I I JOURNAL OF
OBJECT TECHNOLOGY

Journal of Object Technology | RESEARCH ARTICLE

A Model-Driven-Reverse Engineering Approach for
Detecting Privilege Escalation in loT Systems

Manar H. Alalfi, Atheer Abu Zaid, and Ali Miri
Toronto Metropolitan University, Canada

ABSTRACT Software vulnerabilities in access control models can represent a serious threat in a system. In fact, OWASP lists
broken access control as number 1 in severity among the top 10 vulnerabilities. In this paper, we study the permission model of
an emerging Smart-Home platform, SmartThings, and explore an approach that detects privilege escalation in its permission
model. Our approach is based on Model Driven Reverse Engineering (MDRE) in addition to static analysis. This approach
allows for better coverage of privilege escalation detection than static analysis alone as it takes advantage of analyzing free-form
text that carries extra permissions details. Our experimental results demonstrate high accuracy in detecting over-privilege

vulnerabilities in loT applications.

KEYWORDS Model Driven Reverse Engineering, Access Control Security vulnerabilities, Security Verification, loT applications

1. Introduction

IoT - term coined in 1999 by Kevin Ashton - emerged to de-
scribe when the Internet is used to connect objects as end users,
rather than just people (Gubbi et al. 2013). IoT has a variety of
definitions by different groups in the academia and the industry
(Gubbi et al. 2013; Madakam et al. 2015; Wortmann & Fliichter
2015). A common understanding of 10T is the interconnection
of uniquely identifiable, ubiquitous, sensing/actuating capable,
programmable and self configurable things over the internet.
These things share data and services without the need for human
involvement (Minerva et al. 2015). IoT is now widely adopted in
many important domains, such as in healthcare systems, smart
cities, smart homes and autonomous cars (Soumyalatha 2016)
(Marosi et al. 2018). Employing IoT systems in cities has proved
to be useful, such as in improving transportation by gathering
data and analyzing it (Soumyalatha 2016). Despite popularity
of IoT systems in practice, their design and implementation
maturity is still in early stages. In particular, IoT systems suffer
from many security vulnerabilities, some of which have already

JOT reference format:

Manar H. Alalfi, Atheer Abu Zaid, and Ali Miri. A Model-Driven-Reverse
Engineering Approach for Detecting Privilege Escalation in loT Systems.
Journal of Object Technology. Vol. 22, No. 1, 20283. Licensed under
Attribution - NonCommercial - No Derivatives 4.0 International (CC
BY-NC-ND 4.0) http://dx.doi.org/10.5381/jot.2023.22.1.a1

been addressed in other types of systems. The issues of interest
to us in this paper are those related to access control, which is
an important component of IoT systems. Access control models
provide rules that administer and constrain how objects access
and interact with each other. We will discuss access control
models in more details later.

An important application of IoT is smart homes. A smart
home is a system in a residence that allows the household to
monitor and control home devices and appliances (Alam et al.
2012; Alhanahnah et al. 2020). In (Zhou et al. 2019), Zhou et
al. provide a concise description of the current trend in smart
home platforms. They demonstrate that cloud-based smart home
platforms typically have three components: the cloud backend,
the physical IoT devices and the mobile app. The cloud is
responsible for identity management, executing applications
and home automation. Apps are executed in the cloud to ensure
that the remote commands are sent by authenticated users. IoT
devices have sensors for monitoring and actuators for executing
commands. The devices can either be cloud-connected devices
or hub-connected devices. The last component, the mobile app,
provides the user with an interface that connects IoT devices to
the smart home to specify the desired home automation.

Some of the most popular smart home platforms are: Sam-
sung’s SmartThings, Apple HomeKit, Vera Control’s Vera3,
Google’s Weave/Brillo, AllSeen Alliance’s AllJoyn, Amazon
Alexa, Google Assistant and IFTTT (Fernandes et al. 2016;

An AITO publication

http://dx.doi.org/10.5381/jot.2023.22.1.a1

Alhanahnah et al. 2020).
Many programmable Smart home platforms have emerged
over the last few years and they have provided users with a
broad set of benefits. These platforms provide third-party de-
velopers with the opportunity to distribute apps for compatible
devices. Unfortunately, this flexibility to allow for development
and distribution of apps by third-party developers can also intro-
duces potential new risks and vulnerabilities in systems that use
these apps. Security audit to identify and remove these potential
vulnerabilities can be challenging and time consuming. The
main contribution of this paper is to design and implement an
automated detection tool that leverages MDE, static analysis
and natural language processing to identify these vulnerabilities
with a high accuracy. Unlike other previous related work, this
approach allows for better coverage of privilege escalation detec-
tion than static analysis alone as it takes advantage of analyzing
free-form text that carries extra permissions details.
Our approach uses Samsung’s SmartThings as the platform
of interest. The SmartThings platform is a cloud-based sys-
tem that provides a programming framework for third-party
developers. Apps written by the developers are executed in a
sand-boxed environment on the cloud to restrict the allowed
operations to third-party developers. A central device in the
smart-home, the hub, connects the apps on the cloud with the
smart devices. SmartApps in this framework are applications
that can communicate with smart devices. These communica-
tions are based on a permission model, also called the capability
model.
Listing | demonstrates the structure of the SmartThings
SmartApp. A SmartApp has four general sections: Definition,
Preferences, Predefined Callbacks and Event Handlers (Smart-
Things n.d.). The Definition section includes meta-data about
the app that appear in the mobile app UI, including the descrip-
tion of the app. Capabilities and input requests are provided in
the Preferences section. In Listing 1, the app requests two capa-
bilities: motionSensor and lock. Once the app is installed, the
user must provide the app with access to compatible devices for
each requested capability. Two common Predefined Callbacks
are ‘installed’ and ‘updated’. They are called automatically
when the app is installed and updated, respectively. Event sub-
scription is typically set up in those callbacks. It allows the app
to listen to events from the device.
i1 definition
2 name:
3 namespace:

4 author: "",

description: "",
ced)
preferences
s { section("Select devices")
9 { input "themotion", "capability.motionSensor", title
: "Select a motion sensor"
10 input "thelock", "capability.lock", title: "Select

nu
’

6

a lock" }}
11 def installed() { initialize() }
1> def updated() { unsubscribe() initialize() }

13 def initialize() { subscribe themotion, "motion.active",
activeHandler }
1+ def activeHandle(evt) { thelock.unlock() }

Listing 1 SmartApp Structure

2 Alalfi et al.

The Event Handler activeHandler in Listing 1 unlocks the
device when an ‘active’ event is triggered. Lastly, commands
and attributes are usually invoked in Event Handlers, such as the
‘unlock’ command being invoked in activeHandler. A capability
model represents how smart devices are capable of perform-
ing functionalities. The capability structure that this model
relies on has two components; commands and attributes. The
over-privilege vulnerability in the SmartThings platform will be
discussed further in this paper. A capability can have multiple
commands and attributes to support it. Attributes hold the state
of the device in regard to some property, while commands are
used to actuate actions on the device. A device usually has more
than one capability, such as having a battery, a light, some sen-
sors or any resource that a smart device might need to perform
its job. Apps written to interact with these devices have to spec-
ify and request which of the supported capabilities they want to
access. As long as a device provides all the needed capabilities
of an app, the app is compatible to access this device. This is a
restriction of the capability model.

On installation of the app, the end user is given the option
to choose which of the compatible devices they want to be
controlled by this app. Typically, the set of capabilities that the
app requested of the devices are not shown to the user. This
is done in the code and is not explicitly presented to the user.
This may result in users not being able to detect an app being
over-privileged.

This paper is divided into seven sections. The next section
provides motivations for this work, including discussion on the
three most common causes for over-privilege vulnerabilities in
SmartApps. Section 3 describes the background on methodol-
ogy and tools used. A detailed overview of our approach can be
found in Section 4, followed by analysis of its performance in
Section 5. Related work is discussed in Section 6, and conclu-
sions and suggestions for future work can be found in Section
7.

2. Motivation

One of the fundamental software security principles is the least
privilege principle (Stallings et al. 2012). This principle indi-
cates that an entity should be provided with the least privileges
it needs to perform its function. The entity should not be able to
access a resource if not given permission explicitly. Evading this
principle might result in misuse of resources and other security
misuse implications.

The vulnerability we are interested in this paper is over-
privilege in IoT applications, which maps to the "Broken Access
Control" - the top security vulnerability risk in OWASP’s top
10 vulnerability list'. OWASP top 10 vulnerabilities is a valu-
able resource for researchers and businesses to consider when
auditing systems for security.

Design flaws in the SmartThings platform have resulted in
apps acquiring access to more resources than required (Fer-
nandes et al. 2017). Another issue in the design of the Smart-
Things permission model is the ability to gain elevated access to
unauthorized resources in the devices. This is called privilege

! https://owasp.org/www-project-top-ten/

https://owasp.org/www-project-top-ten/

escalation. Detecting privilege escalation issues in software
before publishing it is of great importance for protecting the
users. Threats in SmartThings that allow for extra access to
resources motivate us to improve the detection of vulnerabilities
concerning the access control model.

Over-privilege in SmartApps occurs in two main scenarios:
Acquiring more capabilities than permitted, and acquiring more
commands and attributes than needed. For each scenario, we
will provide a basic example of how over-privilege might occur
in SmartApps. For fast proof-of-concept attacks, we used the
web-based SmartThings IDE and simulated devices instead of
physical ones.

Over-Privilege Caused by Coarse SmartApp-SmartDe-
vice Binding: Once the SmartApp is authorized to access
a specific capability of a device, the SmartApp can access all
the capabilities implemented by the device handler (SmartDe-
vice). To simulate this scenario, we need a device handler that
supports at least two capabilities. For this example we used
three capabilities: the Presence Sensor, the Lock and the Battery
capabilities. We will write a SmartApp that unlocks the lock on
arrival, as illustrated in Listings 1-3:

1. In the preferences method, request the Presence Sensor
and the Battery capabilities:

| preferences
» { section("Select devices")
{ input "thepresence", "capability.presenceSensor"
title: "Select a presence sensor"
4 input "thebattery", "capability.battery", title:

"Select a battery" }}

5

Listing 2 Over-privileged SmartApp, Case 1-stepl

2. Subscribe to the presence event handler in both installed()
and updated() methods.

3. In the presence event handler, assuming thebattery device
supports the Lock capability as well, trigger the unlock
command and check the status of the lock through the
currentLock attribute:

1 def presenceHandler(evt)
> { if (thebattery.currentLock == "locked")
3 { thebattery.unlock()
log.debug "Lock status: $thebattery.
currentLock" }}

Listing 3 Over-privileged SmartApp, Case 1-step2

We run this SmartApp in the simulator with a device handler
that implements the three capabilities, which simulates a device
with those capabilities. We observed that thebattery device
successfully accessed the Lock capability of the device. This
example proves that the thebattery id is a reference to the whole
device that is bound to the Battery capability, rather than to the
Battery capability only. Thus, the SmartApp is over-privileged
and has access to all the capabilities that this device supports.

Over-Privilege Caused by Coarse-Grained Capabilities:
A SmartApp always acquires all commands and attributes imple-
mented by a permitted capability, even if it only needs a subset
of them. This could be dangerous because different commands
often have different levels of risk if the SmartApp is exploited
(Fernandes et al. 2016). Typically, an app specifies its function-
ality in the description section, which often implies how it will
use the capabilities.

