relationship region specifies the
region or area in which the UnitOperation is physically located
on the plant, and the relationship devices enables the specifi-
cation of IoT devices, either sensors or actuators, deployed in
each UnitOperation.

In addition to the process block diagram, this DSL addresses
the modeling of the IoT system supporting the plant operation,
including both infrastructure and software deployment at the
nodes. Concepts such as Sensor, Actuator, Node (edge, fog,
and cloud), Application, and Container enable the definition
of the main aspects of the IoT system, including asynchronous
communications (by defining Topics).

The metamodel depicted in Figure 3 defines the concepts for
the specification of functional and adaptation rules.

A Rule is composed of an Expression—condition relation-
ship—and multiple Actions that are executed on the system if
the condition is true during a defined period—period attribute
of Rule. To define the condition of a rule, we have reused and

extended an existing base language, which already provides
several useful concepts, such as all primitive data types and
all basic arithmetic and logical operators. The metamodel ex-
tends the generic Expression concept by adding sensor and QoS
conditions that can be combined also with all other types of
expressions—e.g., BinaryOperations, Literals, or BooleanCon-
stants—in a complex conditional expression.

A SensorCondition allows defining conditions on the data
collected by a specific sensor. For example to detect when
some variable—such as pH, temperature, or suspended solids—
exceeds a limit. Additionally, we have added the SensorType-
Condition concept—especially for the WWTP domain—to in-
volve a group of sensors of a unit operation in the same condition
thus avoiding the definition of a rule for each sensor. In other
words, this concept is to define a condition on the data collected
by a group of sensors—of the same type—of a unit operation.
For example, to detect when any of the Decanter temperature
sensors exceeds a limit.

Similarly, a QoSCondition allows detecting unusual values
in QoS and system infrastructure metrics. For example, high
RAM and CPU consumption in one specific node (edge, fog, or
cloud), or in a group of nodes belonging to a Region.

With respect to Actions, there are four types that can be spec-
ified: (i) Redeployment consists of stopping and redeploying
container instances for example when execution errors are de-
tected that require restarting the application; (ii) Offloading task
allows moving or migrating containers from a source node to
a target node (usually to free up workloads on the nodes and
prioritize the execution of critical system tasks); (iii) Horizon-
tal Scaling enables automatic deployment of container-based
applications on system nodes; and (iv) OperateActuator allows
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Figure 4 Well-formedness rules

manipulating the state of system actuators by sending control
commands through the corresponding actuator topic.

In the WWTP domain, it may be necessary to control groups
of actuators in a unit operation. For example, closing all valves
or turning on all alarms of a Decanter when an emergency is
detected. Therefore, we have extended the OperateActuator
Action to enable the control of a group of actuators of the same
type within a unit operation. This new feature of the DSL is
relevant for the case of wastewater treatment, but could also be
useful in other scenarios or application cases.

To define the types of conditions, metrics to monitor, and
types of actions that cover our language, we relied on our sys-
tematic literature review (SLR) (Alfonso et al. 2021b), which
provides a comprehensive and holistic view of the current state
of the art in IoT adaptation.

3.2. Well-Formedness Rules
Some metamodel constraints cannot be defined using only ele-
ments of the graphical metamodel syntax (Brambilla et al. 2017).
An alternative to address this is to use the Object Constraint
Language (OCL) (Cabot & Gogolla 2012), a declarative lan-
guage for describing metamodel rules that are validated at the
model level and known as well-formedness rules. The definition
and implementation of these rules improves the accuracy of the
DSL and avoids errors that could occur at run-time.

Figure 4 shows some of the well-formedness rules that we
have defined using the OCL language. These rules have been
expressed as invariants (inv), i.e., conditions that must always
be true for all instances of the class defined in the context. These
rules are the following:

Rules wfr1 and wfr2 restrict the unit operations BioReactor
and Decanter when they conform to an activated sludge treat-
ment: for the BioReactor, it must have at least one water outflow

to a Decanter, while the Decanter must have at least one sludge
outflow to a BioReactor. These two rules are designed in accor-
dance with conventional activated sludge biological treatment
processes (Gernaey et al. 2004), the most widely used biological
treatment in WWTPs today (Liang et al. 2021).

