
Journal of Object Technology | RESEARCH ARTICLE

From two-way to three-way: domain-specific model
differencing and conflict detection

Manouchehr Zadahmad Jafarlou∗, Eugene Syriani∗, and Omar Alam‡

∗Université de Montréal, Canada
‡Trent University, Canada

ABSTRACT In collaborative work, developers evolve their models in parallel, leading to substantial differences and conflicts.
To better consolidate these changes, developers need to understand the differences in terms of syntax and semantics of
the models. Despite myriad efforts, the existing version control systems and model comparison tools focus on the generic
models, are hardly adaptable to a domain-specific language (DSL), and primarily present syntactical changes to the developer.
Furthermore, they report differences and conflicts of domain-specific models based on their abstract syntax instead of the
concrete syntax of the DSL. To address these issues, we previously introduced DSMCompare to detect fine-grained and
semantic differences between pairs of model versions and present the changes in the concrete syntax of the DSL. In this
paper, we have further enhanced our practice by considering a three-way model comparison, typical in the context of version
control systems. DSMCompare can now report differences coming from either version as well as conflicts. To detect semantic
differences and conflicts, our approach relies on the DSL engineer specifying semantic differencing patterns in an editor adapted
to the DSL. To evaluate DSMCompare, we reverse-engineered the commit history of several open-source projects where
Java-based code refactoring changes occur. We show that DSMCompare effectively finds these semantic differences and
conflicts with high accuracy.

KEYWORDS Model-Driven Engineering, Model versioning, Model differencing, Graphical concrete syntax.

1. Introduction
In model-driven engineering (MDE) projects, models are con-
sidered essential building blocks. Developers utilize domain-
specific languages (DSL) to create models of the system (Kelly
& Tolvanen 2008). Throughout the collaborative development
process, multiple developers may modify the models (David et
al. 2021). To manage these changes, MDE developers rely on
version control systems (VCS) to store the models in a repos-
itory, track the change history, manage simultaneous changes,
and view the differences between different model versions. Al-
though some VCS have been designed specifically for mod-

JOT reference format:
Manouchehr Zadahmad Jafarlou, Eugene Syriani, and Omar Alam. From
two-way to three-way: domain-specific model differencing and conflict
detection. Journal of Object Technology. Vol. 22, No. 1, 2023. Licensed
under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2023.22.1.a5

els (Kramler et al. 2006; Altmanninger et al. 2008; Brosch et
al. 2010; Koegel & Helming 2010), most practitioners use text-
based VCS like Git and SVN. However, these VCS are not ideal
for visualizing the differences in the history of a model in a way
that is easily understandable Zadahmad et al. (2019). Generic
model-based differencing tools, such as EMFCompare (Brun
& Pierantonio 2008), provide differences results for classes,
attributes, and association changes. But, these results are pre-
sented in the abstract syntax of the DSL, which may not be
familiar to DSL users. Additionally, for large models with many
elements, the fine-grained differences presented can be over-
whelming for DSL users who can not track the semantics of
the changes (Zadahmad et al. 2022). Therefore, there is a need
for model-based differencing tools that can present difference
results in a way that is more user-friendly for DSL users.

Previously, Zadahmad et al. (2019) introduced DSMCom-
pare to address the aforementioned issues. It presents all dif-
ferences between two model versions in terms of their concrete

An AITO publication

http://dx.doi.org/10.5381/jot.2023.22.1.a5

syntax. Additionally, it aggregates fine-grained differences into
semantically meaningful coarser differences expressed in the
DSL semantics. However, DSMCompare uses two-way differ-
encing, which is inadequate for many usage scenarios of VCS.
When branching is used extensively, committing to the main
branch must consider at least three versions of the model: the
previous common version from the master branch, any version
from already committed branches, and the version of the current
branch. A two-way differencing tool produces different model
differences based on which version is used as the base, making
it inappropriate for collaborative modeling settings using VCS.
For example, suppose a developer deleted an element in one
version, and no change occurred in another. In this situation,
the two-way differencing tool cannot determine whether a de-
veloper added an element or another developer deleted it. The
answer will depend on which version is used as the base model.

Three-way differencing and merging are fundamental tech-
niques in modern VCS (Altmanninger et al. 2009). Changes
introduced concurrently by two versions must be merged using
a common ancestor version. This is achieved by identifying
the differences between two versions by comparing them with
their common ancestor, which produces correct difference sets.
The VCS reports changes specific to each version and con-
flicts where both versions have modified the same parts. After
the conflicts have been resolved, the changes are merged into
a single new version. This paper presents a novel approach
for three-way domain-specific model differencing and conflict
detection, which can be applied to existing two-way model dif-
ferencing tool. In particular, we implemented this approach in
DSMCompare (Zadahmad et al. 2019, 2022). Although n-way
differencing (Owhadi-Kareshk et al. 2019; Leßenich et al. 2018)
is also possible, we focus on three-way differencing because it
occurs more frequently in practice. However, we discuss the
possible adaptations needed to support n-way differencing.

To summarize, the contributions of this paper include:

– We provide a comprehensive solution for moving from a
two-way to three-way model differencing.

– We provide a comprehensive conflict detection mechanism
that can identify both fine-grained and semantic conflicts,
such as equivalent changes and contradicting conflicts that
may arise from three-way differencing.

– We enable DSL engineers to define semantic differencing
rules for handling conflicts.

– To aid users in understanding three-way differences and
conflicts, we offer visualization support with a graphical
concrete syntax.

– Our approach is implemented in an EMF-based tool, which
we openly share, along with a dataset of 288 Ecore models
annotated with semantic differences and conflicts.

The rest of this paper is structured as follows. In Section 2,
we provide an overview of the approach and introduce a running
example. In Section 3, we present the necessary features for
a three-way domain-specific differencing tool and justify our
use of DSMCompare by comparing existing tools. In Section 4,
we explain how we extend existing two-way differencing tools

to the three-way approach and discuss how it generates fine-
grained three-way diffs. Section 5 discusses how rules are
used to semantically lift the fined-grained differences. We also
explain how the concrete syntax of the original DSL can be
leveraged to present the difference model in Section 6. Section 7
and Section 8 present the different types of conflicts and the
algorithms we use to identify them in the difference model. In
Section 9, we evaluate the effectiveness of our approach on
the commit history of many open-source projects. Finally, we
discuss related work in Section 10 and conclude the paper in
Section 11.

2. Running example
We illustrate three-way domain-specific model differencing us-
ing the following running example. In the context of an e-
commerce company, business experts, Alice and Bob, are tasked
with defining the process of purchase orders and payments. To
formally model this process and ensure crucial properties, such
as process completeness, they model workflows using Workflow
Nets (WN) (van der Aalst 1998). WN is a particular class of
Petri Nets where there is a single source place, a single sink
place, and all transitions are on a path from the source to the
sink. In WN, transitions represent workflow tasks, places repre-
sent their pre/postconditions, and tokens represent the resources
used in the workflow. The V0 model in Figure 1 shows an
example of a WN model.

Charlie, the DSL engineer of the company, has built an
Eclipse-based graphical modeling editor for WN that she gen-
erated from an Ecore metamodel of the DSL and a graphical
concrete syntax using Sirius (Viyović et al. 2014). Figure 2
shows the Ecore metamodel of the WN DSL used in the com-
pany. She also mounted the editor with EGit (Eclipse EGit
2023) to enable the business experts to collaborate with a Git
version control system installed in Eclipse. Since Alice and
Bob can work simultaneously on the same WN model, they
are likely to encounter conflicts when integrating their work
together. However, EGit reports differences and conflicts at the
XMI level of models in terms of abstract syntax concepts. As
Alice and Bob are not software engineers acquainted with these
concepts, Charlie wishes to offer them a domain-specific model
comparison tool.

2.1. Customizing DSMCompare for WN
Unlike tools like EMF Compare (Brun & Pierantonio 2008) and
EMF DiffMerge (EMF DiffMerge 2023), DSMCompare (Zadah-
mad et al. 2022) is an Eclipse-based tool that reports differences
using the same concrete syntax as the original DSL. Further-
more, it can report more coarse-grained differences (i.e., se-
mantic differences) and hide fine-grained differences that are
irrelevant to the business experts. However, up to now, DSM-
Compare only supported two-way differencing, which is not
suitable for most collaboration scenarios like the example above.
Therefore, we continue the running example with the new DSM-
Compare that is presented in this paper.

To integrate DSMCompare in the WN editor, Charlie pro-
vides as input the Ecore metamodel and the odesign representa-

2 Zadahmad et al.

Pending receive

PayChoice <- OnlineChoice

payOnline

CODChoice payCOD

OnlinePayReceived

checkCredit

choosePay CODPayReceived

checkCash

Completed

PayChoice~

~

~

Diff_012 model with fine-grained differences

Pending receive

PayChoice <- OnlineChoice

payOnline

CODChoice payCOD

OnlinePayReceived

checkCredit

choosePay CODPayReceived

checkCash

Completed

PayChoice~

~

~

Remove
EFCStructure

Remove
ImplicitPlace

Diff_012 model with semantic differences

Pending receive

PayChoice <- OnlineChoice

payOnline

CODChoice payCOD

OnlinePayReceived

checkCredit

choosePay CODPayReceived

checkCash

Completed

PayChoice~

~

~

Remove
EFCStructure

Remove
ImplicitPlace

RemImplPlace /
RemEFC conflict

Diff_012 model with semantic conflicts

Final difference model presented to user

Pending receive

PayChoice

payOnline

payCOD

OnlinePayReceived

checkCredit

CODPayReceived

checkCash

Completed

Pending receive

OnlineChoice

payOnline

CODChoice payCOD

OnlinePayReceived

checkCredit

choosePay CODPayReceived

checkCash

Completed

PayChoice

V0 Pending

receive

OnlineChoice

payOnline

CODChoice

payCOD

OnlinePayReceived

checkCredit

CODPayReceived

checkCash

Completed

->~Alice's Bob's Equivalent changes

Figure 1 Domain-specific three-way comparison of WN with DSMCompare

Figure 2 Metamodel of the Workflow WN DSL

tion description of the concrete syntax of WN into DSMCom-
pare. Then, DSMCompare automatically generates a domain-
specific model comparison tool tailored to compare WN models,
we will call WNCompare.

WNCompare offers two editors. One editor is used by Alice
and Bob to present and edit the differences between WN models.
To visually present differences, WNCompare provides three
default icons to each concrete syntax representation, annotated
with a + / × / ∼ symbol to represent additions, deletions, and
modifications, respectively. Additionally, WNCompare offers a
default concrete syntax to depict semantic differences, which
pertains to editing semantics (i.e., we do not map to the semantic
domain as in Maoz et al. (2011)). Charlie can modify these
graphics as she sees fit for WN.

The second editor in WNCompare enables Charlie to design
the semantic difference rules specific to WN models. She de-
signs three known refactoring patterns for WN, formalized in
Toyoshima et al. (2015). They improve the execution of the
WN by removing redundant elements in a way that does not
change the observable behavior of the net. The Remove Implicit
Place pattern removes a place connected to two transitions if
there is already a path between these transitions. In the Remove
extended free-choice (EFC) structures pattern, if a set of places
are all connected to the same set of transitions, we introduce
an intermediate transition and place to direct the flow from the
set of places to the set of transitions. The third pattern is called
Remove TP-cross structures where, if a set of transitions are
all connected to the same set of places, we introduce an inter-
mediate place and transition to direct the flow from the set of

From two-way to three-way: domain-specific model differencing and conflict detection 3

Figure 3 Differences and conflicts reported by EMFCompare
for the running example

transitions to the set of places. Due to the complexity of these
three refactoring patterns, Toyoshima et al. (2015) provide an
algorithm to execute them in that order.

The top right model in Figure 1 shows a difference model
produced by WNCompare, reporting fine-grained differences,
semantic differences, and semantic conflicts. The semantic
differences and conflicts they indicate refer directly to these
refactoring patterns.

2.2. Collaboration scenario
Powered with WNCompare, Alice and Bob can use the WN
editor and collaborate. Figure 4 shows their development time-
line, working on their respective branch forked from the master
branch using EGit. Assume the initial version in the master
branch is the V0 model in Figure 1. This WN model models the
payment process for a delivery service (this is a simplification
of the example used in Toyoshima et al. (2015)). There are
two pending deliveries represented by the tokens in the Pending
place. When the customer receives the package, he can either
pay online or cash at delivery (COD). Each payment option has
its specific checkpoints before the delivery is completed. The
structure of this WN ensures that each delivery is paid by only
one method.

Alice and Bob branch from this version and build versions
V1 and V2, respectively shown at the top of Figure 1. Alice
refactors V0 by removing the implicit place CODChoice and
renames the place OnlineChoice to PayChoice. Her change

simplifies the WN model by reducing the number of places and
arcs, while still ensuring a mutually exclusive payment method.
In the meantime, Bob refactors V0 by removing the EFC of
the places for online and COD choices, and introduces the
intermediate choosePay transition and PayChoice place. While
his changes also ensure the mutual exclusive property, it reduces
the coupling of the places modeling the choice. Alice is the
first to push her work to EGit and requests a merge. EGit
accepts the request and merges her model to the master branch
because there has not been any change to base model V0 since
Alice branched out. Now, the head in EGit is Alice’s version
and points to version V1. Later, Bob finishes his work and
requests a push to the master branch. EGit rejects this merge
request because Bob’s model is incompatible with the latest
version of the base model since Alice has already changed it.
To handle this issue, Bob pulls the latest version from the VCS,
i.e., requests V1 to his local machine. Bob then needs a three-
way differencing engine to understand where and why a conflict
has occurred. More specifically, they are in conflict because
Alice has removed the CODChoice place while Bob changed its
outgoing arc.

At this point, suppose Bob used EMFCompare, a common
model-based three-way comparison tool, instead of DSMCom-
pare to understand the differences between his version V2, the
common ancestor V0, and Alice’s version V1. He would be
presented with fine-grained differences and conflicts, as shown
in Figure 3. As an expert in WN, he would have had a hard
time making sense of abstract details such as “inArcs delete”,
“outArcs add”, “places add”, or “transitions add”. To him,
these are implementation details of the tool that lack meaning.

Now suppose Bob uses WNCompare. He selects the three
model versions (his, Alice’s, and their common ancestor) and
launches WNCompare. After processing the differences, WN-
Compare presents the final difference model Diff012 in the ed-
itor. As shown at the last step of Figure 1, the differences are
expressed using the original concrete syntax of WN. It also
outlines the two semantic changes stating that Alice removed
the implicit place CODChoice and that Bob removed the EFC
structure by introducing the choosePay transition. Thanks to
WNCompare, Bob can now comprehend the reason for this
conflict at the same level of abstraction as the WN models, a
familiar level to Bob. Then, he can reconcile the conflict by him-
self or discussing it with Alice. Note that this paper only focuses
on the detection and representation of differences and conflicts
to DSL users in a domain-specific way, not their reconciliation
and merge.