In Listing 4, the description of the application is: "Unlock
the front door on arrival". As users, we understand that the
action to be taken is the unlocking of the door, and it needs to
happen after the person arrives to the place. When the person
arrives, this indicates a change in the state of the presence.

1 definition(
> name: "UnlockDoorApp",

: namespace:
4+ author: "",
s description: "Unlock the front door on my arrival",

6 category: ’
7 iconUrl: "",
s iconX2Url: ""

Listing 4 SmartApp’s Description in Free-Form Text

Listing 5 shows that the app requested two capabilities: the lock
capability and the presenceSensor capability and their titles are
shown to the user. The user can then deduce which commands
and attributes are needed for this application to perform its
functions. Specifically, the presence attribute and the unlock
command only.

| preferences
> { section("Select devices")
{ input "thepresence", "capability.presenceSensor"

title: "Select a presence sensor"
input "thelock", "capability.lock", title: "Select
a lock"
s }
o}

Listing 5 SmartApp’s Requested Capabilities

If we look into the permission standards table in Listing
6, we notice that the lock capability has more commands and
attributes than just the unlock command.

i light -> off

> light -> on
Case 2

Permissions App
Requested Description
Is an App Over-
Privileged?
Case\ ﬁase 3
App’s
Access of

Device

Figure 1 App Components Used in Analysis

A MDRE Approach for Detecting Privilege Escalation in loT Systems 3

Table 1 Causes of Over-Privilege in SmartThings

Casel: Coarse SmartApp-

SmartDevice Binding

Case2: Semantically Over-Privileged

Case 3: Coarse-Grained Capabilities

1- Request set of capabilities A

2- Then, access set of capabilities B,

such that A 2 B

1-Infer from free-form text the needed

set of capabilities A

2- Then, request set of capabilities B,
such that A 2 B

1- Infer the use of a set of commands
attributes A, whose owner capability is
properly requested
2- Then, access set of commands attributes B,

such that A 2 B

3 lockOnly -> lock
4+ lock -> lock

5 lock -> unlock

7 bé\;werSource -> powerSource
s presenceSensor -> presence

Listing 6 Segment from the Capabilities Table

We want to make sure that the application is not taking advan-
tage and using non implied resources. To do this we search for
the accessed commands and attributes in the application. In
Listing 7, we have an example of the device thelock actuating
the lock command to lock the door.

After running this SmartApp in the simulator, we
find that the app did gain more commands than needed
and could access them successfully. This proves that
the app is over-privileged and this is exactly what
we want to detect when analyzing the applications.

i def presenceHandler(evt)
> { if (thelock.currentLock == "locked")

{ thelock.unlock()
thelock.lock() }}

Listing 7 In the presence event handler, after unlocking the
lock, try to lock the device again

To analyze an app for this case of over-privilege, we exam-
ine the inconsistencies between two sections of the app: the
app’s description and the app’s code that accesses the device.
Figure 1 illustrates the three types of over-privilege in the Smart-
Things framework based on inconsistencies between an app’s
components. Case 1 arises upon the usage of resources that
are not requested by the app. While Case 2 is the result of not
mentioning the need for capabilities that are requested by the
app. Case 3 results when the app describes the use of some of
the commands and attributes of a requested capability but actu-
ally accesses the commands and attributes that are not needed
according to the description.

Causes of over-privilege are summarized in Table 1. In all
three cases, if set A is not a super-set of set B (it is not inclusive
of it), then it is considered to be an over-privileged app. In
other words, set A has to include everything that is in set B to
be considered a benign app. For example, in Case 1, the app
requests set of capabilities A, but some (or all) of the capabilities
it accesses is from outside set A.

In this paper, we present an MDRE approach that provides
a comprehensive solution to detect the different over-privilege

4 Alalfi et al.

access scenarios in SmartThings applications. To address these
cases of over-privilege our paper presents the following contri-
butions:

— We designed and developed an approach and a tool, MDE-
ChYP ?, that employs MDE in addition to static analysis
to translate multiple sources of information in the app
into permission rules. Unlike other existing techniques
(Zhang et al. 2018; Tian et al. 2017; Einarsson et al. 2017;
Fernandes et al. 2016), our approach is comprehensive
in detection and coverage of privilege escalation cases in
SmartThings.

— We designed a meta-model that is used to extract permis-
sion rules in IoT apps. Once the permission rules are
extracted in the form of Prolog facts, Prolog is used to
check if the app conforms to the permission meta-model.

— To evaluate our approach in terms of accuracy and per-

formance, we have conducted a set of experiments over a
wide range of apps.
The analysis provided in this work requires information
coming from three sources, the app source code, the app
NL statements in the description, and the app user configu-
ration specified in the preferences section. Each of those
resources has its own challenge in the analysis. The NL
source required a complicated analysis where we have to
generate a grammar to capture permissions related informa-
tion from text. The source code has different static contexts
such as single flow statements and control flow statements.
The configuration statements in the preferences need to
be related to artifacts recovered from SmartThings docu-
mentation, more specifically, the devices, their capabilities,
commands and attributes. All these artifacts need to be
represented and related to each other via a strong inference
engine.

Table 2 summarizes how our tool compares to related work,
including our previous tool.

3. Related Work

Fernandes et al. (Fernandes et al. 2016) performed the first
empirical security analysis of the SmartThings platform, and
provided lessons for the design of smart home programming

2 https://cresset.scs.ryerson.ca/ChYP

https://cresset.scs.ryerson.ca/ChYP

Table 2 Comparison with Related Work

Paper What it does

Techniques Employed

Security Analysis of Emerging Over-privilege detection:

Smart Home Applications. Fernandes et al. (2016) Cases 1 & 3

Static analysis
Run-time analysis

Manual analysis

X Over-privilege detection:
HoMonit. Zhang et al. (2018)
Case 3

Static analysis and NLP to extract DFA of expected behaviour.

Side channel analysis to extract DFA during run-time

Over-privilege detection:

Cases 1 & 3

SmartAuth. Tian et al. (2017)

NLP

Program analysis

Detects threats in IoT at the
IoTCom. Alhanahnah et al. (2020)

interaction level between apps

Static analysis, path-sensitive

Formal analysis

Generate smart-home applications

SmartHomeML. Einarsson et al. (2017)
using a DSML

MDE for fast generation of apps

Over-privilege detection:

Cases 1,2 & 3

MDE-ChYP (our tool)

Static analysis to detect over-privilege.
MDE for extracting expected and actual behaviors of apps

Grammer inference for NLP and that to recover permission information from text

frameworks. They presented in detail the different types of vul-
nerabilities found in the SmartThings platform, and conducted
proof-of-concept attacks by exploiting the design flaws in the
platform. This was a starting point for us to understand how
over-privilege results in a SmartApp.

Fernandes et al. developed a static analysis tool that detects
over-privilege in SmartThings, in addition to run-time analysis
and manual analysis where the tool fails to complete the analysis.
The tool is developed to detect cases 1 & 3 of over-privilege in
SmartThings. They used the tool to better understand the extent
to which SmartApps are over-privileged. However, they did not
evaluate the effectiveness of the developed tool, nor did they
provide an easy way to evaluate it by researchers.

HoMonit, a system designed and developed by Zhang et
al. (Zhang et al. 2018), detects two types of vulnerabilities in
the SmartThings platform: over-privilege in SmartApps and
event eavesdropping and spoofing. HoMonit first extracts the
expected behavior of a SmartApp either by static analysis of
open-source SmartApps or by NLP techniques on closed-source
SmartApps. Then, it performs side-channel analysis to monitor
the size and interval of the encrypted packets. Changes in the
sniffed packets between benign and malicious apps indicate a
change in the DFA state. From this change, it can be inferred,
with high probability, that the app is not behaving as expected.

Zhang et al. evaluated HoMonit and received a 0.98 rate
of correctly labeling misbehaving SmartApps based on over-
privilege access. However, over-privilege detection in HoMonit
only targets Case 3 (caused by coarse-grained capabilities) and
requires executing the apps in the benign and malicious states
to compare between them.

Tian et al. (Tian et al. 2017) presented a technique named
SmartAuth that provides a new solution to the over-privilege
problem in IoT. SmartAuth proposes a user-centric authorization
through the generation of new authorization user interfaces
based on what the app actually performs. SmartAuth uses NLP
and program analysis to analyze an app’s description, code and
annotations to detect over-privilege in the app.

To conduct the analysis, SmartAuth first analyzes the descrip-
tion using NLP and then analyzes the app code using NLP and
program analysis. The extracted privileges from the description
are compared with the privileges extracted from the app code to
decide which privileges are not properly requested by the app.
SmartAuth detects Cases 1 & 3 of over-privilege, then patches
the malicious app at run-time. The unavailability of SmartAuth
tool publicly and the dataset used makes it hard to compare the
efficiency of SmartAuth with our tool.

Our approach targets the security auditors of the platform,
or the third-party app developers. Where access to the source
code is available and analysis can be done statically instead of
both statically and dynamically as in (Zhang et al. 2018). Once
over-privilege is detected in our solution, the developers can
modify the app’s source code instead of patching the app by our
tool, as in (Tian et al. 2017).

IoTCom is an approach and a tool developed to detect threats
at the interaction level between IoT apps (Alhanahnah et al.
2020). In this study, they present a smart-home automation
model that defines an app as a set of one or more rules. Each rule
can have a set of triggers, conditions and actions. This model is
used to extract the apps’ behaviours using static analysis, after
that they perform formal analysis to detect threats in IoT apps
interactions. The static analysis performed is path-sensitive
which accounts for conditions in the extracted rules.

SmartHomeML is a domain specific modelling language
(DSML) used to generate applications for smart-home plat-
forms, specifically for Alexa and SmartThings (Einarsson et
al. 2017). SmartHomeML adopts Model Driven Engineering
(MDE) techniques for the rapid generation of the apps. In this
study, they designed a meta-model that abstracts the structure
of applications in different platforms, and used it to generate
those applications automatically.

Our MDE approach extract permission models from the
applications, our experiment finds MDE to be a great option
for decreasing the complexity of extracting the expected per-
missions and behaviour of an application and that by analysing

A MDRE Approach for Detecting Privilege Escalation in loT Systems 5

various aspects of SmartApps, this includes code, free-form
text and user preferences. Unlike the above techniques, Our
approach can detect the three cases of SmarApps over-privilege.

4. Background

Model-Driven Engineering (MDE), an approach to software en-
gineering where models are considered the first-class artefacts
of the software engineering process. Such models are used to
improve and to simplify the software development by provid-
ing high level and domain specific abstractions employed at
all stages of software development including requirements, de-
sign, implementation and maintenance. One of the main benefits
of MDE is automation, in the context of forward engineering,
transformation languages can be used to describe and automat-
ically transform high level models into source code, this will
enable developers to focus on the important aspects of the sys-
tem, neglecting technical details specific to the target platform
(Pastor 2017). MDE can be applied in the context of reverse
engineering, an approach used to support the comprehension of
software systems, and that by recovering models of the system
under analysis at a higher level of abstraction than source code.
Reverse engineering can be applied in many contexts. The most
common scenario is the comprehension of code, to support other
tasks such as maintenance, software evolution, integration or
interface with legacy systems(Rugaber & Stirewalt 2004).