The wfr3 rule constrains that for a SensorTypeCondition
there is at least one sensor of type SensorType deployed in the
indicated UnitOperation. For example, to model a functional
rule that checks the temperature in the grit chamber, there must
be at least one temperature sensor in the grit chamber.

To restrict that a Flow—either water or mud—cannot have
the same unit operation as source (from) and destination (to),
we have defined the rule wfr4.

In addition to constraining the relationships of a metaclass
with OCL rules, attributes can also be constrained. For instance,
the rules wfr5 ensures that the cpuCores, memory, and storage
attributes of a node have values greater than zero, and wfr6
guarantees that the hostname is unique. This type of rules were
defined for all attributes of the metamodel concepts that needed
to be restricted.

Finally, the wfr7 states that a Container can only be defined
if its host Node has enough available resources in terms of
memory and CPU.

Note that while some rules are common in many domains—
e.g., uniqueness of certain attributes—others are very specific
to the domain we are metamodeling and therefore they must be
provided by the domain experts.

3.3. Concrete syntax
The concrete syntax defines the notation—graphical, textual, or
hybrid—for the abstract syntax. DSLs usually offer a single
notation for the definition of the models. However, we take
advantage of the projectional editors—Section 6 provides details

A model-based framework for IoT systems in WWTPs 5



Figure 5 Process block diagram palette shapes

about these editors—to enable several notations depending on
the concept to be modeled. We even configure more than one
notation for some of the concepts—for example, sensors can be
modeled using tabular or textual notation—so that the user can
select the one that best fits his/her preferences.

Our DSL provides a graphical notation for modeling the
WWTP process block diagram. We have defined fourteen shapes
to instantiate the unit operations and flow types—water and
sludge—covered by the metamodel. Figure 5 shows the palette
of shapes that can be used to design the process block diagram
of the plant. The color of the shape represents the main fluid
treated by the unit operation. The blue color such as that in
Decanter denotes water treatment, while the orange color—
such as that in Hopper or Thickener—refers to sludge treatment.
However, the type of fluid treated can be configured for each
unit operation.

Examples of concrete notation for some of the main concepts
of an IoT system for a WWTP are presented below.

Figure 6 shows the diagram—modeled using our DSL—for
the Font de la Pedra WWTP3, a plant located in Muro de Alcoy,
Spain. This diagram was designed based on the model pro-
vided by our industrial partner DAM (Depuración de Aguas del
Mediterráneo), this company manages the WWTP. This WWTP
diagram—Figure 6—shows the operations of the plant which
is composed of two treatment lines: (1) the water treatment
line, composed of eight unit operations (blue shapes) such as
Roughing System, Grit Chamber, and Bio Reactor; and (2) the
sludge treatment line composed of three unit operations (yellow
shapes) such as Thickener and Hopper. The unit operations
can be instantiated by dragging and dropping the shape from
the Diagram Palette located on the right side. Water or sludge
flows can be created selecting the fluid type from the source
unit operation and connecting the target unit operation.

The parameters of each unit operation defined in the block
diagram can be specified via a mixed—textual and tabular—
notation. For example, the specification of the Grit Chamber

3 https://www.epsar.gva.es/font-de-la-pedra

GC-01 is shown in Figure 7, including the type of fluid pro-
cessed by the unit operation, the physical region where it is
located, and the list of sensors and actuators. This unit op-
eration includes five sensors—one for pH, two for electrical
conductivity, one for total suspended solids, and one for level—
and three actuators—one valve and two buzzer. All sensors and
actuators have a type, a brand, a connectivity type (such as ether-
net, wifi, ZigBee, or another), and their geographic coordinates.
We also cover the concepts for specifying publish/subscribe
communication between IoT devices and nodes. Sensors will be
publishers in topics while actuators will be subscribers. Finally,
unit and threshold parameters are configurable only for devices
that collect information—i.e., sensors.

The modeling of rules—functional or adaptive—is per-
formed following a textual notation. A condition, a period, and
a list of actions must be defined for a rule.

The condition can be a Boolean expression that compares
two other expressions, left and right, using comparison and log-
ical operators (such as >, <, and &&). Left and right expressions
are enclosed by brackets.