3. Features for three-way domain-specific
model differencing

The comparison stage produces a list of differences and sim-
ilarities by comparing two or three versions of the same arti-
fact. There are two approaches for model comparison including
operation-based and state-based comparison (Brosch, Langer,
et al. 2012). Operation-based comparison relies on specific
tools to edit and collect the changes from the user. In contrast,
state-based operation does not restrict users to any specific tools

4 Zadahmad et al.

Alice

Master

Bob

V0

V0

V1

V1

V2

V0
t1

Branch,Pull

t2

Branch,Pull

t3

t4

t5

t9t6
Push,Merge fail

t7 Pull,Merge

Push,Merge

t8
Three-way model differencing to

reconcile conflicts between (V0,V1,V2)

V012

V3

Modify,Commit

Modify,Commit

Push,Merge

Figure 4 Collaboration scenario where three-way differencing is needed

to manipulate the models and does not need any module to
collect the changes. In practice, state-based comparison is more
popular and, thus, the focus of this paper. There are several
state-based model comparison engines able to process models
from any DSL (Stephan & Cordy 2013), such as EMFCom-
pare (EMF Compare last accessed January 2021), DiffMerge
(EMF DiffMerge 2023), DSMCompare (Zadahmad et al. 2022),
Maudeling (Rivera & Vallecillo 2008), DSMDiff (Lin et al.
2007), and Epsilon-based Three-way Merging Process (E3MP)
which uses the Epsilon Comparison Language (Sharbaf & Za-
mani 2020).

The two-way comparison in state-based approaches includes
a matching step and a diffing step. The matching step finds
matching elements between the two model versions. Matching
identical elements can be done via identifiers, similarity algo-
rithms, or other heuristics. The diffing step uses the matched
elements to find the differences between the two models.

Three-way differencing usually combines the results of two
pairwise two-way differencing of each model with their com-
mon ancestor. Rubin & Chechik (2013) and Schultheiß et al.
(2021) introduce novel approaches that are faster than the pair-
wise method, though Schultheiß et al. (2021) preferred a pair-
wise comparison over a straight rating of entire matches to eval-
uate almost correct matches better than completely incorrect
matches.

In what follows, we list the requirements for a domain-
specific three-way comparison tool. We discuss to what extent
existing model comparison tools satisfy these requirements.

The first three requirements are necessary for domain-
specific comparison. Meeting these requirements allows for
the systematic use of DSLs to represent the various aspects
of a domain-specific comparison tool. As a result, it allows
the tool to use DSLs to support higher-level model comparison
abstractions than generic fine-grained differencing.

Meta-model agnostic. The tool can compare models conform-
ing to any metamodel. This is necessary for the domain-specific
difference so that models in any DSL can be compared.

Concrete syntax. The tool presents differences in the con-
crete syntax of the DSL. This improves the user experience and
allows users to understand differences in the notations they are
accustomed to while using the DSL.

User-defined semantics. The tool provides features to define
differences meaningful to the DSL. Semantic differences are
often defined in terms of rule patterns by the DSL engineer. This
feature requires proper management of semantic rules, such as
an editor and the possibility to infer them. This is necessary for
semantic difference rule management so that new semantic rule
patterns can be defined and existing rules can be updated by a
DSL engineer.

The next five requirements are specific to three-way compar-
ison. They enable the tool to detect fine-grained and semantic
differences and conflicts.

Fine-grained difference detection. The tool can detect fine-
grained differences based on the abstract syntax of the models
provided. This is a fundamental requirement for any compar-
ison tool. These differences capture editing changes, such as
additions, deletions, modifications or rerouting of associations.

Semantic difference detection. The tool can detect semantic
differences based on a predefined semantic rules for the DSL. A
semantic difference is a coarsed-grained difference that groups
fine-grained differences satisfying certain conditions. Seman-
tic differences enhance the DSL user understanding when the
changes are reported. This feature exposes meaningful differ-
ences in terms of the DSL. It also reduces the verbosity of the
reported changes by hiding the fine-grained differences encap-
sulated in a semantic difference.

Equivalent change detection. The tool can detect the same
changes performed in different model versions. This is applica-
ble to fine-grained and semantic differences. It prevents dupli-
cating changes and reduces the number of elements to ultimately
merge. This feature is exclusive to three-way differencing.

Fine-grained conflict detection. The tool can detect conflicts
between contradicting fine-grained changes in different model
versions. Ultimately, conflicts will have to be resolved to create
a valid merged model. This feature is exclusive to three-way
differencing.

Semantic conflict detection. The tool can detect conflicts
between contradicting semantic differences in different model
versions. This features allows to reason beyond the abstract
syntax of the model and facilitate the work of the DSL user
when reconciling the conflicts.

From two-way to three-way: domain-specific model differencing and conflict detection 5

Table 1 Model comparison tools satisfying the requirements: satisfied, G# partially satisfied, # not satisfied, ⊛ satisfied in this
paper.

Requirement / Tool DSMDiff Maudeling DiffMerge E3MP EMFCompare DSMCompare

Meta-model agnostic

Concrete syntax # # # # #

User-defined semantics # # # # G#

Fine-grained difference detection

Semantic difference detection # # # # G#

Fine-grained equivalent change detection # # ⊛

Fine-grained conflict detection # # ⊛

Semantic conflict detection # # # # ⊛

Explicit difference presentation

Headless API #

Two-way differencing #

Three-way differencing # # ⊛

Finally, the last four requirements focus on the degree of
interaction with the model comparison tool. They enable the
tool to present the differences, the DSL user to interact with the
report, and to be integrated with other related tools.

Explicit difference presentation. The tool explicitly presents
the results of the comparison, including the differences and
conflicts. The differences can be represented in a dedicated data
structure, a distinct model, or with traces showing matchings
and differences. DSL users can query and visualize the results.
Some tools only show the excerpt of the model involved in the
differences, while others show the whole model.

Headless API. The tool can be used interactively with the user
or through API. This makes the comparison tool accessible via
an API for display on any device. It enabled its integrated with
other tools, such as VCS or enable extensions.

Two-way differencing. The tool can compute two-way com-
parison and produce differences. This feature allows the DSL
user to use the tool when comparing two models.

Three-way differencing. The tool can compute three-way
comparison and produce differences and conflicts. This feature
allows DSL users to use the tool when they are collaborating
together, like in Section 2. Ultimately, the conflicts can be
reconciled and the differences merged into a single valid model.

Table 1 shows to what extent different comparison tools sup-
port each requirement of a model comparison tool. All the tools
we consider in the table are meta-model agnostic and can thus
be used for any DSL. DSMCompare is the only tool supporting
the reuse of the DSL’s concrete syntax when presenting differ-
ences. EMFCompare provides extension points to manually

program coarse-grained domain-specific differences (EMFCom-
pare 2023). The scope of the newly added difference types
is limited to the functionalities that existing difference types
provide. E3MP does not support semantic difference detec-
tion and only focuses on conflict detection (Sharbaf & Zamani
2020). However, by default, it only outputs a list of fine-grained
matches and differences using Epsilon Comparison Language
(Kolovos 2009). To describe conflict detection patterns, the
user must define them in Epsilon-based scripts, such as the Ep-
silon Validation Language (EVL), Epsilon Pattern Language
(EPL), or Epsilon Object Language (EOL). They are impera-
tive languages that combine object-oriented programming and
OCL constraints. Also, for EMFCompare, updating the se-
mantic rules can be problematic since it is not tailored to the
DSL’s syntax. In contrast, DSMCompare supports this feature
by providing a generated domain-specific editor to define new
semantic difference rules.

With no surprise, all tools can detect the fine-grained dif-
ferences. DSMCompare can detect semantic differences that
are defined as rule pattern models tailored to the DSL. EMF-
Compare support semantic difference detection but requires to
program the rules in Java. But it needs expert software engi-
neers to develop the domain-specific semantic rules. Maudeling,
DSMDiff, and DSMCompare do not support three-way dif-
ferencing; thus, they cannot detect equivalent and conflicting
changes. E3MP only supports three-way differencing and does
not focus on two-way differencing, although the underlying
Epsilon Compare Language supports it. DiffMerge, and EM-
FCompare can detect equivalent and conflicting fine-grained
differences.

All the tools represent the comparison results (differences or

6 Zadahmad et al.

conflicts when applicable) as an explicit fine-grained difference
model. Moreover, DSMCompare also represents the semantic
differences in the model. EMFCompare models semantic dif-
ferences as a sub-category of fine-grained differences. E3MP
only creates a report for semantic conflicts but does not model
semantic differences explicitly. The other tools do not model
semantic differences. Finally, all the tools, except DSMDiff,
offer API that may be used interactively with the user or other
tools.

From this comparison, we deduce that DiffMerge, EMFCom-
pare, and E3MP already support three-way differencing, while
DSMDiff, Maudeling, and DSMCompare could be extended to
three-way differencing. However, only EMFCompare partially
support semantic differences.

Since DSMCompare is the only tool to already fully support
domain-specific differencing, we choose this tool to demon-
strate how to turn a two-way differencing tool into a three-way
differencing tool. The process can be applied on any other tool
listed, but it would require to make it domain-specific in the first
place.

4. Three-way differencing support in DSMCom-
pare

Our implementation of DSMCompare relies on EMFCompare to
detect fine-grained differences and conflicts. We could have
chosen another model differcing tool as long as it follows a
certain API. The following list shows the minimum features that
such a tool must provide to be plugged in DSMCompare:

Match list is composed of a set of pairs of identical fine-
grained model elements from the two versions. Their identifica-
tion is determined via unique identifiers or similarity heuristics.

Diff list. is composed of a set of differences between a pair of
elements in the match list. The difference is regarding attribute
or reference value changes.

Equivalent diff list is composed of a set of pairs from the diff
list where the two elements have made the same modifications,
showing an equivalent user intention.

Conflict list is composed of a set of pairs from the diff list
where the changes in both elements have a contradicting user
intention.

In the rest of this section, we explain how we adapt DSM-
Compare to support three-way domain-specific model differ-
encing. We illustrate it with WNCompare from the running
example presented in Section 2.

4.1. Generating a three-way differencing metamodel
First, we outline the generation of the difference metamodel in
the context of two-way differencing. Then, we present the new
extension to three-way differencing. Finally, we discuss how to
handle semantic differences and conflicts.

4.1.1. Generated metamodel for two-way differencing
DSMCompare supports two-way differencing by creating a
new metamodel DSDiffMM from the original metamodel of the

Figure 5 An excerpt of three-way Domain-Specific Differ-
ence metamodel (DSDiffMM_3Way)

DSL MM. We refer to Diff12 as an instance of DSDiffMM that
contains the results of domain-specific two-way differencing.
The approach begins by creating a clone of MM that inherits all
the DSL structural features. We then add new structural features
that allow us to perform two-way differencing. In particular, for
each meta-class C of MM, we create a corresponding difference
class DiffC in DSDiffMM that extends it with ADD, DELETE, or
MODIFY values to denote changes for objects. Each attribute
of C is duplicated in DiffC to hold the new value in the case of a
MODIFY. Each association Asc between meta-classes C1 and C2
in MM is refined into an intermediate class DiffAsc to hold ADD
and DELETE values to denote changes for links.

4.1.2. Generated metamodel for three-way differencing
To transition from two-way to three-way differencing, we ex-
pand the original metamodel MM in the DSL to incorporate se-
mantic changes and conflicts in a three-way manner. The idea
is to reuse the structural features and style from the original
DSL to remain in the spirit of the DSL. A related technique
is the ramification of metamodels for domain-specific model
transformations (Kühne et al. 2009). This technique emphasizes
the importance of aligning meta-models with the specific do-
main, facilitating effective model transformations within that
context. By maintaining fidelity to the original metamodel, we
ensure compatibility and coherence with the underlying model,
enabling meaningful representation of model differences in a
domain-specific way. This involves creating a new metamodel,
DSDiffMM_3Way, which replaces the DSDiffMM used for two-way
differencing. The DSDiffMM_3Way metamodel allows us to cap-
ture specific data that is unique to three-way differencing, such
as authorship information, changes in single- and multi-valued
attributes and associations, fine-grained and semantic differ-
ences, as well as fine-grained and semantic conflicts, including
the types of conflicts.

From two-way to three-way: domain-specific model differencing and conflict detection 7

The process of generating the three-way DSDiffMM involves
duplicating all the classes in the MM metamodel, similar to gener-
ating the two-way version, and adding new classes that enable
three-way differencing and conflict detection. We refer to this re-
sulting difference model as Diff012. To illustrate this, we use the
WN metamodel MM shown in Figure 2. Figure 5 shows an excerpt
of the generated DSDiffMM_3Way, which includes some classes
that DSDiffMM_3Way adds to MM. The DSDiffMM_3Way metamodel
creates a detailed comparison model between three versions of
the original model: V1, V2, and the common ancestor. Changes
made by V1 and V2 to the common ancestor are stored in new
DiffC classes. These classes indicate the type of modification
made by each version using an array of DiffKind values. In a
three-way comparison, the size of the array is 2, with indices
ranging from LEFT to RIGHT. An index with a NIL value indi-
cates that the corresponding version did not modify that particu-
lar element. Each DiffC class is also assigned a ConflictKind
value, which identifies the type of conflict.

In the two-way process, DSMCompare needed to use an
intermediate class called DiffAsc to represent each original
association Asc. In the WN example, the DSDiffMM_3Way
metamodel in Figure 5 inserts an intermediate class called
DiffTransition_outArcs for the outArcs association from a
transition to an intermediate place. However, if this intermedi-
ate class only points to the target of outArcs, we cannot track
situations where both versions move the association to different
targets. Therefore, we add a new outgoing association called
targetCA to keep a record of the original target in the common
ancestor.

The target outgoing association of DiffAsc records the change
of one version. If both versions modify the target, then two in-
stances of DiffAsc would be present in the Diff012, as indicated
by the [0..2] cardinality of diffoutarcs in Figure 5. To ex-
tend this to n-way differencing, we would need to change the
cardinality to [0..n].

The same DiffKind enumeration is used for these interme-
diate classes, where a MODIFY value indicates that the target
of the association has been modified, i.e., a move change as
reported in EMFCompare. It is important to note that unlike
class-level conflicts, an association can be conflicting with an-
other association and is not bound within a single object. There-
fore, we extend DiffAsc with a ConflictGroup attribute, where
all DiffAsc instances having the same conflict group value are
conflicting with each other.

The new attributes generated for two-way differencing also
need to be adapted. The new generated attributes new_A from
the original attributes A are now typed as an array of the type of
A. The array size is 2 for three-way differencing (dynamic for
n-way), indexed from LEFT to RIGHT order. For each attribute
A, we also add a new attribute A + ’ConflictKind’ to track if the
value modified in V1 and V2 results in a conflict. In addition,
one of the improvements we made is the ability to trace changes
to multi-valued items, i.e., arrays of values or associations.

4.1.3. Tracking conflicts and provenance In three-way
differencing, we must consider that differences come from dif-
ferent versions and authors. This raises different situations

depicted by the new ConflictKind enumeration with three val-
ues, as shown in Figure 5. CONTRADICTING changes indicate
that two versions made different changes to the same element.
Therefore, the changes on the two versions contradict each other
and both changes cannot be applied. EQUIVALENT changes
indicate that two versions made similar change edits to the same
element. Therefore, we need to link them together and mark
them as equivalent. NIL indicates that only one version made a
change to an element.