The application of MDE to reverse engineering is known as
model driven reverse engineering (MDRE). MDRE is defined
as "producing descriptive models from existing systems that
were previously produced somehow." The models generation
from source code and models transformations can be automated.
After the generation, the obtained models can be analyzed by
domain experts or by appropriate tools, otherwise they can be
used to start a model-driven development phase(Favre 2004).

Our approach uses MDRE approach to the verification of
SmartThings apps on privilege escalation vulnerability. Our
approach uses source transformation technology, TXL(Cordy
2012a), to automatically analyze the various artifacts of the
SmartApps and that to recover a permission security model
form source code. The recovered security model confirms to a
permission meta-model we developed for SmartThings Apps,
the details of the model recovery stage is described in section
5.1. To verify the recovered model on the three cases of priv-
ilege escalation, we codified the permission met-model in the
form of prolog facts, the main goal is to use the prolog verifi-
cation engine to verify the 3 cases of privilege escalation. We
used the transformation technology, TXL, to transform the re-
covered artifacts into the permission model encoded in the form
of prolog facts. Below, we provide a brief description on the
technology used to develop our semi-automated approach.

TXL is a hybrid functional/rule-based language with deep
pattern matching that serves well for software structural analysis
and source transformation. To program in TXL, a context-free
grammar of the input is defined (whether it’s a programming
language or something else). After that, transformation rules are
provided that describe how the input will be transformed. The
rules must follow the grammar to allow for a correct transfor-

6 Alalfi et al.

mation (Cordy 2012a).

GrammarlInference is the task of learning grammars or
languages from training data, for instance, by examining the
sentences of an unknown language. It is a type of inductive in-
ference, the name given to learning techniques that try to guess
general rules from examples. The basic problem is to find a
grammar consistent with a training set of positive examples.
Grammar inference is used successfully in a variety of fields
such as pattern recognition, computational biology and natural
language processing.

Prolog is a logical and declarative programming language
largely used for applications in natural language understanding
and expert systems Using Prolog provides a flexible, scalable
and concise definition of verification goals. It enables the def-
inition of domain-specific rules for validation. Prolog has a
backtracking mechanism to test several variants of program
flows for the verification goals. For our implementation, we
used the established Prolog system SWI-Prolog . We have used
Prolog in our previous work for access control verification of
web applications(Alalfi et al. 2012),and it proved to be efficient
and scalable. It was also recently used for embedded systems
verification (Flederer et al. 2017).

5. Approach Overview

Figure 2 layouts the three main components of our MDRE ap-
proach used to verify over-privilege access in SmartThings Apps.
This approach takes as input the SmartApp, TXL grammars of
SmartThings permission model and SmartThings Groovy and a
Prolog program containing the rules of over-privilege in Smart-
Things SmartApps. The first stage recovers the permission rules
from the SmartThings app from the description, the preferences
and the code. The recovered permission model conforms to a
meta-model we constructed for SmartThings, and presented in
Figure 3.

Stage two generates the Prolog program and creates the ex-
ecutable from the Prolog main program which includes: the
Prolog rules for each over-privilege case and the Prolog facts
extracted from the SmartApp. The last step is to run the Pro-
log program to produce the final report with the over-privilege
results. Each stage will be further discussed in the following
sections.

5.1. Extracting Permission Rules

As described in Figure 2, the first step of our approach is to ex-
tract permission rules. The process of extracting the permission
model works by taking the SmartApp as an input and extracting
all the permission rules (if there is more than one). For example,
in an IFTTT app there is one permission rule per app, but in
a SmartThings app, it can be more complicated and include
more than one (Alhanahnah et al. 2020). In order to automate
the process, we first need to define a meta-model that describes
the permission model for the SmartThings platform, which we
will use as a basis of recovering permissions artifacts from the
SmartThings apps. A definition of such meta-model is described
in subsection 5.1.1. Then, in subsection 5.1.2, we describe the
process we followed to enable the extraction of the permission

Description

Preferences
Code

TXL Grammar of
SmartThings TXL Grammar
Permission Model of Prolog

Prolog verification
engine and prolog
encoded over-

privileged rules

v
Extract Permissions

Construct Prolog Facts

' for permissions from [+

=
[S i i
Do v Construct Prolog Facts !
. Extract Permissions | | [~ for permissions from [+ |!
L from Description | i descriptions !
Do :
| Vo ¥ |
. 1 1
I E P — v Construct Prolog Facts :
] N xtract Permissions | |+* for permissions from ¢
! : from Preferences Ak preferences :
L b v I
: 1 1 ! 1
["] '
1 1 ! '
[. :
: 1 | 1 '
1 1 '

— T I R

from Code
T el . code
.] I
! martApps recovered /| martApps Permissions
I Permission Rules Modeled as Prolog Facts
i

Figure 2 MDE-ChYP Approach Stages

artifacts from SmartThings apps descriptions. Since the descrip-
tion is expressed in NL, and in order to automate the extraction
process, we have developed an automated annotation process
using grammar inference. The generated grammar is used to
annotate the NL SmartApps’ description and it confirms to the
meta-model we defined in the subsection 5.1.1

5.1.1. Smart-Home Permission Meta-Model Definition
In this section, we describe the simplified meta-model we devel-
oped which abstracts the permission model used in SmartThings
platform. Figure 3 demonstrates the smart-home permission
meta-model, which we adopted and revised from [oTCOM and
SmartHomeML (Alhanahnah et al. 2020; Einarsson et al. 2017).
The Permission Rule in the meta-model (Figure 3) maps to the
Behavioural Rule in ocTCOM. We adjusted the triggers in their
model to be 1 trigger in ours, as each trigger leads to a specific
set of conditions and actions. As for the conditions, we adjusted
it to be zero or more, as not all rules have conditions. At last,
if there exists no actions, then the permission rule is not taken
into consideration.
We adopted from SmartHomeML the following:

— The "Query Action" translates to using the "attribute/com-
mand" and "value" with one of the rule components. In
SmartThings it would typically either be a trigger or a
condition. This is because one cannot change the value
directly, but rather by actuating the command.

— The "Control Action" translates to using the "attribute/-
command", which in this case means command. In Smart-
Things it would typically be used in an action, not a trigger
or a condition.

— The "Skill (capability)" is the "device (capability)" in our
model.

~_3Verify Over-privilege cases | | Legend
1] |
: Verify Casel: !
| SmartDevice Binding | ! |
= * |
: Verify Case2: o
| : - 4 N
! Semantically Over- ¥ v Multi-document II
! Privileged i :
! v !
1 ' :
! . ! Stored Data
"7 Coarse-Grained [+ |
| Capabilities b
1 1
|
|
|
|

This concludes that our adjusted Smart-Home meta-model
has the following structure: A permission rule consists of a
trigger, a group of conditions (if any), and at least one action.
Then, each trigger, condition and action has a device/capability,
a command or an attribute and a value. In SmartThings apps,
a trigger is the entry point to the application. It triggers the
associated event handler. This pair of trigger and event handler
is declared in a subscribe statement, the example in Listing 8
shows an app subscribed to the ‘present’ event that will run the
‘presence’ event handler.

| def initialize() {
subscribe(driver, "presence.present", presence)}

Listing 8 Trigger and Event Handler Subscription

The conditions are translated from the If statements in the event
handlers, see example in Listing 9 where the condition If the
event value is ‘present’ that will be translated to a condition in
the permission rule.

1 def presence(evt) {

> if (evt.value == "present"){
3 ... 3}

Listing 9 If Statement to be Translated into a Condition

The actions are anything else that is a direct access of the devices
and resources. For example, in Listing 10 the app actuates the
‘on’ command in the switch device.

i def turnLightsOn()
2 switches?.on()}

{

Listing 10 Non If Statement in Event Handler to be
Translated into an Action

A MDRE Approach for Detecting Privilege Escalation in loT Systems 7

PermissionRuleComposition

Application

name: String

Comprise |

Permission_Rule

tl .. kComposed of

<& - - @
1 id: String 1
1
TriggerComposition ConditionComposition ActionComposition
Trigger by 1 Constrained by 0...x Activates 1...%
Trigger Condition Action
1 id: String id: String id: String 1
1
RequestedCapability ValueRetrieving
AttributeCommandActuating
Accesses 1 Actuates 1 Reads 0 .
Device_Capability Attribute_Command Value

name: String

name: String

name: String

Accesses 1

Actuates |

Reads 01

RequestedCapability

AttributeCommandActuating

ValueRetrieving

Figure 3 Smart-Home Permission Meta-Model

5.1.2. Semantic Annotation and Preparation for Analysis
The first challenge we encountered is how the approach will
parse the natural language description presents in the app un-
der analysis into the permission rule meta-model described in
Figure 3. For that, we used semantic annotation to properly
annotate free-form text according to the permission meta-model
we defined in the previous section. The annotation relies on the
extensive coverage of the grammar of words and phrases that
map to objects of the meta-model (Kiyavitskaya et al. 2007).

To automate the process of semantic annotation, we use TXL
(Cordy 2012a), a hybrid functional/rule-based language with
deep pattern matching that serves well for software structural
analysis and source transformation. To program in TXL, a
context-free grammar of the input is defined (whether it’s a
programming language or something else). After that, transfor-
mation rules are provided that describe how the input will be
transformed. The rules must follow the grammar to allow for a
correct transformation.

Generating TXL Grammar of SmartThings Permission
Model

An essential part of the grammar needed for the analysis is
the permission model of SmartThings. The permission model
specifies the supported capabilities in SmartThings, in addition
to the commands and attributes of each capability. A list of
SmartThings capabilities can be found online. (SmartThings
2019) Listing 11 Provides a snippet of the grammar built from
the permission model taken from SmartThings documentation.
We define the devices (capabilities) as in the Listing, as well as
the commands and attributes and their values. Then, for each

8 Alalfi et al.

entity listed in the definitions, such as ‘accelerationSensor’ in
the Listing, we define it according to the grammar inference
process. (Section 5.1.2)

1 % Definition of all capabilities
> define device
3 [accelerationSensor] | [alarm]
| [battery] | [beacon] |
4 [bulb] | [button] | [carbonDioxideMeasurement] | [
colorControl] | [colorTemperature] |
[configuration] | [consumable] | [contactSensor] | [
doorControl] | [energyMeter]
6 [estimatedTimeOfArrivall | [garageDoorControl] | [
holdableButton] | [illuminanceMeasurement] |

[audioNotification]

7 [imageCapture] | [indicator] | [infraredLevell] | [
light] | [lockOnly]l | [lock]

8 [mediaController] | [momentary] | [motionSensor] | [
musicPlayer] | [notification] | [outlet] |

9 [pHMeasurement] | [polling] | [powerMeter] | [
powerSource] | [presenceSensor] | [refresh] |

10 end define

12 % Definition of the 'accelerationSensor’ capability
13 define accelerationSensor

15 éﬁé define

17 % Definition of all commands
15 define command

20 end define

2» % Definition of all attributes
23 define attribute

25 end define

27 % Definition of all values
s define value

30 end define

Listing 11 Grammar Snippet of SmartThings Permission
Model

Grammar Inference

To build the needed grammar that enriches the annotations pro-
cess, We opted for an approach inspired by grammar inference
(Parekh & Honavar 2000). It is an important stage in build-
ing the grammar for this approach as it helps in capturing the
semantics of the natural language statements in the apps. To
perform grammar inference, we used a public dataset. ° We
started with a subset of the apps, focusing on the apps natural
language statements and manually tagging each word with a
suitable entity mapped to the SmartThings permission model
(if possible). Based on the tagging, we inferred the grammar
terminal and non-terminal constructs and their relationships.
We applied the first version of the grammar to the natural lan-
guage statements we manually tagged and that to ensure the
grammar is capable of producing the accurate annotation to the
statements once they are parsed in the form of XML represen-
tation. If the annotation was successful, we repeated the same
process on a new set of natural language statements from apps
under analysis. The process of grammar inference is manual
and tedious process as it requires expert’s knowledge with map-
ping NL statements words to the SmartApps permission-system
meta-model. The process needed multiple iterations until we
were confident that the grammar produced is capable of auto-
matically annotating all natural language statements used in the
dataset under analysis. Listing 12 provides an example of the
grammar inference process and the resulting grammar. Line 1
presents the app’s description in natural language: "Turn your
lights on when motion is detected." We tag each word in the
description, if possible. Lines 5-10 provide each word with the
entity we tagged it with, some of them have multiple tagging.
For example, line 16 defines the word "when" as an indicator
for a trigger. Lines 14-38 explain how the tagging fits into the
grammar we built.

