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ABSTRACT A paradox of requirements specifications as dominantly practiced in the industry is that they often claim to be
object-oriented (OO) but largely rely on procedural (non-OO) techniques. Use cases and user stories describe functional
flows, not object types. To gain the benefits provided by object technology (such as extendibility, reusability, and reliability),
requirements should instead take advantage of the same data abstraction concepts – classes, inheritance, information hiding –
as OO design and OO programs.
Many people find use cases and user stories appealing because of the simplicity and practicality of the concepts. Can we
reconcile requirements with object-oriented principles and get the best of both worlds?
This article proposes a unified framework. It shows that the concept of class is general enough to describe not only “object” in
a narrow sense but also scenarios such as use cases and user stories and other important artifacts such as test cases and
oracles.
Having a single framework opens the way to requirements that enjoy the benefits of both approaches: like use cases and user
stories, they reflect the practical views of stakeholders; like object-oriented requirements, they lend themselves to evolution and
reuse.
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1. Introduction

A good software system is an effective solution to a well-
understood problem. As software engineering has progressed,
it has become increasingly clear that achieving software quality
involves achieving quality on both the solution side and the
problem side: together with excellent design, implementation
and project management techniques, a successful project re-
quires an excellent description of the problem, known as the
requirements of the system.
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While a considerable body of knowledge exists about re-
quirements engineering, the discipline as practiced in industry
has not yet experienced the considerable progress that object-
oriented (OO) concepts, methods, languages and tools have
brought to solution-side tasks. The purpose of this article is to
help advance the state of the art in requirements engineering
through the application of OO ideas, and to show that this ap-
proach subsumes other widely applied techniques such as use
cases and user stories. The research questions we tackle in this
paper are (i) how to specify OO requirements? (ii) how to unify
them with scenarios?

The modeling power of object technology has played a large
part in its success for design and implementation, and can be
even more useful for requirements. It comes in particular from
the OO decision to define the architecture of systems on the basis
of object types connected by well-defined relations (“client” and
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“inheritance”), using structuring principles such as information
hiding and Design by Contract. These notions are clear and
simple, and help ensure that the structure of the software is
closely related to the structure of the problem description. For
example, a library-management system will have such classes as
LIBRARY, BOOK, PATRON and CATALOG, directly reflecting
concepts of the problem domain and their mutual relations.
This property, known as direct mapping, helps achieve goals of
reliability, extendibility and reusability. It is even more useful
for requirements, which are all about modeling external systems
and their environments.

In practice, however, requirements engineering does not
widely apply OO techniques. The phrase “object-oriented re-
quirements” itself is used (sometimes as “object-oriented anal-
ysis”), but often to describe techniques such as use cases and
user stories, which are not object-oriented (Larman 2012).

The relationship between OO and non-OO techniques (the
latter also known as “procedural”) can be one of complementar-
ity rather than confrontation. The core observation is that data
abstraction, the idea at the heart of OO technology, has so much
power that some of it remains untapped. One does not need to
treat such techniques as scenarios, use cases, user stories and
test scripts as independent of the OO framework or even antag-
onistic to it; they can instead find their natural place in it. The
result is a unified approach to requirements engineering which
has the potential to bring to this discipline the same remarkable
advances that have proved so beneficial to solution-side aspects
of software development. The first contribution of this paper
is the evidence of scenarios limitations and how OO paradigm
could address them. The second contribution is the description
of OO requirements and a framework supporting OO require-
ments specification. The third contribution is the application
of the approach to the case study of a Roborace, which can
serve as a guide for practitioners who want to use the unified
framework. These contributions allow requirements engineers
to benefit from the advantages of conceptual consistency and
unification of notations, and from the potential of scalability
and extendibility of OO requirements.

Section 2 presents common approaches to requirements and
their limitations. Section 3 describes fundamental OO tech-
niques, that form the basis of the Unified Approach. Section 4
introduces the notion of object-oriented requirement. Section 5
describes in details a unified framework, based on OO require-
ments. Section 6 constitutes a proof of concept by applying the
framework to a real-case application. Section 7 compares the
approach with related works. Section 8 describes motivation
for applying OO techniques to requirements, limitations of the
approach and of the case study, and future work directions. Fi-
nally, section 9 summarizes the contributions and concludes the
paper.

2. Scenarios and tests

Requirements in industry generally rely on different techniques,
particularly use cases and user stories. In modern software
development approaches, tests are viewed also as requirements
artifacts.

2.1. Use cases
Use cases have become one of the major formalisms for express-
ing requirements thanks to Ivar Jacobson’s work and his 1992
book (Jacobson et al. 1992). Their spread happened at about the
same time as the spread of OO methods for programming and
design. A use case describes a unit of requirements in the form
of a possible scenario of user interaction with the system.

There are several use case notations; the examples in this
article will rely on a notation due to Cockburn (Cockburn 2000).
Table 1 presents an example, related to a library system. It
specifies a scenario whereby a library user borrows a book from
the library, with such steps as placing the book on hold, then
checking it out, and returning it by the specified deadline.

The core part is the main success scenario, giving the se-
quence of steps of the use case. Additional possibilities of the
notation, not used in the example, include:

– Steps consisting of several sub-steps, similar to calling
routines in programming.

– Conditional steps, in which the use case follows either of
two sub-scenarios depending on the outcome of a certain
condition.

Such mechanisms suggest a strong analogy between a use
case and an algorithm or a program. The two concepts also have
differences: a use case (and other kinds of scenarios such as
user stories, reviewed next) describes the interaction between a
human actor and the system, whereas an algorithm or program
is meant to be carried out by a computer.

The level entry characterizes the level of abstraction. A use
case can describe a process at many levels, from the highest
(a bird’s eye view of an overall business process, meant to be
complemented by further use cases for the details) down to the
detailed descriptions of the system’s actual operation.

A precondition is a limiting condition governing the appli-
cability of the use case.

A trigger is an event that starts the use case.
Note the difference between the last two concepts: a pre-

condition is a condition that must hold for the use case to be
applicable, but does not by itself cause its execution; a trigger
does. (The precondition is necessary, the trigger is sufficient.)

The success guarantee characterizes the state resulting from
successful execution of the use case, for the “main success sce-
nario”. In the terminology of mathematical software verification,
from which the term “precondition” is borrowed, it would be
called a “postcondition”.

An extension describes a departure from the “main success
scenario”. Extensions serve two separate purposes:

– As in the example, an extension can specify an alternative
to the “main success scenario”, to be applied when that
scenario hits a condition that prevents it from proceeding
normally.

– Extensions also support the reuse of elements common
to several use cases, which can then be divided into a
base use case, covering the common elements, and specific
extensions.
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Name Borrow_a_book

Scope System

Level Business summary

Primary actor Patron

Context of use The patron wants to check out a book

Preconditions The book is available

Trigger The patron finds in a library catalog the book he wants to borrow and requests the system to place a
hold on this book

Main success * The system changes the book status to on_hold

scenario * The patron checks out the book

* The patron returns the book

Success guarantee The patron has borrowed the book and returned it within the checkout duration.

Extensions A. The book is not available

*The system denies placing a hold on the book

B. The hold expires due to exceeding the maximum hold duration.

* The system changes the hold status to “expired” and the book becomes available

C. The patron cancels the hold

* The book status changes to available

D. The patron does not return the book within the maximum check-out duration

* The book status changes to overdue

* The patron returns the book

Stakeholders Patron (borrows a book)

and interests Library personnel (enforces adherence to library policies)

Table 1 Use Case description for Borrow_a_book

The use case lists, towards the beginning, the main actor re-
sponsible for carrying out instances of the scenario. It concludes
with a list of stakeholders: others who may be affected.