To define a SensorCondition, the sensor ID, the operator,
and the numerical value to be compared must be specified. For
example, the condition to detect when the sensor temp-01 ex-
ceeds 20 degrees Celsius is (temp-01) > (20◦C). To define a
SensorTypeCondition, the unit operation, the sensor type, the
comparison operator, and the numeric value must be specified.
For example, the condition that detects when any of the tempera-
ture sensors of the unit operation Hopper01 exceeds 50 degrees
Celsius is (Hopper01->temperature) > (50◦C). The symbol
-> denotes the sensor type query on the unit operation. Simi-
larly, QoSConditions are defined following the same notation,
specifying condition settings such as the metric, the container,
the node, and the region.

The period of the rule is a numerical value followed by the
unit of time (ms for milliseconds, s for seconds, m for minutes,
h for hours, and d for days).

The actions of a rule are specified in a vertical list that
includes the type of action and all the parameters involved in
the action. When the rule is composed of more than one action,
you must specify whether all actions will be executed or only
a specified amount. Examples of the concrete notation of rules
are presented below

Figure 8 shows two functional rules modeled for the Font
de la Pedra WWTP example. The rule named GC-level Alarm
states that if the GC-level sensor detects a value greater than
400 cm for 60 seconds, then the control commands open and on
are sent to the GC-valve and GC-alarm actuators respectively.
The second rule named GC-ECounductivity Alarm checks if any
of the electrical conductivity sensors EConductivity belonging
to the GC-01 UnitOperation detect a measurement higher than
2500µS/cm for 10 minutes, then all Buzzer actuators—i.e.,
sensors 7 and 8 in Figure 7—of the unit operation GC-01 will
be turned on.

Currently, both the values sent by the sensors and the control
messages sent to the actuators are in plain text format. Therefore,
sensors and actuators should support the sending and processing
of that message format. Although the implementation of stan-
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Figure 6 Process block diagram of the Font de la Pedra WWTP modeled using the DSL

Figure 7 Modeling of sensors and actuators

dards such as AsyncAPI (AsyncAPI Initiative 2020) to describe
message-driven APIs and improve interoperability is out of the
scope of this study, we plan to address it as part of future work.

Other concepts for modeling the IoT system such as nodes,
regions, brokers, applications, and containers can be specified
using tabular, textual, and tree-view notations.

4. Run-time stage: MAPE-K based framework

The MAPE-K loop, proposed by IBM for autonomous comput-
ing, has been often employed for the design of self-adaptive
systems. Indeed, MAPE-K is a reference model to implement
adaptation mechanisms. This model includes four activities
(monitor, analyze, plan, and execute) in an iterative feedback

cycle that operate on a knowledge base. These four activities
produce and exchange knowledge and information to apply
adaptations and execute rules due to changes in the IoT system.

Based on the MAPE-K loop, our architecture (at run-time
stage) is composed of a set of components and technologies
deployed to handle the tasks in the different stages of the loop
(Monitor, Analyze, Plan, and Execute).

In the Monitor stage, metrics on the current state of the
system are collected and stored. We have categorized the metrics
into two groups:

Sensor data — The data captured by the system’s sensors, such
as temperature, suspended solids, level, or pressure. These
metrics are collected using a monitor subscribed to the
topics where the sensors publish the data.

A model-based framework for IoT systems in WWTPs 7



Figure 8 Modeling example rules

Infrastructure and QoS — Infrastructure and QoS metrics
(such as bandwidth, CPU usage, and availability) are col-
lected using kube-state-metrics4 and node-exporter5 (con-
tainer cluster monitoring tools).

Both sensor metrics and infrastructure and QoS metrics
are stored in Prometheus, a time series based database. We
have adopted a time-series database because, compared to other
types of databases—e.g., documentary or relational databases—
Prometheus is optimized to store information in a time-efficient
format, enhancing the queries performed in time windows.
These queries are necessary to verify the rule conditions at
run-time. Additionally, Prometheus contains modules and com-
ponents that facilitate the tasks performed in the later stages of
our framework such as analysis and planning.

In the Analyze stage, the analysis tasks of the information
collected in the previous stage are supported by the Prometheus
Alerting Rules component. This tool allows defining alerting
rules based on Prometheus Query Language (PromQL) that are
executed periodically. We leverage the Alerting Rules compo-
nent to define alerting rules for each functional or adaptation
rule that the user has previously modeled using the DSL. When
an alert is generated, i.e., when the condition of a rule is true, a
notification is sent to the next stage of the MAPE-K loop.