1 App description: "Turn your lights on when motion is
detected."

s The manual tagging (the grammar inference process):

Turn > switch capability

s lights > light capability

7 on > on attribute, command or value

s when > indicator for trigger

motion > motion attribute or motionSensor capability
10 detected > active value

1> Snippet of the resulted grammar:

14 keys
15 % indicators for trigger
16 when whenever case

15 end keys

19

20 define switch

21 'switch | "turn
» end define

define light
"light | ’'lights
end define

define motionSensor
"motionSensor | 'motion
end define

3

3(

3 https://github.com/SmartThingsOverprivilege/smartthings_overprivilege
_dataset

31

3» define motionAttribute
"motion

4 end define

36 define activeValue
"active | 'detected

s end define

Listing 12 Grammar Inference Example

5.2. Extracting/Constructing Prolog Facts for Smart-
Things Permission-rules

As described in Figure 2, the second stage of our approach is
to construct Prolog facts. Since this stage is heavily connected
to the first stage of the approach, permission rules extraction,
this section describes the two stages together in the form of
extract/construct.

In order to successfully verify that the SmartApps do not
have any type of over-privilege scenarios, the extracted permis-
sion artifacts needs to be transformed into a formal verifica-
tion engine. Using Prolog provides a flexible, scalable and con-
cise definition of verification goals. It enables the definition of
domain-specific rules for validation. Prolog has a backtrack-
ing mechanism to test several variants of program flows for
the verification goals. For our implementation, we used the es-
tablished Prolog system SWI-Prolog . We have used Prolog in
our previous work for access control verification of web ap-
plications (Alalfi et al. 2012) and it proved to be efficient and
scalable. It was also recently used for embedded systems veri-
fication (Flederer et al. 2017). In this meta-model, a SmartApp
is composed of one or more permission rules. Each permission
rule has the following components: a trigger, zero or more con-
ditions and at least one action.

For our analysis, we first need to define the mappings be-
tween the meta-model we defined in Section 4.1 and the cor-
responding Prolog facts. Each permission rule component ac-
cesses a capability and either a command or attribute and its
value.

Table 3 presents the mapping between the meta-model de-
scribed in Figure 3 and their translation to Prolog facts. For
example, the ‘Permission_Rule()’ Prolog fact consists of the
‘source’ (which is either from the code or description), the app’s
name and the id of the permission rule. Multiple permission
rules can be extracted from the same app. Then each rule can
have a trigger, conditions and actions, and each is linked through
the Ruleld. Each entity in the meta-model has a Prolog fact that
defines its attributes. Operation ‘RequestedCapability’ also has
a Prolog fact to record the list of capabilities the app requested.

5.2.1. Extracting/Constructing Permission-Rule Facts
from Description In this subsection we describe the pro-
cess of extracting the permission artifacts from the SmartApps’
description and how we used it to construct the corresponding
Prolog facts. The inputs to this stage are:

— SmartApp to be analyzed

— TXL grammar of SmartThings permission rules

— TXL grammar of SmartThings groovy

— Extracted data-types of the devices in the SmartApp

A MDRE Approach for Detecting Privilege Escalation in loT Systems 9

https://github.com/SmartThingsOverprivilege/smartthings_overprivilege_dataset
https://github.com/SmartThingsOverprivilege/smartthings_overprivilege_dataset

Table 3 Permission Meta-Model Mapping (Figure 3) to Prolog Facts

Prolog Fact

Mapping to Permission Meta-Model, (Figure 3)

Application(Source, AppName):

Represents the name of the app being analyzed. Source of
the fact is either ’description’ or ’code’.

Permission_Rule(Source, AppName, Ruleld):

Represents a permission rule in an app.

Trigger(Source, Ruleld, Triggerld):

Represents a trigger in a permission rule.

Action(Source, Ruleld, Actionld):

Represents an action in a permission rule.

Condition(Source, Ruleld, Conditionld):

Represents a condition in a permission rule.

Attribute_Command(Source, "Trigger/Condi-
tion/Action"+Id, AttributeCommandName):

Represents an attribute/command that belongs to a trigger,
condition or an action in a permission rule.

Device_Capability(Source, "Trigger/Condition/Ac-
tion"+Id, DeviceCapabilityName):

Represents a device/capability that belongs to a trigger,
condition or an action in a permission rule.

Value(Source, "Trigger/Condition/Action"+Id, Val-
ueName):

Represents a value that belongs to a trigger, condition or
an action in a permission rule.

TriggerComposition(Source, AppName, Ruleld,
Triggerld, DeviceCapabilityName, AttributeCom-
mandName, ValueName):

Represents the details of a trigger of a permission rule.

ConditionComposition(Source, AppName,
Ruleld, Conditionld, DeviceCapabilityName,
AttributeCommandName, ValueName):

Represents the details of a condition of a permission rule.

ActionComposition(Source, AppName, Ruleld,
Actionld, DeviceCapabilityName, AttributeCom-
mandName, ValueName):

Represents the details of an action of a permission rule.

Capability(DeviceCapabilityName):

Represents the name of a device/capability.

AttributeCommandOf(DeviceCapabilityName, At-
tributeCommandName):

Represents the name of an attribute/command that belongs
to a device/capability.

ValueOf(AttributeCommandName, ValueName):

Represents the name of a value that belongs to an at-
tribute/command.

RequestedCapability(AppName, Capability):

Represents a capability requested by an app.

TXL parses and annotates the descriptions in the SmartApp
into the permission rule meta-model. Upon annotation, each
permission rule extracted is translated into the corresponding
Prolog facts from Table 3. Facts are then saved in a file for later
use.

| <program>
<repeat_description>
<description><repeat_permission_rule>
4 <permission_rule>
5 <repeat_rule_component>
6 <rule_component><action><repeat_component_element>
<component_element><device><switch>Turn</
switch></device></component_element>
8 <component_element><word><id>your</id></word></
component_element>
9 <component_element><device><colorControl>
lights</ colorControl></device></component_element>
10 <component_element><attribute><onAttribute>on</
onAttribute></attribute></component_element>

1" <empty/>

12 </repeat_component_element>
13 </action>

14 </rule_component>

15 <rule_component><trigger>

16 <trigger_indicator>when</trigger_indicator>
I <repeat_component_element>

10 Alalfi et al.

18 <component_element><device><motionSensor>

motion</ motionSensor></device></component_element>

19 <component_element><word><id>is</id></word></
component_element>
20 <component_element><value><detectedValue>

detected</ detectedValue></value></component_element

>

Listing 13 Intermediate Representation of Extracting
Permission Rules From Description Using XML

This description is parsed by TXL into the intermediate repre-
sentation of the grammar using XML, as in Listing 13, then
TXL will again translate it to Prolog facts (see Listing 14). The
intermediate representation in Listing 13 shows the mapping
of each word in the description to its match in the grammar of
SmartThings meta-model. For example, the word ‘Turn’ is an-
notated as the device (capability) ‘switch’ and the word motion
is annotated as the device (capability) ‘motionSensor’. In this
example, we will focus on triggerComposition, conditionCom-
position, actionComposition and device_capability from these
facts.

application(desc, AppName).

3 permission_rule(desc, AppName, rulel)

% Action facts

action(desc, rulel, actionl)

;» device_capability(desc, actionl, switch).

7 attribute_command(desc, actionl, on).

value(desc, actionl, on).

actionComposition(desc, AppName, rulel, actionl, switch,

on, on).

10 % Trigger facts

1 trigger(desc, rulel, triggerl)

1» device_capability(desc, triggerl, motionSensor)

3 attribute_command(desc, triggerl, motion).

1+ value(desc, triggerl, detected).

15 triggerComposition(desc, AppName, rulel, triggerl,
motionSensor, motion, detected).

NS

%

Listing 14 Prolog Facts Extracted from Description

5.2.2. Extracting/Constructing Permission-Rule Facts
from Preferences The input to this stage is the SmartApps
and the grammars as in the first stage above. TXL analyzes the
SmartApp for capabilities requested in the preferences section.
Listing 15 is an example of a SmartApp requesting the switch
capability. This input statement is translated to a Prolog fact
(as in the Listing 16), and saved to the same facts file used
previously.

| preferences {

section("When I reach home, turn on the lights.") {

input "switches", "capability.switch", multiple: true }
o}

Listing 15 Capabilities Requested by SmartApp

I requestedCapability(AppName, switch).

Listing 16 Prolog Fact for Case 2 (Semantically Over-
Privileged)

5.2.3. Extracting/Constructing Permission-Rule Facts
from Code The third step is to analyze the app code to ex-
tract facts for cases 1 and 3. The analysis extracts the permission
rules from the code. We start with the trigger, which is extracted
from the subscribe methods in the app. Each subscribe method
declares the event handler (or method) that will be executed
upon the trigger. The event handler is analyzed to extract the
conditions (any if statements), while all other statements are
considered actions.

In Listing 17, the trigger is the change to the motion sensor,
specifically when "motion" attribute changes its value to "ac-
tive". This triggers the execution of the event handler motion-
ActiveHandler. The resulted trigger fact is shown in Listing
18. After that, the tool analyzes the code of the event handler
for conditions and actions. The resulted two facts would typ-
ically be as in Listing 19. In the case that we extracted either
an attribute/command or a value, and this extracted word is
considered both an attribute/command and a value in the TXL
grammar, we fill it in both placed in the Prolog fact. This is
because when we analyze the description of the app, it is hard
to infer if this word should be filled in the attribute/command or
the value in the Prolog fact.

i def installed()
> { subscribe(motionl, "motion.active",
motionActiveHandler)}

4+ def motionActiveHandler(evt) {
5 if(switchl.currentValue("switch") == "off"){
6 switchl.on()}}

Listing 17 Trigger and Associated Event Handler

i triggerComposition(code, AppName, rulel, triggerl,
motionSensor, motion, active).

Listing 18 Trigger Fact

i conditionComposition(code, AppName, rulel, conditionl,
switch, off, off).

> actionComposition(code, AppName, rulel, actionl, switch,
on, on).