2.2. User stories
A use case is a complete path taken by an actor through the
system. User stories (Jacobson et al. 2011) also express a typ-
ical interaction with the system, but at a much smaller level
of granularity. They play an important role in requirements in
agile methods, which promote incremental program construc-
tion: the basic agile development iteration involves a developer
picking the next item from a list of functions to be implemented,
implementing it, and moving on to the next one. A use case is
generally too complex for such atomic units of development.

The standard format for a user story includes three elements:

– A role (“As a...”), corresponding to the main actor of a use
case.

– A desired function (“I want to...”), part of the system’s
behavior.

– A business purpose (“so that...”), corresponding to one of
the goals of a system.

An example user story in a library system is:

As a patron, I want to check out a book so that I can read it
at home.

An alternative way of expressing it is in tabular form as
presented in Table 2.

Role Patron

Desired function Check out a book

Business purpose Read at home

Table 2 User Story Example
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2.3. Use case 2.0 and use case slices
Use Case 2.0 (Schaaf 2012), a revision of the original use case
methodology, combines ideas of use cases and user stories
through the notion of use case slice. A use case slice is a
selected part of a use case, which is also a unit of testing (usable
in a test-driven design methodology). Breaking down a use case
into slices makes it possible to consider it at different phases of
development and to build the system incrementally.

As an example, a slice of the use case Borrow_a_book is
Overdue_checkout (Table 3). It outlines its narratives as a set
of flows: the basic flow of Borrow_a_book and one of its ex-
tensions (Alternative Flow D), “The patron does not return the
book within the maximum check out duration.”

Name Overdue_checkout

State Scoped

Priority Should

Flows BF: “Borrow a book” + AF D: “The patron does
not return the book within the maximum check-out
duration”

Tests The checkout duration exceeds the limit

Estimate 3/20

Table 3 Use case slice description of Overdue_checkout

The standard format of a use case slice includes:

– A name, used to track it through the development cycle.
– A state, with possible values scoped, prepared, analyzed,

implemented or verified.
– A priority, expressed by the MoSCoW acronym: Must,

Should, Could, Would.
– References: flows and tests.
– An estimate of the work needed to implement the slice.

2.4. Unit tests
An important development of software engineering in the past
two decades, fostered in particular by agile methods, has been
the recognition of test cases as essential artifacts of the software
process. The various “xUnit” frameworks, where “x” represents
a target programming language (for example, JUnit for Java),
describe a test case in the form of a small program element
listing a condition to be tested and an “oracle” specifying the
correct expected result.

In a traditional, “waterfall” view of software engineering,
requirements and test cases play entirely different roles and
appear at opposite ends of the lifecycle: requirements at the
beginning, tests at the end (in a final “verification and valida-
tion” step, often called V&V). The only relationship between
them is that a test case, devised in a late stage of the project,
will typically exercise a particular requirement, specified much
earlier.

With modern views of software development, iterative and
incremental, the concepts move closer to each other. In the ex-
treme view (coming from the “Extreme Programming” approach

to development) of test-driven development (Beck 2003), unit
tests actually become the requirements, pushing aside more tra-
ditional forms of requirements. Even in less radical approaches,
tests share many of the properties expressed as use cases or user
stories.

The following listing is a Java test for the example library
system (it corresponds to the requirement “available books can
be placed on hold by only one patron at any given time” given
in section 3.5 below).

1 public class HoldingAvailableBooksTest {
2 private Book b; private Patron p1 , p2; private

LibraryBranch lb;
3 private Library l;
4

5 $@$BeforeEach
6 public void setUp() {
7 b = new Book("Crime and Punishment", "Fedor

Dostoyevsky", "978 −1703766172");
8 p1 = new Patron("Ted"); p2 = new Patron("Fred

");
9 lb = new LibraryBranch("Squirrel Hill");

10 l = new Library("Carnegie Library of
Pittsburgh");

11 l.addBranch(lb); l.addPatron(p1); l.addPatron
(p2);

12 }
13

14 $@$Test
15 public void testHolding () {
16 l.placeBookOnHold(b, p1 , lb); l.

placeBookOnHold(b, p2, lb);
17 assertTrue(l.bookIsOnHold(b, p1, lb));

assertFalse(l.bookIsOnHold(b, p2 , lb);
18 } }

The setUp() method instantiates concrete input objects for
the test. Then testHolding() executes the method under
test and checks the correctness of the objects in the resulting
state. The @BeforeEach annotation directs the unit testing
framework to execute the setUp() method before running any
tests, decorated with @Test annotations.

The role of tests extends beyond requirements (the focus of
this article); note in particular the widely accepted role of the
regression test suite, which collects all tests run on versions of
a system since the project’s inception. Another idea that has
gained wide acceptance under the influence of agile methods
is a milder form of Test-Driven Development: the rule that
every addition to the code must also include a new test (even
if we avoid misconstruing that test for a specification). Some
agile approaches go so far as to accept only code and tests as
legitimate artifacts (Poppendieck & Poppendieck 2003).

2.5. Benefits and limitations of scenarios and tests for
requirements

The techniques reviewed above have gained front-row seats in
modern software development. Use cases and user stories are
important as checks on requirements, to verify that the require-
ments, expressed in any form, do cover the most important cases.
They are not, however, a substitute for these requirements.

A good mathematical textbook presents, along with every
important theorem, examples of its consequences. A good
physics textbook presents, along with every important property,
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examples of its applications. They help make the theorem or
property more concretely understandable. No one, however,
would accept the examples as a replacement for the theorem.
Use cases are to a requirement what an example is to a theorem
and a test to a specification.

A scenario or test describes only one path of system usage;
the number of actual paths is, for any significant system, stag-
geringly large or theoretically infinite. Requirements should
specify the system’s behavior in all cases, not just the inevitably
small subset of cases that have been foreseen.

The difficulty of software and particularly of software re-
quirements comes from the myriad of variants that a system
must be prepared to handle. One of the prime goals of require-
ments is to help ensure the system’s correctness. In practice, the
most serious bugs (violations of correctness) do not generally
arise from the common example scenarios typically included in
use cases, user stories and unit tests, since the testing phase will
naturally focus on them; they arise out of less obvious cases,
which such examples often leave out. Only by trying for a more
abstract form of specification, covering all cases, can one expect
to identify such problematic cases.

Even use cases, the most advanced form of scenario, suffer
from this limitation. A use case describes only one path of
interaction with the system, or a set of related cases if it takes
advantage of conditional branching and extensions. In practice,
use cases tend to focus on the most desirable cases, in particular
the “main success scenario” and possibly some of its variants as
illustrated earlier in section 2.1). While one can add extensions
covering such situations, or write new use cases to address
them, there are so many combinations for any non-trivial system
that it is impossible to include all such extensions, or even a
representative subset. These observations also apply to user
stories and tests.

Scenario-based techniques suffer from another limitation:
their exaggerated reliance on time ordering, which often leads
to overspecification. A use case will often specify a sequential
contract (step B must occur after step A) when in fact a logical
constraint would suffice (step B requires a certain condition,
which step A ensures). Turning logical constraints into sequen-
tial ones is often too restrictive. Section 5.1 discusses this point
further. (Also note Glinz’s critical analysis of use cases (Glinz
2000).)

The preceding analysis leaves two questions open:

– Is a more general form of requirement available, focusing
on abstract properties rather than examples?

– Can we express use cases, user stories and tests in the same
framework as those requirements?

For answers, we may turn to the object-oriented mode of speci-
fication.

3. Object-oriented fundamentals

To reach the level of abstraction that scenarios do not provide,
we look into object-oriented techniques, which have been widely
applied to programming and design.

3.1. OO principles and benefits

Some of the key object-oriented concepts are the following
(Meyer 1988, 1997):

– Type-based modular decomposition: capture the proper-
ties of the key “things” manipulated by a system, better
called objects, by abstracting them into types, or classes,
and define the modular structure of a system as a set of
interconnected classes.