For each notification received in the Plan stage, an adapta-
tion plan is designed with the set of actions—e.g. scaling an
application—to be performed on the system. To manage these
notifications and organize the adaptation plans, we have used
the Prometheus Alert Manager component, which sends the
adaptation plans in JSON format via HTTP POST requests to
the Adaptation Engine.

Finally, in the Execute stage, the Adaptation Engine receives
and executes the adaptation plan through the Orchestrator. We
have developed the Adaptation Engine using the Python lan-
guage and the API to manage K3S6, a Kubernetes-based orches-
trator optimized for IoT and edge environments.

5. Code generator
In the overview architecture—cf. Figure 1—the code generator
component is the bridge between the design stage and the run-
4 https://github.com/kubernetes/kube-state-metrics
5 https://github.com/prometheus/node_exporter
6 https://k3s.io/

time stage. The code generator performs a model-to-text (M2T)
transformation taking as input the model designed by the user

Figure 9 Reduction rule for the SensorTypeCondition concept

Figure 10 Template to generate the PromQL expression for
SensorTypeConditions
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using the DSL. Then, several YAML7 files are generated for
the configuration and deployment of the tools and technologies
used by the MAPE-K based framework. Specifically, the code
for the deployment and configuration of the following artifacts
is automatically generated:

– The container-based IoT applications specified in the input
model.

– The monitoring tools and exporters such as kube-state-
metrics, node-exporter, and mqtt-exporter.

– The Prometheus Storage, Prometheus Alerting Rules, and
Prometheus Alert Manager components. The PromQL
code to define the rules is also generated as a Prometheus
configuration file.

– The Adaptation Engine.
– The Grafana8 application to display the monitored data

stored in the Prometheus database.

The code generator is implemented in MPS. The M2T trans-
formation is performed by template-based generators, which
consist of generation rules—such as root mapping, reduction,
and weaving rules—and templates. To support code genera-
tion from the WWTP model (and the new concepts of or our
DSL), we extended our code generator in (Alfonso et al. 2023)
by developing new mapping configurations and templates. For
example, to address the code generation for functional rules
whose condition is SensorTypeCondition—i.e., rules that check
a type of sensors in a unit operation—we have designed a new
reduction rule and a new template. Similarly, other rules and a
template were defined for the code generation of the Operate-
Actuator action that involves a set of actuators.

5.1. Reduction rule
We have defined reduction rules for simplified transformations
of the elements or nodes of the input model (i.e., the WWTP
model) into text (output code), or also for executing templates
that perform complex transformations. Figure 9 shows the re-
duction rule to generate part of the code executed in the Analysis
stage of our approach. Specifically, this reduction rule executes
the SensorTypeConditionTemplate for each instance of the Sen-
sorTypeCondition in the input model. The CALL macro is used
to execute the template, and the Inspector box—bottom of Fig-
ure 9—shows the two parameters that are sent to the template:
the sensor type of the condition, and the list of sensors of the
unit operation associated.

5.2. Template
In the template object, the transformation and code generation
is performed. We have implemented the PlainText Generator 9

plugin to define the templates of our generator. The templates
contain different types of macros used to calculate the value of
a property (e.g., to get the name of a container), to get the target
of a reference, or to control template filling at generation time.

7 YAML is a data serialization format used in this study to represent Kubernetes
objects.

8 https://grafana.com/
9 https://jetbrains.github.io/MPS-extensions/extensions/plaintext-gen/

Figure 10 shows the definition of the SensorTypeCondition-
Template which takes each instance of SensorTypeCondition as
input to generate part of the PromQL expression of the rule con-
dition. Basically, an iteration of a sequence of sensors—sensors
parameter—of the same type—type parameter—is defined to ex-
tract the sensor topics and generate a string data with or logical
operators.