Listing 19 Condition and Action Facts

5.3. Verifying Over-privilege cases
As described in Figure 2, the third step of our approach is the
verification of Over-privilege cases. To do that, we create the
Prolog model checker from within the TXL main program of
the tool. Line 1 in Listing 20 is the command used for the cre-
ation of the Prolog executable. Our Prolog model checker takes
three sources of information to carry out the analysis. Table 4
defines the use and contents of each variable/file. The model
checker first takes the main program needed to specify which
rules to run. It also needs the Prolog rules file containing the
three Prolog rules for checking the three cases of over-privi-
lege explained in the following sections. Lastly, we provide the
Prolog facts file containing all the facts we extracted from the
app’s description, preferences and code. After we have created
the Prolog model checker, we pass the program’s file name to
the run’ command to run the analysis and produce the analysis
report.

I construct createPrologExe [stringlit]

> _ [+ "swipl --goal=main --stand_alone=true -q -o
"] [+ prologExecutableFileName] [+ " -c "] [+
prologMainFile] [+ prologRulesFile] [+
prologFactsFile]
construct runPrologProgram [stringlit]

_ [+ "run "] [+ prologExecutableFileName] [+ ".

exe"]
5 construct workHere [stringlit]

[system createPrologExel
[system runPrologExe]

PN

6 _

Listing 20 Command to Create the Prolog Model Checker

5.3.1. Verification Rules of Case 1: Over-Privilege
Caused by Coarse SmartApp-SmartDevice Binding

Prolog Rules for Case 1:

This case of over-privilege occurs when there is an inconsistency
between the Permissions Requested and App’s Access of Device.
To check for occurrences of over-privilege case 1, we need
to inspect if any of the devices approved for this app and has
more than one capability, was misused to access a capability
not intended for this app. A query to the Prolog rule needs to
satisfy the following:

A MDRE Approach for Detecting Privilege Escalation in loT Systems 11

Table 4 Variables Definitions

Variable

Purpose

The name of the output Prolog program that will be used to run

prologExecutableFileName

prologMainFile

the model checker

The main Prolog file used to initiate the Prolog checker

The Prolog file containing the three main rules for detection of

prologRulesFile

over-privilege cases

The Prolog file containing the Prolog facts extracted from the

prologFactsFile

description, preferences and the code

— aresource (a command or a value of an attribute), has been
used in a trigger, a condition or an action

— this resource is not a command of the capability in this
trigger, condition or action

— this resource is not a value of an attribute of the capability
in this trigger, condition or action

— this resource belongs to another capability in the Smart-
Things capability model

— the capability and the resource are both non empty in the
facts

A complete Prolog rule for Case 1 can be found in Appendix
A. We have given an illustrative example of these rules in Listing
22

Prolog Facts for Case 1

Given the facts in the Listing below, an over-privilege of Case 1
must be reported. The fact on line 13 states that the device accel-
erationSensor was used to actuate the on command, which is a
command of another capability and not of accelerationSensor’s.

/* SmartThings Capability model facts x*/

capability(accelerationSensor)

» attributeCommandOf (accelerationSensor,acceleration).

valueOf (acceleration,active).

5 valueOf(acceleration,inactive).

, capability(switch).

7 attributeCommandOf (switch,switch).
attributeCommandOf (switch,off).

attributeCommandOf (switch,on).

10 valueOf(switch,off).

11 valueOf(switch,on).

12 /* Fact used to check case 1 */

13 triggerComposition(code,AppName, ruleNumber, triggerl,

accelerationSensor,on,na).

= ENRT IS

Listing 21 Sample Facts Relevant to Over-Privilege Case 1

5.3.2. Verification Rules of Case 2: Over-Privilege
Caused Semantically

Prolog Rules for Case 2

This case of over-privilege occurs when there is an inconsis-
tency between the App Description and Permissions Requested.
To detect over-privilege Case 2, we need to inspect if the appli-
cation declared or indicated in the description what capabilities

12 Alalfi et al.

it will be accessing. A query to the Prolog rule needs to satisfy
the following:

— the app has requested a certain capability (fact name: re-
questedCapability)

— there is no mention of this capability in the description
facts (fact name: device_capability)

— capability has a name and is not empty (na)

The Listing below is the resulting Prolog rule to detect this case
of over-privilege:

1 overprivilegedCase2(case2,AppName,Capability):-
requestedCapability (AppName, Capability),
not(device_capability(desc,_,Capability)),

4 not(Capability=na).

Listing 22 Prolog Rules to Detect Case 2 of Over-Privilege in

SmartApps

Prolog Facts for Case 2

Given the facts in the Listing below, an over-privilege of Case
2 must be reported. As non of the capabilities declared in the
description facts is the switch capability.

device_capability(desc,_,presenceSensor).

> device_capability(desc,_,door).

3 requestedCapability(AppName, presenceSensor).
requestedCapability (AppName, door).

5 requestedCapability(AppName, switch).

Listing 23 Sample Facts Relevant to Over-Privilege Case 2

5.3.3. Verification Rules of Case 3: Over-Privilege
Caused by Coarse-Grained Capabilities

Prolog Rules for Case 3

This case of over-privilege occurs when there is an inconsistency
between the App Description and App’s Access of Device. It
can happen as a result of coarse-grained capabilities. It means
that a permitted capability is fully available to the app to access,
with all its commands and attributes. This is considered an over-
privilege because risk associated with giving access to different
commands and attributes is not on the same level (Fernandes et
al. 2016). For example, giving access to turn off the oven and
have it be misused might be annoying, while misusing the turn
on operation is very risky.

A query to the Prolog rule needs to satisfy one of the follow-
ing:

— The app performs an action in the code that is not men-
tioned in the description.

— There exists a combination of a trigger and an action in
code, that is not mentioned in the description with any
combination of the capability, attribute/command and the
value. For example, suppose that there exists in the code a
trigger (if presence changes), turn on lights (action), but,
the description only declared the lights to turn off if you
leave the house. There would be inconsistency between the
facts in the description and the code, leading to reporting
an over-privilege of Case 3 (sample facts for this example
are shown in Listing 25).

— Same case as the one above, but with differences in the
combination of a condition and an action, rather than a
trigger and an action. An example for this would be if we
found in the code a condition that if the presence changes,
it would turn the lights on, while in the description, it was
declared that the lights should be turned on only after 10
AM.

The Listing below shows part of the resulting Prolog rule to
detect this case of over-privilege:

1 overprivilegedCase3(case3,AppName,RuleIdCode,
TriggerIdCode,ConditionIdCode,ActionIdCode,
Capability,AttributeCommand,Value): -

/*The whole action is missing in descriptionx/
actionNotInDesc(AppName,RuleIdCode,ActionIdCode,
Capability,AttributeCommand,Value);

» actionNotInDesc (AppName,RuleIdCode,ActionIdCode,
Capability,AttributeCommand,Value): -

5 actionComposition(code, AppName,RuleIdCode,
ActionIdCode, Capability,AttributeCommand,Value),

6 not(actionComposition(desc,AppName, , ,Capability,
AttributeCommand,Value)),
not(threeNAs (Capability,AttributeCommand,Value)),

8 not (actionTwoNAs (AppName,Capability,AttributeCommand,
Value)).

9 %* Capability,

10 threeNAs (Capability,AttributeCommand,Value):-

1 Capability=na,

12 AttributeCommand=na,

13 Value=na.
4 /* Use Case:
15 Desc: "Lock the front door"

16 Code: "Unlocks the door" =/

17 actionTwoNAs (AppName, Capability,AttributeCommand,Value): -
18 AttributeCommand = na,

19 Value = na,

20 actionComposition(desc,AppName,_, ,Capability, ,).

Listing 24 Sample Prolog Rules to Detect Case 3 of Over-
Privilege in SmartApps

Prolog Facts for case 3

Given the facts in the Listing below, an over-privilege of case 3
must be reported. As there is an inconsistency between the facts
of the permission rules in the description with the ones in the
code.

/* Facts in description */

> permission_rule(desc, AppName, ruleNumber)

s triggerComposition(desc, AppName, ruleNumber, triggerl,
presenceSensor, presence, notpresent).

actionComposition(desc, AppName, ruleNumber, actionl,
switch, off, off).

IS

s /* Facts in code */

6 permission_rule(code, AppName, ruleNumber)

7 triggerComposition(code, AppName, ruleNumber, triggerl,
presenceSensor, presence, na).

s actionComposition(code, AppName, ruleNumber, actionl,
switch, on, on).

Listing 25 Sample Facts Relevant to Over-Privilege Case 3

6. Evaluation

In this section, we evaluate our MDE approach and tool de-
signed to detect the three cases of over-privilege. The imple-
mentation makes use of the TXL and Prolog languages. TXL
grammars are needed for this tool implementation, including
grammars of: SmartThings groovy, SmartThings permission
model, Prolog facts and an XML grammar from the TXL project
(Cordy 2012b) as a helper grammar in the transformation. We
evaluate the effectiveness of our approach by answering the
following research questions:

1. RQ1: Can our automated analysis, MDE-ChYP, report the
3 cases of over-privilege in SmartThings apps once applied
to the available dataset? (To be addressed Section 6.2)

2. RQ2: How does privilege escalation detection performed
by MDE-ChYP approach presented in this paper (Abu Zaid
et al. 2019b) compare to the ChYP tool? (Abu Zaid et al.
2019b) (To be addressed in Section6.3)

3. RQ3: How effective is our approach in detecting privi-
lege escalation in SmartThings apps when evaluated for
precision and recall? (To be addressed in Section 6.4)

6.1. Dataset

To evaluate our approach, we obtained a dataset from pub-
licly available sources, these include: SmartThings marketplace,
SmartThings community and SmartThings forums. Those apps
are developed by third-party developers and their source code
is publicly available, this makes the dataset a suitable target for
the evaluation. In addition this dataset has been used by other
researchers who performed experiments to detect over-privilege
escalation (Fernandes et al. 2016). We also used the dataset
provided by Zhang et al. (Zhang et al. 2018) to evaluate the
detection of case 3. We refer to this dataset as "HoMonit" in this
evaluation.

6.2. Automated Analysis Results

In this section, we address RQ1. First, we run the tool on the
publicly available dataset. We then observe the execution of
the tool on the dataset whether it completed successfully and
examine its coverage in reporting the three over-privilege cases.
Table 5 details the statistical over-privilege results obtained
from running our tool on the dataset. The tool ran successfully
and completed all stages of the analysis. A total of 230 apps
were analysed and over 2000 occurrences of over-privilege were
reported across the dataset from Cases 1, 2 and 3. In all four
classifications, Case 3 dominated the reported over-privilege
occurrences. This is reasonable because it is the easiest case to
fall into. In Case 3, the capability is correctly requested and it

A MDRE Approach for Detecting Privilege Escalation in loT Systems 13

Figure 4 Analysis time of privilege escalation detection in
SmartApps in relation to size of the dataset

250

200 - N

150 |- N

100 |- 1

Analysis Time Duration (s)

0 | | | |
0 0.6 1.2 1.8 24 3

App Size (LOC) .10%

is not used to access commands from another capability. What
happens in Case 3 is that the developer ambiguously declares
how or when the commands and attributes of the capability will
be accessed (whether accidentally or intentionally). So, even if
for example the developer declared that the ‘lock’ and ‘unlock’
commands of the lock capability will be actuated on arrival
and take off but did not specify which command is paired with
which event, this might be suspicious to the user and should be
marked as over-privilege.