– Data abstraction: describe each class not by implementa-
tion properties (what the corresponding objects “are”) but
by the applicable operations, or features (what the objects
“have”).

– Contracts: in such descriptions, include not only struc-
tural properties, such as the types of arguments handled
by each operation, but also abstract semantic properties
(preconditions, postconditions, class invariants).

– Inheritance: organize classes into taxonomies to take ad-
vantage of common traits. Techniques of polymorphism
and dynamic binding, which follow from inheritance, en-
hance the architectural quality of OO systems.

The next subsections examine these concepts in more depth,
with an eye on their application to requirements. The examples
use the Eiffel notation, which includes built-in mechanisms of
Design by Contract and was designed to cover requirements and
design in addition to programming. Subsection 3.6 discusses
the expected benefits.

3.2. Classes and their mutual relations

The central concept of object-oriented approaches to system
modeling and structuring is the class, defined as a system unit
specifying a type of object with the associated operations and
their properties. A class has operations of three kinds, which
we may illustrate through the example of a class describing the
concept of book in a library system:

– Queries, providing information about the book:
is_available, isbn, author.

– Commands, to update the corresponding objects: hold,
checkout.

– Creators (or “constructors”), yielding objects of the type
from other information, for example a book object defined
by an author and title.

OO system descriptions are simple, relying on classes and only
two relations between these classes: client and inheritance. For
example, operations on a book (see the use case presented in
section 2.1) involve, among other objects, a patron and a library
branch. The class representing a book will be a client of the
classes representing the other three concepts.

A class inherits from another if it represents a specialized
or extended version of the other’s concept. For example book
and magazine both belong to the general category of library
item, which can be represented by a class LIBRARY_ITEM.
BOOK and MAGAZINE are “descendants” of LIBRARY_ITEM
through the inheritance relation shown in Figure 1.
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Figure 1 Examples of the two kinds of inter-class relations

3.3. Deferred (abstract) classes
In an OO program, most of the commands and queries of a
class are “effective”, meaning that the class specifies an algo-
rithm for their implementation. A class whose features are
all effective is itself called an effective class. In some cases,
however, including classes describing requirements, it is useful
to define features without providing an implementation. Fea-
tures specified but not implemented are called deferred, and a
non-effective class (one that has at least one deferred feature)
is a deferred (abstract) class. In requirements for the library
example, LIBRARY_ITEM will most likely be a deferred class
(as marked by “*” in Figure 1) since it describes an abstract
concept with several possible concrete realizations.

In requirements, declaring classes and features deferred
makes it possible to specify that some functionality must exist
while staying away from any consideration of implementation
and hence from the risk of overspecification.

Even without an implementation, it will be possible in such
cases to specify abstract properties of the desired behavior
thanks to contracts, as discussed in section 3.4 below. It might
seem that in requirements all classes and features should be
deferred, but that would be too restrictive. As we will see in sec-
tion 5, requirements classes can specify scenarios, such as use
cases or tests; such classes and their features will, in general, be
effective since they prescribe precise sequences of operations.

3.4. Contracts
Information hiding implies that modules of a system’s descrip-
tion (in OO modeling, classes) can refer to others in terms of
their abstract specification. To be useful, such specifications
should not just be structural, giving the types of arguments and
results of the operations in a class, but also semantic, describing
the abstract properties of these operations and the class as a
whole. Design by Contract techniques (Meyer 1992) provide
this semantic specification for both operations (preconditions
and postconditions) and classes (class invariants).

As an example, the class extract below expresses the require-
ment that a public library allows patrons to place books on hold
at its various library branches:

1 class LIBRARY feature
2 place_book_on_hold (b: BOOK; p: PATRON; lb:

LIBRARY_BRANCH)
3 require
4 has_patron (p)
5 has_branch (lb)
6 do -- Future implementation

7 ensure
8 book_is_on_hold (b, p, lb)
9 end

10 end

The require clause introduces a precondition, and the ensure
clause a postcondition.

Contracts have many applications, including as documenta-
tion of the software and as a guide to both exception handling
and the proper use of inheritance. When applied to code, they
also provide a systematic approach to testing and debugging (in
a development environment that provides the ability to evaluate
contract elements at run time). The application of most direct
relevance to requirements, as illustrated by the LIBRARY ex-
ample sketch above, is to model the System or Environment by
providing not only structural properties (object types and the
applicable operations) but also through precise semantics (the
properties of these types and operations).

Such semantic models lend themselves to automatic verifi-
cation. Beyond run-time monitoring of contracts, which only
applies to executable code, classes equipped with contracts can
be verified using automatic tools such as JML (Leavens et al.
1999) and the AutoProof verifier for Eiffel (Tschannen et al.
2015).

3.5. Specification drivers
The object-oriented style of modeling relies on modular units
(classes), each organized around one type of objects. Corre-
spondingly, contract techniques apply within a class, making
it possible for example to express the requirement that “after a
patron returns a book, it is considered available” as a postcon-
dition of an operation return in a class BOOK.

Some properties apply to several objects, possibly of different
types. An example is “available books can be placed on hold
by only one patron at any given time”.

While the OO style would seem to break down in such cases,
it actually handles it in a simple way through the introduction
of “specification drivers” (Naumchev & Meyer 2016). The idea
(generalizing techniques already present in the Visitor design
pattern (Gamma et al. 1994)) is to express such cross-object
properties through classes designed specifically for specification
purposes.

In the last example, we may use the following specification-
driver assertion, which describes a generic scenario of using the
relevant features and specifies its effect through the postcondi-
tion:

1 holding_available_books (b: BOOK; p1, p2: PATRON; lb:
LIBRARY_BRANCH; l: LIBRARY)

2 require
3 b.is_available; p1 ̸= p2
4 l.has_patron (p1); l.has_patron (p2)
5 l.has_branch (lb)
6 do
7 l.place_book_on_hold (b, p1, lb)
8 l.place_book_on_hold (b, p2, lb)
9 ensure

10 l.book_is_on_hold (b, p1, lb)
11 not l.book_is_on_hold (b, p2, lb)
12 end
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Specification drivers retain the OO specification style but make
it more general by covering properties that may not be express-
ible within a single class of the original OO model.

3.6. OO benefits and their application to requirements
The case for applying OO principles and techniques summa-
rized above rests on the expectation of a number of benefits,
analyzed in detail in the literature (Meyer 1988, 1997). They
include extendibility (ease of modifying software, by keeping
the various elements of a system isolated from changes in oth-
ers), reusability (ease of applying elements of a system to the
development of a new system) and reliability (correctness of
solutions, robustness in the presence of errors, and security).
These goals are just as desirable for requirements as they are for
design and programming. Remarkably, much of the rationale
for using OO technology to achieve them does not depend on
whether it covers implementation, design or (the case of interest
for this discussion) requirements. For example:

– Extendibility (1). A core idea is that structuring the descrip-
tion of a system around the types of objects (classes) rather
than around the functions leads to more stable architec-
tures. A typical example found in the standard references
is a payroll processing system. Initially, it is defined by a
function: produce paychecks. But if you structure it based
on that analysis (classical, non-OO “functional” decompo-
sition) you will have to redo the architecture regularly as
new functions come in: change salary scales, provide re-
porting mechanisms, allow interactive queries of salary in-
formation etc. In an OO approach the units of modulariza-
tion are types of objects: EMPLOYEE, SALARY_SCALE,
PAY_RECORD, WORK_RECORD etc. As new functions
come (and go), these basic units remain stable. This flexi-
bility accounts for a large part of the success of OO model-
ing. It is directly applicable to requirements. Note that use
cases and other kinds of scenarios (see next section) break
that structure by requiring the specifier to focus early —
too early — on sequences of actions.

– Extendibility (2). Inheritance yields flexible architectures,
based on taxonomy — the classification of object types into
hierarchies, in line with scientific practices. It is directly
applicable to requirements.