We define an Author enumeration to keep track of the version
accountable for each change. The values LEFT and RIGHT each
of the two versions, say V1 and V2 respectively. We use the
value BOTH to indicate that both versions applied the same
change. NIL is reserved for an initial and default value.

Extending to n-way differencing would require replacing this
enumeration with a key-value dictionary added to each class
in DSDiffMM_3Way. In this case, the key represents the class or
attribute name, and the value holds a list of integers. We assign
each version to a positive number. If the change comes from
a single version, the list contains its unique number. The list
enumerates all the corresponding numbers if it comes from two
or more versions.

4.1.4. Identifying semantic differences and conflicts
Three-way differencing requires a proper representation of con-
flicts. In DSDiffMM_3Way, we revise the SemanticDiff class to
have a provenance (the Author enumeration), a meaningful de-
scription (the name attribute) of the differences, and keep track
of any object it involves. The newly added SemanticConflict
class in Figure 5 must also keep track of any semantic difference
since conflicts can occur between fine-grained and semantic dif-
ferences, like after step 3 of Figure 1. Each SemanticDiff object
represents a coarse-grained difference that groups fine-grained
differences into a singular difference that is domain-specific.
The object is created by applying its corresponding semantic
difference rule on the Diff012 model. The SemanticConflict
object represents a contradicting conflict between V1 and V2
involving at least one semantic difference.

4.2. Three-way comparison
As shown in Figure 1, we organize DSMCompare into three
components. Here, we discuss the Comparison component (Step
1 in Figure 1). This component relies on the output that EM-
FCompare produces. It calls the three-way difference API by
providing the V0, V1, and V2 models.

The Comparison component builds the Diff012 model by cre-
ating the diff classes and associations, and setting the new values
of attributes by querying the output of EMFCompare. Like EM-
FCompare, the Diff012 model contains only the elements subject
to change and their context. However, it should be noted that
the output of EMFCompare primarily focuses on providing in-
formation regarding conflicts between fine-grained differences.
Thus, we developed a four-stage procedure in the Comparison
component.

First, we group the fine-grained differences produced by
EMFCompare using similarity factors. For example, all changes
to attributes of the same class are grouped together. The same

8 Zadahmad et al.

goes for associations. Second, we collect additional information
for each group. For example, we gather the attribute values
shared between V1 and V2, such as the class type and original
value from V0. For multi-valued attributes, EMFCompare re-
turns one difference for each item modified in the list. Thus, we
aggregate all the changes reported for that attribute and divide
them into two lists: one for each version. At this point, we
can already compare the values between V0, V1, and V2 and
determine if the modification of the attribute is equivalent.

Third, we calculate the inter- and intra-dependencies of each
group to determine the order in which DSMCompare will create
the elements in Diff012. For example, if both an attribute and its
class change, DSMCompare must first create the corresponding
diff class before setting its attributes. Thus, we set the attribute
to depend on its class. If a class is deleted in one version, its
outgoing associations are also. Therefore, associations depend
on their source object within their group. Associations with the
same conflictGroup value are also grouped together. We then
sort each group according to the number of their dependencies
in ascending order.

Lastly, we transform the fine-grained difference groups into
the relevant instances of DSMDiffMM elements, and construct the
Diff012 model. DSMCompare transforms one group at a time
instead of processing each difference individually to consider
the changes from all versions in a single diff object, thus re-
ducing verbosity. The process starts by creating a diff element
(class diff or association diff). Then, we copy the associations
and the values of all attributes from the common ancestor to
the diff element. Finally, according to the type of difference
(class, association, or attribute) and the kind of change (add,
delete, or modify) applied to the element in each version, we
set the diffKind and conflictKind attributes according to Sec-
tion 4.1.3.

5. Semantic differencing
First, we define what semantic differences are. Then, we outline
the specification of the semantic difference rules in the context
of two-way differencing. We then present the new extension to
three-way semantic differencing We also outline how semantic
rules can be generated automatically.

5.1. Semantic differences
In DSMCompare, a semantic difference is defined as SD =
⟨Meaning, Constraints, Context, Filters⟩. Constraints is a set
of constraints over a list of fine-grained differences. For exam-
ple, Figure 7a shows the constraints defined as a graph as well
as a condition that the graph pattern must satisfy. Filters is a list
of fine-grained differences that are present in Constraints. It is
used to hide the fine-grained differences that are encapsulated in
the semantic difference. Context is a list of fine-grained differ-
ences that are present in Constraints. They are the fine-grained
differences related to the semantic difference after lifting to
provide a context to the semantic difference meaning. Meaning
is a string expressed in the vocabulary of the semantic of the
DSL and the editing semantics of the Constraints. It is the inter-
pretation of semantically-lifting the fine-grained differences.

We implement semantic differences in DSMCompare in
three steps.

5.1.1. Aggregation of fine-grained differences Funda-
mentally, computing the difference between models investigates
syntactic changes of what has been added, deleted, or modified.
As we have shown in (Zadahmad et al. 2022), the difference
report tends to be very verbose in the case of domain-specific
models. Therefore, one way to simplify the differences reported
is to encapsulate them into a coarse-grained difference that
groups related fine-grained differences. This relation between
a coarse-grained difference and its fine-grained differences is
specified in a semantic difference rule. For example, Figure 7a
illustrates the “Remove Implicit Place” SDRule. The aggrega-
tion of fine-grained differences is stated in the pattern of the
semantic difference rule as a set of constraints (c.f. the Con-
straints component of the definition of SD). In this example, a
transition (labeled 1) must have at least two outgoing arcs to
two places (labeled 3 and 4). One of these places (labeled 4)
must be an implicit place: there is already a path from the other
place to its outgoing transition (depicted in the constraint). The
implicit place and its adjacent arcs must have been deleted in
one version. In conclusion, the aggregation step encapsulated
fine-grained differences.

5.1.2. Hiding verbose differences The encapsulated fine-
grained differences can be hidden from the user to reduce the
verbosity of the reported differences. However, not all fine-
grained differences should be hidden to help the user understand
the semantic difference with additional context. In the example,
only the arc labeled 5 is filtered, while the deleted arc and place
(labeled 2 and 4) are persisted.

5.1.3. Assigning a meaning and a context The name of
the semantic difference is essential to be meaningful in terms of
the editing semantics of the aggregated fine-grained differences.
Typically, the name represents common patterns in the DSL,
such as refactoring or behavioral patterns. In the example,
the concept of “implicit place” is not part of the syntax of
WPN but of the semantics of a refactoring pattern. Moreover, a
context is needed to understand which place plays the role of
the implicit place and which transition ends the common path
in the model. Thus, the semantic difference is associated with
the place labeled 3 and the transition labeled 6.

According to Jackson & Ladd (1994), a semantic difference
must use the vocabulary of the semantics, not the syntax: it must
relate to the behavior of the changes. In DSMCompare, the
name of the semantic difference must appropriately refer to the
meaning of the changes (the Meaning component fulfills that).
They also state that referring to a slice of the syntactic change
is useful. In DSMCompare, the Context component fulfills that.
They also argue that it must be automatically identified by the
tool, which DSMCompare does by applying transformations
automatically on the Diff012 model.

5.2. Two-way semantic difference rules
In two-way, DSMCompare requires a set of domain-specific
difference rules called SDRule. Each SDRule creates a semantic

From two-way to three-way: domain-specific model differencing and conflict detection 9

difference pattern to lift the fine-grained differences in Diff12
semantically. To define these rules, we create a semantic differ-
encing rule metamodel called SDRuleMM, along with its concrete
syntax and editor. We generate a new editor for the DSL engi-
neer to define SDRules based on a DSL for semantic differenc-
ing rules. This DSL consists of a metamodel SDRuleMM that
is automatically generated from the DSDiffMM, and a concrete
syntax SDRuleCS that is automatically generated from the DS-
DiffCS. Each class C in DSDiffMM corresponds to a pattern class
Pattern_C in SDRuleMM, which includes additional attributes to
uniquely identify objects, filter differences, and support nega-
tive patterns. The SDRule has a root class called Rule, which
contains a constraint to restrict the applicability of a pattern
rule based on attribute value changes. It also includes seman-
tic difference objects that can refer to elements in DSDiffMM to
encapsulate semantic differences.

Using graph-based model transformation, we transform
SDRules into semantically equivalent Henshin rules (Strüber
et al. 2017). These rules create semantic difference objects,
delete objects with a filter attribute set to true, and preserve
the rest of the pattern to be matched in the Diff12 model. The
SDRule constraint is also converted to Henshin conditions.

As multiple SDRules may be applicable simultaneously,
DSMCompare uses a heuristic-based algorithm to schedule their
application order. The priority order aims to reduce the verbosity
of the presented differences and maximize the presence of se-
mantic differences over fine-grained differences. Finally, the
resulting Henshin transformation is executed on the fine-grained
Diff12 model to detect semantic differences.

We represent three-way semantic differences similarly to the
previous two-way method. In three-way, the SemDiff compo-
nent additionally generates a DSL to specify semantic differenc-
ing rules (SDRule) and applies them to the Diff012 model.

5.3. Synthesis of three-way semantic difference rules
The SemDiff component automatically generates the rule meta-
model SDRuleMM from the DSDiffMM metamodel. Figure 6 shows
a fragment of the result for the WN example, which extends
the process outlined in Section 5.2. One improvement in the
generation process is that the Rule root class of the SDRuleMM
metamodel can now contain multiple instances of the root class
of the DSL (Pattern_PetriNet in our example) in case more
than one version modified it. It can also contain an instance
of any other class to keep the patterns as compact as possible.
One particularity for the three-way SDRules is that they should
define patterns over the fine-grained differences pertaining to
the same author.

To apply the SDRules, we transform them into Henshin graph
transformation rules that can then be applied to the Diff012
model. Figure 7a shows the Remove Implicit Place rule that
is defined using the automatically generated SDRule concrete
syntax and editor for the WN domain in WNCompare, along
with its equivalent rule in Henshin Figure 7b. The graph trans-
formation rule modifies the Diff012 model to show semantic dif-
ferences and filters unnecessary fine-grained differences. This
rule matches a Transition object conneted to a Intermediate
(place) object labeled n3, with outArcs association from one

side, and conneted to a DiffTransition_outArcs object with dif-
foutArcs association from another side. The rule makes sure that,
DiffTransition_outArcs object is connected to DiffIntermediate
object, the DiffIntermediate object is connected to DiffInter-
mediate_inArcs object, and DiffIntermediate_inArcs object is
connected to the final Transition object labeled n6. The rule,
also calls pathExistBtw method by passing n3 and n6 parame-
ters, as an additional constraint, to check if there is an alternative
path between n3 and n6 transitions.

When the rule finds this pattern in the Diff012 model, it cre-
ates a SemanticDiff object named “Remove Implicit Place” as-
sociated with Intermediate and Transition objects. Note here
that, since the current version of Henshin does not support at-
tributes of an array type, we generate two variables (one for left
and one for right) to split the values of the array for three-way
differencing.

We now outline the transformation processes to generate a
Henshin graph transformation rule HRule from an SDRule. As
an example, we use the Remove Implicit Place rule depicted in
Figure 7.

1. Create an HRule with the same name as the SDRule.

2. Create a node in HRule with the action preserve for ev-
ery pattern object in SDRule that has no filter and no
NAC_group (e.g., node n5 in the example).

3. Create a node with the action delete in HRule for every
pattern object with filter set to true in SDRule.

4. Create a node with the action forbid in HRule for every
pattern object with a NAC_group set in SDRule. Set the
forbid identifier to the value of the NAC_group.

5. Create a node with the action create in HRule for each
SemanticDiff object in SDRule (e.g., node n7).

6. Create a condition in HRule with the OR operand that
duplicates the conditions defined in SDRule for both left
and right versions. For example, n4diff_kind is separated
into n4diff_kind_Left and n4diff_kind_Right for node
n4 to cover both versions.

7. Create an edge with action create in HRule for each
association adjacent to a SemanticDiff node in SDRule
(e.g., SemanticObject_NamedElement between nodes n7
and n3).

8. Create an edge with action delete in HRule for each associ-
ation adjacent to a pattern object with filter attribute set to
a true in SDRule (e.g., diffinArcs between nodes n4 and
n5).

9. Create an edge with action forbid in HRule for each associ-
ation adjacent to a pattern object with NAC_group attribute
set to a value in SDRule.

10. Create an edge with action preserve in HRule for each
association adjacent to a pattern object with NAC_group
and filter attributes not set to a value in SDRule.

10 Zadahmad et al.

Figure 6 A fragment of the semantic differencing rules metamodel

1

3

4 6

Remove
Implicit
Place

7

<<filter>>
Constraints =
[“PathExistBtw(Item(3),Item(6))==true”]

Legend:

Transition

SemanticDiff object

Intermediate (Place)

DiffIntermediate
(DELETE)

2
5

(a) The"Remove Implicit Place" semantic
differencing rule

(b) The "Remove Implicit Place" rule in Henshin

Figure 7 A semantic difference rule transformed into a Henshin graph transformation rule

From two-way to three-way: domain-specific model differencing and conflict detection 11

The SemDiff component generates the Henshin rules from
the repository of domain-specific SDRules. The algorithm found
in Zadahmad et al. (2022) schedules their order of application.
This algorithm optimizes the verbosity of the displayed fine-
grained differences and emphasizes semantic differences over
syntactic differences. Therefore, the final Diff012 model output
from the SemDiff component contains semantic differences and
fine-grained differences not involved in semantic difference
patterns.

5.4. Generating SDRules from examples
The DSMCompare graphical editor allows the DSL engineer to
create a new SDRule. DSMCompare also provides a new feature
to reduce the time and effort to define a semantic difference rule.
When the difference between two consecutive versions shows
a semantic change (operational semantic), the DSL engineer
can turn it into an SDRule. She simply needs to provide the
fragment of each model version showing the semantic change
and DSMCompare creates the corresponding SDRule following
these steps. First, it produces the Diff012 model to get the differ-
ences between the two model versions. Then, it transforms the
model into a draft of an SDRule model. In this step, it roughly
processes every structural feature and transforms each element
to its corresponding element in the SDRuleMM. Finally, the DSL
engineer can manually set the filters and the NAC_groups in
the pattern. She must also set the name, constraints, and creates
the semantic difference object that the rule encapsulating. She
can then test the new SDRule by applying its Henshin equivalent
on the given Diff012 model. Our experience has shown that this
reduces the effort required to create SDRules.

6. Tailoring the concrete syntax of difference
models and semantic rules

DSMCompare provides a concrete syntax to display the Diff012
model. We implement this feature using Sirius (Sirius 2023),
one of the most popular frameworks to generate graphical mod-
eling environments in the Eclipse ecosystem. As explained in
Section 2, the DSL engineer needs to provide a concrete syn-
tax, CS, of her DSL using Sirius. However, she does not need
to supply a new one for DSDiffMM. To maintain the DSL’s
soul, DSMCompare automatically creates a default version of
the domain-specific difference concrete syntax, DSDiffCS, that
reuses the style from CS. The foundation of Sirius’ definition of
concrete syntax is a viewpoint specification model, also known
as odesign. It establishes a mapping between graphical repre-
sentations and MM elements.