Portions of the YAML code generated for the Prometheus
Alerting Rules configuration are shown in Figure 11. This code
contains the specification of a Kubernetes ConfigMap object
with the configuration for the Pod running Prometheus Alerting
Rules. The file defines the rule named GC-EConductivity Alarm
(rule shown on the right side of the Figure 8). The PromQL rule
expression (line 11) defines the rule condition, which generates
an alert when one of the EConductivity sensors of the unit opera-
tion GC-01 (i.e., the GC-cond-1 or GC-cond-2 sensors) detect a
measure greater than 2500. The terms wwtp_ec1 and wwt_ec2
are the names of the Prometheus time series for storing sensor
data. These terms correspond to the sensor topics. The for tag
(line 12) sets the interval of the rule condition (10 minutes).
Finally, adaptations label (line 14) corresponds to the actions
of the rule, i.e. the sending of the control message on to the
buzzers of the unit operation GC-01. An example of all the
generated code can be found in the project repository (DSL for
IoT systems in WWTPs 2022).

6. Tool support
To provide different notations (textual, graphical, and tabular)
for modeling the WWTP and its IoT system, we have imple-
mented the DSL in MPS leveraging the advantages of the pro-
jectional editors. Our prototype is open source and is available
in the project repository which can be consulted at (DSL for IoT
systems in WWTPs 2022).

Projectional editors enable editing of the model by means of
projections of the abstract syntax, but the model is stored in a
format (e.g. XML) independent of its concrete syntax. In other
words, the user interacts with these projections, which are then
translated by the editor to modify the persisted model (Völter
2011).

Defining a language in MPS involves the design of several
aspects such as Structure, Editor, and Generator. The imple-
mentation of our DSL for IoT system modeling of a WWTP
extends the aspects designed by the language presented in (Al-
fonso et al. 2023) as follows.

6.1. Structure
The definition of a language begins with abstract syntax. In
MPS, the Structure aspect defines the Abstract Syntax Tree
(AST) of the DSL by defining all metamodel concepts. Each
concept has properties (attributes), children (composition re-
lationships), and references. Concepts can extend from other
concepts to represent inheritance relationships.

We have extended the Structure aspect to define new lan-
guage concepts, such as those presented in the metamodel for
the process block diagram and conditions and actions of a rule
that involves groups of sensors and actuators. As an example
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of a concept defined in MPS, Figure 12 shows the definition of
the SensorTypeCondition concept, which extends Expression.
This concept has no properties or composition relationships
(children label), but has two references to UnitOperation and
Sensor_Type with multiplicity 1.

6.2. Editor
Projectional editors define the AST code editing rules, i.e. the
concrete syntax of the language. The design of the editors
greatly influences the DSL usability, since these define the
notation that the user will actually use to edit the model.

Editors in MPS are based on different types of cells (the
smallest unit relevant for projection). Defining an editor con-
sists of arranging cells and defining their content (Völter 2011).
We have defined textual, tabular, and mixed editors by imple-
menting the mbeddr10 extension of MPS. This extension simpli-
fies the definition of cells to build different types of notations.
Specifically, we have defined graphical editors for each of the
unit operations, tabular and textual editors to describe a unit op-
eration including its sensors and actuators, and tree-view editors
for the WWTP regions.

Figure 13 shows the graphical editor designed for the BioRe-
actor concept. The concept notation is defined using a dia-
gram.box (a block that can have ports, textual content, a form,
and other features). In the editor section we define the textual
content of the block: first the alias property will be displayed
(such as Bio Reactor, Decanter, or Filter), and below it the name
of the unit operation (a string specified by the user). The shape
section is to define the figure or icon to represent the unit op-
eration. To define these shapes, we have used the Shapes DSL
provided by MPS, which enables the definition of shapes using
Java 2D classes such as arcs, rectangles, lines, and areas.

6.3. Constraints and Type-system
Constraints aspect is to restrict the relationships between nodes
as well as the allowed values for properties—e.g., to constrain
the name of the unit operation to be unique. Similarly, the
type-system aspect allows to provide rules to check the model

10 http://mbeddr.com/

code. The MPS type-system engine will evaluate the rules
on-the-fly, calculate types for nodes, and report errors. We
have used Constraints and Type-system aspects to define the
well-formedness rules of the DSL, such as the rules shown in
Figure 4.

7. Validation
In this section, we present first an internal validation of our
approach by evaluating components such as the DSL, the code
generator and the adaptation engine. We then introduce an ex-
ternal validation by collaborating with domain experts to obtain
feedback on the usability and applicability of our approach.

7.1. Internal validation
We have performed a validation of the design-time and run-time
stages of our framework by implementing a WWTP scenario to
validate the modeling, code generation, and rules execution.