– Reliability (1). One of the OO reliability techniques is
static typing, which catches many errors as type inconsis-
tencies. It is directly applicable to requirements.

– Reliability (2). Contracts make it possible to express not
just structural properties but semantic constraints. As il-
lustrated in the examples of this paper, they are directly
applicable to requirements.

– Reusability. Reuse is desirable for requirements as much
as for other software development steps and artifacts, al-
though in practice requirements reusability is still in its
infancy. Some of the OO techniques favoring reuse, such
as (again) the division into classes rather than functions, as
well as inheritance, are directly applicable to requirements.

The next section describes in more detail the application to
requirements of the OO techniques of the present section.

4. Object-oriented requirements
The scope of object-oriented concepts as described in the previ-
ous section is broad enough to encompass all tasks of software
construction, from requirements to design, implementation of
course, and even verification. Of direct interest in this article is
the application to requirements.

4.1. OO requirements basics
Discussing a system as a set of object types (classes) character-
ized by the applicable operations yields a number of potential
benefits, which have been widely recognized in the program-
ming world but can apply to requirements as well. They include
the following:

– Stability through the evolution of the software. Changes
affect individual modules, not the architecture.

– Information hiding. With classes, we may declare, as part
of the specification of a class, that some of the properties
are for internal use only, within the class, and not accessible
outside; limiting the effect of changes.

– Reuse. If we are trying to apply the results of one project
to another, reusing individual operations will generally not
work. Operations such as “place a hold on a book”, “check
out a book”, “cancel a checkout” and others are closely
connected. The notion of a book (as a class that includes
all these operations) is a more realistic unit for reuse.

– Classification. Inheritance makes it possible to describe
new classes as extensions or specializations of existing
ones, without repeating common properties. Along with
information hiding, inheritance is a key tool in harnessing
system complexity.

– Modeling power (“direct mapping principle”, as noted in
section 1). OO concepts can yield system descriptions
that are clear and intuitive, since the notions of object,
class and inheritance are easy to grasp. Some classes have
immediately tangible counterparts in the system environ-
ment. They are called “Environment classes”, Concrete
and Abstract, in the classification presented in a subsequent
section (4.2).

– Abstraction. Deferred (abstract) classes and features make
it possible to specify the presence of certain types of ob-
jects and of certain operations on them, without giving
implementation details (but with abstract behavioral prop-
erties through contracts).

4.2. Modeling the system and its environment
Requirements in their general sense involve four aspects (called
the “Four PEGS” in (Meyer 2022)): Project (a human effort to
produce a system), Environment (the material or virtual reality
in which the system will operate), Goals (objectives set by the
organization), and System (the set of functional elements that
will be provided). OO modeling is applicable to all four aspects.

The application to the System part is the traditional focus of
OO ideas. When the project reaches the design and implemen-
tation stages, System classes will include both concrete classes
describing implementation elements and more abstract design
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classes, corresponding for example to design patterns such as
Visitor or Observer.

At the requirements stage, it is not too early to use classes
to identify the major components of the system and describe
them through classes. Many of these classes will be deferred
(abstract), but they may already include operational elements,
including specification drivers and (as explained below) scenar-
ios.

Of particular relevance are Environment classes; OO mod-
eling is indeed appropriate to describe components of the en-
vironment. A typical example is the description of interfaces
to and from other systems, through interface classes describing
such elements as sensors, actuators, buttons and control panels.
The corresponding objects are not part of the software under
development, but they are directly monitored or controlled by
the software.

Contract elements are particularly useful here, to describe
delicate properties of the environment. Such properties include:

– Constraints: conditions imposed by the environment, such
as a physical limit (in a cyber-physical system) or a legal
obligation (for a business system).

– Effects: changes to the environment produced by the sys-
tem (such as the triggering of an actuator, or a change in
payroll processes).

– Assumptions (posited properties of the environment, mak-
ing the system’s construction easier).

– Invariants (properties that are both constraints and effects,
as they can be assumed but must be preserved).

4.3. An example OO specification
The class text below is an example of how we can use an object-
oriented formalism to describe requirements specifications, in-
dependently of any design or implementation consideration. It
describes the notion of book in a library system. The follow-
ing section will discuss some of its most important features,
distinguishing it from other types of specifications such as use
cases.

1 class BOOK feature
2 -- is_available initialized to True
3 -- is_on_hold, is_checked_out initialized to

False
4 is_available, is_on_hold, is_checked_out: BOOLEAN
5 place_hold (patron: PATRON)
6 -- Place a hold on a book. Set is_on_hold
7 require
8 is_available
9 deferred

10 ensure
11 is_on_hold
12 not is_available
13 end
14 checkout (patron: PATRON)
15 -- Check out the book
16 require
17 is_on_hold
18 deferred
19 ensure
20 is_checked_out
21 end
22 return
23 -- Return the book to the library

24 require
25 is_checked_out
26 deferred
27 ensure
28 is_available
29 end
30 invariant
31 is_on_hold implies not is_available
32 is_checked_out implies not is_available
33 is_checked_out implies not is_on_hold
34 is_available implies not is_checked_out
35 end

5. Object-oriented requirements as the unify-
ing framework

The object-oriented approach is a structuring discipline, which
models systems — at all levels: requirements, design, imple-
mentation — as collections of classes equipped with contracts
and related to each other through client and inheritance links.
This framework is general enough to encompass all aspects of
requirements and provides room for the various non-OO tech-
niques (scenarios and tests) reviewed earlier. The following
sections show how to use an OO model as an all-encompassing
host for various applications.

5.1. Logical rather than sequential constraints
A distinctive feature of the above BOOK class sketch is its re-
liance on logical constraints (through contracts) in lieu of a strict
specification (or overspecification) of sequencing constraints.

OO techniques avoid premature time-ordering decisions.
While it is possible for an OO specification to express a time-
ordered scenario such as a use case, object technology also
supports a more general and abstract specification style, based
on contracts.

The comparison of class BOOKwith the use case specification
of books in section 2.1 provides a good illustration. The use
case version specifies the order in which operations will get
executed; for example, in the “main success scenario”:

– The system changes the book status to on_hold
– The patron checks out the book
– The patron returns the book

Enforcing such an ordering specification at the level of require-
ments is often a premature decision. In reality, the order of the
steps is not cast in stone. Using a preset ordering is convenient
to describe desirable scenarios, or more generally the expected
ones. But what happens in life is not always what we hope
for, or expect. What if the customer returns a damaged book?
Should the book not remain unavailable until it is repaired?

To specify scenarios that depart from the standard ones, we
saw that it is possible to use extensions. But this solution does
not scale. Writing ever more use case extensions to cover all
such situations leads to an explosion of special cases which
soon becomes intractable. In practice, it is possible to write use
cases to cover the most common scenarios, but they are only
a small subset of the possible ones, in the same way that, in
programming, tests can only cover a minute subset of possible
inputs.
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To get out of this predicament, we note that while constraints
between the operations do exist, it is often more general and
effective, instead of timing constraints, to rely on logical con-
straints.

The preceding example scenario provides a good illustration.
As a specification, it is trying to express a few useful things;
for example, the patron should place a hold on a book before
checking it out. But it states them in the form of a strict sequence
of operations which does not cover the wide range of possible
scenarios.

In the same way, a user story such as “As a patron, I want
to check out a book so that I can read it at home" describes the
interaction between a human actor and the system. Describing a
few such scenarios is useful as part of requirements elicitation,
but to express the resulting requirements it is more effective to
express the logical constraints.

Class BOOK (from section 4.3) specifies these logical con-
straints in the form of contracts. Notice the interplay between
the preconditions and postconditions and the various boolean-
valued queries they involve (is_available, is_on_hold,
is_checked_out). It is possible to specify a strict order of
operations o1, o2, ..., as in a use case, by having a sequence of
assertions pi such that operation oi has the contract clauses re-
quire pi and ensure pi + 1; but assertions also make it possible
to specify a much broader range of allowable orderings. Logical
constraints are more general than sequential orderings.