For instance, we define a NodeMapping in Sirius that refer-
ences an icon in an image file to render the graphical represen-
tation of the Place class. A combination of text, icons, shapes,
and style adjustments, such as size and color, can be used in the
“Code Node Mapping”. Similarly, an EdgeMapping produces as-
sociations. In terms of compositions, a BorderedNodeMapping
is used to render the target class inside of the NodeMapping of
the source class. Sirius uses, the Acceleo Query Language, a
subset of OCL, to express the constraints that can filter graphic
representations according to a condition. We also automati-

cally generate a palette of buttons to instantiate the classes and
relationships of MM.

6.1. Automatic synthesis of the concrete syntax
We create DSDiffCS using an outplace transformation that ac-
cepts CS as input and produces DSDiffCS as output. By doing
so, we are able to reuse the properties and styles of similar
concrete syntax elements from the CS within DSDiffCS. We
implemented this transformation in ATL to help automate the
process. The general logic of the transformation is to extend
the representation of each related MM class to construct the
representation of each Diff_ class, then duplicate each com-
ponent of CS onto DSDiffCS. This maximizes the usage of CS
to represent the difference model in a way that makes sense
to DSL users. For each NodeMapping, e.g., PlaceNode, we
create nine diff nodes that each represent a combination of
two difference kind pairs from two versions of an element
such as: DiffPlaceNodeADD_ADD, DiffPlaceNodeADD_DELETE,
DiffPlaceNodeADD_MODIFY, etc. By default, the diff node is
identical to the original node marked with a pair accompanied
by a symbol as shown in the legend of Figure 1.

Assume that the diff class DiffA_S corresponds to the as-
sociation with an incoming composition diffS from class A
and outgoing associations target and targetCA to B. For exam-
ple class DiffTransition_outArcs corresponds to the associ-
ation with an incoming composition diffoutarcs from class
Transition and outgoing associations target and targetCA
to Intermediate. In DSDiffCS, DiffA_S is represented with a
BorderedNodeMapping as a subnode of the NodeMapping of A,
and we create BorderedNodeMappings for each Edge. DSDiffCS
uses a BorderedNodeMapping to represent DiffA_S as a subnode
of A. We also build BorderedNodeMappings for each Edge.

6.2. Layering the differences
The three-way difference model has more elements than in two-
way, increasing the complexity of understanding it. Therefore,
we implemented a layering system provided by Sirius to or-
ganize the graphical difference model elements better. Each
diagram element is a member of a Layer. The user can enable
or disable each layer to only visualize the elements of interest
and decrease the verbosity of the reported differences.

We create three layers for the Diff012 model. The first layer
groups all fine-grained differences, including details such as the
kinds of differences. The second layer shows all semantic dif-
ferences, more specifically, the semantic difference objects and
their associations. The third layer shows all conflicts between
semantic and/or fine-grained differences. Associations are only
visible in their specific layer; e.g., the conflicts between related
objects only appear in the third layer.

6.3. Themed provenance of the differences
We also use distinct themes to distinguish between the changes
made by the V0 and V1 authors. For example, we can play with
the color darkness or assign a specific set of colors to distinguish
between them. The user can customize the concrete syntax at
will.

12 Zadahmad et al.

The editor generated to define SDRules also reuses DSDiffCS.
This allows the DSL engineer to define a rule in a concrete
syntax with which DSL users are familiar.

7. Detecting equivalent changes
The utilization of three-way differencing can lead to conflicts,
which are addressed in this section and the subsequent one.
Specifically, in this section, we delve into equivalent changes
while the next section discusses contradicting conflicts. These
conflicts are identified in Step 3 in Figure 1. When two versions,
V1 and V2, make alterations to the same element relative to V0,
it results in a conflict. An equivalent change arises when V1 and
V2 make identical modifications. DSMCompare provides the
necessary features to detect equivalent changes and visualize
them to the DSL user by reusing the concrete syntax of the DSL.

7.1. Equivalent fine-grained conflicts
Four kinds of equivalent changes can occur for class differences.
V1 and V2 add a new class instance, delete an existing object,
or modify an attribute with the same value. If the attribute is
multi-valued (e.g., an array), the changed values must also occur
on the same index. In addition, four kinds of equivalent changes
can occur for association differences. V1 and V2 add a new
association instance between two objects, delete an existing link
from the source object, or modify a link by redirecting it to
the same the target object. If the association has a cardinality
greater than one, an equivalent MODIFY conflict occurs if all
target objects are the same in both versions.

Detecting fine-grained equivalent changes is straightforward
in DSMCompare, thanks to the enumerations explained in Sec-
tion 4.1. When the DiffKind array in an object or link has the
same values (ADD/ADD, DELETE/DELETE, MODIFY/MOD-
IFY) and their values are the same, it assigns the EQUIVALENT
value to the ConflictKind of the element in the Diff012 model.

The concrete syntax for equivalences is adapted automati-
cally thanks to the DiffMM_3way metamodel and DiffCS. As
depicted in Figure 1, the Diff012 model only displays one symbol
for the equivalent change using a predefined color for equiva-
lence (green in this case).

7.2. Equivalent semantic changes
An equivalent semantic change occurs when both versions ac-
complish identical semantic differences. For example, consider
the case both of left and right authors working on a WN model
apply a Remove Implicit Place semantic change on an identical
place. In both versions, a place is connected to two transitions.
EMFCompare displays six fine-grained equivalent changes with
three equivalent differences for each side. In DSMCompare,
we show the three equivalent fine-grained conflicts: the place
object, the inArcs link, and the outArcs link are deleted. Af-
ter applying the SemDiff component, the semantic difference
rule Remove Implicit Place is applied, which assigns a single
SemanticDiff object with the same name.

Then, the SemConf component proceeds as follows. For
all the association targets connected to the SemanticDiff ob-
ject, e.g., Remove Implicit Place, we check the values for

the diffKind and ConflictKind attributes. If in all the con-
nected objects, the values in the diffKind array are all equal
and the value for the ConflictKind is EQUIVALENT, we set
the value of the author attribute (recall from Figure 5) in the
SemanticDiff object to BOTH. It indicates that both versions
have made equivalent semantic changes. If in all the objects
connected to the SemanticDiff object, the first value in the
diffKind array is not NIL, but the other value is NIL, we set the
LEFT value for the author attribute. In the opposite case, we
set the value of the author attribute to RIGHT. This results in a
single SemanticDiff object for both versions and is connected
to the target fine-grained difference objects for both versions.

Please note that equivalent semantic changes do not neces-
sarily cover all fine-grained/fine-grained equivalent differences
because some fine-grained differences may not contribute to
any semantic difference.

8. Detecting contradicting conflicts
A contradicting conflict occurs when V1 and V2 have made
different changes to the same element with respect to V0. Fine-
grained contradicting conflicts arise when the diffKind array
of a specific element has either MODIFY/MODIFY or MODI-
FY/DELETE values. A fine-grained change may also conflict
with a fragment of a semantic change. Semantic conflicts can
result in a semantically unacceptable model, meaning that the
model is syntatically valid but violates some semantics of the
domain. For example, in Figure 1, a Remove Implicit Place
semantic difference is detected in V1 and V2 deleted the source
transition in the semantic difference: the two changes are syntac-
tically valid. A naive reconciliation of these differences would
merge the two versions by applying the fine-grained differences
of Remove Implicit Place and removing the source transition.
However, semantically, they are contradicting because either the
source transition should deleted or the modifications related to
Remove Implicit Place should be applied. Therefore, DSMCom-
pare detects contradicting conflicts for fine-grained/fine-grained,
fine-grained/semantic, and semantic/semantic differences. It
also visualizes these conflicts to the DSL user.

8.1. Fine-grained conflicts
As explained in Section 4.2, we divide fine-grained differences
into similarity groups, aggregate the required properties, and
process each group separately. After processing each difference
group, we set the value of the conflictKind attribute to CON-
TRADICTING if the values in the diffKind array have different
values other than NIL.

The first column in Figure 8 demonstrates a MODI-
FY/DELETE contradicting conflict on objects, where V1
changed the token value of a place, while V2 removed the
place. Visually, DSMCompare labels the contradictions with
user-specific colors to quickly distinguish them. It also sets the
ConflictKind of the place object to CONTRADICTING.

The second column in Figure 8 demonstrates a MODI-
FY/DELETE contradicting conflict on links. Here, V1 rerouted
the arc outgoing from the Pending place to the payOnline tran-
sition, while V2 removed this arc. EMFCompare reports that V1

From two-way to three-way: domain-specific model differencing and conflict detection 13

Pending

Pending

1 <- 2

~

I. MODIFY - DELETE
(class-level)

II. Modify - Delete (Association)

V0

DSMCompare

V1

III. Modify - Modify (Association)

Pending

receive

OnlineChoice

payOnline

OnlinePayRcvd

checkCredit

Pending

receive

OnlineChoice

payOnline

OnlinePayRcvd

checkCredit

Pending

receive

OnlineChoice

payOnline

OnlinePayRcvd

checkCredit

V2

EMFCompare

Pending

receive

OnlineChoice

payOnline

OnlinePayRcvd

checkCredit

~

~

Pending

Pending

receive

OnlineChoice

payOnline

OnlinePayRcvd

checkCredit

Pending

receive

OnlineChoice

payOnline

OnlinePayRcvd

checkCredit

Pending

receive

OnlineChoice

payOnline

OnlinePayRcvd

checkCredit

Pending

receive

OnlineChoice

payOnline

OnlinePayRcvd

checkCredit~

Figure 8 Examples of fine-grained contradicting conflict

has unset the arc and V2 has set it. In contrast, DSMCompare
post-processes this information and reports these two links as
conflicting with visual cues. Additionally, it assigns the same
ConflictGroup value (recall from Figure 5) to both diff objects
representing the links.

The last column in Figure 8 shows a contradicting MODI-
FY/MODIFY conflict with the same situation as in the secund
column, except that, now, V2 has also rerouted the arc to another
transition checkCredit. EMFCompare does not report the move
from the initial target link. In contrast, DSMCompare computes
this information showing that the original target of the arc has
changed (as an equivalent change ×) to different targets in each
version (as two contradicting modifications ∼). In this case,
all three links share the same ConflictGroup value. Note that
DSMCompare treats multi-valued attributes and associations
similarly for these contradicting conflicts.

8.2. Potential conflicts between fine-semantic and
semantic-semantic differences

A semantic difference typically involves changes on multi-
ple fine-grained difference elements, encapsulating them in
a common change intention. Unlike contradicting conflicts
between fine-grained differences, conflicts involving semantic
differences can overlap across multiple elements and must be
carefully identified. For example, in Figure 9, suppose V1’s
changes represent that the implicit place CODChoice is removed
(i.e., deleting the redundant place object and removing all links
connected to it), while V2 only reroutes the arc of that place
to a different transition checkCredit. Then, there is a con-
tradicting fine-semantic conflict because of the overlap on the
inArcs change. Furthermore, like in Figure 1, suppose that V1’s

changes represent removal of a place (deleted while there is an-
other alternate path) and, in V2, there is a change of the target
transition of CODChoice place’s inArcs link, i.e., removing an
EFC structure. Then, there is a contradicting semantic-semantic
conflict between Remove Implicit Place and Remove EFC struc-
tures semantic difference objects because of the overlap on the
CODChoice object and the inArcs link.

Thanks to its rule-based approach, DSMCompare can de-
tect these situations automatically and report them to the DSL
user to facilitate conflict reconciliation. Detecting overlapping
conflicts can be time-consuming with respect to the number
of SDRules available and the number of occurrences of these
conflicts. Therefore, DSMCompare pre-computes the poten-
tial conflicts between fine-grained and semantic differences at
design-time (i.e., when DSL engineers produce their SDRules);
thus, it only requires computing them once.

To find the potential conflicts between semantic differences,
we compute the conflicts and dependencies between SDRules.
Since SDRules are transformed into Henshin graph transforma-
tion rules, we perform a critical pair analysis (CPA) (Lambers et
al. 2008) and multi-granular conflict and dependency analysis
(Multi-CDA) (Lambers et al. 2018) on these rules. To detect po-
tential conflicts between fine-grained and semantic differences,
we synthesize a Henshin rule for every possible DiffKind of
the DSDiffMM_3Way metamodel elements. We generate a rule for
adding, removing, and modifying classes and associations. We
also generate a rule for every attribute modification. For exam-
ple, the generated rule DiffTransition_outArcs encapsulates the
removal of an outArcs association from a transition.

Henshin offers support for Multi-CDA through its API. It
detects all potential conflicts between the rules, such as a rule

14 Zadahmad et al.

Pending

receive

OnlineChoice

CODChoice

payOnline

payCOD

OnlinePayReceived

CODPayReceived

Completed
checkCredit

checkCash

V0

V1

DSMCompare (Fine Differences)

EMFCompare

DSMCompare (Semantic Differences)

Remove Implicit Place

Remove Implicit
Place/CODChoice conflict

Pending

receive

OnlineChoice payOnline

payCOD

OnlinePayReceived

CODPayReceived

Completed
checkCredit

checkCash

Pending

receive

OnlineChoice

CODChoice

payOnline

payCOD

OnlinePayReceived

CODPayReceived

Completed
checkCredit

checkCash

V2

Pending

receive

OnlineChoice

CODChoice

payOnline

payCOD

OnlinePayReceived

CODPayReceived

Completed
checkCredit

checkCash

~

Pending

receive

OnlineChoice

CODChoice

payOnline

payCOD

OnlinePayReceived

CODPayReceived

CompletedcheckCredit

checkCash
~

Figure 9 Example of contradicting semantic-fine conflict

creating an element that another one forbids or a rule deleting
an element that another one modifies. For example, it can detect
the conflict between the Remove Implicit Place semantic rule
and the place deleted fine-grained rule because the former rule
uses the place object. However, Henshin’s API for Multi-CDA
does not detect attribute-level conflicts; therefore, we use its
CPA feature for these situations. It can detect that a change
in an attribute value, like the tokens, potentially conflicts with
another rule that uses it. CPA returns the pair of rules in conflict
because of the attribute change.

Multi-CDA returns a matrix in which each entry shows a
value indicating the number of potential conflicts between two
rules. The pair consists of either a fine-grained or a seman-
tic rule. A non-zero value in the matrix indicates a potential
conflict between the rules. We can deduce the reason for each
conflict from the resulting matrix. For example, it shows a 1 for
the pair deleteIntermediate_inArcs and Remove Implicit Place
rules. This means that deleting the inArcs association from an
intermediate place object to a transition object in one version
has one potential conflict with the Remove Implicit Place rule
in the other version.

For the WN DSL, we generate 28 fine-grained Henshin rules.
Together with the 3 semantic difference rules, computing all the
potential conflicts between 31 rules is time-consuming due to the
exponential time complexity of CPA and Multi-CDA. Therefore,
pre-computing them at design-time saves a significant amount
of time for the DSL user exploring the conflicts.

8.3. Computing actual conflicts for fine-semantic differ-
ences

Multi-CDA and CPA indicate only potential conflicts between
rules. Therefore, we need to verify if they effectively occur in

the Diff012 model.

