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ABSTRACT Aiming to optimise the performance of the computing layers of Internet of Things (IoT) systems, one of the most
widespread techniques is the well-known task scheduling. Not only to develop but also to put task scheduling techniques in
production, they have to be tested. Nevertheless, IoT systems are complex scenarios with high technological heterogeneity.
Thus, testing task scheduling methods in the IoT context involves an investment of money, time and effort in acquiring devices,
their configuration, deployment, etc. To avoid this, the system can be simulated and tests can be conducted through these
simulations. Moreover, the underlying technical complexity of IoT systems can be reduced by increasing the abstraction level
from which these systems are designed. Simulators based on model-driven development can help both to test and tackle the
technological complexity of IoT systems. In this paper, a Domain-Specific Language based on SimulateIoT is proposed for the
design, code generation and simulation of IoT systems for the assessment of task scheduling methods. Simulations include the
generation and offloading of workflow-based tasks, the components required to handle these tasks, as well as the required
resources to integrate the users’ task scheduling methods in the simulations. All this, while providing an infrastructure based on
the cloud-to-thing continuum paradigm on which to deploy and test these task scheduling environments, i.e., simulations can
include the mist, edge, fog and cloud layers and the federation between them. In addition, a case study focused on an Industrial
IoT (IIoT) system is illustrated to show the applicability of the proposed simulator.

KEYWORDS IoT, Model-driven development, Simulation, Task scheduling, Cloud-to-thing continuum.

1. Introduction
The Internet of Things (IoT) is being exploited in several areas
such as smart-cities, home environments, agriculture, industry,
intelligent buildings, etc.(Siow et al. 2018). In this regard,
IoT applications can be very different from each other and
therefore have different requirements and needs such as specific
Quality of Service (QoS) (Samann et al. 2021) or Service-Level-
Agreement (SLA) (Girs et al. 2020).

In order to satisfy these requirements, cloud computing
emerged. Thus, supporting the rapid growth of users and
applications, and providing them with elastic services such
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as Infrastructure-as-a-Service (IaaS), Platforms-as-a-Service
(PaaS), and Software-as-a-Service (SaaS) with minimum re-
source consumption (Qian et al. 2009; Rashid & Chaturvedi
2019). However, due to the rapid growth of the IoT and the
increasing demand for a better QoS, fog computing emerged
(H. & V. 2021). Nearer of the edge/mist computing, although
with fewer computing resources than the cloud (H. & V. 2021),
this computing layer is able to provide better QoS to specific
IoT applications and users such as IoV (Internet of Vehicles)
(Yu et al. 2018) or IIoT (Industrial Internet of Things) delay-
sensitive applications (Aazam et al. 2018). Thus, different
computing layers (cloud, fog, edge and mist) coexist in the IoT
providing different services to the system, from the cloud layer
to the end devices (mist/IoT layer). Furthermore, the nodes
that form each of these layers can be federated, acting as a
single entity instead of isolated nodes, including nodes that be-
long to different computing layers conforming cloud-fog-edge
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heterogeneous federations (Bittencourt et al. 2018; Kar et al.
2022; Mijuskovic et al. 2021). Consequently, the cloud-to-thing
continuum paradigm emerges, which could be defined as the
coordination of services and resources between the different
computing layers mentioned above. Allowing data flow across
cloud data centers, intermediary nodes like edge or fog nodes,
and end-user devices, facilitating more efficient, responsive, and
resilient computing solutions (Bittencourt et al. 2018).

While the IoT infrastructure was being developed and en-
hanced, different techniques for optimally managing their
resources were also developed and proposed. One of the
most widespread techniques is the well-known task scheduling
(Arunarani et al. 2019a; Alizadeh et al. 2020). Task scheduling
is often applied to distributed computing environments, such
as IoT systems that rely on an architecture based on the above
described cloud-to-thing continuum, where services are decom-
posed into a set of tasks which have to be processed by the
computing nodes of this federation (Singh et al. 2017; Hossein-
ioun et al. 2022). Note that in this communication, task refers
to an individual unit of work or a specific job that needs to be
performed. This can include data collection, data processing,
control commands, or other computational processes. In this
context, task scheduling proposals aim to schedule the process-
ing of these tasks, thus optimising the system and the use of
system resources from different perspectives, e.g., there are
proposals that aim at reducing the makespan (time required to
process a task) (S. Gupta et al. 2022; Al-Maytami et al. 2019),
optimising the system energy consumption (Ding et al. 2020;
Sandhu et al. 2021), the cost of task processing (Shu et al. 2021;
Gazori et al. 2020), etc.

However, testing is required during the development stage
of these proposals, besides these tests have to be isolated as
otherwise, they could affect the system in production. Fur-
thermore, novel task scheduling proposals are often compared
with existing ones in order to better determine the strengths
and limitations of these proposals. Consequently, this implies
an investment of money, time and effort in the acquisition of
devices, their configuration, deployment, etc. However, these
IoT systems can be simulated, and the task scheduling proposals
deployed, tested and analysed in these simulated systems, thus
avoiding the aforementioned costs in device acquisition, config-
uration, etc. For instance, the study (Hosseinioun et al. 2022)
reports that 90% of the task scheduling proposals applied to fog
computing environments use simulators for the aforementioned
purposes.

Note that in the context of this communication, simulation
refers to the procedure of creating and deploying a digital replica
of a real-world system, without having to materialise it phys-
ically. On the other hand, testing denotes the application of
specific scenarios or conditions to a software component or a
system. The purpose of these tests is to reproduce possible
situations the system might encounter and then observe and
analyse the responses of the system under these conditions.
Therefore, in this communication, the intention is to facilitate
the performing of these tests by means of simulations.

On the other hand, as described above, IoT systems present
a high technological heterogeneity and a complex infrastruc-

ture. However, increasing the abstraction level from which the
IoT systems are designed helps to tackle the underlying techno-
logical complexity. In this regard, model-driven development
(MDD) can help to both reduce the IoT application time to
market and tackle the technological complexity to develop IoT
applications (Barriga et al. 2023).

In this regard, SimulateIoT (Barriga et al. 2021) is a simulator
based on model-driven development that makes it possible to
design and simulate IoT systems. The IoT systems designed
with SimulateIoT can include different IoT nodes such as cloud,
fog, or edge nodes and multiple computing services such as
Complex Event Processing (CEP) services, publish/subscribe
services or storage services. However, SimulateIoT is not able
to simulate a suitable IoT infrastructure to test task scheduling
proposals.

In this communication, SimulateIoT (Barriga et al. 2021)
is extended towards the cloud-to-thing continuum paradigm
for task scheduling assessments. Thus, the simulator proposed
includes the main concepts of task scheduling (federations, tasks
generation and processing, etc.) to model, generate and simulate
IoT systems with the required infrastructure to support task
scheduling, allowing users to deploy, test, compare and analyse
their task scheduling proposals.

Note that the content described in this communication only
focuses on describing new contributions or features added as
part of the extension. Therefore, all the content in this commu-
nication is novel, although some references to SimulateIoT are
included where necessary to describe some aspects of the new
contributions.

The main work contributions are the following:

– The extension of the metamodel of SimulateIoT towards
task scheduling and the cloud-to-thing continuum. This
extension provides users with a metamodel that enables the
design of models based on IoT systems with task schedul-
ing capabilities. In addition, this extended metamodel
enables users to model cloud-to-thing continuum infras-
tructures on which to deploy and test these task scheduling
features.

– The extension of the model-to-text (M2T) transformations
of SimulateIoT towards the task scheduling and the cloud-
to-thing continuum. This extension ensures that the M2T
transformations required to generate and simulate the sys-
tems modelled conform to the extended metamodel.

– The extension of the concrete syntax of SimulateIoT to-
wards task scheduling and the cloud-to-thing continuum.
This extension enables users to design, in a graphical man-
ner, the IoT system models conform to the extended meta-
model.

– A case study to validate and show the applicability of the
proposal.

The rest of the paper is structured as follows. In Section
2, we give an overview of existing IoT simulation approaches
centred on both low-level and high-level IoT simulation envi-
ronments. Next, Section 3 gives a holistic view of the task
scheduling and cloud-to-thing continuum model envisaged and
the extended simulator. Next, Section 4 presents the extended
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simulator taking into account the design and implementation
stages including the new metamodel and the graphical editor. In
Section 5, the M2T transformations from the extended simulator
models to code are addressed. In Section 6 the simulation out-
puts, possible tests and assessments are illustrated. In Section 7,
a case study to show the applicability of the extended simulator
is presented. Finally, Section 8 concludes the paper.

2. Related Works

A large amount of IoT simulators are available in the literature.
However, only a few of them allow the simulation of IoT sys-
tems with task scheduling features. Below, those most relevant
to the proposal carried out in this communication are addressed.
Note that the review of these first related works is mainly fo-
cused on the task scheduling features that the simulators are
able to simulate.

iFogSim (H. Gupta et al. 2017) is one of the most popular
IoT simulators in literature. It is an extension of CloudSim
(Calheiros et al. 2011), although it is focused on the simulation
of the fog layer of the system. It is able to simulate the cloud, fog
and edge layer of an IoT system, simulating hardware features,
such as the CPU or memory of each device, network features
such as the delay and bandwidth between devices, federation
between the fog and the cloud nodes, etc. As for task scheduling,
it facilitates the design of workflows using DAGs (Directed
Acyclic Graphs), which are mathematical structures suitable for
representing them. Moreover, iFogSim allows the simulation of
the processing of tasks (those related to the above-mentioned
workflows). In this way, users can design applications and
specify the tasks they offload during the simulation. However,
this simulator does not provide knowledge about the availability
(status) of nodes, links between nodes or the tasks’ waiting time,
i.e. the time that a task needs to wait until its processing.

WorkflowSim (Chen & Deelman 2012) is another simula-
tor based on CloudSim, although it is focused on simulating
the workflow scheduling. In this way, this tool allows users to
simulate the processing of these workflows, including task pro-
cessing fails, to test several algorithms and policies (although it
does not include resources focused on allowing the integration
of users’ proposals), and all the elements included in CloudSim.
Although this tool is interesting because is mainly focused on
task scheduling purposes, it was published in 2012 and is no
longer maintained, so nowadays it is deprecated. Additionally,
it does not support current elements related to IoT systems such
as edge nodes, fog nodes, federations between nodes, etc.

YAFS (Lera et al. 2019) is a simulator whose main purpose
is to simulate the deployment and execution of applications in
a Cloud-fog IoT environment. In this way, users can analyse
which is the best allocation of applications and resources strate-
gies, the best network routing strategies for the offloaded data of
the deployed applications and also the best scheduling strategy.
In order to allow users to model the tasks that constitute an
application, DDFs (Distributed Data Flows) are used, which are
similar to workflows and DAGs. However, this simulator does
not include some relevant data about task processing such as
the time required to process a specific task or the status of the

links that inter-connect each node of the simulation.
ScSF (Rodrigo et al. 2018) is a simulation tool that focuses

only on task scheduling purposes. So, a positive aspect of this
tool is that it is not only focused on IoT systems but focuses
on any system with task scheduling needs, offering its utilities
to a broad spectrum of users. But on the contrary, without
offering specific concepts that could be found in an IoT system.
In this way, ScSF includes a set of modules that takes as input
a system model (processors) and the workflows to schedule.
Then, it reports as output the scheduling of each workflow in
the processor system taken as input.