The specific sequence of actions described in the use case
(“Main scenario”) is compatible with the logical constraints:
one can check that in the sequence

1 -- The following is the "Main scenario":
2 place_hold (patron: PATRON)
3 checkout (patron: PATRON)
4 return (patron: PATRON)

the postcondition of each step implies the precondition of the
next one (the first has no precondition). Prescribing this order
strictly is, however, overspecifying. For example, it may be pos-
sible to perform additional operations between place_hold
and check_out.

The contract-based specification does cover the fundamental
sequencing constraints; for example, the pre- and post-condition
combinations imply that investigation must come before evalua-
tion and that resolution must be preceded by either negotiation
or imposition. But they avoid the non-essential constraints
which were only an artifact of the sequential style of specifi-
cation in the use case, not a real feature of the problem (Petre
2013).

5.2. Integrating scenarios into an OO model
The preceding discussion shows how a specification through
classes and their contracts beats a scenario-style specification
in precision and generality. Use cases, user stories and other
scenarios do retain their attractive features mentioned in section
2, in particular their intuitive appeal to stakeholders, who can
relate them easily to business processes, and their value as ways
to validate the completeness of specifications. There is no need,
however, to sacrifice scenarios – in particular use cases, retained
as an example for this discussion – in an OO approach. A

use case is simply a certain pattern of exercising the features
(operations) of one or more classes; it can easily be expressed
as a routine (method) of an appropriate class.

Here for example is the expression of the use case from
section 2.1 as a routine that calls features of the class BOOK:

1 class BOOK feature
2 borrow_and_return_book (p: PATRON, lb:

LIBRARY_BRANCH)
3 require
4 book_is_available: is_available
5 do
6 place_hold (p)
7 checkout (p)
8 return (p)
9 end

This use case is simply a routine, calling features of the appro-
priate class.

Where should such use case routines appear? Two possibili-
ties are available:

– In the case of a use case characterizing a single data ab-
straction and applying to a single object, such as one book,
it can be expressed as a routine of the corresponding class,
in this case BOOK. Then it simply describes a specific
behavior of the instances of the class, expressed in terms
of the more fundamental operations of the class.

– A more general solution, and the one that fits the case of
a use case involving several objects of possibly different
types (hence, routines in different classes), is to group use
cases into a separate class.

In both cases, a use case is an addition to one or more data ab-
stractions from the rest of the requirements, intended to illustrate
specific ways of using its features. The notion of “specifica-
tion driver” (section 3.5) covers such specification elements
exercising the features of one or more model classes. It was
originally introduced for verification purposes (proofs and tests);
we may view use-case class as an application of the concept to
requirements specification.

In accordance with OO principles, a use-case class should
include not just one use case but a group of logically related use
cases, exercising features of other requirements classes. (The
idea of describing a single use case as a class is not new; see
for example (Cook et al. 2017). The use case classes described
here are at a higher level of abstraction, covering a whole set of
related behaviors, all pertaining to one or more data abstractions
covered by other requirements classes.)

Here is an example of such a use-case class (a collection of
specification drivers) exercising features of classes BOOK and
LIBRARY:

1 class LIBRARY_BOOK_USAGE feature
2 borrow_and_return_book
3 do .. . as given above .. . end
4 decommission_book
5 do .. . Specification of decommission use case

.. . end
6 renew_book
7 do .. . end
8 -- Other use cases
9 end
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To avoid any confusion, note that the idea is not to describe
one use case as a class or the corresponding object; that possi-
bility is well-known, and not surprising since any well-defined
abstraction can be modeled as an object. A use class such as
LIBRARY_BOOK_USAGE gathers a set of important behaviors
connected with an abstraction (or a group of abstractions) from
the OO model of the environment and system. Such a set of
related behaviors is in its own right a relevant abstraction in the
OO model.

5.3. Relation of OO requirements to test cases
Test cases fit in the general OO framework just as use
cases do. In modern “xUnit" approaches to software test-
ing (section 2.4), the basic scheme is already there since,
as noted in the earlier discussion, these frameworks re-
quire writing test cases as routines. The earlier example,
HoldingAvailableBooksTest, takes the form of the
class HOLDING_AVAILABLE_BOOKS_TEST depicted be-
low.

1 class HOLDING_AVAILABLE_BOOKS_TEST feature
2 test_holding
3 local
4 b: BOOK
5 p1, p2: PATRON
6 lb: LIBRARY_BRANCH
7 l: LIBRARY
8 do
9 create b.make("Crime and Punishment", "Fyodor

Dostoyevsky", "978−1703766172")
10 create p1.make("Ted") create p2.make("Fred")
11 create lb.make("Squirrel Hill")
12 create l.make("Carnegie Library of Pittsburgh")
13 holding_available_books (b, p1, p2, lb, l)
14 end
15 .. .
16 end

As suggested by the final ‘...’, the given routine
test_holding does not need to be the only one in
its class. Having one testing routine per testing class is, in
fact, the typical xUnit style used in practice, but this practice
misses the advantages of OO modularization. (It is a general
rule of OO methodology that a class with just one routine is
a “design smell”, a sign of probably bad OO design.) In the
context defined by the present discussion, the testing harness
for a system should consist of a set of testing classes, each
exercising some features of a system or environment class (or
of a closely related group of such classes).

Like use-case classes, such test classes are specification-
drivers classes. HOLDING_AVAILABLE_BOOKS_TEST, con-
taining routines related to book borrowing, is a typical example.

5.4. Premature design?
An object-oriented requirements specification, as presented,
uses an object-oriented notation, borrowed from an OO pro-
gramming language. This notational resemblance may give
the wrong impression of a specification involving premature
choices of design and implementation. Such criticism is not
justified; in fact, a proper OO requirements specification is more
abstract, and less prone to overspecification, than a use-case or
other scenario-based form of requirements.

The classes used in an OO specification are purely descrip-
tive; they specify concepts (in particular, system and environ-
ment concepts) in an abstract way, using the OO style of speci-
fying object types through the applicable operations and their
abstract properties (contracts). In contrast, use cases are of a
sequential, operational nature, presenting a risk of premature
design, particularly as they make it tempting to write programs
following the same ordering patterns, justified or not.

While free from design and implementation considerations,
the classes written for requirements purposes are still classes
and can be expressed in an object-oriented language that also
supports design and implementation classes. The benefit here
is to avoid harmful changes of concepts and notations when
going through successive steps of the software lifecycle. This
approach is known as seamless development. One of its con-
sequences is reversibility: having everything expressed in the
same notation makes it easier to update the requirements at any
stage in the project, even deep into design, implementation or
verification.

5.5. Applying the framework
While the systematic description of a comprehensive approach
to requirements specification falls beyond the scope of this arti-
cle, we may build on the BOOK example to obtain an outline of
the general process of object-oriented requirements specifica-
tion:

1. Express the fundamental abstractions in the form of re-
quirements classes.

2. Express the fundamental constraints in the form of logical
properties: invariants for these classes as well as precondi-
tions and postconditions for their features (operations).

3. Express typical usage scenarios through use cases or user
stories. (Unlike the previous two, this task does not make
any attempt at exhaustiveness, since examples can only
cover a minute fragment of all possibilities; instead, it con-
centrates on the scenarios of most interest to stakeholders,
and those most likely to cause potential issues or bugs.)

4. As a consistency check, ascertain that the scenarios (item
3) preserve the logical properties (item 2). Update the
logical properties if needed.

More generally, the combination of an object-oriented approach
to structure the requirements (1), equipped with invariants (2) as
well as other forms of contracts (preconditions, postconditions),
with use cases to illustrate the requirements through examples
of direct interest to stakeholders (3) and shown to preserve the
invariants (4) provides a promising method for obtaining correct
and practically useful requirements.