Algorithm 1 Calculate all actual conflicts between fine-
grained and semantic differences

Input: conflicts list of potential conflicts, diff012 difference model
1: procedure SETCONFLICTFINESEM(conflicts, diff012)
2: semDiffList← GETSEMANTICDIFFS(diff012)
3: for all sem in semDiffList do
4: potConflicts← GETCONFLICTSFS(sem, conflicts)
5: actualConflictList← ∅
6: for all pc in potConflicts do
7: fine← FINDINSTANCEOF(sem, pc, diff012)
8: if fine.conflictKind = CONTRADICTING then
9: actualConflictList← actualConflictList∪ {fine}

10: if |actualConflictList| > 0 then
11: semConflict← CREATESEMCONFLICT(sem)
12: for all fineConflict in actualConflictList do
13: CREATEASSOCIATION(semConflict, fineConflict)

Algorithm 1 shows how the SemConf component calcu-
lates the actual conflicts between fine-grained and semantic
differences. Given the list of potential conflicts (see Sec-
tion 8.2), it creates a SemanticConflict object. It links it to
the SemanticDiff and fine-grained difference elements if the
conflict really exists in the Diff012 model. The algorithm starts
by collecting all the SemanticDiff objects in the Diff012 model.
The function GETSEMANTICDIFFS returns a list of the names
of all these objects corresponding to the SDRule that created
them. For example, in Figure 9, this function returns “Re-
move Implicit Place”. Then, the algorithm searches through
the list of potential conflicts to identify all fine-grained rules
that conflict with each of these SDRules (line 4). It then veri-

From two-way to three-way: domain-specific model differencing and conflict detection 15

fies if these potential fine-grained rules have effectively been
used in the Diff012 model. For a given SemanticDiff object,
the function FINDINSTANCEOF returns the fine-grained dif-
ference object that is linked to it. Again, a mapping by name
corresponds fine-grained objects to their fine-grained rules. On
line 9, the actualConflictList set stores all fine-grained differ-
ence objects that are in contradicting conflict and overlapping
with a semantic difference object. In the example, the set con-
tains DiffIntermediate and DiffIntermediate_inArcs as the
contradicting conflicting fine-grained differences with the “Re-
move Implicit Place” semantic difference (USE-DELETE and
DELETE-MODIFY respectively). Finally, lines 10–13 create a
SemanticConflict object for each of these instances and link it
to the semantic difference object and all fine-grained difference
objects in the actualConflictList set.

The conflict list input to Algorithm 1 results from the Multi-
CDA findings, which computes potential conflicts involving
class-level or association-level changes. However, as explained
in Section 8.2, we rely on CPA to compute potential conflicts
involving attribute-level changes. Therefore, we devise a mod-
ified version of Algorithm 1 to determine the actual conflicts
between attribute modifications and semantic differences. The
main changes are on lines 7–9 to find the corresponding at-
tribute. In this case, the function FINDINSTANCEOF searches
for a DiffClass instance where the attribute corresponding to
the fine-grained rule has been modified by both versions. It
also checks that the conflict kind of the DiffClass instance is
contradicting. Furthermore, this attribute must be involved in
one of the constraints of the SDRule. If this situation occurs
in the Diff012 model, the algorithm adds the DiffClass instance
to the actualConflictList. Like in Algorithm 1, it then creates
a SemanticConflict object and links it to the semantic and
the fine-grained difference objects. The first row in Figure 9
illustrates this situation.

8.4. Computing actual conflicts for semantic-semantic
differences

Algorithm 2 Calculate all actual conflicts between semantic
differences

Input: conflicts list of potential conflicts, diff012 difference model
1: procedure SETCONFLICTSEMSEM(conflicts, diff012)
2: semDiffList← GETSEMANTICDIFFS(diff012)
3: for all (sem1, sem2) in semDiffList do
4: potConflicts← GETCONFLICTSSS(sem1, sem2, conflicts)
5: for all pc in potConflicts do
6: fine1← FINDINSTANCEOF(sem1, pc, diff012)
7: fine2← FINDINSTANCEOF(sem2, pc, diff012)
8: if fine1=fine2∧fine1.conflictKind=CONTRADICTING then
9: semConflict← CREATESEMCONFLICT(sem1,sem2)

10: CREATEASSOCIATION(semConflict,sem1)
11: CREATEASSOCIATION(semConflict,sem2)

Algorithm 2 shows how the SemConf component calcu-
lates the actual conflicts between semantic differences. Given
the list of potential conflicts (see Section 8.2), it creates a
SemanticConflict object and links it to the SemanticDiff ele-
ments if the conflict really exists in the Diff012 model. Like in

Algorithm 1, it starts by collecting all the SemanticDiff objects
in the Diff012 model. However, now it only considers pairs of
semantic-semantic conflicts (sem1 and sem2 on line 3). The
function GETCONFLICTSSS searches through the list of poten-
tial conflicts to identify all fine-grained rules that conflict with
both sem1 and sem2. For example, let us consider the Diff012
model in Figure 1. The function GETSEMANTICDIFFS re-
turns the two SDRules: Remove Implicit Place and Remove Efc
Structures. Both have semantic conflicts between them. Thus,
the function GETCONFLICTSSS returns DiffIntermediate and
DiffIntermediate_inArcs objects as the contradicting conflict-
ing fine-grained differences between them (USE-DELETE and
DELETE-MODIFY, respectively). Lines 6–7 return the actual
fine-grained difference object involved in these semantic differ-
ence objects in the Diff012 model. The algorithm then verifies
that it is really the same fine-grained difference object that
these semantic difference objects share. It also checks that it
is in a contradicting status For the example, the algorithm ac-
tually determines that the DiffIntermediate_inArcs object is
in a contradicting conflict state. Finally, lines 10–11 create a
SemanticConflict object and link it to the semantic difference
objects. It is shown in dashed lines in Figure 1.

9. Evaluation and discussion
We evaluate DSMCompare using model histories created by
third parties. We first give implementation details on the three-
way DSMCompare. Then, we present our experiment and
discuss the results. We also outline some limitations of our
approach.

9.1. Implementation
We implemented DSMCompare as an Eclipse plug-in that runs
on the Eclipse Modeling Framework (EMF version 2022-03).
The tool is downloadable through the open-source repository1.
To find the generic model-based matches and differences, we
instantiate the CDOCompare engine2, the default EMFCom-
pare engine in Eclipse. We rely on the API of EMFCompare
to retrieve the difference set between the three versions. Us-
ing Java, the Comparison component transforms these generic
differences into an instance of the DSDiffMM_3Way metamodel
using the EMF API. For the SemDiff component, we use Xtend3

to transform domain-specific rules into Henshin textual format.
Then, using the Henshin API, we find potential conflicts among
semantic and fine-grained differences (using Multi-CDA). With
this information, we calculate the optimal order of execution
of the rules. Then, we execute the rules to enhance the Diff012
model with semantic differences. Finally, the SemConf com-
ponent calls the Multi-CDA and CPA Java APIs and finds the
conflicts between semantic and fine-grained differences follow-
ing the algorithms presented in Section 8.

9.2. Objectives
We now present the evaluation of DSMCompare following an
experiment we conducted. We already demonstrated that two-
1 https://github.com/geodes-sms/DSMCompare/
2 https://www.eclipse.org/cdo/ last accessed Jul 2022
3 https://www.eclipse.org/xtend/index.html last accessed Jul 2022

16 Zadahmad et al.

https://github.com/geodes-sms/DSMCompare/
https://www.eclipse.org/cdo/
https://www.eclipse.org/xtend/index.html

way DSMCompare reduces verbosity, improves the detection
of semantic differences, and is effective in practice (Zadahmad
et al. 2022). Here, we evaluate the accuracy of DSMCompare
in finding semantic differences and conflicts in a three-way
differencing setting. We do not explicitly consider fine-grained
differences because they were covered in the previous evaluation
and are used to populate semantic differences and conflicts.
Furthermore, we do not evaluate the graphical features of the
tool that are related to visualizing conflicts, as such an evaluation
would require conducting a user study, which is beyond the
scope of this paper.

Therefore, in this experiment, we evaluate three-way DSM-
Compare with respect to the following research questions:

RQ1 Does DSMCompare correctly detect three-way semantic
differences?

RQ2 Does DSMCompare correctly detect three-way semantic
conflicts?

9.3. Experiment setup
We explain the process of collecting the data required for the
experiment and the evaluation procedure.

9.3.1. Data collection. Due to the lack of existing reposi-
tories of domain-specific models and their associated semantic
difference rules, the subject of our experiment is Java programs
reverse-engineered into Ecore models. As explained in (Zadah-
mad et al. 2022), we consider a refactoring pattern as a semantic
difference if it has been applied in a new version of a model.
Similarly, we consider a refactoring pattern as a semantic con-
flict if it is involved in the conflict between three model versions.
Furthermore, GitHub is a source of a significant number of
code-based projects that may be transformed into Ecore models,
allowing us to assess their histories for refactoring changes and
domain-specific differences and conflicts.

Figure 10 describes the process we followed to build a dataset
of labeled Ecore model versions for three-way differencing and
conflict detection. The initial step is to select the GitHub reposi-
tories on which we conduct our study. GitHub, the predominant
host of open-source projects, reports having over 42 million
public repositories4 in June 2022. Munaiah et al. (2017) exam-
ined GitHub repositories and offered Score-based and Random
Forest classifiers to identify well-engineered software reposi-
tories. They have shown that the latter classifier has a greater
accuracy rate. Therefore, we filter out projects not identified
as well-engineered by the Random Forest classifier using their
dataset of 1 857 423 repositories.As suggested by Pinto et al.
(2018), we further assure the quality of the repositories by using
the number of stars and community involvement as repository
selection metrics. Thus, we only consider repositories with
communities of two or more people and 500 or more stars on
GitHub. Furthermore, we choose only Java-based repositories
given the toolset we use. We now have a dataset of 104 repos-
itories for our experiment. However, we discovered that nine
of these repositories are not available via the GitHub URL sup-
plied; therefore, we excluded them from the study. This leads
us to a total of 95 repositories to consider.
4 https://github.com/search?q=is:public retrieved on 12 June 2022.

To answer both research questions, we must consider reposi-
tories with merge conflicts involving object-oriented refactor-
ings in their history. To this end, we use the RefConfMiner
project (Shen et al. 2019), which is forked from RefactoringsIn-
MergeCommits (Mahmoudi et al. 2019). It uses the Refac-
toringMiner project, a popular refactoring detection tool that
currently can detect 87 distinct refactoring types in Java reposi-
tories (Tsantalis et al. 2020). The output is stored in a database
containing the commit IDs of refactoring-related merge con-
flicts. For each commit, it also records the identifiers of the
version triplet (V0, V1, V2) and the detected refactoring type.
From the 95 repositories, only 13 projects include at least three
refactoring-related merge conflicts that can be processed with
RefactoringMiner and downloaded successfully. The project
names are android, closure-compiler, error-prone, jabref,
junit4, mcMMO, POSA-14, querydsl, realm-java, redpen, storm,
syncany, and titan. Label A in Figure 10 marks the 96 con-
flicting commits produced by RefConfMiner that involve at least
one refactoring.

From these commits, we use the output of RefConfMiner
in MergeScenarioMiner (Shen et al. 2021) to collect the Java
files involved in conflicting merge commits. It produces a folder
for each conflicting commit ID, containing three sub-folders:
the parts of the project involved in V0, the changed parts of
the project in V1, and those in V2. However, the folders only
contain Java files that DSMCompare is unable to manage.

Therefore, in the third step, we convert the source code to
the corresponding Ecore model representations, using Eclipse’s
MoDisco framework (Bruneliere et al. 2014). The result is an
instance of Knowledge Discovery Metamodel (KDM) which
represents the structure and behavior of an entire software. With
MoDisco, we transform the KDM model of the three versions
(V0, V1, V2) into Ecore models.

We built a simplified MiniJava metamodel in Ecore, shown
in Figure 11, to represent packages, classes, attributes with their
type and cardinality, methods with their signature, and method
bodies as one string. The MiniJava models represent the source
code we collected in label A in Figure 10. Each MiniJava
model includes all the Java files (i.e., packages, and classes)
for one of the three versions involved in the merge commit.
Since we have 96 merge commits, we end up with 288 MiniJava
models in Ecore. Additionally, we have manually prepared 17
semantic difference rules to encapsulate the refactorings. We
reused those from the experiment in (Zadahmad et al. 2022) and
adapted them to our MiniJava metamodel. Figure 12 shows the
Pull-up Method semantic differencing rule, which encodes that
the method of a sub-class is moved to its super-class.

9.3.2. Methodology. We compare the collected data from
RefConfMiner with the MiniJava models processed by DSM-
Compare. Given the three instances of the MiniJava metamodel
for each conflicting commit, we call the API of EMFCompare
and produce the three-way fine-grained generic model-based dif-
ferences. Then, we pass the differences through the Comparison
and SemDiff components and generate Diff012 models, includ-
ing the semantic three-way differences shown by label B in
Figure 10. Finally, we pass the Diff012 model produced by

From two-way to three-way: domain-specific model differencing and conflict detection 17

https://github.com/search?q=is:public

Munaiah et al.
GitHub,

#repo = 1.857 M

Filter by quality
metrics,

#repo = 104

URL Available
#repo = 95

GitHub
#repo > 300M

Refactoring-related
conflicting commits

#repo=13, #commit=96

RefConfMiner &
RefactoringMiner

MergeScenarioMiner

Involved Java
folders and files

(3 versions)

KDM models

MoDisCo

KDMtoEcore
Transformation

Ecore Models
#models=288

Generic Fine-grained
Diffs and Conflicts

EMF-Compare

Fine-grained and
Semantic Diffs

DSMCompare
Comparison + SemDiff

A

B

I. Repository Discovery II. Text-based Conflicting Commits III. KDM to Ecore
IV. Fine-grained and
 Semantic Diffs and conflicts

DSMCompare
SemConf

Fine-grained and
Semantic Conflicts C

Figure 10 Evaluation setup to execute DSMCompare on Java code from GitHub repositories

Figure 11 The MiniJava metamodel

 Pull-up Method pulled_Operation()

Super_Class

Sub_Class

Pulled_Operation()

Class Semantic difference

Operation()

Legend:

Figure 12 The Pull-up Method semantic differencing rule

the SemDiff component through the SemConf component and
populate Diff012 model with semantic conflicts (label C in
Figure 10).

To answer RQ1, we compare the refactorings found by Ref-
ConfMiner (label A), with the three-way semantic refactoring
differences reported by DSMCompare (label B). We use se-
mantic differences and conflicts found by RefConfMiner as the
baseline for DSMCompare. We denote the two sets ADi and
Bi for each commit i, respectively. We rely on precision and
recall measures for the comparison. In Equation (1), we define
precision as the ratio between the correctly found differences in
DSMCompare and the total number of differences it finds. We
define recall as the ratio between the correctly found differences
in DSMCompare and the expected number of differences found
by RefConfMiner.