To demonstrate the performance of the tool, we measure
the analysis time for each dataset classification separately, as
in Table 6. We ran the analysis on a PC with an Intel Core 17
2.2 GHz CPU processor and 20 GB RAM. The data we gather
to calculate the performance are the lines of code (LOC) for
the SmartThings apps, the number of Prolog facts generated
by each app and time spent in analysis. Table 6 details the
performance data reported after running the evaluation experi-
ment. The analysis shows that the approach is scaling well as it
was able to process (38.6K LOC, and 30.7K prolog facts) in
less than 5 minutes. The apps used in the experiment are real
world apps, each app is a single file and ranges from 27 to 732
physical lines of code, with the blank and comment lines ex-
cluded. The average LOC is 118 and the median is 65.5. Figures
4 and 5 illustrate the time growth of the analysis in regards to
the LOC and Prolog facts respectively. Both figures imply that
the analysis time seems to be scaling linearly with the LOC of
TXL and Prolog facts. In this section, we have addressed RQ1
by demonstrating that MDE-ChYP is capable of reporting all
3 cases of over-privilege. We have also included the ’Analysis
Time Duration’ to Table 6 to illustrate a typical run time re-
quired by our solution’, however, and in order to quantitatively
evaluate the accuracy of our finding, it would deem difficult to
manually check all the 2000 reported cases of over-privilege as
such RQ2 will look into comparing MDE-ChYP to a base tool
ChYP on a subset of apps that reported over-privilege casel.

14 Alalfi et al.

Figure 5 Analysis time of privilege escalation detection in
SmartApps in relation to no. of Prolog facts

250

200 - N

150 |- N

100 |- 1

Analysis Time Duration (s)

0 | | |
0 0.4 0.8 1.2 1.6 2

Total Prolog Facts 104

6.3. Comparison between the MDE-based Approach
(MDE-ChYP) and the Static Analysis Approach
(ChYp)

To answer RQ2, we compare our MDE-based approach with
our previous static analysis-based approach, ChYP (Abu Zaid et
al. 2019a), on two aspects: accuracy and coverage of privilege
escalation detection. The static analysis approach analyzes the
syntax only and performs well in tracing complex functions
and loops. The MDE approach provides a combination of static
analysis, text processing, and logic-based reasoning.

For this comparison, we randomly picked 25 apps that re-
ported occurrences of case 1 when we ran the MDE-ChYP on
the public datasets in table 5. The list of apps used in this ex-
periments are displayed in table 7. We manually checked the
apps for actual occurrences of case 1 and found 41 occurrences
across the apps. We ran both tools on this dataset of 25 apps,
then we manually validated the results reported by both tools.
Through the validation of results from the static analysis based
tool, we found 25 true positives and 16 false negatives. While for
MDE-ChYP tool, we found 33 true positives, 7 false positives
and 8 false negatives. (see Table 7).

Table 8 displays the precision and recall of evaluating both
tools on this selected dataset of 25 apps.

Precision evaluates the tool in not returning non-over-
privileged cases. While recall evaluates the tool in returning the
over-privileged cases if present in an app (Kiyavitskaya et al.
2007). Below are the formulas used to calculate the precision
and recall (Zhang et al. 2018; Kiyavitskaya et al. 2007). Preci-
sion is calculated by dividing the true positives (TP) by the true
positives and false positives (FP), while recall is the division of
true positives over the true positives and false negatives (FN).

The true negative rate TNR (also called specificity), which is
the probability that an actual negative will test negative.

TP

p .. _
recision 7TP TP

(1)

Table 5 MDE-ChYP results on publicly available datasets

Total Cases

Dataset Total Apps Casel Case2 Case3
Reported
Homonit 19 4 8 171
Forums 50 23 138 517
Marketplace 19 26 16 275
Community 142 31 146 1113
Total 230 84 308 2076
Table 6 Performance Statistics
Dataset Total Apps Total LOC Total Prolog Facts Analysis Time Duration
HoMonit 19 872 1439 Om21s
Forums 50 7939 7338 Im17s
Marketplace 19 2943 2559 0m27s
Commnunity 142 26,836 19,360 3m33s
in the Listing show the variable named ‘alarm’ being matched
Recall = %) with the capability ‘waterSensor’ and its attribute ‘water’. This
+

Precision x Recall
F — measure = 2 x DPrecision + Recall 3)

TN
TN+ FP

F-score or F-measure is a measure of a test’s accuracy. It is
calculated from the precision and recall of the test. F-measure
provides a single metric that weights the two ratios (precision
and recall) in a balanced way, requiring both to have a higher
value for the F1-score value to rise. Very small precision or
recall will result in lower overall score. Thus it helps balance
the two metrics.

ChYP did not report any false positives, but it did report 16
false negatives, all of them vulnerabilities appearing in natural
language statements, a source of information that this tool does
not utilize but MDE-ChYP does. An example is provided in
Listing 26. Line 3 in the Listing shows that ‘theAlarm’ device
id is used to access the alarm capability of the device. The
alarm capability in SmartThings permission model has one at-
tribute: the ‘alarm’ attribute. Lines 9 and 10 of the Listing show
‘theAlarm’ id subscribing to changes in the ‘contact’ and ‘mo-
tion’ attributes, which are not part of the alarm capability. The
static analysis tool did not catch these vulnerabilities as they
appeared in natural language statements.

MDE-ChYP reported 7 false positives due to ambiguities
in analysing the code as free-form text. Listing 27 provides an
example. This case appears when the variables are named as
attributes or commands from other capabilities. Lines 3, 8 and 9

TNR = @

confuses MDE-ChYP and reports it as malicious. MDE-ChYP
also produced 8 false negatives probably due to implementation
issues that need further investigation in future work.

| preferences {
section("Notify me when there is any activity on this
alarm:") {
input "theAlarm", "capability.alarm", multiple:
false, required: true

4)

5}

O s

7 def initialize() {

8 log.debug "in initialize"

9 subscribe(theAlarm, "contact", contactTriggered)
10 subscribe(theAlarm, "motion", motionTriggered)

o}

Listing 26 Case 1 of Over-Privilege Found in Natural
Language Statements

1 preferences {
section("When there’s water detected...") {
input "alarm", "capability.waterSensor", title: "Where?

¢}
5}
6
7 def installed() {

subscribe(alarm, "water.wet", waterWetHandler)
o subscribe(alarm, "water.dry", waterWetHandler)
0}

Listing 27 Example of a False Positive Reported by the MDE
based tool

The second aspect in this comparison is the tools’ coverage
in detecting the three cases of over-privilege in SmartThings

A MDRE Approach for Detecting Privilege Escalation in loT Systems 15

Table 7 Detailed results of evaluation comparison between MDE-ChYP and the static analysis tool ChYP

Dataset App Case 1 Occurrences ChyP MDE-ChYP
TP FP FN TP FP FN

Homonit zigbeeFloodAlert 0 0 0 0 0 1 0

Marketplace color_coordinator 6 6 0 0 6 0 0

enhanced_auto_lock_door 0 0 0 0 0 1 0

keep_me_cozy 1 1 0 0 1 0 0

Forums alarmThing_AlertAll 2 0 0 2 2 0 0

buffered_event_sender 1 0 0 1 1 0 0

fireCO2Alarm 5 3 0 2 2 0 3

garage_switch 2 1 0 1 2 0 0

groveStreams 1 0 0 1 1 0 0

initial_state_event_sender 1 0 0 1 1 0 0

initialstate_smart_app_v1_2_0 1 0 0 1 1 0 0

unbuffered_event_sender 1 0 0 1 1 0 0

zwave_indicator_manager 4 4 0 0 4 1 0

Community flood_alert 0 0 0 0 0 1 0

garage_door_monitor 1 0 0 1 1 0 0

initial_state_event_streamer 1 0 0 1 1 0 0

keep_me_cozy_ii 1 1 0 0 1 0 0

lock_it_when_i_leave 0 0 0 0 0 1 0

medicine_management_contact_sensor 3 3 0 0 1 0 2

medicine_management_temp_motion 3 3 0 0 1 0 2

ridiculously_automated_garage_door 0 0 0 0 0 2 0

smartblock_linker 2 0 0 2 2 0 0

step_notifier 3 3 0 0 2 0 1

the_big_switch 1 0 0 1 1 0 0

Thermostats 1 0 0 1 1 0 0

Total 25 Apps 41 25 0 16 33 7 8

apps. Due to the nature of MDE-ChYP tool and approach, it can

detect over-privileges resulted from confusions in the semantics. Table 8 Evaluation comparison between the MDE and the
The static analysis based tool can only detect over-privileges ex- static analysis based tools

posed from analysing the syntax. This is why the MDE approach
can detect Cases 1, 2 and 3 of over-privilege in SmartThings Tool Precision | Recall | F measure

, while the stati lysi h only detects C 1. . .
apps, wiile the static analysSiS approach only aetects Lase Static Analysm Tool

(ChYP)

100% 60.98% | 75.0%
6.4. Manual Validation

In section 6.2, we present the approach results when evalu- MDE-ChYP 82.50% | 80.49% | 81.48%

ated on the whole dataset. The approach reported over-privilege

16 Alalfi et al.

occurrences of all three cases as shown in Table 5.

In order to quantitatively validate our findings and to com-
pute precision and recall, we need to compare our results with a
base tool, however, and since we did not have access to any tool
that provides an analysis for the three types of over-privilege,
we need to either manually validate all our results or randomly
select random samples from the results and compute precision
and recall. Validating all the results manually is time consuming,
and selecting random subset from the results does not always
guarantee the selected sample has all the over-privilege cases
we aim to evaluate. We have already observed that from the pre-
vious section, 6.3, when we compared the MDE approach with
ChYP for casel of over-privilege. For this reason, we needed to
create a benchmark for the evaluation using mutation analysis.

6.4.1. Benchmark We have selected a sample benign
dataset, and we manually confirmed the dataset is benign, then
in each app in the dataset, we injected one case of over-privilege.
Mutants created for Case 1 required actuating commands and
attributes that do not belong to the requested capability.

i definition(
name: "Big Turn OFF",
namespace: "smartthings",

4+ author: "SmartThings",

s description:

"Turn your lights off when the SmartApp is tapped",
)

7 prefé}énces {
s section("When I touch the app, turn off...") {
o input "switches", "capability.switch", multiple: true

1}
11 def installed()
o q subscribe(location, changedLocationMode)
15 subscribe(app, appTouch) }

15 dé% appTouch(evt) {
16 log.debug "appTouch: $evt"
17 switches?.off()}

Listing 28 App Before Injecting Over-privilege

Listing 28 provides an example of an app with no over-privileges
of any case. The app is modified in listing 29 to show an
example of an app with over-privilege of Case 1. The app
used the ‘switch’ device to access the command ‘siren’, which
belongs to another capability (line 18 of listing 29).

| definition(
2 name: "Big Turn OFF",
namespace: "smartthings",
1 author: "SmartThings",
5 description: "Turn your lights off when the SmartApp
is tapped",
)

preferences {

s section("When I touch the app, turn off...") {

9 input "switches", "capability.switch", multiple: true
0 }}

11 def installed()

o q subscribe(location, changedLocationMode)

13 subscribe(app, appTouch) }

15 def appTouch(evt) {

16 log.debug "appTouch: $evt"
17 switches?.off()

15 switches?.siren()}

Listing 29 App After Injecting Case 1 of Over-privilege

To create the mutant for Case 2, we randomly choose any one
of the capabilities that are not mentioned in the description of
the app, and we request it by the application.