6. A case study – the Roborace software
This section illustrates the application of the suggested approach
to a real-world case study: the Roborace (Roborace 2022). The
code excerpts used in this section are available at (Naumcheva
2022). Although the complete requirements specification is
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beyond the scope of the article, we illustrate the implementation
of the key concepts of the framework.

6.1. Roborace: informal description

Figure 2 Devbot 2.0 – all-electric vehicle currently used in
the Roborace competition (source: (Roborace 2022))

Roborace (Roborace 2022) is a global championship between
autonomous cars. The hardware (the race cars) is the same for
all participating teams; each gets access to an autonomous race
car called Devbot 2.0, and develops software to drive it in races,
in a completely autonomous way. Each season sees changes in
the goals and rules, and the introduction of new conditions.

The race takes place on a circuit. The cars start at a desig-
nated spot on a starting grid and have to accomplish a given
number of laps faster than the competing teams. The competi-
tors race independently and their racing time is compared after
all teams have finished the race.

No physical objects other than the competing race cars are
present on a racetrack, but there can be virtual objects, of three
kinds: static obstacles, loots and ghost cars. Cars get bonus
time for collecting loots and penalty time for hitting obstacles
or ghost cars. The total time is defined as the race time minus
bonus time plus penalty time.

6.2. Roborace: use cases

A specification of the Roborace system would include many use
cases, such as:

– Race without obstacles
– Avoid obstacles or stop
– Update speed limit
– Race with virtual obstacles
– Race with virtual race cars
– Move to pit
– Perform an emergency stop
– Perform a safe stop.

Let us pick the first of these, “Race without obstacles”, for
further analysis. This subsection shows a typical use-case model
for it; in the next subsection we will see how to integrate it into
a more general OO framework.

A specification of the use case in the style introduced in
section 2.1 is presented in table 4.

6.3. Roborace: some requirements classes
We now temporarily set use cases aside and consider what an
object-oriented requirements model for Roborace would look
like. Its classes would cover both:

– Its environment, with such classes as RACE_TRACK, MAP
and OBSTACLE.

– Components of the system, with such
classes as RACE_CAR, PLANNING_MODULE,
CONTROL_MODULE and PERCEPTION_MODULE.

Here is a sketch of two such classes, both belonging to the
system.

1 class RACE_CAR feature
2 control_module: CONTROL_MODULE
3 perception_module: PERCEPTION_MODULE
4 planning_module: PLANNING_MODULE
5 localization_and_mapping_module:

LOCALIZATION_AND_MAPPING_MODULE
6 end

1 class RACE_TRACK feature
2 raceline: RACELINE
3 -- Optimal raceline for the track
4 map: MAP
5 -- Coordinates of the bounding lines
6 end

During the development process, elements of the system’s func-
tionality are assigned as features of respective modules’ classes
and are enriched with contracts.

Below is an implementation of the requirement “At every
position on a raceline the speed in the velocity profile shall not
exceed the maximum racecar’s speed”:

1 class PLANNING_MODULE feature
2 car: RACE_CAR
3 calculate_raceline (t: RACE_TRACK)
4 --Calculate optimal raceline for a given

racetrack
5 do
6 ensure
7 across t.raceline.velocity_profile as rl

all rl.item < car.max_speed end
8 end
9 end

6.4. Roborace: integrating the use cases into the object-
oriented model

We now see how to express the use cases (section 6.2) as part of
the OO requirements (section 6.3).

The “race without obstacles” use case, previously ex-
pressed in tabular format (Table 4) becomes simply a
routine race_no_obstacles in the requirements class
ROBORACE_USE_CASES sketched above. It relies on con-
ditional expressions to consider the use case alternative flows.

1 race_no_obstacles
2 Note
3 Callers: car_operator
4 require
5 not car.is_moving
6 car.global_plan_is_calculated
7 car.green_flag_is_up
8 car.is_on_starting_grid
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Table 4 A detailed description of the “race without obstacles” use case

Name Race_no_obstacles

Scope System

Level Business summary

Primary actor Race car Operator

Secondary actor Roborace Operator

Context of use Race car has to obey an instruction

Preconditions * Race car is on the racetrack grid

* Race car is not moving

* The global plan (trajectory and velocity profile) minimizing the race time is calculated

* The green flag is shown by the Roborace

Trigger The system receives a request from the race car operator to start the race

Main success scenario * The system calculates the local plan (path and velocity profile) during the race trying to follow the
global plan as close as possible

* The race car follows the local plan

* After finishing the required number of laps the race car performs a safe stop

Success guarantee The race car has completed the required number of laps and stopped.

Extensions A. The red flag received during the race

* The race car recalculates a global plan to perform an emergency stop

* The race car performs an emergency stop

B. The yellow flag is received during the race

* The system sets the speed limit according to the received value

* The race car finishes the race following the global trajectory and not exceeding the new speed limit

C. The difference between the calculated (desired) location and real (according to the sensors) location
is more than a given threshold

* The race car recalculates a global plan to perform an emergency stop

* The race car performs an emergency stop

Stakeholders Race car Operator (requests the car to start the race)

and interests Roborace Manager (sets the race goals and policies)

Roborace Operator (shows the green, yellow, red flags)
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9 local local_plan: RACELINE
10 do
11 from --Sequence of system actions in use case

main flow
12 until car.race_is_finished or
13 car.red_flag_is_up or
14 car.location_error_is_detected
15 loop
16 if car.yellow_flag_is_up then
17 update_speed
18 end
19 local_plan := car.planning_module.

calculate_local_plan
20 car.control_module.move (local_plan.speed,
21 local_plan.

orientation)
22 end
23 if car.red_flag_is_up or
24 car.location_error_is_detected
25 then emergency_stop
26 else safe_stop end
27 ensure
28 not car.is_moving
29 car.is_in_normal_mode implies car.

race_is_finished
30 end

The race_no_obstacles routine relies on implement-
ing the routines update_speed, safe_stop, and
emergency_stop: the respective features are called inside
the use case. These features are implementation of the respec-
tive use cases, and such dependency corresponds to «include»
and «extend» relationships between use cases.

The ROBORACE_USE_CASES class is thus a collection of
routines corresponding to the system’s use cases.

1 class ROBORACE_USE_CASES feature
2 car: RACE_CAR
3

4 safe_stop
5 require
6 ‘ car.is_in_normal_mode
7 do
8 car.control_module.safe_stop
9 ensure

10 not car_is_moving
11 end
12

13 emergency_stop
14 require
15 car.red_flag_is_up or car.

location_error_is_detected
16 do
17 car.control_module.emergency_stop
18 ensure
19 not car.is_in_normal_mode
20 not car.is_moving
21 end
22

23

24 update_speed
25 require
26 car.yellow_flag_is_up
27 do
28 car.update_max_speed (car.safe_speed)
29 ensure
30 car.current_max_speed = car.safe_speed
31 end
32

33

34 race_no_obstacles

35 do
36 --implementation is listed above
37 end
38

39 avoid_obstacle_or_stop
40 do
41 end
42

43 race_with_virtual_obstacles
44 do
45 end
46

47 race_with_virtual_race_cars
48 do
49 end
50

51 move_to_pit
52 do
53 end
54

55 end

6.5. Roborace: relation between use cases and test
cases

Use case stories define test cases for use cases (Jacobson et
al. 2016). ROBORACE_USE_CASE_STORIES class inherits
from ROBORACE_USE_CASES class. It includes a collection
of routines corresponding to use case stories.