These IoT simulators allow the simulation of IoT systems as
well as the performance analysis of task scheduling algorithms
running on top of these simulations. The most similar related
work to the proposal presented in this paper is WorkflowSim.
However, each simulator has its own advantages and disadvan-
tages for specific use cases. Consequently, a thorough analysis
tailored to the user’s specific needs is necessary to select the
most suitable simulator for their proposal.

So, in order to compare simulators several quality indicators
could be taken into account such as the range of features or the
types of environments it can simulate, its reliability, speed, flex-
ibility or its learning curve. Following, several distinguishing
features that set apart the proposal presented in this paper from
WorkflowSim and the other simulators discussed in this section
are highlighted.

1. The proposed simulator is a hybrid simulator/emulator,
i.e. it generates and deploys the real architecture of the
modelled IoT system (emulation), and simulates some pro-
cesses related to task scheduling such as the generation
of tasks, their offloading to the system or their processing.
The rest of the simulators described above base their re-
sults on mathematical models. Note that, with the term
mathematical model we refer to a set of algorithms that
simulate the behaviour of a concrete physical device or
system. However, they do not deploy real component
architectures on which to simulate and test task schedul-
ing processes. Although mathematical models have been
widely and successfully used over time, relying only on
mathematical models could affect the trustworthiness of
the simulation and testing results due to the inherent lim-
itations of these models in accurately reflecting reality,
especially when dealing with complex systems (Sterman
2002; Saltelli & Funtowicz 2014; Fisher et al. 2019). For
this reason, trustworthiness is one of the open challenges
in the field of IoT simulation (Mishra et al. 2012; Gluhak et
al. 2011; Chernyshev et al. 2018). However, by emulating
part of the IoT system this gap can be mitigated (McGregor
2002; Erazo & Liu 2013).

2. The proposed simulator is based on the MDD, addressing
the design of the simulations from a high level of abstrac-
tion. It focuses on the high-level concepts of the IoT and
task scheduling systems domain and their relationships,
rather than on low-level details.

3. The proposed simulator is updated to current simulation
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and testing needs, e.g., it allows the federation of nodes
regardless of the computing layer they belong to. Thus,
allowing cloud-fog-edge federations (cloud-to-thing con-
tinuum infrastructure).

Finally, Table 1 shows a summary of the main features of
each related work included in this section together with the
proposed SimulateIoT extension. The meaning of each column
in Table 1 is described below.

– Simulator: Name of the simulation tool or framework.
– Task Modelling: Indicates the type of task modelling sup-

ported by the simulator (e.g., DAG-based workflows).
– Failure Modelling: Specifies if failure modelling is sup-

ported or not.
– Task Optimisation: Indicates if task optimisation tech-

niques are supported.
– Task Scheduling: Specifies if task scheduling capabilities

are available.
– Task Queueing: Indicates if task queueing is supported.
– Network Delay: Describes the model or type of network

delay that the simulator supports.
– Network Bandwidth Model: Specifies the model or ap-

proach used to simulate network bandwidth.
– Node Federation: Indicates if the simulator supports feder-

ations of edge, fog and/or cloud nodes.
– Underlying Simulation Model: Describes the underlying

simulation model or approach used.
– Provides Integration API: Specifies if the simulator pro-

vides an integration API for external systems such as user
proposals (e.g. task scheduling proposal).

– Focus: Describes the main focus or application domain of
the simulator.

– Case Use Definition: Specifies the format or method for
defining use cases in the simulator.

As for the notation used in Table 1, Limited means that the
simulator provides some options and does not allow the user to
integrate their own proposals. On the other hand, User-proposal
means that the simulator provides the flexibility to incorporate
user-suggested solutions or strategies. Note that these concepts,
i.e., Limited and User-proposal, are used in several columns,
where they mean the same but in the context of the respective
column.

Finally, some findings related to Table 1 are highlighted be-
low. Of the four simulators included, only YAFS, ScSF, and
SimulateIoT allow users to integrate their custom solutions in
terms of task scheduling or optimisation algorithms. The lack
of this feature significantly compromises the practical utility of
a simulator. Both SimulateIoT and iFogSim support the mod-
elling and simulation across the four computing layers: mist,
edge, fog, and cloud. Yet, SimulateIoT stands out as the only
one that enables federation among these layers, making it the
sole simulator capable of simulating the nuances of current
cloud-to-thing IoT system infrastructures. In terms of network
modelling, only iFogSim and SimulateIoT offer modelling of
delay, bandwidth, and unidirectional links. Note that such fea-
tures are key in any simulator oriented to the simulation of

IoT systems with task scheduling capabilities. In this context,
it should be noted that iFogSim is not specifically designed
for testing task scheduling systems (thus lacking several task
scheduling simulation capabilities). So, only SimulateIoT is
specifically oriented towards task scheduling testing and pro-
vides the capabilities to model these networking features.

3. The Cloud-to-Thing Continuum and Task
Scheduling Model, and the Resulting Sim-
ulator

This section aims to introduce the proposed simulator as well
as the systems that it can simulate. Furthermore, as this work
is an extension of SimulateIoT (Barriga et al. 2021), the aim of
this section is also to outline the new features added as part of
this extension. Thus, differentiating between what was previous
work (SimulateIoT) and what is new. Later, with the aim of
conveying a “big picture” of the work carried out in this com-
munication, the extended SimulateIoT capabilities based on this
model are shown by means of a generic simulation overview.

SimulateIoT and therefore the proposed simulator, are based
on the MDD, which is an emerging software engineering re-
search area that aims to develop software guided by models
based on the metamodeling technique. Metamodeling is de-
fined by four model layers (see Figure 1). Thus, a model (M1)
conforms to a metamodel (M2). Moreover, a metamodel con-
forms to a metametamodel (M3) which is reflexive (Atkinson
& Kuhne 2003). So, a metamodel defines the domain con-
cepts and relationships in a specific domain in order to model
partial reality. A model (M1) defines a concrete system that
conforms to a metamodel. Then, from these models, it is pos-
sible to generate totally or partially the application code (M0 -
code) by M2T transformations (Sendall & Kozaczynski 2003).
Thus, high-level definitions (models) can be mapped by M2T
transformations to specific technologies (target technology).
Consequently, the software code can be generated for a specific
technological platform, improving technological independence
and decreasing error proneness.

Therefore, in order to extend SimulateIoT towards the cloud-
to-thing continuum paradigm and to the task scheduling, it is
required to work in these metamodelling layers. Specifically, it
is required to extend: 1) The metamodel or abstract syntax (M2),
2) The graphical concrete syntax, the element that makes it
possible to graphically design models (M1) from the metamodel
(M2) and 3) model-to-text transformations, the element that
carries out the code generation (M0) from models (M1).

Nevertheless, prior to extending SimulateIoT (Barriga et al.
2021) towards the cloud-to-thing continuum and task schedul-
ing, it is crucial to identify the main concepts of these systems.
This characterisation results in a conceptual model, forming the
backbone of this study. Aiming to introduce the work carried
out in this communication, this model is subsequently intro-
duced. Moreover, an outline of the enhanced SimulateIoT, the
resulting simulator after extending it towards this model, is also
provided.
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Table 1 Feature summary of related works and presented proposal.
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Figure 1 The four layers of metamodeling. In SimulateIoT
(Barriga et al. 2021): a) M3 is Ecore, b) M2 is SimulateIoT
Metamodel c) M1 is a model conforms to SimulateIoT Meta-
model and d) Code is generated using the M2T transforma-
tions defined in SimulateIoT approach.

3.1. The Proposed Cloud-to-Thing Continuum and Task
Scheduling Model

This section addresses the conceptual model on which the Sim-
ulateIoT extension is based. It provides an introduction to
the key concepts that constitute this model: Task, Task App,
Task Node, Networking Node, Task Processor and Task
Scheduler.

3.1.1. Task Task scheduling systems are based on tasks, i.e.
in this kind of environment, there are nodes that generate, of-
fload (to the rest of the system), schedule and process tasks. In
this communication, tasks are included by means of workflows
(Wu et al. 2015; Arunarani et al. 2019b), as is common in lit-
erature (Yao et al. 2021; Asghari et al. 2021; NoorianTalouki
et al. 2022; Ahmad et al. 2021). So, users can define tasks by
means of workflows that the nodes designed for these purposes
will generate, offload, schedule or process.

Figure 2 shows a graphical representation of a workflow.
This workflow represents four tasks, Task A, Task B, Task
C and Task D. In this workflow, each node (circle) represents
a task and each edge represents the dependency between these
tasks.

Concerning task dependency, a dependent task cannot be
processed until all other predecessor tasks have been processed,
e.g., in the workflow shown in Figure 2, Task B and Task
C cannot be processed until Task A has been processed. On
the other hand, Task D cannot be processed until Task B and
Task C have been processed. This is because once the tasks
are processed, they can generate results that may be required
by subsequent tasks in the processing pipeline. These results
are the basis of the dependency between tasks, represented as

Figure 2 Graphical representation of a workflow.

relationships (edges) between nodes (tasks) in workflows (see
Figure 2).

In terms of the attributes of a task, in this communica-
tion, each task has a name (e.g. Task A), an id and a size
(bytes). Besides, each edge has a source task, a target task and a
offloadSize which represent the size (bytes) of the data that
have to be transmitted from the source task, once processed,
to the target task, i.e. from the node that processes the source
task to the node that processes the target task. Note that the
offloadSize attribute represents the offload size (bytes) of the
processing results of a task.

3.1.2. Task App In task scheduling scenarios, it is common
to deploy applications that provide services at the fog and cloud
layers. These applications are the ones that generate and offload
tasks (the services they provide are decomposed into tasks or
sets of tasks, i.e. workflows). In this model, these applications
are included by means of the concept Task App, which can be
deployed in the different nodes of the fog and cloud layers.

3.1.3. Task Node Traditionally, the edge and mist layers
have had a different role than the fog and cloud layers. While
the fog and cloud layers have had a role of providing computing
resources or services to the end devices of the system (mist and
edge layers), the mist and edge layers were constrained in terms
of hardware and were limited to consuming these resources and
services.

However, there are currently some end devices that do not
face the aforementioned hardware constraints (such as mobile
phones, personal computers, etc.). Therefore, their use does not
have to be limited to consuming the services and resources of the
fog and cloud layers but can help these layers in the provision of
these services and resources to the rest of the system. Besides,
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in some situations it provides a better QoS than fog and cloud
layers, since these devices are in the mist or edge layer itself and
therefore close to the rest of the end devices. So, they are able
to provide better latency, request-response time, etc. This new
paradigm is called cloud-edge computing (Pan & McElhannon
2018).

In this context, the Task Node is designed to include in the
task scheduling model this new paradigm of federation between
computing layers. Thus, Task Nodes are conceived as nodes
that belong to the edge and mist layers of the system but can
be federated with cloud and fog nodes, thus providing task
execution services to Task Apps and being able to process the
tasks they generate.

On the other hand, as could be edge or mist devices that
generate tasks requiring their processing, as Task Apps, Task
Nodes are also designed to generate and offload tasks.