7.1.1. Design-time We first validated that our DSL was
expressive enough to model a variety of WWTP plan designs.
The DSL itself was created to be able to model the process block
diagram of the Font de la Pedra WWTP (shown in Figure 6) but
we then applied it to other WWTP plants such as the Algemesí
WWTP 11, the Cullera WWTP 12, and even the general system-
level plant part of the diagrams studied in (Solís et al. 2022;
Solon et al. 2017; Márquez et al. 2022) for additional validation.

The modeled scenarios involved a variety of DSL constructs.
For instance, for the IoT system of Font de la Pedra WWTP,
we modeled sensors, actuators, and nodes that host applications
such as the framework’s components. Currently, a multiparame-
ter probe—a device with several types of sensors—is operated
in the input of the Grit Chamber at the Font de la Pedra WWTP
to collect water quality data. Five variables are monitored: total
suspended solids (TSS), chemical oxygen demand (COD), elec-
trical conductivity, pH, and temperature. Sensors to monitor
these variables were specified in the model as well as other

11 https://www.epsar.gva.es/algemesi-albalat
12 https://www.epsar.gva.es/index.php/cullera-0

Figure 11 Generated code for Prometheus Alerting Rules configuration
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Figure 12 SensorTypeCondition concept definition in MPS

Figure 13 Graphical editor for the BioReactor concept

concepts such as WWTP regions, an MQTT13 broker, topics,
and rules.

We also modeled multiple rules involving the variables mon-
itored by the system sensors to detect when these exceed nor-
mal operational values. For example, rules to detect when
the pH was not in the 6-9 range, since the microbes used in
biological treatment could be killed by high acidic wastewa-
ter (Meenakshipriya et al. 2008). These and other types of rules
were modeled for this test scenario.

7.1.2. Run-time To validate the run-time infrastructure we
conducted some simulations with real data provided by our
industrial partner.

After producing the YAML files using the code generator, we
deployed our MAPE-K framework on a two-node cluster—two
EC2 instances provisioned in AWS—orchestrated by K3S. The
MQTT broker were deployed in the first node, and the MAPE-K
framework on the other node.

13 https://mqtt.org/

Our industrial partner provided us with a compilation of the
data collected over nine months by the multiparameter probe
deployed at the WWTP. The sensors were configured to monitor
and record a sample every two minutes—about 390 000 data
were collected per sensor. We developed a python script to
read and publish this data to the broker topics simulating the
behavior of the real sensors. Using the Grafana and Prometheus
user interfaces (UIs), we validated the triggering of the alert
rules each time the measurement threshold of a variable was
exceeded during the configured period.

A rule can have three states: inactive (the rule condition is
false), pending (the rule condition is true but has not exceeded
the period), and firing (the rule condition is true during the
period). Figure 14 shows the status of the rules configured for
the WWTP. One rule was firing, one was pending, and four were
inactive. The pH value increased for several minutes generating
the activation—firing state—of the alarm high pH Alarm, while
the monitored TSS level started to exceed the threshold but not
yet during the period established by the rule—pending state.

7.2. External validation: focus group
Based on the recommendations for the design and application of
focus groups as an empirical method for software engineering
(Kontio et al. 2008), we have designed and conducted a focus
group to validate our approach with experts in the wastewater
treatment domain. The focus group method is a cost-effective
technique to obtain insights and feedback through group inter-
action or discussion on a topic determined by the researcher
(Morgan 1996). The design and setup of this method consists
of four stages: defining the problem, planning the focus group,
conducting the focus group session, and analyzing results.

Defining the problem. As a focus group is usually con-
ducted in a short session—maximum 2 or 3 hours—, this

Figure 14 Status of modeled rules - Prometheus UI
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method is recommended for discussing specific aspects of our
approach that can be easily analyzed by experts in the WWTP
domain as part of the focus group session. Concretely, we aimed
to obtain feedback on the appropriateness of the modeling of
the WWTP process block diagram, specification of functional
rules (e.g., specification of an alarm when high TSS is detected),
and visualizations of the data using the Grafana UI.