When a use case takes the form of a routine with contracts,
extracting use case stories from such a routine becomes a semi-
automated task. For example, the emergency_stop use case
accepts two options in its precondition – (1) when the red flag
is shown or (2) when a location error is detected. These options
map to the following use case stories written in the unified
approach / with OO requirements:

1 emergency_stop_red_flag_story
2 require car.red_flag_is_up
3 do emergency_stop end
4

5 emergency_stop_location_error_story
6 require car.location_error_is_detected
7 do emergency_stop end

These routines represent the two different paths through the
emergency_stop use case, characterized by their precondi-
tions. The connection with the parent use case is visible because
the stories call the routine encoding the use case. The two rou-
tines must be exercised at least once with test input that meets
their preconditions.

A similar analysis makes it possible to extract 5 use case
stories from the race_no_obstacles use case:

– three for each possible loop exit condition.
– one corresponding to the true antecedent of the implication

in the second postcondition assertion.
– one corresponding to the true consequent and false an-

tecedent of the said implication.

The full collection of the extracted use case stories may be found
in a publicly available repository (Naumcheva 2022).

Object-Oriented Requirements: a Unified Framework for Specifications, Scenarios and Tests 13



6.6. Roborace: lessons from the example
The “main scenario” of the “Race without obstacles” use case
(section 6.2) provides a good illustration of the difference be-
tween contract-based and scenario-based specification (section
5.1). As a specification, this scenario expresses, among other
properties, that the system calculates a local plan and then fol-
lows it. It states this property in the form of a strict sequence
of operations which, however, only covers some of the many
possible scenarios.

It does list extensions, but only three of them, and does not
reflect the many ways in which they can overlap. For example:

– It can happen that the green flag is shown some time after
the yellow flag; but the extensions do not even list the
green flag.

– In the same way, the red flag can be shown after a yellow
flag.

An attempt to add extensions to cover all possibilities would
have no end, as so many events may occur as to create a combi-
natorial explosion of possible sequencings.

One way out of this dead end would be to use temporal
logic (Pnueli 1977), which provides a finite way to describe a
possibly infinite but constrained set of sequences of events or
operations. The Design-by-Contract-based technique discussed
in the present work relies on a different idea: use logical rather
than sequential constraints. For each operation, we specify both:

– The conditions it requires (precondition).
– The conditions it ensures (postcondition).

Sequential constraints become just a special case: we can ex-
press that A must come before B simply by defining a condition
C as part of both the postcondition of A and the precondition of
B. But the logic-based specification scheme covers many more
possibilities than just this special case.

In the example just mentioned, we state (in class
ROBORACE) the constraint on raising the yellow and red flags:

1 class ROBORACE feature
2 raise_yellow_flag
3 require
4 green_flag.is_up
5 do
6 ensure
7 yellow_flag.is_up
8 not green_flag.is_up
9 not red_flag.is_up

10 end
11 raise_red_flag
12 require
13 green_flag.is_up or yellow_flag.is_up
14 do
15 ensure
16 red_flag.is_up
17 not green_flag.is_up
18 not yellow_flag.is_up
19 end
20 end

Preconditions and postconditions apply to individual operations
or events and cannot capture general environment constraints,
such as the requirement that if the yellow flag is up cars should

limit their speed to a dedicated “safe speed”. For such require-
ments properties, we need contract elements of the third major
kind, class invariants, as in the following extract from the speci-
fication of cars:

1 class RACE_CAR feature
2 green_flag_is_up: BOOLEAN
3 yellow_flag_is_up: BOOLEAN
4 red_flag_is_up: BOOLEAN
5 safe_stop_activated: BOOLEAN
6 max_speed: REAL
7 current_max_speed: REAL
8 -- Current speed limit
9 safe_speed: REAL

10 -- Safe speed limit
11 invariant
12 yellow_flag_is_up implies current_max_speed =

safe_speed
13 green_flag_is_up implies current_max_speed =

max_speed
14 red_flag_is_up implies safe_stop_activated
15 end

This example is typical of how invariants capture fundamental
consistency constraints. Almost every problem domain has
such constraints, defining what is and is not possible. Any good
requirements should include them. They have no place, however,
in a specification based solely on scenarios, which describe only
examples of use, not the underlying invariant properties.

7. Related Work

7.1. UML and SysML
Use cases are an important modeling tool in UML (Cook et al.
2017). (Larman 2012) illustrates use-case-driven requirements
specification in UML and (Overgaard & Palmkvist 2004) de-
scribes use-case patterns and blueprints for use-case modeling
in UML.

UML makes it possible to treat use cases as objects, subject
to specialization and decomposition. As noted in section 5.2,
the use-case classes described in this paper cover a different
concept: a group of related behaviors, pertaining to one or more
data abstractions. UML use cases can have pre- and postcon-
ditions; in OO modeling as described in the present paper, pre-
and postconditions (routine contracts) apply to individual opera-
tions. If a use case consists of a sequence of operations op1, op2,
... opn, with each opi characterized by prei and posti, the pre-
and postconditions of the use case are just pre1 and postn. It is
possible in UML to associate contracts with individual opera-
tions through natural language or the OCL (Object Constraint
Language) notation.

SysML (OMG 2019), an extended profile for UML, treats
requirements as first class entities, establishing direct links be-
tween requirements and other software artifacts (such as tests).
(Weilkiens 2011) illustrates requirements specification process
with SysML and (Apvrille et al. 2020; Xie et al. 2022; Waseem
& Sadiq 2018) provide applications of SysML to all phases
of software development. SysML does not provide semantics
for requirements although it is possible to associate contracts
with individual operations through natural language or the OCL
notation. SysML and UML are standardized notations, rather
than methodologies.
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7.2. Use-case modeling
The Restricted Use Case Modeling approach (Yue et al. 2016,
2013) relies on a use case template and a set of restriction rules
to reduce the ambiguity of use case specification and facilitate
transition to analysis models, such as UML class diagram and
sequence diagram. The aToucan tool automates generation of
UML class, sequence and activity diagrams (Yue et al. 2015).
The approach does not advocate extracting abstract properties
from use cases and domain knowledge, such as time-ordering
constraints and environment constraints.

Like the use case classes presented in section 5.2, a Use
Case Map (UCM) (Buhr & Casselman 1995; Amyot et al. 2005)
depicts several scenarios simultaneously. UCMs represent use
cases as causal sequences of responsibilities, possibly over a
set of abstract components. In UCMs pre- and postconditions
of use cases as well as conditions at selection points can be
modeled with formal specification techniques such as ASM or
LOTOS. UCMs specify properties of operations in relation to
scenario sequences, rather than abstract properties of objects
and operations.

Logical constraints, discussed in section 5.1 can also be
formulated with state-based notations, such as Alloy (Jackson
2012), Event-B (Abrial 2010; Murali et al. 2016), Abstract State
Machines (Börger 2010) and Statecharts (Whittle & Schumann
2000; Gomes & Costa 2003). Some approaches (Murali et al.
2016; Gomes & Costa 2003) apply formal modeling to specify
use cases, but the formal specification is for an entire use case,
not for its individual operations.

7.3. Use cases as requirements
There is disagreement among researchers about whether use
cases are requirements. In the ICONIC process (Rosenberg
& Stephens 2007) use cases are requirements and constitute
the main input for software design. Larman claims in (Larman
2012) that use cases are only part of requirements, constituting
functional requirements, yet not all requirements. Other require-
ments artifacts include supplementary specification, glossary,
vision and business rules. In our perspective, although use cases
are an important source of requirements, they have to be thor-
oughly analyzed together with environment constraints before
proceeding to software design.

7.4. Contract-based approaches
To express properties of operations and their interactions, object-
oriented requirements as discussed in this article rely on con-
tracts rather than sequential ordering. Contracts also play a
role in other requirements work, including approaches based on
UML thanks to the Object Constraint Language, OCL. Larman’s
book on UML and patterns (Larman 2012) specifies “system
operation contracts” in natural language or OCL to express how
system operations change the state of domain model objects.
Soltana et al. (Soltana et al. 2014, 2016) apply OCL contracts
to express operational legal requirements as policy models.