3.1.4. Networking Node Task scheduling is frequently im-
plemented in environments that operate on a cloud-to-thing
continuum infrastructure. In this kind of system, nodes can be
federated, acting as a single entity rather than isolated nodes.
Federations are addressed in this model by means of Links, i.e.
the connections between the different nodes that belong to a
federation.

The Networking Node is the component responsible for
managing these links. This model envisages a Networking
Node for each federated (linked) node. Thus, each Networking
Node handles the links whose source is the node where the
Networking Node is integrated. Moreover, links are designed
as unidirectional. Consequently, two links are needed to allow
two components to interact with each other.

On the other hand, SimulateIoT is a hybrid simulator/emu-
lator of IoT systems. So, SimulateIoT simulations have to be
deployed over a real (or virtualised) network. Thus, without
the need to simulate the latency and bandwidth of links. How-
ever, as aspects such as delay and bandwidth among nodes are
critical aspects in task scheduling systems (Jamil et al. 2022),
users could require, for testing purposes, specific latency and
bandwidth between nodes. Configuring the network where sim-
ulations will be deployed could be a tedious, error-prone and
costly task. Thus, this model also envisages the possibility to
specify the delay and bandwidth of the aforementioned links,
being the Networking Node the component which will ensure
that these networking aspects are met during simulation.

Finally, note that this model envisages fully connected feder-
ations, i.e. all nodes belonging to a federation are connected to
each other.

3.1.5. Task Processor The Task Processor is the com-
ponent that performs the processing of tasks. So, the Task
Processor node is integrated at the deployment (of the simu-
lation) stage into those edge (Task nodes), fog and cloud nodes
that are modelled by the user to provide task processing services
to the rest of the system.

Note that to suitably simulate the processing of tasks, this
model envisages the possibility of assigning hardware resources
to each node with processing capabilities, i.e. to the Task

Processors. Thus, users can model aspects related to the
hardware of each node, such as their CPU or RAM.

3.1.6. Task Scheduler This component is the most relevant
since it is where the simulator will integrate users’ task schedul-
ing proposals, as described in the following sections. Thus,
the Task Scheduler is the node that receives and schedules
(by means of the users’ task scheduling proposal), the tasks
offloaded to the system.

Since task scheduling algorithms can use several data sources
and data types as input to perform their schedules (Bansal et
al. 2022), this component is designed to provide users’ propos-
als with resources to request data from several nodes of the
simulation. Note that users’ proposals can interact with these
resources and therefore with the rest of the simulation by means
of a REST API (which belongs to the aforementioned provided
resources). Thus, the integration of users’ proposals with the
rest of the simulation is simplified.

This API allows users’ proposals to perform four main re-
quests: 1) request the offloaded tasks for their scheduling, 2)
request data such as the current delay or available bandwidth
between each node (links status), 3) request data related to the
hardware usage (CPU, RAM, etc.) of each node, and 4) request
the return of the scheduled tasks (once scheduled) to the system
for their processing.

Note that in this model, these requests are limited to the
nodes that belong to the same federation, i.e. those nodes
that belong to different federations can not interact. On the
other hand, this model envisages one Task Scheduler per
federation. However, the Task Scheduler of each federation
can integrate a different user scheduling proposal.

Thus, by extending SimulateIoT towards this task scheduling
model, users will be able to deploy, analyse, compare, etc. their
task scheduling proposals on a simulated IoT system without
the need for investment in device acquisition, configuration
and deployment. In Section 3.2 that follows, an overview of
the resulting simulator after extending it towards this model is
provided.

3.2. Overview of the Resulting Simulator
Figure 3, provides a representation of a generic simulation de-
ployment using the extended version of SimulateIoT. This figure
also distinguishes between the components developed in this
work (marked in red) and those inherited from the original Sim-
ulateIoT (marked in blue). The significant enhancements, those
related to the concepts belonging to the model defined in Sec-
tion 3, are explained below in the context of Figure 3. Note that
to facilitate referencing the concepts depicted in Figure 3 within
the text, the corresponding labels included in the figure will be
used (e.g. 1 ).

Firstly, tasks are generated and offloaded to the system by
the Task Nodes A and the Task Apps B . The offloading
of these tasks is represented in Figure 3 by 1.1 offloading per-
formed by Task Nodes to the fog layer; 1.2 and 1.3 offloading
performed by Task Apps deployed on fog nodes to the fog
layer; 1.4 offloading performed by Task Apps deployed on
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Figure 3 A generic simulation generated by using M2T transformations from a model defined with the proposed simulator.

cloud nodes to the fog layer.
Note that in Figure 3 all the tasks are offloaded to the fog

layer as FogNode 1 is the node where the Task Scheduler
C is deployed.

Once tasks have been offloaded, they are scheduled by the
Task Scheduler C and sent back to the system for their process-
ing 2.1 , 2.2 and 2.3 .

Then, the Task Processor of each fog, cloud and Task
Node, which is not directly represented in Figure 3, carries out
the processing of each task and returns the result to the node
that is waiting for it due to the dependency between tasks 3.1 ,
3.2 and 3.3 .

Note that during the simulation, the generation, offloading,
scheduling, and processing of each task by each node occur
concurrently and adhere to the user-defined design (model).

Finally, it should be highlighted that the behaviour of each
node and the overall simulation exhibit a higher level of com-

plexity compared to what is depicted in this overview. For the
sake of clarity, there are interactions and concepts that, as in the
case of the Task Processor, are not directly depicted in Fig-
ure 3. For instance, the Networking Node or the interactions
between the Task Scheduler and the nodes belonging to its
federation D to gather/share their status (available CPU and
RAM).

Further details are addressed in following Sections 4 and 5.

4. Extensions of Metamodel and Concrete Syn-
tax

The proposed simulator, as an MDD approach, is composed
of three main elements: 1) metamodel or abstract syntax, 2)
graphical concrete syntax and 3) model-to-text transformations.
This section describes the proposed simulator metamodel and
concrete syntax.
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4.1. Metamodel Extensions
A Metamodel captures the concepts and relationships in a spe-
cific domain in order to model partially reality (Selic 2003).
Then, it is possible to design models conforming to this Meta-
model. These models can be used to generate the total or partial
application code. Thus, the software code could be generated for
a specific technological platform, improving its technological
independence and decreasing error proneness.

The SimulateIoT metamodel (Barriga et al. 2021) gathers
the core concepts and relationships related to the IoT domain,
including elements such as sensors, actuators, edge nodes, fog
nodes, cloud nodes, databases, complex-event processing ser-
vices, data definition, topics, message brokers, etc. However,
it has not enough expressiveness to simulate IoT systems with
task scheduling capabilities and with a cloud-to-thing contin-
uum infrastructure. Therefore, the metamodel of the proposed
simulator is an extension of the SimulateIoT metamodel with
enough expressiveness to define these kinds of IoT systems
(entities and services described in Section 3.1).

Figure 4 shows an excerpt of the proposed simulator meta-
model. Note that the new classes and relationships included are
numbered and highlighted in blue colour. Besides, note that Fig-
ure 11 (Appendix A) shows the complete metamodel, with the
elements relating to the extension carried out also highlighted
in blue.

This section does not aim to describe how these components
work internally, which is addressed in Section 5, where M2T
transformations are addressed. Finally, note that in this section,
to better describe the elements of the metamodel, the numerical
labels shown in Figure 4 are used below as references in the text.
These references are used by means of the expression [class
name] x , where x is the label associated with the [class] in
Figure 4.

In order to extend the SimulateIoT metamodel towards task
scheduling and the cloud-to-thing continuum, first of all, the
task generation related components, i.e. the Task Node and the
Task App, have been included in the metamodel by means of the
classes TaskNode 3 and TaskApp 2 respectively. The work-
flow concept has also been added by means of the Workflow
class 1 and related to the two previously mentioned classes
with the aim of allowing the user to model which workflow
will be generated by each modelled Task Node and Task App
during the simulation. Note that each workflow will be gen-
erated every period of time, which can be specified by the
generation_period (seconds) attribute.

To allow the user to model the different workflows that will
be generated, in addition to the Workflow class, the Task 1.1

and Edge 1.2 classes have also been included. Thus, the Task
class represents a workflow node and the Edge class represents
the dependency between these tasks. Note that in these classes
the user can also model the size of each task (size attribute) and
the size of the processing results of each task (offload_size
attribute).

On the other hand, the metamodel is extended from the
Hardware_specification 5 class to allow the user to model
in a more detailed manner the hardware resources of each mod-
elled node. To this end, this class is related to the CPU 5.1 and

RAM 5.2 classes, also included as part of this extension to allow
the user to model these hardware aspects for each node.

Finally, the metamodel is extended with the Federation
4 class, which allows the user to federate the different

nodes of the modelled system. To this end, federations are
composed of Links 4.1 , a class that allows modelling the
characteristics of the different links between the federated
nodes. Particularly, the classes Delay_specification 4.2

and Bandwidth_specification 4.3 allow the user to model
these characteristics for each link.

Extending the metamodel of SimulateIoT with these classes
and relationships, the concepts related to the task scheduling
model defined in 3.1 are gathered by the metamodel. Therefore,
the required expressiveness to model IoT systems with task
scheduling capabilities is achieved.

4.2. Graphical Concrete Syntax and Validator Extensions
Model-driven development allows designing models conform-
ing to a metamodel by means of concrete syntax. Concrete
syntax refers to the specific notation used to depict instances of
a model. The concrete syntax can visually or textually represent
the abstract notions and relationships that are defined within the
metamodel. It could be defined as graphical concrete syntax
(e.g. using GMF, Eugenia or Sirius) or textual concrete syntax
(e.g. using xText). In our approach the Eugenia tool (Kolovos et
al. 2015) is used and it makes it possible to generate a graphical
concrete syntax conforming to a metamodel.

A graphical syntax is often more intuitive and easier to com-
prehend at a glance, especially when dealing with complex
systems. It provides a high-level overview of a system, which
facilitates an understanding of the structure and relationships
within the system. However, graphical syntax can become more
difficult to manage in terms of automated processing.

In contrast, the textual syntax can be seamlessly processed
and integrated with other systems. However, a textual syntax
can be more difficult to understand and navigate, especially for
individuals who are not familiar with the specific language or
notation. It may require more time to interpret and does not
provide a visual overview of the system.

Although, both concrete syntax could be developed to define
models conform to the metamodel proposed.However, in view
of the above, given the complexity of the concepts to be repre-
sented, the models to be designed (IoT systems) and the nature
of the resulting tool (a simulator), it has been considered that a
graphical syntax is more appropriate than a textual one. In addi-
tion, the graphical concrete syntax generated for the proposed
simulator metamodel is an extension of the graphical concrete
syntax defined in SimulateIoT, which is based on Eclipse GMF
(Graphical Modeling Framework) and EMF (Eclipse Modeling
Tools). Figure 5 shows an excerpt from this graphical editor.

It helps users to improve their productivity allowing not only
defining models conforming to the proposed simulator meta-
model but also their validation. In this respect, metamodels can
be extended with constraints based on the Object Constraint
Language (OCL) (OMG 2012). OCL is a declarative language
developed by the Object Management Group (OMG) for describ-
ing rules applicable to the models designed by users conforming
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Figure 4 Excerpt of the proposed simulator Metamodel focusing on the task scheduling concepts. The complete metamodel can
be found in Appendix A in Figure 11.
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Figure 5 Graphical editor based on Eclipse to graphically design models conforming to the metamodel proposed for the simulator.

to a metamodel. As an example, some of the OCL restrictions
defined are shown below.