Precisiondiff =
96

∑
i=1

|ADi| ∩ |Bi|
|Bi|

Recalldiff =
96

∑
i=1

|ADi| ∩ |Bi|
|ADi|

(1)

To answer RQ2, we compare the conflicts found by Ref-
ConfMiner (label A) with the fine-grained and semantic con-
flicts reported by DSMCompare (label C). We denote the set
ACi of conflicts found by RefConfMiner for each commit i. We
also rely on precision and recall measures for the comparison.
In Equation (2), we define precision as the ratio between the
correctly found conflicts in DSMCompare and the total number
of conflicts it finds. We define recall as the ratio between the
correctly found conflicts in DSMCompare and the expected

18 Zadahmad et al.

number of conflicts found by RefConfMiner.

Precisionconf =
96

∑
i=1

|ACi| ∩ |Ci|
|Ci|

Recallconf =
96

∑
i=1

|ACi| ∩ |Ci|
|ACi|

(2)

We manually perform compare each difference output in
DSMCompare with RefConfMiner. For each refactoring or con-
flict reported by RefConfMiner, we analyze the report, including
the Java file and the name of the involved elements (e.g., pack-
age, class, method, attribute). We then manually compare it
with the results in the corresponding Diff012 model output by
DSMCompare.

9.4. Characterization of the resulting dataset

We first present some key findings in the resulting dataset pro-
duced by DSMCompare.

Table 2 Summary of the results after applying DSMCompare

Number of

Projects 13

Commits 96

MiniJava models in Ecore 288

Semantic difference (refactoring) rules 14

Total number of

Fine-grained differences 11 287

Fine-grained diffs involved in semantic diffs 7 342

Semantic differences 3 059

Remaining fine-grained differences 3 945

Fine-grained conflicts 657

Semantic differences involved in conflicts 474

Diff012 elements per commit

Median Average Standard dev.

135 266 318

Semantic differences per commit

Median Average Standard dev.

13 32 60

Fine-grained differences per commit

Median Average Standard dev.

37 118 206

Semantic conflicts per commit

Median Average Standard dev.

3 5 6

Fine-grained conflicts per commit

Median Average Standard dev.

4 7 8

9.4.1. Description of the resulting dataset. In total, we
produced 96 triplets of Ecore models representing the three
versions of each commit. They are accompanied by 96 Ecore
models representing the three-way differences and conflicts
(Diff012) annotated with all the refactoring operations. Out of
the 87 refactoring types (Tsantalis et al. 2020), we only found
occurrences of 14 semantic difference rules on these models.
The complete dataset is available online5. Table 2 presents a
summary of the results that DSMCompare has found.

The results show that DSMCompare can find a considerable
amount of semantic and fine-grained differences in a large col-
lection of projects and related conflicting commits. Note that

5 https://doi.org/10.5281/zenodo.7386968

From two-way to three-way: domain-specific model differencing and conflict detection 19

https://doi.org/10.5281/zenodo.7386968

since we downloaded only the Java files involved in the con-
flicting commits for all three versions, the Diff012 model only
presents the minimal model needed to understand the context
of the changes in each version, as opposed to showing the com-
plete models. Therefore, we consider that Diff012 models with
an average size of 266 elements are quite large. In this metric,
we count the different MiniJava model elements: package, class,
interface, association, attribute, and method objects. We do not
include the number of attributes for each element, such as the
method body of method objects.

We also note that fine-grained differences account for around
half of the Diff012 model sizes, which means that almost half
of each minimal model is changed. Semantic differences cover
65% of all fine-grained differences. Therefore, thanks to the
semantic differences, the DSL user is left with only 35% of fine-
grained differences to interpret and investigate. This drastic re-
duction in verbosity concurs with the results in (Zadahmad et al.
2022) and helps the DSL user better understand the differences.
We observe that, on average, 16% of the semantic differences
are in conflict (semantic-semantic and semantic-fine conflicts),
while 6% of the fine-grained differences are in conflict. These
ratios show that semantic conflicts do occur in practice and, in
this dataset, they occur more often than fine-grained conflicts.

Figure 13 categorizes the number of refactorings that DSM-
Compare has found per commit per project. For each project,
we sort the commits by decreasing number of semantic differ-
ences it contains. For example, project syncany has 14 commits
ranging from 80 semantic differences in commit 1 to two in
commit 12. Most refactorings are found in project realm-java
with 432 semantic differences in a single commit. It also con-
sistently has the most refactoring differences in nine commits.
With only five commits, project titan is second in this order
with the most refactoring differences (174) in commit 3. Project
jabref arrives third, topping 128 refactoring differences in a
single commit. Interestingly, project closure-compiler consis-
tently contains an average of 21 semantic differences across its
10 commits. Project syncany has the most number of commits
(14) with at least 31 semantic differences. Table 2 shows an
average of 32 refactoring differences found in each of the 96
commits across all projects. The chart Figure 13 characterizes
the vast diversity of the dataset under study.

Figure 14 shows a similar chart but for conflicting refac-
torings, i.e., semantic differences involved in a contradicting
conflict. In this case, project closure-compiler has most of
the conflicts with 42 in a single commit. It also has the most
number of conflicts in nine commits. Interestingly, 53% of the
semantic differences are involved in conflicts for this project,
whereas the average across all commits of all projects is 36%.
In comparison, project realm-java had the most refactoring
differences (Figure 13), but only 20% of them are involved in
conflicts. We notice fewer variations in the number of conflicts
than in the number of differences across the commits, given that
there are five conflicting refactorings on average per commit.

9.4.2. Example output. Figure 15 illustrates the kind of re-
sults that DSMCompare outputs for the dataset. It shows a frag-
ment of a Diff012 model related to a conflicting three-way merge

commit. The visualization is generated from the concrete syntax
we defined in Sirius for the MiniJava DSL. In the excerpt of this
difference model, DSMCompare captures the contradicting con-
flict in which V1 (in blue, authored by HeartSaVioR in GitHub)
moved the method MultiPut from class RedisClusterMapState
to its base class AbstractRedisMapState. Following the
SDRule “Pull-up Method”, DSMCompare creates a Pull-up
Method semantic difference object and associates it with the
MultiPut method and the AbstractRedisMapState class. How-
ever, V2 (in red, authored by ptgoetz in GitHub) modified the
body of this method. Therefore, DSMCompare recognizes this
conflict between fine-grained (V2) and semantic (V1) differ-
ences and annotates the MultiPut method a MODIFY/DELETE
icon (blue × and red ∼). In addition, it creates a contradicting
semantic conflict object and associates it with “Pull-up Method”
semantic difference and MultiPut method.

This particular commit includes eight refactorings that are in-
volved in semantic conflicts. Conflicts mainly occur in two Java
files: RedisMapState.java and RedisClusterMapState.java.
Each file comprises one class, three nested classes, and one
nested interface. The outline on the right of Figure 15 shows
the complete Diff012 model to enable the DSL user to navigate
to the desired location of the model. In the bottom-right of the
figure, a panel shows the different properties of the selected
conflict, including its name and the associated elements.

9.4.3. Types of refactorings. DSMCompare has found a
similar distribution of the refactoring differences and conflicts
as in (Mahmoudi et al. 2019). Figure 16 shows the frequency
of each refactoring type across all commits of the dataset. For
each type of refactoring, the chart presents the distribution of
semantic differences in black and refactorings involved in con-
tradicing conflicts (semantic-semantic and semantic-fine con-
flicts) in white. This figure shows that DSMCompare can find
various types of semantic differences from difference patterns.
For example, simple patterns, like the Rename class rule, iden-
tify a single attribute change. Patterns like the Move class rule
identify associations between classes and packages. Patterns
like the Pull-up method rule rely on the properties of meth-
ods, associations between classes and methods, and constraint
checking.

The chart in Figure 16 is sorted in terms of the frequency
of the semantic differences (refactorings). The most common
refactoring differences found in the dataset (more than 10%)
include Extract and move method, Extract method, Move class,
and Rename method. Whereas the most common refactorings
involved in conflicts include Rename method, Extract method,
and Extract and move method. This is expected because renam-
ing a method causes multiple conflicts, such as Rename/Delete
method, Rename/Add Method, and Rename/Rename method.
Similarly, extracting a method from its original class causes con-
flicts when another version modifies the same method. We also
observe that renaming an element and modifying a property of
a method generates more conflicts, whereas moving a method,
class, or attribute generates fewer conflicts.

20 Zadahmad et al.

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of commits

realm-java titan jabref mcMMO storm syncany junit4 closure-compiler error-prone redpen querydsl POSA-14 android

Number of semantic differences

Figure 13 Number of semantic differences per commit

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of commits

closure-compiler mcMMO titan realm-java syncany jabref junit4 storm error-prone redpen POSA-14 android querydsl

Number of semantic conflicts

Figure 14 Number of semantic conflicts per commit

9.5. Effectiveness of DSMCompare

We now evaluate the results in terms of precision and recall.
Figure 17 shows the overall precision and recall of refactor-
ings differences and conflicting refactorings that DSMCompare
found from the dataset. The results are calculated according to
Equations (1) and (2) using RefConfMiner as the baseline of
comparison. Recall that, in this experiment, finding semantic
differences means finding differences where a refactoring type
is involved. Finding semantic conflicts includes conflicts be-
tween semantic-semantic and semantic-fine differences, thus
any conflict involving a refactoring.

The overall trends of all four box plots are very high, with
an average of at least 96%. There is almost no variation in
the precision of differences and conflicts and in the recall of
conflicts: the standard deviation and variance coefficient are
under 5%, and the interquartile range is 0. The near-perfect
scores indicate that DSMCompare correctly found almost all the
semantic differences and conflicts identified by RefConfMiner.
Note that true negatives are not possible in this experiment
since we only look for refactorings. Therefore, the accuracy of
DSMCompare is also near perfect.

The only exception to these observations is the recall of the

differences with a standard deviation and variance coefficient
of 7.5%, and an interquartile range is 6%. Nevertheless, the
average recall of differences is still very high at 96%. Some
false negatives occur when DSMCompare misses one or two
differences in some Diff012 models containing very few differ-
ences. For example, in commit 2b59ffd of project syncany,
RefConfMiner finds three refactoring differences, while DSM-
Compare only finds two, leading to a precision and recall of
67%. In the rare situations where DSMCompare incorrectly
identified a semantic difference (false positives), the refactor-
ings are related to the body of the method, which is captured as
an unstructured string in our dataset of MiniJava models. For ex-
ample, the Inline method refactoring type transfers the content
of a method to a method calling it. Most of the situations where
DSMCompare missed a semantic difference (false negative)
were because the files involved in the semantic differences were
not available to be downloaded. Nevertheless, the F1-score for
both semantic differences and conflicts is 97%, showing the
high accuracy and effectiveness of DSMCompare.

9.6. Discussion
With these results, we can now answer our two research ques-
tions.

From two-way to three-way: domain-specific model differencing and conflict detection 21

Figure 15 Excerpt of the difference model showing semantic differences and conflicts in the Sirius for commit 11768ba in the
storm project

0%

5%

10%

15%

20%

25%

30%
Differences Conflicts

Figure 16 Frequency of refactoring types reported by DSMCompare compared to those involved in a conflict

22 Zadahmad et al.

Figure 17 Precision and recall for detecting the semantic differences and conflicts

9.6.1. RQ1: DSMCompare effectiveness to find semantic
differences. According to the results, DSMCompare can
find almost all semantic differences across all commits. It finds
fine-grained and semantic differences of different types across
different model sizes and various projects.

DSMCompare detects different kinds of SDRule patterns.
It effectively detects semantic differences for rules focusing
on simple attribute changes, relying on structural patterns, and
requiring complex constraints to check. It also successfully
detects semantic difference rules applied multiple times in the
same and multiple versions of different projects. However,
DSMCompare was unable to find a few refactoring patterns that
require investigating structural content encoded as strings. It
also incorrectly detected a few refactorings when the models
were missing parts of the original source code.

9.6.2. RQ2: DSMCompare effectiveness to find seman-
tic conflicts. DSMCompare can find almost all semantic
conflicts across all conflicting commits. It finds different types
and granularities of conflicts, including between semantic differ-
ences and fine-grained differences. Note that all missed conflicts
correspond to missed differences.

DSMCompare also finds conflicts that occur in the same
project and across different projects. For example, all projects
have a conflict involving the Extract Method refactoring type.
Some refactorings tend to be more conflicting even though they
occur less often than other refactoring types. For example, as
illustrated in Figure 16, Rename Method is responsible for 13%
of all differences but contributes to 28% of all the conflicts.

9.6.3. Advantages of DSMCompare. DSMCompare of-
fers a more tailored display of differences that is specific to
the relevant domain, and it is less verbose compared to Ref-
ConfMiner and EMFCompare. Additionally, it is important to
mention that DSMCompare does not necessitate developers to
create an ad-hoc metamodel. They can readily provide the meta-
model of their DSL to utilize the tool. It visualizes the effect
of syntactic differences on semantic changes. It also explicitly
links the semantic difference instances to changed model ele-
ments. It reports the differences using the original DSL concrete

Figure 18 Visualization by Sirius, Tree-View presentation

syntax. Therefore, DSMCompare helps to understand and lo-
cate the exact problematic model elements conflicting with a
semantic change. We claim that all these advantages help DSL
users resolve conflicts more easily, save time, and increase the
quality of the merged models.

As an indicator, the computation time of DSMCompare takes
around one second for small MiniJava models (1–500 model el-
ements), less than three seconds for medium models (500–1 000
model elements), and around nine seconds for large models
(over 1 000 model elements). We ran the experiments on a Win-
dows 10 machine with an i5-6300U processor clocked at 2.4
GHz, 8 GB of RAM on Eclipse version 4.24.0 with JDK 1.8
and the heap size set to 24 GB.

9.6.4. Multi-view Visualization. As shown in Figure 15,
the Diff012 model is very cluttered visually when there are many
model elements, fine-grained and semantic differences, and

From two-way to three-way: domain-specific model differencing and conflict detection 23

conflicts of different types, like in our dataset. To manage this
problem, we use a layering mechanism (see Section 6) that
DSL users can utilize to focus only on a specific part of the
visualized differences and conflicts. However, sometimes, the
number of differences and conflicts is just too large, and the
adapted concrete syntax of the DSL needs to scale better in
terms of readability. For example, if the DSL user wants to see
the relations between models and the related differences and
conflicts, the user will be presented with a disordered collection
of graphical entities and associations among them. As a result,
it obscures the semantics present in the Diff012 model.

To overcome this problem, we use a tree-view presentation
to manage the complexity of visualizing when the number of
differences and conflicts are very high. Figure 18 shows this
alternative visualization of the same difference model presented
in Figure 15. Here, we categorize the Diff012 model for Mini-
Java into three containers: the package container, the semantic
difference container, and the conflict container. Under the pack-
age container, we collect all the packages and the hierarchy of
the classes and sub-elements. The semantic difference container
includes the list of all semantic differences and a description
based on the type of the difference. The conflict container lists
all the conflicts.

We integrate this view as an alternative representation us-
ing multiple views with a rich client platform6 to visualize
the Diff012 model. Using multiple views, the DSL user can
search for semantic differences or conflicts on the tree-view and
highlight the relevant model elements involved in the selected
semantic difference or conflict. In this way, we enhance search
time, search accuracy, perceived ease of use, and perceived
usefulness (Adipat et al. 2011).