The app in listing 28 only described the use of the switch
capability, which was requested by the app correctly. To inject
case 2 of over-privilege, we find a capability from the Smart-
Things documentation that is not supposed to be requested by
the app based on its description. Then, we request this capa-
bility in the app without informing the user in the description.
Listing 30 shows some of the capabilities in the SmartThings
documentation. The resulting over-privileged app is shown in
listing 31, line 11 shows the app requested the capability accel-
erationSensor without mentioning it in the description in line
5.

1 Capabilities: accelerationSensor, alarm,
audioNotification, battery, beacon, bulb, button,

carbonDioxideMeasurement, colorControl,
colorTemperature,

Listing 30 Snippet of SmartThings List of Capabilities

1 definition(
> name: "Big Turn OFF",
3 namespace: "smartthings",
4+ author: "SmartThings",
5 description:
"Turn your lights off when the SmartApp is tapped",
6 cel)
7 preferences {
s section("When I touch the app, turn off...") {

o input "switches", "capability.switch", multiple: true}
10 section("") {
11 input "sensor", "capability.accelerationSensor"

12 , multiple: true}
13}

Listing 31 App After Injecting Case 2 of Over-privilege

We created 19 mutants for Case 2 in 19 apps from the dataset.
As for Case 3 of over-privilege, we picked apps from the dataset
that have requested at least one capability, and described the use
of part of it only in the app’s description.

Listing 28 shows a compatible app for injecting Case 3. This
app describes the use of the command “off”” from the switch
capability. To inject Case 3 of over-privilege, we replace the
actuating of the “off” command to the “on” command that is
part of the switch capability. Listing 32 shows the app after the
injection of Case 3. We created 20 mutants in 20 apps from the
dataset.

1 definition(
> name: "Big Turn OFF",
namespace: "smartthings",
4+ author: "SmartThings",
5 description:
"Turn your lights off when the SmartApp is tapped",
6 .)
7 preferences {
s section("When I touch the app, turn off...") {
o input "switches", "capability.switch", multiple: true
0 }}
1 def installed()
o q subscribe(location, changedLocationMode)
15 subscribe(app, appTouch) }

15 def appTouch(evt) {

16 log.debug "appTouch: $evt"
17 switches?.off()

s switches?.on()}

Listing 32 App After Injecting Case 3 of Over-privilege

A MDRE Approach for Detecting Privilege Escalation in loT Systems 17

For further details, the complete benchmark could be found
online, as well as the public datasets. 4

To answer RQ3, we run the tool on a selected subset of the
dataset and the benchmark we created. For Case 1 of over-priv-
ilege, we are interested in detecting the use of commands and
attributes by capabilities that are not in possession of them.
We randomly picked 25 over-privileged apps from the public
datasets (listed in Table 5) and validated the reports of Case 1
of over-privilege, a detailed analysis for casel was discussed
in the previous section. For Case 2, we evaluate the tool in re-
porting the use of extra unneeded capabilities and in the use
of the expected capabilities. We achieve this by evaluating the
results obtained from running the tool on malicious and benign
datasets. For Case 3, we are also interested in evaluating the
tool on malicious and benign datasets. The use of a command
or attribute from the owning capability should only be reported
in case it is unnecessary. Finally, to evaluate the accuracy of the
tool, we manually check the results obtained from the automated
detection and calculate the precision and the recall.

Table 9, presents the statistical validation results for our
analysis. Our tool could detect over-privilege vulnerabilities
in malicious apps with high precision and recall. Column 1,
presents the dataset type whether it is malicious or benign and
which over-privileged type it covers (Casel, Case2 or Case3).
The second column presents the total number of apps used for
the evaluation, each app may have more than one over privilege
occurrence, that is why we have included a third column to
report on the number of over-privilege occurrences/absences
for each case. Please note that the third row has 116 confirmed
absences of over-privilege patterns since the dataset used in the
evaluation is benign and covers Case2, same applies to row 5,
but the benign set covers Case3 of over privilege. The intention
of evaluating the tool on a dataset that is benign, is to be able
to compute the (TNR), which presents the probability that an
actual negative/benign will test negative/benign. F-measure
value shows an overall improvement of the analysis results when
compared with ChYP on the detection for casel vulnerability.
And a percentage higher than 80% for the malicious dataset (all
cases).

For the benign dataset, results demonstrate 82 benign in-
stances and 34 false negatives for case 2. It also reports 20
instances of benign-Case3, and 31 false negatives for Case3.
The TNR is is relatively good for Case 2, but not for Case3, and
that is evident by the large number of false negatives.

7. Threat to Validity

Threat to internal validity: =~ We investigated the apps eval-
uated in section 6.4 for the reasons of false positives and false
negatives and pinpointed some reasons of error and areas for
improvements. A limitation of the current approach of process-
ing natural language is that it does not take into consideration
text similarity. For instance, the word *present’ in the following
example is parsed as a ’presenceSensor’, while it could also
mean 'motionSensor’ at the same time. This results in false

4 https://github.com/SmartThingsOverprivilege/smartthings_overprivilege
_dataset

18 Alalfi et al.

positives being reported. The title "Motion here" is parsed as an
action and in a separate rule.

i description: "Turns on an outlet when the user is present
and off after a period of time"
title: "Motion here"
title: "And (optionally) these sensors being

present"
4 section("When someone’s around because of...")
{...}
section("Turn on these outlet(s)") {...}

Listing 33 App After Injecting Case 3 of Over-privilege

/* Facts from description: */

3 triggerComposition(code,zigbeeCurlingIron,rule5,triggerl,
motionSensor,motion,active).
actionComposition(code,zigbeeCurlingIron, rule5,actionl,
switch,on,on).
s actionComposition(desc,zigbeeCurlingIron, rule4,actionl,
Motion,na,na).

/* Facts from code: x/

triggerComposition(desc,zigbeeCurlingIron,rulel,triggerl,
presenceSensor,na,present).

actionComposition(desc,zigbeeCurlingIron,rulel,actionl,
switch,on,on).

o

Listing 34 Facts relevant to false positive case

1 <component_element><device><presenceSensor>present</
presenceSensor></device></component_element>

Listing 35 TXL parse of the device

One reason behind this limitation is the grammar developed
does not contain enough definitions to understand synonymous,
for instance, “moisture’, *water’ and *wet’ are all connected and
could be used interchangeably wherever needed. The grammar
can be easily adapted to add such information which can be
captured with more domain expert knowledge.

Another threat to validity is when descriptions appear in
separate sections, it can only be decided if the descriptions
belong to the same permission rule from the semantics. And
so, two separate permission rules will be parsed, independent
of each other, breaking the relation necessary to understand the
underlying permission rule. A similar scenario happens when
TXL encounters an apostrophe in the NL descriptions, this leads
to cutting off the parsing of a permission rule component leading
to two separate permission rule components.

To summarize, our NLP approach could be improved by
exploring better tools and techniques in order to better under-
stand the context and in turn produce a better match. NLP
pre-processing techniques involving punctuation is one area
that could immediately improve the results. Another possible
improvement is expanding the vocabulary in the tool produced
using grammar inference supported and validated by domain
knowledge expertise.

Nevertheless, even if we achieve all the desired improve-
ments in the tool, the description could be written poorly and
ambiguously that even the best tools could not comprehend the
necessary privileges. Developers are strongly advised to write
clear and comprehensive descriptions. This is one way we can
reduce over-privileges in apps.

https://github.com/SmartThingsOverprivilege/smartthings_overprivilege_dataset
https://github.com/SmartThingsOverprivilege/smartthings_overprivilege_dataset

Table 9 Evaluation of MDE-ChYP on the mutation dataset

Dataset Total Apps | Occurrences | TN | TP | FP | FN | Precision | Recall | F-measure | TNR
Evaluated in dataset
Malicious - Case 1 25 41 _ 33 1 7 82.50% | 80.49% | 81.48% _
Malicious - Case 2 19 19 _ 19 | 8 0 70.37% 1 82.60% _
Benign - Case 2 60 116 82 0 0 34 _ _ _ 70.68%
Malicious - Case 3 20 20 _ 19 | 8 1 70.30% 95.0% | 80.85% _
Benign - Case 3 20 51 20 0 0 | 31 _ _ _ 37.04%

Another way of mitigation is designing the access control
component in the programming framework to be the most fine-
grained, and ask the user for approval as straightforward as it
should be. Of course, an obvious mitigation is to resolve design
flaws that result in over-privileges, like Case 1 in SmartThings.

Threat to external validity: Our approach uses Samsung’s
SmartThings as the platform of interest. This platform is similar
to other programmable platforms. It is cloud-based and provides
a programming framework for third-party developers (Fernan-
des et al. 2016). Our case study on SmartThings platform shares
two other common features with other platforms: authorization
and authentication through the capability model, and the support
of event-driven processing. Thus, we anticipate the analysis
done on this platform on privilege escalation detection can be
extended to other working platforms. We also have focused
our work on detecting privilege escalation vulnerabilities due
to the risk they represent in attempts to gain unauthorized ac-
cess to systems. We anticipate that our systematic approach
generalizes to address other types of vulnerabilities. The gener-
alization of our approach is due to the technologies we use in
the analysis. The grammar inference approach guided by model
reveres engineering and it’s application to semantic annotation
for NL has been used successfully in other projects and contexts
(Kiyavitskaya et al. 2007), and our successful application of the
approach to semantically annotate permission rules from IoT
Apps demonstrates the extendability of the approach.

8. Conclusions & Future Work

This paper presents the design and development of an MDE
approach and a tool, MDE-ChYP, 5 for the detection of over-
privilege in SmartThings. MDE is used to abstract the system
and extract models that represent it at a high level. Those mod-
els and constraints allow for the process of model checking. We
chose Prolog for the model checking, through applying Prolog
rules and queries against Prolog facts to conduct the detection
of over-privilege. We demonstrate how our approach is capable
of combining multiple sources of information for better under-
standing of permissions granted to the software. This approach
takes into consideration the semantics of the free-form text in the
software, which allows for better understanding of the intended
permission model in the software, which in turn gives better

5 https://cresset.scs.ryerson.ca/ChYP

A MDRE Approach for Detecting Privilege Escalation in loT Systems

coverage of over-privilege detection. Experimental results give
78.12% precision and 92.59% recall for Case 1, 88.24% preci-
sion and 78.95 % recall for Case 2, 70.37% precision and 95%
recall for Case 3. Our plans for future work include working on
decreasing the false positives in the detection of over-privilege.
We intend to do this by working on the following aspects: in-
vestigating how to fix limitations introduced from the chosen
programming paradigm of TXL’s and improving the natural
language understanding in our approach.