1 context Task
2 invariant UniqueId: Task.allInstances ()−>forAll(

t1 , t2 | t1 <> t2 implies t1.id <> t2.id)

This OCL constraint ensures that each task has a unique ID.

1 context Delay_specification
2 invariant MaxDelayGreaterThanMinDelay: self.

max_delay >= self.minum_delay

This invariant ensures that the maximum delay (max_delay) is
always greater than the minimum delay (minum_delay) in each
Delay_specification instance.

1 context Bandwidth_specification
2 invariant ValidBandwidth: self.bandwidth <> null

and self.bandwidth > 0

This invariant ensures that the bandwidth specification is not
null and is greater than 0.

To sum up, the graphical concrete syntax developed offers a
suitable way to model and validate the IoT environment by using
the high-level concepts defined in the SimulateIoT metamodel
(Figure 4).

5. Extensions of M2T Transformations
Once the models have been defined and validated conforming
to the proposed simulator metamodel (example of a model in
Figure 10), a M2T transformation defined using Acceleo (Obeo
2012) can generate the IoT system modelled. This section de-
scribes the main extensions included in the M2T transformations
of SimulateIoT in order to generate IoT systems simulations
with task scheduling capabilities.

For the sake of clarity, this section is divided into the domain-
specific concepts identified in Section 3.1 (as in Section 4.1). In

Acronym Meaning

TApp Task App

NN Networking Node

TN Task Node

TP Task Processor

TS/TSN Task Scheduler Node

SSA System Status Agent

Table 2 Acronyms used in figures of Section 5.

this way, each subsection includes the contributions that make
it possible to generate the code of each component related to
these task scheduling concepts. However, there are no sections
dedicated to the Networking Node and the Task Processor.
This is because these components are subcomponents of other
elements, such as the Task Node. As a result, they are addressed
in the sections pertaining to these primary components.

Note that the descriptions of the components, from a high
level of abstraction, are already covered in Section 3 and 4.1.
Therefore, the current section omits this high-level description
and exclusively delves into the inner workings of the compo-
nents, offering a low-level perspective.

Finally, note that Table 2 summarises the acronyms used in
several of the figures included in this section.

5.1. Task
Section 4.1 describes the extensions carried out to make it pos-
sible to model the tasks that will be generated, offloaded and
processed by the IoT system. However, the task concept does
not become a concrete component or service but is integrated
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as part of the logic of the rest of the components, e.g. in the
Task App or the Task Node, which need the logic to generate,
offload, receive or process tasks. Therefore, the transformations
related to this concept are addressed below, in the sections that
explore the M2T transformations of the components that are
related to tasks, such as the aforementioned.

However, since tasks are managed by these components
using the JSON notation, below are the different JSON codes
that can be exchanged between components during a simulation.

To illustrate how tasks are generated by the Task App or
the Task Node (components that can generate tasks), Listing 1
shows an example of the JSON code related to the set of tasks
that constitute the workflow shown in Figure 2. This JSON
code example includes all the necessary fields to represent this
workflow, such as the id and name of the workflow, the node
and the component that generate it (field "generatedBy"), the
tasks that constitute the workflow (field "nodes"), the edges
(field "edges") and all the data related to these elements. Note
that Appendix B, Listing 5, shows the Acceleo code related to
the M2T transformations of these tasks.

1 {
2 " workflow " : {
3 " i d " : 0 ,
4 " name " : " exampleWorkflow " ,
5 " g e n e r a t e d B y " : {
6 " nodeId " : " fogA0 " ,
7 " g e n e r a t o r I d " : " taskAppA0 " ,
8 " g e n e r a t i o n I d " : "0"
9 } ,

10 " nodes " : [ {
11 " t a s k " : {
12 " name " : " TaskA " ,
13 " i d " : "0" ,
14 " s i z e " : "586"
15 }
16 } , {
17 " t a s k " : {
18 " name " : " TaskB " ,
19 " i d " : "1" ,
20 " s i z e " : "344"
21 }
22 } , {
23 " t a s k " : {
24 " name " : " TaskC " ,
25 " i d " : "2" ,
26 " s i z e " : "719"
27 }
28 } , {
29 " t a s k " : {
30 " name " : " TaskD " ,
31 " i d " : "3" ,
32 " s i z e " : "412"
33 }
34 }
35 ] ,
36 " edges " : [ {
37 " edge " : {
38 " i d " : "0" ,
39 " s o u r c e T a s k I d " : "0" ,
40 " t a r g e t T a s k I d " : "1" ,
41 " o f f l o a d S i z e " : "128"
42 }
43 } , {
44 " edge " : {
45 " i d " : "1" ,
46 " s o u r c e T a s k I d " : "0" ,
47 " t a r g e t T a s k I d " : "2" ,
48 " o f f l o a d S i z e " : "96"
49 }
50 } , {
51 " edge " : {
52 " i d " : "2" ,
53 " s o u r c e T a s k I d " : "1" ,
54 " t a r g e t T a s k I d " : "3" ,
55 " o f f l o a d S i z e " : "49"

56 }
57 } , {
58 " edge " : {
59 " i d " : "3" ,
60 " s o u r c e T a s k I d " : "2" ,
61 " t a r g e t T a s k I d " : "3" ,
62 " o f f l o a d S i z e " : "223"
63 }
64 } ] }}

Listing 1 JSON code to represent a workflow. Specifically,
the workflow illustrated in Figure 2.

On the other hand, workflows are sent to the Task
Scheduler for scheduling purposes. In this regard, the Task
Scheduler decomposes the workflow to schedule the process-
ing of its tasks. Listing 2 shows the JSON code related to the
scheduling of Task C, which belongs to the workflow shown
in Figure 2 and in Listing 1.

Among the fields of this JSON code, there are data related
to the task itself (id, name, size, offloadSize), data related to
the node that generated it (generatedBy), as well as data related
to the scheduling of the task (schedulingData). Data relating
to the scheduling of the task includes the node that has to pro-
cess it (processAt) and at what time its processing has to be
performed (processAt). Furthermore, since the task scheduling
model (Section 3.1) envisages dependency between tasks, this
JSON code also includes to which node the processing results
have to be sent (resultsTo) and also whether the task depends on
the processing results of another task (waitForResults).

1 {
2 " s c h e d u l e d T a s k " : {
3 " i d " : "2" ,
4 " name " : " TaskC " ,
5 " s i z e " : "719" ,
6 " o f f l o a d S i z e " : "49" ,
7 " g e n e r a t e d B y " : {
8 " nodeId " : " fogA0 " ,
9 " g e n e r a t o r I d " : " taskAppA0 " ,

10 " g e n e r a t i o n I d " : "0"
11 } ,
12 " s c h e d u l i n g D a t a " : {
13 " p r o c e s s I n " : " TaskNodeA " ,
14 " p r o c e s s A t " : "2023 −1 −25 11 : 29 : 52" ,
15 " r e s u l t s T o " : " fogC " ,
16 " w a i t F o r R e s u l t s " : {
17 " t a s k I d " : "1" ,
18 " taskName " : " TaskA "
19 }
20 }}}

Listing 2 JSON code related to the scheduling of TaskC of
the workflow illustrated in Figure 2.

Once a node performs the processing of a task, it includes in
its JSON code some fields related to the results of its processing.
Listing 3 shows the JSON code fields added to Task C after
its processing. Among these fields, there is the time at the task
reached the Task Processor (arrivedToTaskProcessorAt), the
time at the processing of the task started (processingStartedAt)
and the time at the processing of the task finished (process-
ingFinishedAt). In short, it includes data that could be useful
for the user in the analysis stage.

1 {
2 .
3
4 " p r o c e s s i n g R e s u l t s " : {
5 " a r r i v e d T o T a s k P r o c e s s o r A t " : "2023 −1 −25 11 : 28 : 38"
6 " p r o c e s s i n g S t a r t e d A t " : "2023 −1 −25 11 : 29 : 54" ,
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7 " p r o c e s s i n g F i n i s h e d A t " : "2023 −1 −25 11 : 29 : 57"
8 }
9 .

10 }

Listing 3 JSON code excerpt that shows the fields related to
the processing results of TaskC of the workflow illustrated in
Figure 2.

As discussed above, since the task scheduling model (Sec-
tion 3.1) envisages dependency between tasks, once a task is
processed, the processing results are sent to the node that is
waiting for them, i.e. the node that has to process a task that
depends on these results.

Thus, when a node receives processing results, it includes
them in the JSON code of the task that is waiting for them.
In this way, the exit (last) task of a workflow will include the
processing results of the rest tasks of the workflow. Note that
this JSON code is the processing result that is returned to the
node that generated and offloaded the workflow to the system
for its processing (Task App or Task Node).

Listing 4 shows the JSON code fields related to the process-
ing results of the predecessors of Task C (in this example, Task
A). The data included in this case are the received results re-
lated to the processing of the task together with its id and name.
Note that, if a task includes results related to the processing
of another task (as is the case in this example where Task C
contains the results of Task A) when offloading its processing
results, it also includes the results of its predecessors. So, in
this example, Task C will offload its processing results together
with the processing results of Task A.

1 {
2 .
3
4 " p r e d e c e s s o r s P r o c e s s i n g R e s u l t s " : [ {
5 " t a s k " : {
6 " i d " : "0" ,
7 " name " : " TaskA " ,
8 " p r o c e s s e d I n " : "FogA"
9 " a r r i v e d T o T a s k P r o c e s s o r A t " : "2023 −1 −25 11 : 26 :

18" ,
10 " p r o c e s s i n g S t a r t e d A t " : "2023 −1 −25 11 : 28 : 34" ,
11 " p r o c e s s i n g F i n i s h e d A t " : "2023 −1 −25 11 : 28 : 47"
12 }
13 } ]
14
15 .
16 }

Listing 4 JSON excerpt that shows the fields related to the
processing results of the predecessor tasks of Task C of the
workflow illustrated in Figure 2.

5.2. Task App
Figure 6 shows a generic Task App node B (represented by
a red box) and its main component (element within the red
box), the Workflow Generator C . Figure 6 also shows
how the Task App is deployed on a fog/cloud node and the
interactions that its component could perform with other
artefacts of the fog/cloud node and with the rest of the IoT
system. Below, the Task App node is illustrated by describ-
ing its component and its interactions with the rest of the system.

Figure 6 Task App component.

Workflow Generator C As described in Section 3.1.2,
the Task App can generate tasks by means of workflows
and offload them to the rest of the system. The Workflow
Generator is the component of the Task App whose aim is to
generate and offload 1 the workflows modelled by the users in
the modelling of the system stage.

The Task App is not composed of additional components.
However, to provide a comprehensive understanding of its role
and impact within the entire system, a description of the com-
ponents associated with the Task App is presented below.

Networking Node G This component simulates the net-
work aspects related to the bandwidth and delay modelled by
users for each Link, i.e. the unidirectional connection between
two federated nodes. So, as the workflows generated have to be
offloaded to the system through a Link, the Networking Node
applies to these workflows the bandwidth and delay constraints
modelled for the Link through which they have to be offloaded.
Note that the Networking Node is described in more depth in
Appendix C.