9.6.5. Comparing DSMCompare to other tools. Unlike
DSMCompare, EMFCompare is not able to detect semantic
differences by default. However, the tailor-made model com-
parison of EMFCompare provides custom filtering and domain-
specific grouping features7. In addition, developers can add a
new kind of difference, including a single fine-grained differ-
ence, to the comparison model of the EMFCompare. To have
tailor-mode EMFCompare features, developers must manually
add Java code as the plug-in extension points. However, it does
not support creating semantic difference patterns referencing
multiple elements and changes in the metamodel of the DSL. To
the best of our knowledge, it is not possible to detect semantic
conflicts in the current version of EMFCompare, even by adding
custom code.

Both RefactoringMiner and RefConfMiner are text-based
and can investigate refactoring changes in Java projects. Refac-
toringMiner reports refactorings, and RefConfMiner uses it
to find refactorings involved in conflicts across the history of
a Java project. They both provide high accuracy, especially
when refactorings include text-based changes in method bodies,
which is why we use them as the baseline for our assessment.
In comparison, DSMCompare introduces mechanisms to find

6 https://www.eclipsecon.org/europe2019/sessions/make-your-transition
-cloud-tooling-now-thanks-hybrid-rcpweb-approach last accessed Jul 2022

7 https://techconf.me/talks/35768 last accessed Jul 2022

both semantic differences and conflicts. It also associates con-
flicts with relevant semantic differences and conflicts. The DSL
engineer does not need to program how to find each refactoring
type. Instead, she describes the patterns needed to specify the
semantic differencing rule using the concrete syntax of the origi-
nal DSL. DSMCompare also provides multiple domain-specific
views to visualize the differences and conflicts between DSL
users. Moreover, DSMCompare is agnostic of the program-
ming/modeling language at hand. Like in our experiment, it can
be used to work on models extracted from any programming
language, not only Java projects.

9.7. Limitations and threats to validity
We outline some limitations of the experiment and our approach.

9.7.1. Threats to internal validity. Threats to the internal
validity of this experiment are related to the assumptions we
rely on.

We rely on the findings of EMFCompare to detect fine-
grained differences and assume they are correct. As a result,
any inaccurate preparatory information produced by EMFCom-
pare influences the outcomes of both semantic differences and
conflicts output by DSMCompare. However, EMFCompare is a
trusted tool used by many model-based VCS, such as CDO, to
benefit from its fine-grained comparison reports.

We manually checked all the outputs to ensure the semantic
differences and conflicts we found by DSMCompare correspond
to those found by RefConfMiner. However, this manual pro-
cess can lead to human errors, which may threaten validity.
Nevertheless, this process helped fix bugs in different parts of
DSMCompare, which gives us confidence that the dataset is
correct.

9.7.2. Threats to construct validity. Threats to the con-
struct validity of this experiment are related to some of the tools
we used in the experiment setup (see Figure 10). As we have
explained earlier, there are three reasons to explain the presence
of very few false positives and negatives in our results.

First, when transforming the Java source code into Ecore
models, MoDisco creates a single string for each method body
by concatenating the structure of the method. Therefore, refac-
torings affecting the internal structure of a method body, like
Inline Method, cannot be captured in SDRule patterns for the
MiniJava DSL. This prevents DSMCompare from correctly
detecting these refactoring (false negatives). Switching to a
different reverse engineering tool may help explicitly model the
missing data.

Second, the same issue with MoDisco also resulted in some
false positives in refactorings that are very similar, like Ex-
tract Method and Extract and Move Method. The strings used
representing the extracted and added method bodies might oc-
casionally be mistaken for one another. Every flow inside the
extracted method body resembles a flow within another inserted
method, though they differ in the finer details of their content.
Because of this lack of information, DSMCompare mistakenly
perceives the creation of a new method as other refactoring
types.

24 Zadahmad et al.

https://www.eclipsecon.org/europe2019/sessions/make-your-transition-cloud-tooling-now-thanks-hybrid-rcpweb-approach
https://www.eclipsecon.org/europe2019/sessions/make-your-transition-cloud-tooling-now-thanks-hybrid-rcpweb-approach
https://techconf.me/talks/35768

The source code of the projects in our experiment consists
of a large number of files and lines of code. To keep the dataset
as concise as possible, we retrieved only the files involved in
the merge conflicts. Thus, we relied on MergeScenarioMiner
to download exclusively the Java files involved in the merge
conflicts for all three versions of a conflicting three-way merge
commit. However, this tool occasionally fails to download all
the relevant files or downloads only parts of the linked files.
This also prevents DSMCompare from correctly detecting some
refactorings (false negatives). Fixing MergeScenarioMiner to
obtain all the pertinent Java files or downloading the whole
repository of all the involved versions in the conflicting merge
commit may improve the results.

Nevertheless, as the overall results show, DSMCompare can
find every other refactoring type and conflict related to classes,
associations, methods, and attribute changes.

9.7.3. Threats to external validity. Threats to the external
validity of this experiment are related to the generalization of
the results.

The results we present are specific to the dataset we cre-
ated. Therefore, the results may be different for other datasets
of refactoring commits or even on DSLs other than MiniJava.
However, this dataset presents a wide diversity of cases with re-
spect to SDRules, model sizes, semantic difference occurrences,
and semantic/fine-grained conflicts. Moreover, the dataset origi-
nates from third-party programs. In Zadahmad et al. (2022), we
evaluated DSMCompare on other DSLs as well.

Furthermore, there is a lack of openly accessible repositories
of models with a commit history and, in particular, three-way
difference conflicts. Our solution was to consider source code
as models by reverse engineering repositories with these speci-
ficities.

9.7.4. Limitations. Currently, DSMCompare generates ed-
itors for graphical DSLs only. Thus, it presents differences
and conflicts in a graphical way only. Adaptations are needed
to deal with textual concrete syntax. As we have seen in this
experiment, graphical visualization of differences hits its limits
when the models have a lot of elements.

The semantic differences that DSMCompare finds strongly
depend on the SDRules provided by the DSL engineer. Thus,
DSMCompare is only effective in providing semantic differ-
ences and conflicts if the rules are diverse enough to cover a
variety of rule patterns, comprehensive enough to include all
changes and conflicts at all granularities, and semantically rel-
evant to the domain. Nevertheless, DSMCompare generates
a domain-specific editor to enable DSL engineers to specify
patterns for semantic differences. It also provides functionality
to automatically create SDRules from two successive versions
exhibiting a semantic change, which further helps DSL engi-
neers.

We do not claim that the results of the experiment show
that DSMCompare presents Java code refactoring better than
existing tools (Dig et al. 2007). It is also not optimized to solve
identify refactoring opportunities in programs. Nevertheless, in
the given dataset, DSMCompare can detect refactoring instances

and refactoring-induced conflicts on Ecore models that represent
Java code.

10. Related work

10.1. Model differencing
Stephan & Cordy (2013) present a survey of several model
comparison tools and methodologies. Some are specific to a
modeling languages and others are metamodel-agnostic like
DSMCompare. In that survey, EMFCompare uses a static
identity-based comparison, is metamodel-agnostic and is ap-
plicable in real-world model versioning scenarios. This justifies
our decision to rely on EMFCompare for the model matching
phase and detection of fine-grained differences.

Schipper et al. (2009) extended EMFCompare to depict
schematic differences in diagrams, which is comparable to our
work. However, They only enable the visualization of atomic
changes and do not support more coarse-grained changes or con-
flict patterns. Similarly, Cicchetti et al. (2010) generate model
differences as model patches, but do not conflict analysis.

Several approaches have been proposed to semantically lift
low-level changes, e.g., Kehrer et al. (2011, 2013) use Henshin
for semantic lifting and critical pairs for dependency analy-
sis. Langer et al. (2013) post-processes atomic operation into
complex operations using EMFCompare. However, to work
with EMFCompare extension points effectively, a DSL engineer
should possess strong Java programming skills and a solid under-
standing of the Eclipse Platform and its extension mechanisms.
Additionally, a good grasp of EMF core concepts, modeling
principles, and model comparison and merge concepts is essen-
tial. Knowledge of XML and Ecore metamodeling, debugging
techniques, design patterns, and testing methodologies are also
valuable to ensure the successful implementation and customiza-
tion of EMFCompare’s comparison and merging capabilities.
Our approach semantically lifts and conducts dependency anal-
ysis using multiCDA. We also visualize the differences and
conflicts in concrete syntax.

Addazi et al. (2016) expanded the default matching process in
EMFCompare to distinguish between linguistic and contextual
notions, such as information-content based metrics. It provides
a method for determining the semantic similarity between two
given model elements. This somehow enables semantic reason-
ing over differences. Their solution managed to maintain fast
time performance but did not deliver the best results in terms of
precision and recall.

It should be noted that, we do not map models to a formally
defined semantic domain in order to reason about the differences
as done in Maoz et al. (2011). Rather, in the context of this
paper, the term semantics pertains to editing semantics.

10.2. Conflict detection
Like DSMCompare, Brosch, Seidl, et al. (2012) create a sepa-
rate Diff012 model to represent different kinds and granularities
of differences and conflicts. A difference is shown as a hierar-
chy divided into atomic changes (e.g., adding an element) and
composite changes (e.g., refactoring). A conflict is shown as
a hierarchy of overlapping conflicts (e.g., DELETE/MODIFY

From two-way to three-way: domain-specific model differencing and conflict detection 25

conflict) and constraint violations. However, they are specific to
UML class diagrams.

Sharbaf et al. (2020) provide a conflict pattern language to
specify conflicts in different modeling languages. In some sense,
this is similar to the SDRules in DSMCompare. However, it only
detects conflicting semantics and ignores non-conflicting seman-
tics. Whereas, in our approach, we find semantic differences
and investigate them for semantic conflicts. In their approach,
the DSL engineer can express the changes in the metamodel
elements between the different versions that lead to a conflict.
The pattern language is built on top of OCL which restricts its
application to UML-based languages only and forces the DSL
engineer to be familiar with them. In DSMCompare, we ex-
tract complex change patterns from low-level model evolutions,
much as semantic lifting techniques, similar to (García et al.
2013; Vermolen et al. 2012). However, their patterns are general
and predefined, despite the fact that they resemble the rules in
our method.

Sharbaf & Zamani (2020) use UML profiles to visualize
changes and formalized constraints using OCL for UML mod-
els defined in Papyrus. They also highlight the conflicts using
different colors. However, their approach is only appropriate for
UML models, whereas DSMCompare supports any DSL. Fur-
thermore, the static semantics of UML, which delegate model
validation to the tools that process them, are currently insuffi-
cient to assure solid models (Berkenkötter 2008).

The tool PEACEMAKER is capable of loading XMI models
with conflict sections, computing and displaying fine-grained
conflicts at the model level, and offering the necessary resolu-
tion steps (de la Vega & Kolovos 2022). DSMCompare also
load only conflicting parts of each three versions involved in the
conflicting commits. Calculating potential conflicts a priori also
improves the time performance. However, when using PEACE-
MAKER, DSL users must reason about differences and conflicts
at the serialization level rather than using the concrete syntax of
the DSL like in DSMCompare. Nevertheless, PEACEMAKER
is able to resolve conflicts and merge the differences, which is
not yet supported in DSMCompare.

Taentzer et al. (2014) use graph theory to formalize two
syntax-based conflict concepts, including operation-and state-
based conflicts in model versioning. Additionally, they use
graph constraints to define multiplicity and ordered features.
They detect conflicts using a set of conflicting operations such
as DELETE/MODIFY. However, their approach disregards the
effect of syntactic modifications on the semantics of the model
as explained by Kautz & Rumpe (2018). Internally, DSM-
Compare also relies on the theory of graph transformation by
executing Henshin rules. It also relies on MultiCDA (Lambers
et al. 2019) to analyzing their dependencies and find potential
conflicts between semantic and fine-grained differences.

To evaluate our approach, we utilized a sizable dataset of
288 Ecore models, which we have made publicly accessible. It
is worth noting that there is a scarcity of existing repositories
for domain-specific models, as noted in (Zadahmad et al. 2022).
Brosch et al. (Brosch et al. 2010) proposed a web-based, collab-
orative conflict lexicon named Colex. However, we have found
that the weblink associated with their proposal appears to be

broken.

10.3. Versioning tools
Throughout the years, a number of model repositories with
capabilities for version control have been introduced (Altman-
ninger et al. 2009). ChronoSphere (Haeusler et al. 2019) de-
livers an open-source EMF model repository. Transactions,
queries, versioned persistence, and metamodel development are
all part of the essential data management stack. The authors
suggest using NoSQL databases for persistence for greater per-
formance (Espinazo-Pagán et al. 2011). These repositories can
be used in conjunction with DSMCompare to make it possible
to visualize (semantic) differences using the graphical concrete
syntax of the DSL.

Different levels of versioning and model differencing capa-
bilities are available in commercial modeling programs. Mag-
icDraw8 provides controlled access to all artifacts, simple con-
figuration management, and a mechanism to prevent version
conflicts in this manner. Obeo Designer9 and CDO can integrate
with EMFCompare to provide a generic model-based version-
ing service. Smart Model Versioning10, a version control tool
included in MetaEdit+ (Kelly 2018), allows the comparison of
models visually and textually. It is compatible with any sig-
nificant VCS for storage, such as Git. Git and Subversion are
integrated with JetBrains MPS, which also offers some tools for
examining model differences textually. While these tools offer
different ways to compare models triplets, they are typically
not customizable to the DSL. DSMCompare provides domain-
specific, customizable visualizations of the model differences,
in a graphical way.

11. Conclusion
This paper introduces an approach for detecting fine-grained and
semantic differences and conflicts based on a three-way com-
parison. Our solution is integrated into a new version of DSM-
Compare that previously only handled two-way domain-specific
differences. It supports detecting and representing equivalent
and contradicting conflicts between model versions. DSMCom-
pare allows users to create semantic rules that automatically
aggregate fine-grained differences and give domain-specific
meaning to conflicts. Finally, we enhanced the concrete syntax
to let DSL users visualize the three-way conflicts and differ-
ences more effectively. We evaluated our approach on multiple
well-known open-source projects. The results demonstrate that
DSMCompare is very effective at detecting semantic differences
and conflicts with high accuracy. The large dataset of model
versions involved in the commit history of several open-source
projects and their labeled fine-grained and semantic differences
and conflicts are also available for future research.

We plan to incorporate a conflict reconciliation mechanism
in DSMCompare to automatically resolve the conflicts in the
difference model and help the DSL user resolve them manually

8 https://www.3ds.com/products-services/catia/products/no-magic/
magicdraw/ last accessed Jul 2022

9 https://www.obeodesigner.com/ last accessed Jul 2022
10 https://www.metacase.com/news/smart_model_versioning.html last accessed

Jul 2022

26 Zadahmad et al.

https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/
https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/
https://www.obeodesigner.com/
https://www.metacase.com/news/smart_model_versioning.html

when needed. This would lead to a final merged model free
of conflicts that can be committed to a VCS repository. We
also plan to integrate DSMCompare in domain-specific VCS
to provide a fully-integrated system to DSL users. Another
future line of research is to investigate how to represent domain-
specific differences and conflicts for a textual DSL.