Planning the focus group. Planning the session consists of
defining a structure and schedule to cover all the topics properly
during the meeting. In this case, the focus group consisted of
five participants, including both authors of this paper and exter-
nal experts. Specifically, the focus group was composed of two
experts in model-driven technologies who managed the session,
and three experts in WWTP wastewater treatment processes
who work at DAM14. We designed a presentation to introduce
the objective of the focus group and describe our approach. We
also prepared a demonstration of the use of the DSL, the code
generation, the deployment of the system, and the visualization
of the data collected by the sensors and the status of the rules
in Grafana app. Finally, we carefully structured and defined 12
questions to discuss with the participants about the modeling of
the plant block diagram, modeling of the functional rules, and
visualization of data and rules in Grafana. Both the presentation
and the questions can be consulted in the project repository 15.

Conducting the focus group session. The session was con-
ducted in virtual mode for an hour and a half and was recorded
for later analysis. Alternately, one co-author of the paper took
notes during the discussion, while another co-author worked
as a facilitator of the session by motivating the participants to
discuss and by leading the discussion. The discussions were
semi-structured, which means that we had carefully defined the
question areas, but not all the single questions in detail and we
were able to integrate new questions depending on the evolution
of the conversation.

Analyzing results. We have analyzed the information col-
lected and the recorded audio of the discussion. Below we
summarize and discuss the perspectives, feedback, benefits, and
suggestions of improvement mentioned by the focus group.

– The modeling of the process block diagram of the plant
allows to represent graphically the different biological,
chemical, hybrid, or physical treatment processes. The
nomenclature is clear and the procedure to specify the
model is relatively simple. Some parameters could be
added in the specification of each operation unit to enrich
the model. For example, information on water or sludge
flow rates, or the exact number of UV units in an Ultravio-
lets process.

– Two aspects were discussed to improve or add to the condi-
tion specification of a rule: (1) the definition of conditions
with two or more related periods. For example, the fol-
lowing condition has two periods related to two different
metrics: if the pH > 9 for 30 seconds and the TSS > 60 mg/l
for one minute. (2) including the calculation of statistical
measures such as variance or dispersion of the values of

14 https://www.dam-aguas.es/
15 https://github.com/SOM-Research/WWTP-DSL/tree/main/docs/focus-group

a variable. For example, to detect if in the last hour the
pH value had a significant variability that could affect the
health of the bacteria.

– The definition of alarms by modeling functional rules us-
ing the DSL requires less effort compared to the current
system implemented in many of the WWTPs managed
today by DAM. Currently, many WWTPs implement a Su-
pervisory Control and Data Acquisition (SCADA) system,
which allows configuring visual alert thresholds for some
variables only if the functionality was developed with the
same system. Otherwise, it would require the intervention
of an expert technician in the development of the SCADA
system to develop and implement a rule or visual alarm.

– Although the visualizations offered by Grafana show the
sensed information and the status of the rules in real time,
a feature that could be included is a visualization that
shows information directly on the process block diagram—
similar to SCADA systems. For example, a graph of the
block diagram with the status of the rules in the different
operation units.

– A functionality of interest in this domain stated by the par-
ticipants and that we consider as part of future work is the
development of machine learning algorithms to calculate
the trend of critical variables. For example, to predict sig-
nificant alterations in the pH and chemical oxygen demand
levels and to avoid affecting the activity of the biomass in
the biological treatment or the sedimentation properties of
the biological sludge.

– Finally, an important advantage of our approach with re-
spect to the system implemented in several WWTPs was
discussed. Currently, WWTPs are automated through
SCADA systems that centralize the control and monitoring
of the plant in a monolithic system. To query the informa-
tion collected by the plant’s sensors from an external or
public network, it is necessary to access the system through
a virtual private network (VPN). However, accessing the
plant’s local network generates security risks that could be
minimized by deploying multilayer architectures—as we
propose—to isolate and protect critical information and
functionalities.

8. Related work

The use of water quality monitoring systems in WWTPs can
improve the tasks and processes performed such as the collec-
tion and visualization of near real-time information, the anal-
yses of effluent water conditions to verify that it meets regu-
latory standards (Martínez et al. 2020), and the detection of
alert states—e.g., spills. Water quality monitoring can be based
on IoT systems through the use of embedded devices in the
environment exchanging information (Perumal et al. 2015).