MQTT Client D The MQTT Client is the component that
allows publish/subscribe communication between the compo-
nents of the system through the MQTT protocol. In this context,
it is implied in the offloading of the generated workflows to the
rest of the system (interactions 2 and interactions 3 ) and in the
reception of the processing results of the tasks (interactions 4
and 5 ).

MongoDB F and MongoDB Client E To provide data stor-
age services to the IoT systems simulations, seamlessly to the
user, a MongoDB database F is deployed on each modelled
fog/cloud node during the deployment stage of the simulation.
In the same way, a MongoDB Client E is also deployed to
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carry out the needed interaction between this database and the
task scheduling components. In this context, these two compo-
nents are employed to store the processing results of the tasks
(interactions 4 , 5 and 6 ).

5.3. Task Node
Figure 7 shows a generic Task Node B (represented by a red
box) and all its components (elements within the red box) and
their interactions. The main components of the Task Node
are the Workflow Generator E , the Task Processor F ,
the Networking Node D and the MQTT Client C . Besides,
Figure 6 also shows how the Task Node is deployed as part
of the mist/edge layer and the interactions that its components
could perform among them and with other artefacts of the
system. Note that in this case, components such as the
Networking Node or the MQTT Client are part of the Task
Node. In contrast to the Task App, the Task Node is not
deployed on a fog/cloud node (which provides with a MQTT
Client, etc. to the Task App), the Task Node is a device
itself belonging to the edge layer. Below, the Task Node is
illustrated by describing each of its components and their
interactions with the rest of the system.

Figure 7 Task Node components.

Workflow Generator E , Networking Node D and
MQTT Client C As the Task App, the Task Node also gen-
erates and offloads workflows to the rest of the system. In this
context, the behaviour of these components (interactions 1 , 2 ,
3 and 4 ) is the same as the behaviour already explained in the
Task App section (Section 5.2).

Task Processor F Task Nodes B belong to the
edge/mist layer, however, they can be part of the comput-

ing power of a federation, thus being able to process tasks.
The Task Processor is the component of the Task Node
that performs the processing of tasks. In this way, the Task
Scheduler could schedule workflows and assign the process-
ing of its tasks to a Task Node (interaction 5 ). As these sched-
uled tasks are offloaded via MQTT protocol, the first to re-
ceive them is the MQTT Client of the Task Node (interaction
5 ). Next, the MQTT Client forwards these tasks to the Task
Processor (interaction 6 ), which performs their processing.
Once processed, the Task Processor returns the processing
results of these tasks to the MQTT Client, which sends them to
their target nodes, i.e. the nodes waiting for the results of the
processed tasks (specified by the field resultsTo of the JSON
code illustrated in Listing 2). Note that as outgoing data, net-
work constraints are also applied in this context. This flow of
data is represented by the interactions 7 , 2 and 8 . Finally,
note that the behaviour of the Task Processor is described in
more depth in Appendix D.

5.4. Task Scheduler
Figure 8 shows a generic Task Scheduler B (represented
by a red box), all its components (elements within the red
box) and the interaction between them. The main components
of the Task Scheduler are the Workflow Buffer D , the
System Status Agent G , the Task Scheduler API E
and the Task Scheduling Proposal F . Besides, Figure 8
also shows how the Task Scheduler is deployed on a fog
or cloud node A and the interactions that these components
could perform with other artefacts of the fog/cloud node and
with the rest of the IoT system. Below, the Task Scheduler
is illustrated by describing each of its components and their
interactions.

Workflow Buffer B The Task Apps and the Task
Nodes generate and offload workflows to the system. The Task
Scheduler B is the component that first receives these work-
flows 1 with the aim of scheduling the processing of these tasks.
In this context, the Workflow Buffer holds these incoming
workflows 2 . Hence, when the Task Scheduler Proposal
F is ready to schedule the processing of a workflow, it retrieves
it from this buffer by means of the Task Scheduler API (in-
teractions 3 , 4 , 5 and 12 ).

System Status Agent D The System Status Agent
aims to gather the status of both the nodes that belong to the
same federation as the Task Scheduler and the network of
the federation. In this context, first, the Task Scheduling
Proposal requests this data to the System Status Agent by
means of the Task Scheduler API 1 (interactions 3 and
6 ). Then, the System Status Agent component requests
the status of the federation network (Links that connect the
nodes of the federation) to the Network Status Reporter
component of each Networking Node (see Appendix C, Fig-
ure 12). Moreover, the System Status Agent also requests
to the Task Processor Status Reporter component (see
Appendix D, Figure 13) the status related to the hardware us-
age of each Task Processor (i.e. Task Nodes and other
fog/cloud nodes) that belong to the same federation that the
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Figure 8 Task Scheduler components.

Task Scheduler. These two aforementioned requests are rep-
resented by the interactions 7 and 8 . When the status data
is received 9 , the System Status Agent provides this data
to the Task Scheduling Proposal 11 and 12 . Thus, the
Task Scheduling Proposal can use this data as input for
task scheduling purposes.

Task Scheduler API E The Task Scheduling
Proposal is the task scheduling approach that the user can de-
ploy into the simulation for testing and analysis purposes. The
Task Scheduler API has been conceived as a middleware
service to integrate the Task Scheduling Proposal with the
simulated system. Thus, the Task Scheduler API is able to
1) gather key data about the status of the simulated system and
provide it to the Task Scheduling Proposal, 2) provide the
Task Scheduling Proposal with the workflows that have
been offloaded to the Task Scheduler B and 3) return the

tasks of a workflow scheduled to the system for their processing.
Note that the request/response interactions related to 1) and 2)
( 3 , 4 , 5 , 6 , 11 , 12 ) have been already addressed through
the explanation of the Workflow Buffer D and the System
Status Agent G . Hence, with the offloaded workflows and
the status of each node and link of the federation, the Task
Scheduling Proposal can perform the schedule of each
task. Once the Task Scheduling proposal has finished
the schedule, returns the tasks scheduled to the system for
their processing, also by means of the Task Scheduler API
(interaction 13 , 14 and 15 ).

Task Scheduling Proposal E The Task Scheduling
Proposal implements the task scheduling approach that the
user can deploy into the simulation for testing and analysis
purposes. The aim of the Task Scheduling Proposal is
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to schedule the offloaded workflows. The Task Scheduling
Proposal only interacts with the Task Scheduler API E .
This is because the Task Scheduling Proposals is devel-
oped by the user, and will not necessarily have been devel-
oped to be tested in the simulator proposed in this communica-
tion. Therefore, to facilitate their integration with the simula-
tor, the Task Scheduler API E is used as an interoperability
layer. By means of a series of requests, the Task Scheduling
Proposal can interact with the simulated system receiving the
offloaded workflows, gathering data related to the status of the
system to carry out the schedule of each task and return them
scheduled to the system for their processing. Note that all these
interactions have been described above.

5.5. Deployment Infrastructure
The deployment of simulations is carried out through container
orchestration. Thus, the system components are wrapped in
Docker (Merkel 2014) containers as shown in Figure 9, and
subsequently deployed in different clusters (orchestration). Re-
garding the wrapping of the components, Figure 9 uses the
Docker logo within the represented boxes to indicate that said
component or set of components is wrapped in a Docker con-
tainer.

On the other hand, the default supported orchestrator is
Docker Swarm, although since the deployment is carried out us-
ing Docker-Compose, it is possible to perform the deployment
on Kubernetes (Kubernetes Documentation 2023) by automati-
cally generating the deployment files for this orchestrator using
the Kompose tool (Kompose 2023).

As for communication between containers, it is carried out
through DNS (name + id of the component, specified in the
modelling stage). Communication through DNS is supported by
the overlay network that is generated to support the deployment.

Finally, orchestration takes into account the fog and cloud
nodes modelled as part of the system. In this way, a "cluster" is
generated for each fog or cloud node modelled. Subsequently,
all the Docker containers related to the fog or cloud node are de-
ployed on this "cluster", as well as those components belonging
to the mist or edge layer that interact with it (e.g. Task Nodes).

Note that all these specifications are low-level specifications
that, although not previously mentioned, are part of the simula-
tor, in this case of the files generated through M2T transforma-
tions to perform the simulation deployment.

6. Simulation Outputs, Tests and Assessments
The primary motivation for the simulation and testing of an IoT
system is to derive valuable insights, enabling the assessment
of its behaviour or the optimisation of its performance. Conse-
quently, the advantages that can be drawn from an IoT simulator
rely on the variety and depth of tests and evaluations it supports.
The SimulateIoT extension carried out in this communication
facilitates several options for conducting tests and evaluations
from a task scheduling perspective. The most significant tests
and assessments that can be performed are listed below.

– Task distribution: How, in general, the task scheduling
proposal distributes tasks among devices.

Figure 9 Deployment infrastructure of the extended version
of SimulateIoT.

– Overload avoidance: The task scheduling proposal’s ability
to prevent any single device from becoming overloaded
with tasks.

– Dynamic load balancing: How the task scheduling pro-
posal can adjust task distribution as the load changes.

– Task prioritisation: If included in the policies of the task
scheduling proposal, how it balances the load while con-
sidering task priorities.

– Response time load balancing: If included in the policies of
the task scheduling proposal, how it can maintain uniform
response times by effectively balancing the load.

– Queue length: The task scheduling proposal’s ability to
maintain balanced queue lengths across all devices.

– Task rebalancing: How effectively the task scheduling
proposal can rebalance tasks when new devices join or
existing devices leave the system.

– Network load variation: How the task scheduling proposal
balances the load under varying network conditions.
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– Workflow response time: The elapsed time from when a
workflow is generated by a device, processed by the system,
to the delivery of the processing results back to the device.
This can also be applied in the context of tasks.

– Workflow processing rate: The number of workflows pro-
cessed by a device over a specific period of time. This can
also be applied in the context of tasks.

– Workflow processing throughput: The maximum number
of workflows a device can process in a given time frame.
This can also be applied in the context of tasks.

– Hardware consumption: How the system or a device uses
its resources (CPU, memory, etc.) during the whole simu-
lation or at a specific time.

– Resource allocation: Whether the resource allocation strat-
egy followed during the design stage of the system was
appropriate.

– Bottleneck identification: Finding points in the system
where bottlenecks occur that could limit the system’s per-
formance.

– Workflow response time, processing rate and throughput
scalability: Evolution of these parameters as the workload
on the system is increased or reduced.

– Device scalability: How the system handles an increasing
number of IoT devices to check if the system can maintain
performance as the network grows.

– Network traffic scalability: How the system performs under
different levels of network traffic.

– Fault tolerance: How the system behaves, in general, when
faced with hardware or software faults. Note that this pro-
posal does not include a specific model to induce failures
during simulations. However, a simple script can stop
(and redeploy later if required) the components of the sim-
ulated system (Docker containers). Thus, thanks to the
components notifying the status of each node to the Task
Scheduler, it can notice if a device is available or not
(lacked response when stopped) and take it into account.

– Fault recovery: How the system handles recovery pro-
cesses in the event of a failure, ensuring no task or data
loss.

– Fault tolerance load balancing: The task scheduling pro-
posal’s ability to redistribute tasks when a device fails or
becomes unavailable.