Appendix A. Prolog Rules for Case 1 of Over-
Privilege

1 /* Prolog rule of case 1 */

2 overprivilegedCasel(casel,AppName,Ruleld,Id,
Capability,Resource): -

triggerComposition(code,AppName,Ruleld,Id,Capability,

Resource,_),

4 notAttributeCommandOfCapability(Capability,Resource),

5 attributeCommandOfCapability(Capability2,Resource),

¢ not(Capability2=Capability),

7 not(Capability=na),

3 not (Resource=na);

10 triggerComposition(code,AppName,Ruleld, Id,Capability,
_,Resource),
1 not(valueOfAttributeOfCapability(Capability,Resource)

)y
12 valueOfAttributeOfCapability(Capability2,Resource),
13 not(Capability2=Capability),
14 not(Capability=na),
15 not (Resource=na);
16
17 actionComposition(code,AppName,Ruleld,Id,Capability,
Resource,_),
18 notAttributeCommandOfCapability(Capability,Resource),
19 attributeCommandOfCapability(Capability2,Resource),
20 not(Capability2=Capability),
21 not(Capability=na),
2 not(Resource=na);

2 actionComposition(code,AppName,RuleId,Id,Capability,

,Resource),
25 not(valueOfAttributeOfCapability(Capability,Resource)
),
26 valueOfAttributeOfCapability(Capability2,Resource),
27 not(Capability2=Capability),
28 not(Capability=na),

29 not (Resource=na);

31 conditionComposition(code,AppName,Ruleld,Id,
Capability,Resource,_),

32 notAttributeCommandOfCapability(Capability,Resource),

33 attributeCommandOfCapability(Capability2,Resource),

34 not(Capability2=Capability),

35 not(Capability=na),

36 not (Resource=na);

19

https://cresset.scs.ryerson.ca/ChYP

conditionComposition(code,AppName,Ruleld,Id,
Capability, ,Resource),

39 not(valueOfAttributeOfCapability(Capability,Resource)
),

40 valueOfAttributeOfCapability(Capability2,Resource),

41 not(Capability2=Capability),

12 not(Capability=na),

43 not(Resource=na).

m /* End of rule =/

45

46 /* Helper Sub-Rules x/

47 attributeCommandOfCapability(Capability,Resource): -
18 capability(Capability),

49 attributeCommandOf (Capability,Resource).

51 notAttributeCommandOfCapability(Capability,Resource)

capability(Capability),
not(attributeCommandOf (Capability,Resource)).

valueOfAttributeOfCapability(Capability,Resource):-
56 capability(Capability),

57 attributeCommandOf (Capability,Attribute),

valueOf (Attribute,Resource).

Listing 36 Prolog Rules for Case 1

Acknowledgments

This work is supported in part by the Natural Sciences and En-
gineering Research Council of Canada (NSERC), and Toronto
Metropolitan University, Faculty of Science Dean’s Research
Fund. We would like to thank the reviewers of this paper for
their helpful comments and suggestions.

References

Abu Zaid, A., Alalfi, M., & Miri, A. (2019b). Check your
privileges (ChYP). Retrieved from https://chyp.scs.ryerson
.ca/ChYP (Last accessed on 25-1-2022)

Abu Zaid, A., Alalfi, M. H., & Miri, A. (2019a). Automated
identification of over-privileged smartthings apps. In 2079
IEEE international conference on software maintenance and
evolution ICSME (pp. 247-251).

Alalfi, M. H., Cordy, J. R., & Dean, T. R. (2012). Automated
verification of role-based access control security models re-
covered from dynamic web applications. In 2012 [4th ieee
international symposium on web systems evolution (wse) (p. 1-
10). doi: 10.1109/WSE.2012.6320525

Alam, M. R., Reaz, M. B. L., & Ali, M. A. M. (2012). A review
of smart homes — past, present, and future. IEEFE transactions
on systems, man, and cybernetics, part C (applications and
reviews), 42(6), 1190-1203.

Alhanahnah, M., Stevens, C., & Bagheri, H. (2020). Scal-
able analysis of interaction threats in iot systems. In Pro-
ceedings of the 29th acm sigsoft international symposium
on software testing and analysis (pp. 272 — 285). New
York, NY, USA: Association for Computing Machinery. Re-
trieved from https://doi.org/10.1145/3395363.3397347 doi:
10.1145/3395363.3397347

Cordy, J. R. (2012a). The txl programming language. Retrieved
from http://txl.ca/docs/TXL106Proglang.pdf (Last accessed
on 25-1-2022)

Cordy, J. R. (2012b). Txl world. Retrieved from http://tx].ca/
txl-resources.html (Last accessed on 25-1-2020)

20 Alalfi et al.

Einarsson, A. F., Patreksson, P., Hamdaqa, M., & Hamou-Lhadj,
A. (2017). Smarthomeml: Towards a domain-specific model-
ing language for creating smart home applications. In 2017
ieee international congress on internet of things (ICIOT) (pp.
82-88).

Favre, J.-M. (2004). Foundations of model (driven)(reverse)
engineering. In Dagsthul seminar on language engineering
for model driven development, drops, http://drops. dagstuhl.
de/portals/04101 (Vol. 200).

Fernandes, E., Jung, J., & Prakash, A. (2016). Security analysis
of emerging smart home applications. In Proceedings of the
IEEE symposium on security and privacy, 2016 (pp. 636—
654).

Fernandes, E., Rahmati, A., Jung, J., & Prakash, A. (2017).
Security implications of permission models in smart-home
application frameworks. IEEE Security & Privacy, 15(2),
24-30.

Flederer, F., Ostermayer, L., Seipel, D., & Montenegro, S.
(2017). Source code verification for embedded systems using
prolog. In Proceedings 29th and 30th workshops on (con-
straint) logic programming and 24th international workshop
on functional and (constraint) logic programming.

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013).
Internet of things (iot): A vision, architectural elements, and
future directions. Future generation computer systems, 29(7),
1645-1660.

Kiyavitskaya, N., Zeni, N., Mich, L., Cordy, J. R., & Mylopou-
los, J. (2007). Annotating accommodation advertisements
using cerno. In Information and communication technologies
in tourism 2007 (pp. 389—400). Springer.

Madakam, S., Ramaswamy, R., & Tripathi, S. (2015). Internet
of things (iot): A literature review. Journal of Computer and
Communications, 3(05), 164.

Marosi, A. C., Lovas, R., Kisari, A., & Simonyi, E. (2018). A
novel iot platform for the era of connected cars. In 2018 IEEE
international conference on future loT technologies (future
iot) (p. 1-11). doi: 10.1109/FIOT.2018.8325597

Minerva, R., Biru, A., & Rotondi, D. (2015). Towards a defini-
tion of the internet of things (iot). IEEE Internet Initiative,
1(1), 1-86.

Parekh, R., & Honavar, V. (2000). Grammar inference, automata
induction, and language acquisition. Handbook of natural
language processing, 727-164.

Pastor, O. (2017). Model-driven development in practice: From
requirements to code. In B. Steffen, C. Baier, M. van den
Brand, J. Eder, M. Hinchey, & T. Margaria (Eds.), SOFSEM
2017: Theory and practice of computer science (pp. 405—
410). Cham: Springer International Publishing.

Rugaber, S., & Stirewalt, K. (2004). Model-driven reverse
engineering. IEEE Software, 21(4), 45-53. doi: 10.1109/
MS.2004.23

SmartThings. (n.d.). Anatomy and life cycle of a smartapp.
Retrieved from https://docs.smartthings.com/en/latest/
smartapp-developers-guide/anatomy-and-life-cycle-of-a
-smartapp.html (Last accessed on 25-1-2022)

SmartThings. (2019). Hongtat/smartthings-capabilities: Smart-
things capabilities. Retrieved from https://github.com/

https://chyp.scs.ryerson.ca/ChYP
https://chyp.scs.ryerson.ca/ChYP
https://doi.org/10.1145/3395363.3397347
http://txl.ca/docs/TXL106ProgLang.pdf
http://txl.ca/txl-resources.html
http://txl.ca/txl-resources.html
https://docs.smartthings.com/en/latest/smartapp-developers-guide/anatomy-and-life-cycle-of-a-smartapp.html
https://docs.smartthings.com/en/latest/smartapp-developers-guide/anatomy-and-life-cycle-of-a-smartapp.html
https://docs.smartthings.com/en/latest/smartapp-developers-guide/anatomy-and-life-cycle-of-a-smartapp.html
https://github.com/hongtat/smartthings-capabilities
https://github.com/hongtat/smartthings-capabilities
https://github.com/hongtat/smartthings-capabilities

hongtat/smartthings-capabilities (Last accessed on 31-10-
2021)

Soumyalatha, S. G. H. (2016). Study of iot: understanding iot ar-
chitecture, applications, issues and challenges. In /st interna-
tional conference on innovations in computing & net-working
(icicnl6), cse, rrce. international journal of advanced net-
working & applications.

Stallings, W., Brown, L., Bauer, M. D., & Bhattacharjee, A. K.
(2012). Computer security: principles and practice. Pearson
Education Upper Saddle River, NJ, USA.

Tian, Y., Zhang, N., Lin, Y., Wang, X., Ur, B., Guo, X., &
Tague, P. (2017). Smartauth: User-centered authorization for
the internet of things. In Proceedings of the 26th USENIX
security symposium (pp. 361-378).

Wortmann, F., & Fliichter, K. (2015). Internet of things. Busi-
ness & Information Systems Engineering, 57(3), 221-224.
Zhang, W., Meng, Y., Liu, Y., Zhang, X., Zhang, Y., & Zhu,
H. (2018). Homonit: Monitoring smart home apps from
encrypted traffic. In Proceedings of the 2018 ACM sigsac
conference on computer and communications security (pp.

1074-1088).

Zhou, W., Jia, Y., Yao, Y., Zhu, L., Guan, L., Mao, Y., ... Zhang,
Y. (2019). Discovering and understanding the security haz-
ards in the interactions between iot devices, mobile apps, and
clouds on smart home platforms. In 28th USENIX security
symposium (USENIX security 19) (pp. 1133-1150).

About the authors

Manar H. Alalfi is an Associate Professor at the Department of
Computer Science, Toronto Metropolitan University, Toronto,
and an Adjunct Assistant Professor at Queen’s School of Com-
puting, Canada. She is the director of the Creative Research
in Security and Software Engineering Technology CRESSET
lab. Her team conducts internationally recognized research in
the area of Software Quality Assurance, Software Security and
Vulnerability Analysis, Software Analytics and BigData, and
Model Driven Engineering. She is a senior member of the IEEE
and ACM, and a member of the Professional Engineers Ontario.
You can contact the author at manar.alalfi@torontomu.ca.

Atheer Abu Zaid is an MSc graduate from the Department of
Computer Science, Toronto Metropolitan University, Canada.
Her current research interests are in the fields of software en-
gineering and cyber security. Adapting software engineering
techniques such as static analysis, to analyze Internet of Things
applications for malicious behavior. You can contact the author
at aabuzaid @torontomu.ca.

Ali Miri is a Full Professor at the Department of Computer
Science, Toronto Metropolitan University, Toronto. His re-
search interests include cloud computing and big data, com-
puter networks, digital communication, and security and privacy
technologies and their applications. He has authored and co-
authored more than 200 referred articles, 6 books, and 8 patents
in these fields. Dr. Miri has chaired over a dozen international
conference and workshops, and had served on more than 100

technical program committees. He is a senior member of the
IEEE, and a member of the Professional Engineers Ontario. You
can contact the author at ali.miri @torontomu.ca.

A MDRE Approach for Detecting Privilege Escalation in loT Systems 21

https://github.com/hongtat/smartthings-capabilities
https://github.com/hongtat/smartthings-capabilities
mailto:manar.alalfi@torontomu.ca?subject=Your paper "A Model-Driven-Reverse Engineering Approach for Detecting Privilege Escalation in IoT Systems"
mailto:aabuzaid@torontomu.ca?subject=Your paper "A Model-Driven-Reverse Engineering Approach for Detecting Privilege Escalation in IoT Systems"
mailto:ali.miri@torontomu.ca?subject=Your paper "A Model-Driven-Reverse Engineering Approach for Detecting Privilege Escalation in IoT Systems"