Indeed, the design and modeling, deployment, and manage-
ment of IoT systems in multiple areas have been under research
for some years. Some approaches (Moghaddam et al. 2020;
Eterovic et al. 2015; Yigitoglu et al. 2017) use generic lan-
guages such as Unified Modeling Language (UML) (OMG
2017), Finite-state machine (FSM) (Brand & Zafiropulo 1983),
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Queuing Network (QNs) (Wu & Liu 2007), and YAML to model
aspects of the IoT system such as its architecture, software de-
ployment, or self-adaptive capabilities. However, because these
solutions implement general-purpose software, it is challenging
to cover all the relevant concepts of IoT architectures. Even
more challenging when dealing with specific types of complex
domains such as wastewater treatment that could benefit from
their own DSL to capture all the rich semantics of the domain.

The use of DSLs has already been exploited to support the
specification of several aspects of an IoT system. Some DSLs
(Gomes et al. 2017; Pramudianto et al. 2016; García et al. 2020)
have been focused on reducing application development and
deployment of IoT applications at nodes and end-devices. How-
ever, these solutions are focused on the device layer and do
not address the management and adaptation of the run-time
system. SimulateIoT (Barriga et al. 2021) does cover the mutli-
layered dimension of an IoT architecture and can be configured
to generate notifications from the analysis of data sensors but
there is no support to write rules that influence other aspects
of the system like the actuators. Similarly, CAPS (Muccini &
Sharaf 2017) addresses adaptations at the software component
level without supporting device-level actions. A self-adaptive
framework based on MAPE-K loop is proposed by (Lee et al.
2019), while this approach does cover the rules aspect, it does
lack again the capacity to model the overall architecture and the
relationships between their components at different layers.

To sum up, none of the previous approaches cover multi-
layered IoT systems while at the same time comprising a rule-
based language to execute system adaptations based on a variety
of sensor conditions. Additionally, they all lack primitives to
easily model the specifics of wastewater treatment concepts.

Specific diagrams for WWTP processes appear in works
from water research and chemical engineering domains (Solís
et al. 2022; Solon et al. 2017; Márquez et al. 2022). However,
these works use the diagrams as drawings for illustrative pur-
poses, none of them propose specific semantics for the symbols
appearing in the diagrams. Different notations, shapes, and
colors are used to represent the concepts—e.g., unit operations.
We believe a language like ours could benefit this community
by providing them with a unified representation of WWTP pro-
cesses so that they can more easily share information among the
different groups.

To the best of our knowledge, ours is the first approach that
enables graphical modeling of WWTPs process block diagrams,
the IoT system involved, and functional and adaptation rules
executed at run-time backed with a real modeling language with
concrete semantics. Our solution automatically generates code
for the deployment and configuration of applications, technolo-
gies, and tools to manage the operation—triggering of rules—of
the WWTP system.

9. Conclusion
IoT systems can improve the automation of industrial processes
in WWTPs such as water quality monitoring. We propose a
model-based approach to facilitate the design, deployment, and
management of multi-layer IoT systems embedded in different

treatment processes of a WWTP. To support the design and
modeling of the WWTP process block diagram, the IoT sys-
tem and its functional and adaptation rules, we designed and
implemented a DSL using MPS. Our DSL combines several
notations—textual, graphical, and mixed—for system specifica-
tion. As a running example, we presented the modeling of the
process block diagram of the WWTP Font de la Pedra and an
IoT system that monitors water quality variables.

Moreover, to support the deployment and management of
the WWTP IoT system, we implemented a code generator and
framework based on the MAPE-K loop. Our code generator
produces YAML manifests for the deployment and configuration
of container-based applications and technologies that implement
the framework at each stage of the MAPE-K loop. For example,
the code to deploy and configure the Prometheus database is
generated. Finally, we performed an internal validation of our
approach and an external validation with a group of domain
experts.

As part of future work, we plan to enrich the metamodel to
include more fine-grained concepts and parameters that describe
with better detail the internal specific chemical and biological
processes taking place in the units such as the parameters for
anaerobic digestion, ion exchange, and anaerobic treatment.
This will open the door to more advanced simulations of the
plant behaviour under different environmental conditions.

Additionally, we plan to address the improvements suggested
by the focus group participants. For example, the generation
of visualizations using the block diagram to recreate a view
similar to that offered by SCADA systems. Finally, we plan to
integrate our solution with message formatting standards (e.g.,
AsyncAPI) to replace the current communications format (plain
text format) between the device layer and the upper layers.
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