– Power consumption: The power consumed by the IoT
system during a simulation or in a specific period of time.
Note that a model related to the power consumption of
devices has not been included in this work, however, it can
be assessed from the hardware consumption.

– Workflow-specific energy consumption: The amount of
energy consumed for each specific workflow.

– Device-specific energy consumption: The energy consump-
tion of individual devices under different task loads.

As can be seen, the extension developed for SimulateIoT
in this study provides users with a wide spectrum of testing
and analysis opportunities for their task scheduling proposals.
Thus, providing users with a holistic understanding of their IoT
systems design and their task scheduling proposals performance.

7. Case Study: An IIoT System Applied to the
Steel Industry for Predictive Maintenance

In this section, a study case focused on the IIoT applied to the
steel industry for predictive maintenance is illustrated.

7.1. Motivation
Task scheduling techniques can be applied to any IoT system
to optimise the processing of their tasks (Potluri & Rao 2020).
However, their application is particularly appealing in the so-
called critical IoT systems, i.e. IoT systems on which the safety
of users depends and IoT systems on which specific response
times, fault tolerance, etc. have to be met in order to perform
suitably. Some of these critical IoT systems could be those fo-
cused on healthcare, traffic safety and control (IoV) or industry
(IIoT) (Andersson et al. 2016).

In industry, optimal maintenance of production equipment
and facilities is one of the keys to global competitiveness and
survival (Zhao et al. 2022). Over time, different maintenance
strategies, such as corrective and preventive maintenance, have
been developed and applied (Lie & Chun 1986; Hao et al. 2010).
Nowadays, with the possibility of continuous monitoring of
equipment and facilities provided by the IoT and machine learn-
ing, a new maintenance strategy is being developed and im-
plemented, predictive maintenance (Çınar et al. 2020; Cheng
et al. 2020). This type of maintenance is based on predicting
equipment failures or breakdowns, allowing maintenance work
to be carried out before the equipment suffers further damage
and causes a more negative impact on production (Carvalho et
al. 2019).

In this context, electric motors are one of the most widely
used tools in industry (Cakir et al. 2021). Their applications
are varied, primarily including blowers, turbines, pumps, com-
pressors, alternators, rolling mills, movers, etc. Thus, for the
reasons outlined above, proper maintenance of these engines is
crucial for companies to be competitive.

Given the need for predictive maintenance of electric mo-
tors, as well as the suitability of the application of IoT and task
scheduling to achieve this purpose, it has been considered ap-
pealing to show the application of the proposed simulator in this
context. Thus, this case study illustrates how the proposed sim-
ulator can assist in the design, development and implementation
of an IoT system for monitoring and predicting the failure of
electric motors in a steel company.

7.2. Overview
The use case presented in this Section is based on those works
referenced in the above Section 7.1. The aim of the modelled
system (using the metamodel presented in this communica-
tion) shown in Figure 10 is to provide a steel company with
the capability to perform predictive maintenance on their elec-
tric engines. On the other hand, the aim of the use case is to
test whether the system identifies and stops faulty engines be-
low a time threshold. For example, if at any point during the
entire simulation, the system takes no more than 10 seconds
(hypothetical time threshold) from the moment an engine starts
malfunctioning until the system identifies this situation and

SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm for Task Scheduling Assessments 17



stops the engine. Note that these time thresholds can not be
specified as part of the system as it is not supported by the DSL
proposed. Instead, the user is who has to model the system and
later, analyse the logs of the simulation to check the behaviour
of the system. Continuing with the proposed example, check
whether the time threshold is met during the entire simulation.

For this purpose, a set of sensors has been included in the
edge layer of the system (red-coloured components) in order to
continuously monitor each electric engine. Two Task Nodes
have also been added to the edge layer, a gateway, which carries
out the aggregation of the publishing data for each sensor (note
that this is a task included in the simulation by means of a work-
flow), and a computer, which is used only to provide support
for the processing of the tasks to be carried out in the system.
In addition, an actuator has also been included in the edge layer
to stop the operation of those engines whose failure has been
predicted.

As for the fog layer, the modelled system includes several fog
nodes that provide the different deployed edge nodes with topics
for subscribing or publishing their data. Besides, these fog
nodes also perform two tasks in the system, the pre-processing
of the received data (aggregated by the gateway) and the failure
prediction of each monitored engine (from this pre-processed
data). Note that these two tasks have been also included in the
simulation by means of workflows.

Furthermore, a cloud node has been added to the system.
This cloud node aims to provide additional hardware resources
to the system if needed.

Finally, note that the simulation related to this use case has
been deployed on a personal computer with the following spec-
ifications: Model: MSI GP63 Leopard 8RE; CPU: Intel Core
i7-8750H; Graphics: GeForce GTX 1060 with 6GB GDDR5;
RAM Memory: 16GB DDR4-2400.

7.3. Model Definition
Figure 10 shows an excerpt of the IIoT system model. For
the purpose of explaining this model, it includes numerical
references for each node, which are referenced below when
describing each component of the case study. Besides, for the
sake of clarity, note that the description of the case study is
divided into three parts: 1) edge layer (red nodes), 2) fog layer
(blue nodes), and 3) cloud layer (green nodes).

7.3.1. Edge Layer The edge layer of the IIoT system mod-
elled for this case study is comprised of three kinds of devices:
sensors ( S.X ), actuators ( A.X ) and Task Nodes ( T.X ). The

sensors included are accelerometers ( S.1 , S.4 and S.7 ), ther-
mometers ( S.2 , S.5 and S.8 ) and (magnetic) Hall sensors ( S.3 ,
S.6 and S.9 ). The accelerometers gather vibration data, i.e. the
vibration that the bearings of the engine produce, the thermome-
ters gather the temperature of the engine, and 3) the (magnetic)
Hall sensors collect data related to the rotational speed of the
engines. Note that these sensors and the data they collect are
often used to predict failures in electric engines (Cakir et al.
2021).

These sensors collect this data and publish it on the topics

To.X provided by the fog nodes F.X for further use. Accelerom-
eters publish their data in the topic x/.../engines/vibration, ther-
mometers in the topic x/.../engines/temperature and (magnetic)
Halls sensors in the topic x/.../engines/rotationspeed. Note that
the data gathered and published by these sensors has been mod-
elled by the user with the expressiveness already provided by
the previous version of SimulateIoT.

The actuators included A.X aim to stop the operation of those
engines whose failure has been predicted. Thus, they subscribe
to the topic x/.../engines/prediction, where the nodes that carry
out the prediction (fog F.X and Cloud C.X nodes) of the failure
of the engines publish their predictions. In this way, when an
engine failure prediction is published in this topic, the actuators
receive it and stop the operation of the engine.

Finally, two Task Nodes Tn.X have been mod-

elled. On the one hand, a gateway Tn.1 , which has a

Hardware_specification H.5 where the CPU and RAM
of the device have been modelled. This device has been
modelled to take advantage of its hardware for task scheduling
purposes. Moreover, this Task Node performs a task, the data
aggregation T.7 of the data published by the modelled sensors.
In this way, when the data reach the topics and the fog nodes, it
is already aggregated. Note that this task has been modelled by
means of a Workflow in the properties of this component. On
the other hand, a personal computer has been added as a Task
Node of the system, being part of the edge layer and providing
the rest of the system with more computing power. This Task
Node have also a Hardware_specification H.6 .

Note that each sensor, actuator and Task Node have an at-
tribute named quantity (included in the previous version of
SimulateIoT) where the user can specify the quantity of each
node. In this case study, the quantity attribute is ten for sen-
sors, three for actuators, three for the gateway Task Node and
one for the computer Task Node.

7.3.2. Fog Layer The fog layer of the IIoT sys-
tem modelled for this case study is comprised
of three fog nodes, FogNode_rolling_mill F.1 ,
FogNode_power_plant_ventilation_system F.2 and
FogNode_lathes F.3 . The FogNode_rolling_mill
is the fog node deployed near the rolling mill, the
FogNode_power_plant_ventilation_system is the
fog node deployed near the ventilation system of the power
plant of the company, and the FogNode_lathes represents the
fog node deployed near the lathes of the company. The aim of
these fog nodes is to provide services to the rest of the system.

In this regard, the FogNode_rolling_mill provides topics
To.1 to subscribe or publish data to those sensors installed on the
engines of the FogNode_rolling_mill of the company. Be-
sides, this node carries out two tasks, 1) the data pre-processing
T.1 of the received data (already aggregated by the gateway
Task Node) to send this data in a suitable way to the machine
learning model of the system, which use it as input to make
predictions, and 2) The fault prediction T.2 of the engines of the
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Figure 10 Model conforms to the proposed simulator metamodel. An IIoT system applied to the steel industry for predictive
maintenance of electric engines.
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rolling mill. These predictions are later published in the topic
x/.../engines/prediction where the actuators responsible to stop
the engines are subscribed. Note that these tasks have been mod-
elled by means of Workflows in the properties of these com-
ponents. This fog node has also a hardware_specification
H.1 and a mongo database Db.1 .

The other two fog nodes, the
FogNode_power_plant_ventilation_system and the
FogNode_lathes have a similar configuration to the
FogNode_rolling_mill. The differences are 1) The
Workflows modelled in the tasks defined in each of them are
different 2) Each fog node represents the implementation of the
fault prediction system in the electric engines of the different
equipment and facilities of the company.

7.3.3. Cloud Layer The cloud layer has been included with
one aim, to provide hardware resources to the rest of the system.
Thus, one cloud node has been modelled C.1 . In this regard,
this cloud node has a hardware_specification greater than
the hardware_specification of the fog nodes, and a Mongo
database Db.4 .

7.3.4. Cloud-Fog-Edge Federation Although the cloud-

fog-edge Federation Fd.1 is not a layer, it allows each cloud,
fog and edge node modelled to operate as a single entity instead
of isolated nodes. This component has been modelled federating
each fog, cloud and Task Node modelled. Thus, all the nodes
with computing power (a hardware_specification) can co-
operate for task scheduling purposes. Note that in the prop-
erties of this component, the features of each Link that inter-
connects the nodes belonging to the Federation (bandwidth
and delay) have been modelled.

Finally, note that although in this case study has not been
modelled, additional nodes could be defined to build other fed-
erations.

7.4. M2T Transformations
Once the model has been defined, the M2T transformations are
applied with the following goals:

– i) to generate Java, Python, NodeJs, etc. code that wraps
each device behaviour.

– ii) to generate configuration code to deploy all the gen-
erated services, such as the message brokers necessary,
including the topic configurations defined, the gateway
configurations, etc.

– iii) to generate the code and deployment configuration
files of the architecture that supports task scheduling
(Task Apps, Task Nodes, Networking Nodes, Task
Processors and the Task Schedulers).

– iv) to generate the code and deployment configuration of
the users’ task scheduling proposal and their integration
with the simulation.

– v) to generate the configuration files and scripts necessary
to deploy the databases and stream processors defined;
and finally, to generate the code necessary to query the
databases where the data will be stored.

– vi) to generate for each cloud, fog and edge node a Docker
container which can be deployed throughout a network of
nodes using Docker Swarm.

Consequently, each edge node, fog node and cloud node and
their related components are generated following the software
architecture defined in Section 5 where the M2T transformations
have been defined.