References

Addazi, L., Cicchetti, A., Di Rocco, J., Di Ruscio, D., Iovino, L.,
& Pierantonio, A. (2016). Semantic-based model matching
with emfcompare. In Workshop on models and evolution (Vol.
1706, pp. 40–49). CEUR-WS.org.

Adipat, B., Zhang, D., & Zhou, L. (2011). The effects of tree-
view based presentation adaptation on mobile web browsing.
Mis Quarterly, 99–121.

Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger, W.,
Seidl, M., Schwinger, W., & Wimmer, M. (2008). Amor–
towards adaptable model versioning. In Workshop on model
co-evolution and consistency management (Vol. 8, pp. 4–50).

Altmanninger, K., Seidl, M., & Wimmer, M. (2009). A survey
on model versioning approaches. International Journal on
Web Information Systems, 5(3), 271–304.

Berkenkötter, K. (2008). Reliable uml models and profiles.
Electronic Notes in Theoretical Computer Science, 217, 203–
220.

Brosch, P., Kappel, G., Seidl, M., Wieland, K., Wimmer, M.,
Kargl, H., & Langer, P. (2010). Adaptable Model Versioning
in Action. In Modellierung 2010 (Vol. 161, pp. 221–236).

Brosch, P., Langer, P., Seidl, M., Wieland, K., & Wimmer, M.
(2010). Colex: a web-based collaborative conflict lexicon.
In Proceedings of the 1st international workshop on model
comparison in practice (pp. 42–49).

Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M., &
Kappel, G. (2012). The past, present, and future of model
versioning. In Emerging technologies for the evolution and
maintenance of software models (pp. 410–443). IGI Global.

Brosch, P., Seidl, M., Wimmer, M., & Kappel, G. (2012).
Conflict visualization for evolving UML models. Journal of
Object Technology, 11(3), 2:1–30.

Brun, C., & Pierantonio, A. (2008). Model differences in
the eclipse modeling framework. UPGRADE, The European
Journal for the Informatics Professional, 9(2), 29–34. (https://
www.eclipse.org/emf/compare/)

Bruneliere, H., Cabot, J., Dupé, G., & Madiot, F. (2014).
Modisco: A model driven reverse engineering framework.
Information and Software Technology, 56(8), 1012–1032.

Cicchetti, A., Di Ruscio, D., & Pierantonio, A. (2010). Model
patches in model-driven engineering. In Models in software
engineering: Workshops and symposia at models 2009, den-
ver, co, usa, october 4-9, 2009, reports and revised selected
papers 12 (pp. 190–204).

David, I., Aslam, K., Faridmoayer, S., Malavolta, I., Syriani,
E., & Lago, P. (2021). Collaborative Model-Driven Soft-
ware Engineering: A Systematic Update. In Model driven
engineering languages and systems (pp. 273–284). ACM.

de la Vega, A., & Kolovos, D. (2022). An efficient line-based
approach for resolving merge conflicts in XMI-based models.
Software and Systems Modeling, 1–27.

Dig, D., Manzoor, K., Johnson, R., & Nguyen, T. N. (2007).
Refactoring-aware configuration management for object-
oriented programs. In International conference on software
engineering (pp. 427–436).

Eclipse EGit. (2023). https://www.eclipse.org/egit/. ((last
accessed in March 2023))

EMF Compare. (last accessed January 2021). https://www
.eclipse.org/emf/compare/.

EMF DiffMerge. (2023). https://wiki.eclipse.org/EMF
_DiffMerge. ((last accessed in March 2023))

EMFCompare. (2023). https://techconf.me/talks/35768. ((last
accessed in March 2023))

Espinazo-Pagán, J., Cuadrado, J. S., & Molina, J. G. (2011).
Morsa: A scalable approach for persisting and accessing large
models. In Model-driven language engineering and systems
(Vol. 6981, pp. 77–92). Springer.

García, J., Diaz, O., & Azanza, M. (2013). Model transforma-
tion co-evolution: A semi-automatic approach. In Software
language engineering (Vol. 7745, pp. 144–163). Springer.

Haeusler, M., Trojer, T., Kessler, J., Farwick, M., Nowakowski,
E., & Breu, R. (2019). Chronosphere: a graph-based EMF
model repository for IT landscape models. Software and
Systems Modeling, 18(6), 3487–3526.

Jackson, D., & Ladd, D. A. (1994). Semantic diff: a tool for
summarizing the effects of modifications. In International
conference on software maintenance (pp. 243–252). IEEE.

Kautz, O., & Rumpe, B. (2018). On computing instructions to
repair failed model refinements. In Model driven engineering
languages and systems (pp. 289–299).

Kehrer, T., Kelter, U., & Taentzer, G. (2011). A rule-based
approach to the semantic lifting of model differences in the
context of model versioning. In Automated software engi-
neering (pp. 163–172). IEEE Computer Society.

Kehrer, T., Kelter, U., & Taentzer, G. (2013). Consistency-
preserving edit scripts in model versioning. In 2013 28th
ieee/acm international conference on automated software
engineering (ase) (pp. 191–201).

Kelly, S. (2018). Collaborative modelling with version control.
In Software technologies: Applications and foundations (Vol.
10748, pp. 20–29). Springer.

Kelly, S., & Tolvanen, J.-P. (2008). Domain-Specific Modeling:
Enabling Full Code Generation. John Wiley & Sons.

Koegel, M., & Helming, J. (2010). EMFStore: a model reposi-
tory for EMF models. In International conference on software
engineering (Vol. 2, pp. 307–308). ACM.

Kolovos, D. S. (2009). Establishing correspondences between
models with the epsilon comparison language. In Model
driven architecture-foundations and applications: 5th euro-
pean conference, ecmda-fa 2009, enschede, the netherlands,
june 23-26, 2009. proceedings 5 (pp. 146–157).

Kramler, G., Kappel, G., Reiter, T., Kapsammer, E., Retschitzeg-
ger, W., & Schwinger, W. (2006). Towards a semantic infras-
tructure supporting model-based tool integration. In Work-
shop on global integrated model management (p. 43—46).

From two-way to three-way: domain-specific model differencing and conflict detection 27

https://www.eclipse.org/emf/compare/
https://www.eclipse.org/emf/compare/
https://www.eclipse.org/egit/
https://www.eclipse.org/emf/compare/
https://www.eclipse.org/emf/compare/
https://wiki.eclipse.org/EMF_DiffMerge
https://wiki.eclipse.org/EMF_DiffMerge
https://techconf.me/talks/35768

ACM.
Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., & Wimmer,

M. (2009). Explicit transformation modeling. In MODELS
2009 workshops (Vol. 6002, pp. 240–255). Springer.

Lambers, L., Born, K., Kosiol, J., Strüber, D., & Taentzer,
G. (2019). Granularity of conflicts and dependencies in
graph transformation systems: a two-dimensional approach.
Journal of logical and algebraic methods in programming,
103, 105–129.

Lambers, L., Ehrig, H., & Orejas, F. (2008). Efficient conflict
detection in graph transformation systems by essential critical
pairs. Electronic Notes in Theoretical Computer Science, 211,
17–26.

Lambers, L., Strüber, D., Taentzer, G., Born, K., & Huebert,
J. (2018). Multi-granular conflict and dependency analysis
in software engineering based on graph transformation. In
International conference on software engineering (pp. 716–
727).

Langer, P., Wimmer, M., Brosch, P., Herrmannsdörfer, M., Seidl,
M., Wieland, K., & Kappel, G. (2013). A posteriori operation
detection in evolving software models. Journal of Systems
and Software, 86(2), 551–566.

Leßenich, O., Siegmund, J., Apel, S., Kästner, C., & Hunsen,
C. (2018). Indicators for merge conflicts in the wild: survey
and empirical study. Automated Software Engineering, 25(2),
279–313.

Lin, Y., Gray, J., & Jouault, F. (2007). Dsmdiff: a differentia-
tion tool for domain-specific models. European Journal of
Information Systems, 16(4), 349–361.

Mahmoudi, M., Nadi, S., & Tsantalis, N. (2019). Are refactor-
ings to blame? an empirical study of refactorings in merge
conflicts. In Software analysis, evolution and reengineering
(pp. 151–162). IEEE.

Maoz, S., Ringert, J. O., & Rumpe, B. (2011). Addiff: semantic
differencing for activity diagrams. In Proceedings of the 19th
acm sigsoft symposium and the 13th european conference on
foundations of software engineering (pp. 179–189).

Munaiah, N., Kroh, S., Cabrey, C., & Nagappan, M. (2017).
Curating github for engineered software projects. Empirical
Software Engineering, 22(6), 3219–3253.

Owhadi-Kareshk, M., Nadi, S., & Rubin, J. (2019). Predicting
merge conflicts in collaborative software development. In
Symposium on empirical software engineering and measure-
ment (pp. 1–11). IEEE.

Pinto, G., Steinmacher, I., Dias, L. F., & Gerosa, M. (2018). On
the challenges of open-sourcing proprietary software projects.
Empirical Software Engineering, 23(6), 3221–3247.

Rivera, J. E., & Vallecillo, A. (2008). Representing and operat-
ing with model differences. In Objects, components, models
and patterns: 46th international conference, tools europe
2008, zurich, switzerland, june 30-july 4, 2008. proceedings
46 (pp. 141–160).

Rubin, J., & Chechik, M. (2013). N-way model merging. In
proceedings of the 2013 9th joint meeting on foundations of
software engineering (pp. 301–311).

Schipper, A., Fuhrmann, H., & von Hanxleden, R. (2009).
Visual comparison of graphical models. In International

conference on engineering of complex computer systems (pp.
335–340). IEEE.

Schultheiß, A., Bittner, P. M., Grunske, L., Thüm, T., & Kehrer,
T. (2021). Scalable n-way model matching using multi-
dimensional search trees. In 2021 acm/ieee 24th interna-
tional conference on model driven engineering languages
and systems (models) (pp. 1–12).

Sharbaf, M., & Zamani, B. (2020). Configurable three-way
model merging. Software: Practice and Experience, 50(8),
1565–1599.

Sharbaf, M., Zamani, B., & Sunyé, G. (2020). A formalism for
specifying model merging conflicts. In System analysis and
modelling conference (pp. 1–10).

Shen, B., Zhang, W., Yu, A., Shi, Y., Zhao, H., & Jin, Z. (2021).
Somanyconflicts: Resolve many merge conflicts interactively
and systematically. In Automated software engineering (pp.
1291–1295). IEEE.

Shen, B., Zhang, W., Zhao, H., Liang, G., Jin, Z., & Wang, Q.
(2019). IntelliMerge: a refactoring-aware software merging
technique. Programming Languages, 3, 1–28.

Sirius. (2023). https://www.eclipsecon.org/europe2019/
sessions/make-your-transition-cloud-tooling-now-thanks
-hybrid-rcpweb-approach. ((last accessed in March 2023))

Stephan, M., & Cordy, J. R. (2013). A survey of model com-
parison approaches and applications. In Modelsward (pp.
265–277). SciTePress.

Strüber, D., Born, K., Gill, K. D., Groner, R., Kehrer, T., Ohrn-
dorf, M., & Tichy, M. (2017). Henshin: A usability-focused
framework for emf model transformation development. In
International conference on graph transformation (pp. 196–
208). Springer.

Taentzer, G., Ermel, C., Langer, P., & Wimmer, M. (2014). A
fundamental approach to model versioning based on graph
modifications: from theory to implementation. Software &
Systems Modeling, 13(1), 239–272.

Toyoshima, I., Yamaguchi, S., & Zhang, J. (2015). A refactoring
algorithm of workflows based on petri nets. In International
congress on advanced applied informatics (pp. 79–84). IEEE.
doi: 10.1109/IIAI-AAI.2015.273

Tsantalis, N., Ketkar, A., & Dig, D. (2020). Refactoringminer
2.0. Transactions on Software Engineering, 48(3), 930-950.

van der Aalst, W. M. P. (1998). The application of petri nets
to workflow management. Journal of Circuits, Systems and
Computers, 8(1), 21–66. doi: 10.1142/S0218126698000043

Vermolen, S. D., Wachsmuth, G., & Visser, E. (2012). Re-
constructing complex metamodel evolution. In Software
language engineering (Vol. 6940, pp. 201–221). Springer.

Viyović, V., Maksimović, M., & Perisić, B. (2014). Sirius:
A rapid development of dsm graphical editor. In Intelligent
engineering systems (pp. 233–238). IEEE.

Zadahmad, M., Syriani, E., Alam, O., Guerra, E., & de Lara,
J. (2019). Domain-specific model differencing in visual
concrete syntax. In Software language engineering (pp. 100–
112). ACM.

Zadahmad, M., Syriani, E., Alam, O., Guerra, E., & de Lara, J.
(2022). DSMCompare: Domain-specific model differencing
for graphical domain-specific languages. Software & Systems

28 Zadahmad et al.

https://www.eclipsecon.org/europe2019/sessions/make-your-transition-cloud-tooling-now-thanks-hybrid-rcpweb-approach
https://www.eclipsecon.org/europe2019/sessions/make-your-transition-cloud-tooling-now-thanks-hybrid-rcpweb-approach
https://www.eclipsecon.org/europe2019/sessions/make-your-transition-cloud-tooling-now-thanks-hybrid-rcpweb-approach

Modeling, 21, 2067–2096.

About the authors
Manouchehr Zadahmad Jafarlou is a Ph.D. student in the
department of computer science and operations research
at Université de Montréal. His main research is on
model differncing and merging. You can contact him at
Manouchehr.zadahmad.jafarlou@umontreal.ca or visit https://
www.linkedin.com/in/manouchehr-zadahmad/.

Eugene Syriani is an associate professor in the department
of computer science and operations research at Université de
Montréal. His main research interests fall in software design
based on the model-driven engineering approach, the engi-
neering of domain-specific languages, model transformation
and code generation, simulation-based design, collaborative
modeling, and user experience. You can contact him at syri-
ani@iro.umontreal.ca or visit www.iro.umontreal.ca/~syriani.

Omar Alam is an associate professor in the department of com-
puter science at Trent University. His area of research falls in
model-driven engineering, model reuse, collaborative modeling,
software modularity and computing education. You can contact
him at omaralam@trentu.ca or visit www.omaralam.org.

From two-way to three-way: domain-specific model differencing and conflict detection 29

mailto:Manouchehr.zadahmad.jafarlou@umontreal.ca?subject=Your paper "From two-way to three-way: domain-specific model differencing and conflict detection"
https://www.linkedin.com/in/manouchehr-zadahmad/
https://www.linkedin.com/in/manouchehr-zadahmad/
mailto:syriani@iro.umontreal.ca?subject=Your paper "From two-way to three-way: domain-specific model differencing and conflict detection"
mailto:syriani@iro.umontreal.ca?subject=Your paper "From two-way to three-way: domain-specific model differencing and conflict detection"
www.iro.umontreal.ca/~syriani
mailto:omaralam@trentu.ca?subject=Your paper "From two-way to three-way: domain-specific model differencing and conflict detection"
www.omaralam.org