The present study does not include empirical evidence, in
particular about the value of using contracts for requirements.
Such evidence does appear in an empirical study by Briand et al.
(L. Briand et al. 2005; L. C. Briand et al. 2011), which identified

a positive effect from producing OCL contracts in requirements
analysis. The effect is moderate, but the authors point out that
participants lacked training in UML and OCL.

Arnold et al. (Arnold et al. 2010) formalize use cases as
grammars of responsibilities. Abstract Constraint Language
contracts (pre- and postconditions and invariants) capture con-
straints that scenarios’ or responsibilities’ execution poses on
the system’s state. In this approach a dedicated binding tool
maps elements of a requirements model to elements of candi-
date implementation. The approach preserves the procedural
nature of specification, since it organizes specification around
scenarios and operations, rather than types of objects of the
application’s domain.

The SIRCOD approach (Galinier 2021) provides a pipeline
for converting natural language requirements to programming
language contracts. The approach relies on the domain-specific
language RSML for automating conversion from natural lan-
guage to programming language. In the SOOR approach (Naum-
chev 2019; Naumchev & Meyer 2016), requirements are doc-
umented as software classes which makes them verifiable and
reusable. Routines of those classes, called specification drivers,
take objects to be specified as arguments and express the effect
of operations on those objects with pre- and postconditions. The
SIRCOD and SOOR approaches focus on translating existing
requirements specifications to contracts expressed in a program-
ming language, rather than extracting abstract requirements
from scenarios.

8. Discussion and conclusion

8.1. Limitations

The work presented here is a conceptual contribution to the
area of requirements methodology, and has not undergone any
systematic empirical validation. The case study of section 6
serves as a proof of concept on a significant ongoing project
(but only one).

The absence of large-scale empirical studies makes it im-
possible to state any guarantees that the approach will increase
productivity or decrease defects. The case for it is based instead
on arguments of a logical nature, in particular the observation
that object-oriented technology with logical constraints is more
general than scenario-based techniques and encompasses them
as a special case. The next sections summarize these arguments.

The role of this article – in the tradition of work arguing for
specific approaches in software methodology – is to provide
the conceptual basis for studying OO versus scenario-based
techniques. We do plan to conduct empirical studies to assess
the actual consequences on actual projects. Studies conducted
by others would be even more welcome.

8.2. Why OO requirements?

The idea of applying OO techniques to programming (their
original focus since the appearance of the first object-oriented
languages) is not controversial. Neither is their application to
the next task up the abstraction level, software design. Moving
up again one notch, to requirements, is not a new idea (Coleman
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et al. 1994; Meyer 1988, 1997; Larman 2012); but OO require-
ments, unlike OO programming and OO design, are not widely
practiced, for a large part because use cases and user stories
have occupied the territory.

As the discussion in this article argues, these techniques (if
used as the principal form of requirements) are a step backward
since scenarios, as a requirements technique, lack abstractness,
generality and precision. One of their principal limitations
is that they prescribe specific orderings of operations, which
is generally too constraining, as there are simply too many
such orderings to understand and state. Instead of specifying
that operations must appear in specified orders, a more flexible
approach specifies that:

– Prior to executing, each operation may require some prop-
erties.

– After executing, each operation will ensure some proper-
ties.

– Specifying these before-and-after properties is an insight-
ful way of specifying the operations, and determines, as a
byproduct, which scenarios are legal and which are not.

A role remains for scenarios: to check that the more abstract
logical specification does cover the specific cases (the most
frequent usage patterns) that stakeholders have volunteered,
as well as critical extreme cases that could lead to incorrect
behavior. That role remains important, as long as we remember
that:

– The specification is not given by the scenarios.
– It is given instead by the logical constraints (pre- and post-

conditions, invariants) on operations (grouped, in an OO
approach, into classes).

– The scenarios, while not providing the specification, pro-
vide examples (often, important ones) of the specification,
useful to validate that specification.

– It is part of the tasks of the requirements process to check
that the scenarios respect the contracts (each operation
works properly if its precondition is satisfied, ensures its
postcondition, and preserves the invariant).

Applying OO principles to requirements helps to produce more
abstract and precise requirements due to the following mecha-
nisms:

– The approach motivates asking precise questions of the
non-technical stakeholders to clarify delicate points.

– Once a logical specification is produced, requirements
engineer checks whether it corresponds to the stakeholders’
informal view, thus avoiding incorrect implementation due
to misunderstandings.

– Since time-ordering constraints are more abstract than be-
havioral sequences, formulating them with contracts covers
a wider range of possible scenarios.

8.3. Seamlessness
Object-Oriented Analysis and Design (OOAD) approach re-
lies on use cases along with object models as the techniques

for requirements analysis (Pastor et al. 1997; Rumbaugh et al.
1991; Jacobson et al. 1992; Anda & Amyot 2020; von Olberg
& Strey 2022). Unlike the Unified approach, in the OOAD
approaches the process of software development is not seamless
and involves several notations (natural language, UML, possi-
bly formal languages). (Yue et al. 2015; Anda & Amyot 2020;
Soavi et al. 2021; von Olberg & Strey 2022) propose methods
for conversion between notations. However, the process of con-
version is prone to errors and its outcome is never 100% correct
As a result, the source code cannot be statically verified against
the requirements.

As stakeholder requirements are formulated in natural lan-
guage, a transition to programming language is inevitable at
some point in the development process since software is writ-
ten in a programming language. Seamless development makes
the transitions as smooth as possible by encouraging the use
of a single notation and a common set of concepts, embodied
in the object-oriented paradigm. Transition to a programming
language as the notation during requirements analysis makes
it possible to resolve ambiguities in requirements early in the
software development lifecycle.

8.4. Future work
One direction of future work is to apply the approach of unify-
ing specifications, scenarios and tests to several case studies to
provide more evidence for method validation. Another direc-
tion is to enrich the approach with tools that will improve its
usability. Finally, we aim to perform a user study to evaluate
the approach’s usability and effectiveness.

9. Conclusion
Two of the central problems of software engineering, as relevant
to requirements as for design and implementation, are size and
change. Software systems can be large and complex; they must
adapt to modification. Any approach to software construction
must be judged by its ability to help address these issues.

On the design and implementation side, object-oriented tech-
niques meet this criterion: thanks to techniques of class-based
modularity, information hiding, genericity and inheritance, they
have shown that they can support the development of large,
evolving systems.

This article has presented the application of object-oriented
ideas to requirements, where we may expect that they yield the
same benefits. The key result is that we do not need to treat
object-oriented requirements as a competitor to other popular
requirements techniques such as use cases, use case slices and
user stories. Object-oriented decomposition is at a higher level
of generality than such procedural techniques and encompasses
them. More specifically:

– The core idea of object-oriented decomposition is to use
classes as the basic modular unit.

– The most intuitively appealing view of a class is that it
describes a set of objects. For requirements, this concept
of object is already rich in possibilities, since it makes it
possible to describe, in a simple and natural way, concrete
and abstract objects from a system’s environment, such
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as a racetrack or a book catalog (in the examples of this
paper).

– Beyond this initial view of objects, however, the full notion
of object is more general: the most important characteristic
of a class is that it gathers a group of operations (commands
and queries) applicable to a given abstraction. Beyond
environment objects, such an abstraction can describe a
system concept, such as elements of a design pattern.

– An object can also, in this spirit, describe a group of scenar-
ios (use cases, user stories) relative to a set of abstractions,
or a group of tests exercising these abstractions.

Applying these ideas results in a scheme that encompasses
all the major requirements techniques in a general framework,
with the advantages of conceptual consistency (as everything
proceeds from a single overall idea, object technology) and
unification of notations, and the potential of transferring the OO
benefits of scalability and extendibility to the crucial discipline
of requirements engineering.
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