Finally, note that to generate a part of the code in a target
language/infrastructure different from the one supported, users
will need to make the following efforts: 1) Understand the
metamodel or the concepts related to the component/s they wish
to update; 2) Understand the M2T transformations related to the
component/s to be modified; 3) Develop the code from scratch
in their target language; 4) Integrate it into Acceleo; 5) Conduct
sufficient tests and trials to confirm the successful update of the
component/s.

7.5. Simulation Analysis
The benefits that can be obtained from a simulator come from
the outputs, data, etc. from the simulations and tests performed.
In this section, a set of simulations and different tests based
on the model described above are carried out, illustrating the
possibilities and benefits provided by the proposed simulator.
To carry out these simulations and tests, the HEFT algorithm
(Topcuoglu et al. 2002), one of the most widely used and ex-
tended algorithms in the field of task scheduling, on which some
recent algorithms are based (Ojha et al. 2020; Divyaprabha et al.
2018; Faragardi et al. 2020), has been integrated into the sim-
ulator. Consequently, the Task Scheduler applies the afore-
mentioned task scheduling algorithm (HEFT) to process the
workflows during simulations. Note that the M2T transforma-
tions only need the task scheduling proposal (in this case the
HEFT algorithm) to be on the same path as the generated com-
ponents (by the M2T transformations) in order to automatically
integrate it into the simulation.

As for the test, first is desired to determine the average and
maximum time that the modelled IIoT system needs to predict
the failure of an engine. This involves the time it requires to
aggregate and pre-process the data related to each engine and
the time it requires to carry out the prediction (failure or not).

For this purpose, the simulation was run for 120 seconds.
Once completed, the average time reported to predict the failure
of an engine (any engine) is 4.391 seconds, and the maximum
time is 6.384 seconds. The maximum time was related to the en-
gines of the rolling mill. This was expected since the workflows
related to failure prediction for this kind of engine are more
complex (higher amount of bytes to process and to offload) than
for the others.

At this point, the user has to determine whether this response
time satisfies his performance needs i.e., if the response time is
lower than expected, the user could reduce the hardware of the
designed system, thus saving costs. If, on the other hand, the
response time exceeds the estimated time to avoid severe engine
damage, the system has to be upgraded, either by software or
hardware.

In this use case, it has been determined to carry out a software
upgrade. The HEFT algorithm includes an insertion policy, i.e.,
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the idle slots of each processor (time in which the processor is
not used between processing each task) can be used to process
tasks. However, in the previous test, a modified HEFT algorithm
was used in which the use of idle slots had been restricted. The
simulation is then re-deployed with the HEFT algorithm and its
insertion policy enabled.

For this purpose, again, the simulation was run for 120 sec-
onds. Once completed, the average time reported to predict
the failure of an engine (any engine) is 3.637 seconds, and the
maximum time 6.314 seconds. Although the average execution
time has improved (4.391 to 3.637), the maximum execution
time has remained the same. This is because, due to the number
of nodes in the federation, their hardware configuration and the
workflows related to the tasks to be processed in the system, at
a specific time, the insertion policies cannot be applied as there
are no idle slots available.

Thus, in order to reduce the maximum processing time for
the failure prediction of the engines of the rolling mill, this
software improvement is not enough, so it is determined to
double the computational capacity of the fog nodes. After this
improvement, the maximum processing time has been reduced
to 3.259 seconds, about half.

Analysing why the processing of worst-case tasks is reduced
a half, the simulator logs reported that the worst case (maximum
execution time) occurs at an instant when the tasks (related to
the worse case) are processed by fog nodes. Specifically for the
fog node deployed near the rolling mills. Thus, by doubling its
computing power, the processing of these tasks is reduced by
about half.

These are some of the tests that the proposed simulator allows
to carry out. These tests allow users to analyse the performance
of their IoT systems and re-design them until reaching an opti-
mal configuration that satisfies their performance requirements
In this case study, users could have tested the impact of other
adjustments, such as the modification of the system architecture
(adding or subtracting nodes), modifying the workflows of each
task, the features of the links that inter-connects each node to
the federation, etc.

8. Conclusions and Future Work
Model-driven development (MDD) offers an effective solution
for dealing with the technological complexity of domains where
diverse technologies are used. The key of MDD lies in its em-
phasis on the creation of abstractions of the application domain
using the four-layer metamodel architecture. This architecture
facilitates a structured approach towards system design.

Once these models are established, we can proceed to the
model-to-text (M2T) transformation stage, where the developed
models are transformed into executable code specific to the
technology in use. This approach effectively mitigates the risks
and challenges of manual coding, enhancing productivity and
reducing the margin for error.

This paper proposes an extension of the SimulateIoT domain-
specific language (DSL) towards IoT simulation in the context
of task scheduling and the cloud-to-thing continuum paradigm.
This DSL extension aids users in conceptually framing their task

scheduling proposals within their IoT system designs based on
the cloud-to-thing continuum paradigm. By using this language,
users can propose, simulate, and evaluate various IoT system
designs and task scheduling solutions, thereby working towards
a system that fulfils their specific requirements, such as Quality
of Service (QoS) or Service Level Agreements (SLAs).

The system design’s components can include a variety of ele-
ments including cloud, fog, edge, and mist nodes. These nodes
can be federated to create an integrated system. Additionally, de-
vices and applications that generate and offload workflow-based
tasks can be incorporated, along with the necessary architecture
for processing these tasks. This broad range of possibilities al-
lows users to model realistic IoT systems where task scheduling
plays a pivotal role.

Finally, once the IoT system is modelled and simulated, the
simulation’s outputs can be gathered, analysed, and leveraged
for the purpose of system refinement and optimisation. This it-
erative process of design, simulation, deployment, and analysis
serves as a feedback loop, enabling continuous improvement of
the system in line with the user’s evolving needs and technolog-
ical advancements. This process, founded on the principles of
the MDD, ensures a systematic, rigorous approach to designing
and test task scheduling proposals and complex IoT systems
based on the cloud-to-thing continuum paradigm.

Regarding the limitations of our extension, there are several
points to consider. While we offer valuable logs pertaining to the
energy consumption of the simulated IoT system, the extension
does not encompass a comprehensive model that directly indi-
cates the system’s energy usage. Given the emphasis on energy
efficiency in the current climate change scenario and the rising
trend of energy-awareness task scheduling algorithms (green
IoT) (Ghafari et al. 2022), this absence is a notable limitation of
our tool.

Additionally, although our extension provides logs concern-
ing the hardware consumption of each simulated component,
potentially allowing for cost inference for deploying these com-
ponents on private clouds like AWS or Google Cloud, it does
not furnish a full-fledged pricing model. As many contemporary
task scheduling algorithms consider the costs associated with
IoT system deployments (Shu et al. 2021; Yuan et al. 2020), this
omission is another significant limitation.

Moreover, since SimulateIoT emulates the infrastructure of
modelled IoT systems rather than merely simulating it, the
hardware demands for running a simulation are higher than
for simulators reliant solely on mathematical models. This
increases the hardware requirements to run simulations, which
can pose challenges for scalability, especially when simulating
large IoT systems.

Lastly, while SimulateIoT is designed to simplify the process
of integrating and testing user task scheduling proposals, manual
effort is still required to carry out this integration.

As for future work, there are several extensions that could be
interesting to develop:

– Mobility: The proposed simulator does not support device
mobility. Currently, some works in the literature focus
on the study of the federation of an edge layer composed
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of mobile devices, the mobile edge computing paradigm
(Mao et al. 2017; Maray & Shuja 2022). In this computing
paradigm, mobile nodes belonging to the edge layer can
leave or join the federation. This dynamic property of the
edge layer requires an architecture to support it and the
corresponding software to handle it. Thus, the inclusion of
this paradigm in the simulator could be an advantage for
work that focuses on the development of task scheduling
techniques for this kind of system (Ma et al. 2021; Wang
et al. 2021).

– Energy consumption: Currently, many task scheduling
proposals focus on the sustainable development of the IoT,
thus prioritising energy consumption optimisation over the
makespan of the tasks to be processed (Ghafari et al. 2022).
Introducing the concept of devices’ batteries or system
energy consumption to the proposed simulator could help
those users who require test their task scheduling proposals
for energy optimisation.

– Cost of use: Given that several cloud platforms offer their
services for a certain price and also that energy has a mone-
tary cost, in literature there are several task scheduling pro-
posals focused on optimising the use of system resources
(Shu et al. 2021; Yuan et al. 2020). Integrating the concept
of resources cost or the model of pay-as-you-use could be
interesting to allow these users to test their proposals.

– A textual concrete syntax will be developed in order to
facilitate the modelling of this kind of system by using a
textual notation.

– Taking into account that currently users have to manage the
QoS and SLAs manually, it could be interesting to consider
an extension of the proposed metamodel to define QoS and
SLAs. Thus, facilitating users the modelling and handling
of such concepts for each model.
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A. Appendix: The complete metamodel of the
proposed simulator

This Section shows in Figure 11 the complete metamodel of the
proposed simulator. This metamodel is composed of the Simu-
lateIoT metamodel and the extension carried out (highlighted
in blue). The description of the classes and relationships that
are not part of the extension (and that have not been addressed
in this article), can be found in the article (Barriga et al. 2021)
Section IV, subsection A.
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Figure 11 Complete SimulateIoT metamodel with the extension concepts and relationships included.
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B. Appendix: Acceleo M2T example

1 [ t e m p l a t e p u b l i c gene ra t eWork f low ( anEnvi ronment : Envi ronment ) ]
2 [ comment @main / ]
3 [ f o r ( t n o d e : TaskNode | anEnvi ronment . node −> f i l t e r ( EdgeNode ) −> f i l t e r ( TaskNode ) ) ]
4 [ f o r ( workf low : Workflow | t n o d e . workflow ) ]
5 [ f i l e ( ’ / ’ + t n o d e . name + t n o d e . i d + ’ / s r c / main / r e s o u r c e s / wflows / wflow ’ + workflow . i d + ’ . j son ’ , f a l s e , ’UTF−8 ’) ]
6

7 {
8 " workflow " : {
9 " i d " : " [ workflow . i d / ] " ,

10 " name " : " [ workflow . name / ] " ,
11 " g e n e r a t e d B y " : {
12 " nodeId " : " TaskNode [ t n o d e . name + t n o d e . i d / ] " ,
13 " g e n e r a t o r I d " : " [ t n o d e . name + t n o d e . i d / ] " ,
14 " g e n e r a t i o n I d " : " " / / Th i s ID a c t s a s a c o u n t e r w i t h i n t h e component r e s p o n s i b l e f o r g e n e r a t i n g workf lows ,

and i s added d u r i n g s i m u l a t i o n s .
15 } ,
16 " nodes " :
17 [ f o r ( t a s k : Task | workf low . t a s k ) b e f o r e ( ’ [ ’ ) s e p a r a t o r ( ’ , ’ ) a f t e r ( ’ ] ’ ) ]
18 {
19 " t a s k " : {
20 " name " : " [ t a s k . name / ] " ,
21 " i d " : " [ t a s k . i d / ] " ,
22 " s i z e " : " [ t a s k . s i z e / ] "
23 }
24 }
25 [ / f o r ]
26 [ i f ( workf low . edge −> s i z e ( ) >0) ]
27 " edges " :
28 [ / i f ]
29 [ f o r ( edge : Edge | workf low . edge ) b e f o r e ( ’ [ ’ ) s e p a r a t o r ( ’ , ’ ) a f t e r ( ’ ] ’ ) ]
30 {
31 " edge " : {
32 " i d " : " [ edge . i d / ] " ,
33 " s o u r c e T a s k I d " : " [ edge . s o u r c e . i d / ] " ,
34 " t a r g e t T a s k I d " : {
35 [ f o r ( t a r g e t : Task | edge . t a r g e t ) s e p a r a t o r ( ’ , ’ ) ]
36 " t a r g e t [ i / ] " : " [ edge . i d / ] "
37 [ / f o r ]
38 } ,
39 " o f f l o a d S i z e " : " [ edge . o f f l o a d _ s i z e / ] "
40 }
41 }
42 [ / f o r ]
43 }
44 }
45 [ / f i l e ]
46 [ / f o r ]
47 [ / f o r ]
48 [ / t e m p l a t e ]
49

Listing 5 M2T developed in Acceleo for the generation of the workflows that the Task Nodes will offload to the system during the
simulation.
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C. Networking Node

Figure 12 shows a generic Networking Node B (represented
by a red box), all its components (elements within the red
box) and the interaction between them. The main components
of the Networking Node are the Delay Controller C ,
the Synthetic Delay Generator D , the Bandwidth
Controller E and the Network Status Reporter G .
Besides, Figure 12 also shows how the Networking Node is
deployed on an edge (Task Node), fog or cloud node A and
the interactions that these components could perform with other
artefacts of the edge/fog/cloud node and with the rest of the
IoT system. Below, the Networking Node is illustrated by
describing each of its components and their interactions.

Delay Controller C The Delay Controller aims to
apply the delay of the Links that connect the nodes belonging
to a federation. The delay is applied from the source node to
the target node, i.e. the Delay Controller applies the delay
constraints modelled to the outgoing traffic. Note that, as there
is one Networking Node per node belonging to a federation,
the Delay Controller applies the delay modelled to those
Links whose source node is the edge/fog/cloud node where it
is deployed.

In this regard, tasks are transmitted by means of workflows
in JSON format (Listing 1). This JSON code has among its
fields the target node of the workflow (Listing 1, field gener-
atedBy), i.e. where the workflow has to be sent. In this way,
when the Delay Controller receives an outgoing workflow
(interaction 1 ), it is able to identify the Link through which
the workflow has to be sent. This also applies to the outgoing
tasks processed in the node where the Networking Node is
integrated (interaction 2 ).

Thus, with this information, the Delay Controller
request to the Synthetic Delay Generator D the current
delay of the Link (interaction 3 ). Note that the delay is
generated synthetically following user modelling. Once the
response is received (interaction 4 ), the Delay Controller
holds tasks during the received delay, thus simulating it. Finally,
when the delay has been simulated, the traffic is forwarded to
the Bandwidth Controller E (interaction 5 ).

Synthetic Delay Generator D Users can model the de-
lay of each Link (average, minimum, maximum, etc.) that con-
nects each node in a federation. Thus, the aim of the Synthetic
Delay Generator is to generate the delay of each Link during
simulation.

Thus, the Synthetic Delay Generator interacts with
the Delay Controller C and with the Network Status
Reporter G of the same Networking Node. In this way,
when any of these components need to know the delay of
a specific Link, they request it to the Synthetic Delay
Generator (interaction 3 and 10 ). Then, the Synthetic
Delay Generator responds to them with the delay of the
Link requested (interaction 4 and 11 ).

Bandwidth Controller E The Bandwidth

Controller aims to apply the bandwidth constraints of
the Links that connect the nodes belonging to a federation.
Thus, the bandwidth is applied from source to target, i.e. the
Bandwidth Controller applies the bandwidth constraints
modelled to the outgoing traffic. Note that, as in the case of
delay, the Bandwidth Controller applies the bandwidth
modelled from source, to target.

Thus, the Bandwidth Controller receives traffic (work-
flows or results related to a processed task) from the Delay
Controller (interaction 5 ). If traffic ti is received and no traf-
fic is being transmitted, the Bandwidth Controller holds the
traffic ti for the time resulting from applying the mathematical
Expression 1. Thus, simulating the time that the traffic would
have needed to be transmitted in a real environment.

TTti =
TSti

LBti

(1)

Where TTti is the transmission time (seconds) required to
send a traffic ti of a specific size TSti (bytes) through a Link
with a bandwidth LBti (bytes/seconds).

On the other hand, if a traffic tn arrives at the Bandwidth
Controller, but there are n − 1 workflows or processed tasks
(traffic) being transmitted or pending to be transmitted through
the same Link over which the traffic tn has to be transmitted,
traffic tn is queued in a FIFO (First In First Out) traffic queue.
So, in this case, the transmission time of the traffic tn can be
determined by the Expression 2. Thus, simulating the time
that the traffic tn would have needed to be transmitted in a real
environment.

TTtn =

(
n

∑
i=1

TSti

LBti

)
+

RTt0

LBti

(2)

Where a) TTtn is the transmission time required to send
a traffic tn with a size of TStn bytes through a Link with a
bandwidth of LBti bytes, b) over which a workflow or processed
task (traffic) t0 is being transmitted and RTt0 bytes of this traffic
remain to be transmitted (when tn arrives), and c) a set of
n − 1 workflows or processed tasks (traffic) are pending to be
transmitted (queued before tn).

Thus, once the delay and bandwidth constraints are
applied, the traffic is sent to the MQTT Client (interaction 6 ),
which forwards it to its target node (interaction 7 ). Finally,
note that for the sake of clarity, interactions 12 and 13 are
described below as part of the Network Status Reporter
G description.

Network Status Reporter G The Task Scheduler of
a federation could need to request the status of the Links (de-
lay and bandwidth use) of the federation. Thus, it can use this
data as input to perform the scheduling of the offloaded tasks.
In this regard, the Network Status Reporter of each node
belonging to a federation is the node that receives this request
and responds to it with the current delay and available band-
width of each Link. Note that, as there is one Networking
Node per node belonging to a federation, the Network Status
Reporter responds with the delay and bandwidth of those
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Figure 12 Networking Node component.

Links whose source node is the edge/fog/cloud node where it
is deployed.

Since the Task Scheduler carries out these requests
through the MQTT protocol, the MQTT Client F is the first to
receive them (interaction 8 ). Then, the MQTT Client forwards
these requests to the Network Status Reporter. Following,
the Network Status Reporter requests the current delay of
each Link to the Synthetic Delay Generator (interactions
10 and 11 ) and the current use of bandwidth of each Link
to the Bandwidth Controller E (interactions 12 and
13 ). Once the Network Status Reporter has gathered
all the requested data, it sends this data to the MQTT Client
(interaction 14 ), which finally forwards the data to the Task
Scheduler.

D. Task Processor
Figure 13 shows a generic Task Processor B (represented
by a red box), all its components (elements within the red box)

and the interaction between them. The main components of
the Task Processor are the Task Manager D , the Task
Performer E and the Task Processor Status Reporter
F . Moreover, Figure 13 also shows how the Task Processor
is deployed on an edge (Task Node), fog or cloud node A
and the interactions that these components could perform with
other artefacts of the edge/fog/cloud node and with the rest of
the IoT system. Below, the Task Processor is illustrated by
describing each of its components and their interactions.

Task Manager D The Task Manager aims to ensure that
the schedule performed by the Task Scheduler of a federa-
tion is followed by the Task Processors that belong to the
federation. Note that, as there is one Task Processor per
node (with computing power) belonging to a federation, the
Task Manager ensures that the schedule performed by the
Task Scheduler is followed by the edge/fog/cloud node A
where it is deployed.

Thus, when tasks reach the Task Processors, as the tasks
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Figure 13 Task Proccessor components.

are sent through the system using the MQTT protocol, the
first component that they reach is the MQTT Client C of the
computing nodes (interaction 1 ). Later, the MQTT Client
forwards these tasks to the TaskManager (interaction 2 ).

The Task Manager D receives, stores (buffer) and sends
these tasks (following the schedule performed by the Task
Scheduler) to the Task Performer E (interaction 3 ), which
performs their processing.

The Task Manager also handles the interdependency
among tasks. Consequently, 1) the Task Manager holds depen-
dent tasks until the arrival of the processing results of the tasks
on which these tasks depend, 2) when these results arrive, the
Task Manager includes in the task the processing results of the
tasks on which it depended 3) Finally, following the schedule
the Task Manager sends the task to the Task Performer for
its processing (interaction 3 ).

Finally, note that for the sake of clarity, interactions 8 and
9 are described below, in the section reserved for the Task
Processor Status Reporter F .

Task Performer E The Task Performer is the compo-
nent of the Task Processor B which performs the processing
of the tasks. The Task Performer simulates the processing of

the tasks holding them the time that would be required for their
processing in a real environment. For this purpose, the Task
Performer applies the expression 3.

PTti =
TSti

CFci /CCBci

(3)

Where PTti is the time (seconds) required to process the
task ti which has a size of TSti bits on a CPU ci with CCBpi
cycles per bit (i.e the cycles that the CPU needs to process a bit)
and a frequency of CFci (i.e. cycles that the CPU can perform
per second). Note that the parameters of the CPU are the CPU
attributes that the user can specify to model the CPU of each
node.

Once a task is processed, as transmitted in JSON, the Task
Performer includes in it fields data such as the timestamp re-
lated to the start of the processing of the task and the timestamp
related to the end of the processing of the task.

Then, the Task Performer sends the processed task to the
MQTT Client (interaction 4 ), which forwards the processed
task to their next target node. For the sake of clarity, interactions
10 and 11 are described below in the section reserved for the
Task Processor (TP) Status Report F .
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Task Processor Status Reporter F The Task
Scheduler of the federation could need to know the status of
the task processing, i.e. CPU use of each Task Processor B
and the tasks pending of processing. So, the Task Processor
Status Reporter has the same aim that the Network
Status Reporter of the Networking Node (Section C),
although in the context of the Task Processor. Thus, in this
case, the data that is reported is related to the use of the CPU
and RAM of the Task Processor (by the Task Performer
E ) and the status of the Task Manager D (Tasks pending
to be processed). Thus, the Task Scheduler can use this
data as input to perform the scheduling of the offloaded tasks.

The Task Scheduler sends these requests through the
MQTT protocol, so the MQTT Client C is the first to receive
them (interaction 6 ). Then, the MQTT Client forwards these
requests to the Task Processor Status Reporter (interac-
tion 7 ). Once the Task Processor Status Reporter re-
ceives a request, it requests the tasks pending to be processed
(their size, estimated queue time, etc.) to the Task Manager D
(interaction 8 ), and the status of the use of the CPU and RAM
to the Task Performer E , (interaction 10 ).

When these components receive the requests from the Task
Processor Status Reporter, they respond to it with the
requested data (interactions 9 and 11 ). So, once the Task
Processor Status Reporter gathers all the CPU, RAM
and task processing related data, it forwards this data to the
MQTT Client (interaction 12 ), which sends it to the Task
Scheduler (interaction 13 ).
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