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ABSTRACT During the software design phase software models are created. These models must be eventually complete and
correct. But achieving this state is challenging, and even more in early phases of development, where there are still plenty of
unknown details about the system-to-be. This design-time uncertainty especially hinders the definition of those model elements
that require a high level of precision: the system’s business rules.
Nevertheless, waiting for the requirements to be clear to build a complete model is not an efficient option, and often not even a
feasible one as this could delay too much the whole project. Instead, uncertain models (i.e., models where only some details are
present or are present up to a certain degree of certainty) can be used to advance other aspects of the development process
(e.g., building a partial prototype that can help us explore architectural decisions) while, in parallel, we keep refining the models
with the stakeholders.
This paper proposes an extension to the OCL language to be able to specify uncertain OCL constraints and shows how we
could operate with them to perform preliminary quality checks on the partial business rules. Moreover, we propose a prototype
tool implementing this approach and discuss potential extensions.
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1. Introduction
Designing software systems is a complex process that requires
domain knowledge and the participation of all relevant stake-
holders. Errors in a software design such as missing or incorrect
information may cause faults at later stages of the development
process, when they are more expensive to fix (Boehm & Basili
2001; Endres & Rombach 2003). Thus, there is a strong incen-
tive to ensure the quality of the artifacts built in the software
design phase.

On the other hand, design is an early stage of the software
development process. Therefore, designers may not yet have a
clear understanding about the domain or the business rules of the
system being developed. Furthermore, different stakeholders
may be unable to reach an agreement regarding the expected
behavior in specific scenarios. Finally, it may be desirable to
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postpone some design decisions until later stages of the design
process, when more information is available. In all of these
situations, it is useful to capture the uncertainty during the
design process instead of just waiting for all these aspects to be
clear.

So far, design uncertainty has limited to core structural mod-
eling concepts, such as the existence of a particular attribute or
association. Nevertheless, an aspect where design uncertainty is
particularly significant, and that has not been addressed yet, is
the definition of the integrity constraints of a software system.
Integrity constraints may describe precise details about system
behavior or the validity and consistency of the information base.
These details may be unknown or undecided at this stage of the
development, so it is desirable to define and manage uncertain
integrity constraints.

In this paper, we target the definition of integrity constraints
in UML diagrams using the Object Constraint Language (OCL).
OCL constraints take the form of class invariants that must
hold true for all instances of that class or pre/post-conditions
of operations. We propose an extension of the OCL notation
that supports the definition of uncertain integrity constraints and
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their analysis using existing off-the-shelf tools for the verifica-
tion and validation of OCL. We also present a prototype tool
implementing the proposed method. Finally, we illustrate the
operation of this method with an example.

Paper organization: The remainder of the paper is structured
as follows. Our method is presented in Sections 2 and 3, which
considers two complementary activities: the definition of OCL
constraints that incorporate uncertainty (Section 2) and the anal-
ysis of OCL constraints that incorporate uncertainty, together
with an implementation of the method (Section 3). Then, Sec-
tion 4 describes an example to illustrate the operation of this
method in practice. Section 5 outlines some of the challenges,
limitations and alternatives of the proposed notation. Section 6
describes related work on modeling design-time uncertainty
and distinguishes it from other types of uncertainty modeling.
Finally, Section 7 concludes and discusses future work.

2. Design-Time Uncertainty in OCL
When designing software, initially, the designer’s knowledge
of the domain and business rules may be imperfect, incom-
plete, underspecified etc. Due to this uncertainty some integrity
constraints may be too vaguely defined to allow a precise formal-
ization. Nevertheless, in many cases, it is beneficial to include
this partial information about integrity constraints in the model
and refine it in later iterations.

To this end, we extend the syntax of OCL by introducing a
notation for denoting uncertainty. This notation indicates that
the value of a particular subexpression within a constraint is
uncertain: it could take several potential alternative values, and
currently it is not possible to decide which alternative is the
correct one.

Uncertain invariants It is possible for a designer to be un-
certain about whether a certain constraint should exist or not in
the system being developed. This concept will be denoted with
the following notation:

[? constraint ]

This allows the designer to include relevant knowledge in
the model without committing to enforcing this particular con-
straint.

Example 1 A designer ignores whether a company’s policy
forbids employees from being clients of the company, but thinks
that this is a reasonable assumption. This potential constraint
can be included in the model while noting the uncertainty about
this requirement:

[? context Employee inv EmployeeNotClient:
not Client.allInstances()→

exists(c | c.id = self.id) ]

Uncertain expressions and operations The generic pat-
tern for describing an uncertain OCL expression is the follow-
ing:

[ alternative1, ... , alternativeN ]

indicating that this OCL expression (operation name) may take
one of the alternative values (operations) denoted between brack-
ets. All the alternative values should either be expressions com-
puting a value of the same type or operation names. At some
point during the design process, the uncertainty in an OCL con-
straint will be removed by selecting one of the alternatives as
the value for this OCL subexpression.

Example 2 An e-commerce site sells individual products and
bundles of several products. The site will not sell bundles if all
the products inside the bundle are unavailable, but it has not
decided yet what to do if only some products are unavailable.
This uncertainty can be encoded in two different ways:

context Bundle inv BundleAvailability1:
self.available =

self.products→
[ exists, forAll ](p | p.available)

context Bundle inv BundleAvailability2:
self.available =
[ self.products→exists(p | p.available),

self.products→forAll(p | p.available) ]

Integer expressions For the sake of conciseness,
when describing uncertain integer expressions it is
possible to specify ranges of values using the syntax
lower-bound..upper-bound, where the lower and upper
bounds are defined as integer constants. One or more intervals
can be specified as follows.

[ min1..max1, min2..max2, ..., minN..maxN ]

Example 3 Let us consider an invariant stating that, for legal
reasons, the users of a system should be adults. At this moment,
we might not know in which country the system will be deployed.
Hence, we may not know the exact legal threshold for adulthood.
However, we know it will be between 18 and 21. As a result, we
may write the following uncertain invariant:

context User inv Adult:
self.age >= [ 18..21 ]

Labels It is possible to assign a label to one or more of the
alternative values. Labels can be given to none, some, or all
the alternatives, and labels must be distinct. The syntax for
assigning labels is the following:

[ *label1* alt1, ... , *labelN* altN ]

Labels can be reused in other uncertain expressions within
the same model. The semantics of this reuse is the following:
selecting an alternative with label L in a given uncertain OCL
expression also selects the alternatives with the same label L
in other uncertain OCL expressions. That is, several uncertain
constraints may be related among them, and making a particu-
lar choice in one of them removes the uncertainty from other
choices.
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Example 4 Let us consider two uncertain invariants regarding
a system that could be deployed in the European Union (EU) or
the United States of America (USA). First, we consider the age
threshold for adulthood and whether the user needs to consent
to data collection according to the European General Data
Protection Regulation (GDPR) or not. Some possible uncertain
constraints are as follows:

context User inv Adult:
self.age >= [ *EU* 18, *USA* 21 ]

context User::gdprRequired(): Boolean
post consent:

result = [ *EU* true, *USA* false ]

Note that a conflict appears when an uncertain expression
includes labels for each alternative and previous choices would
require two different alternatives to be selected. In this situation,
one or more of the previous choices needs to be reconsidered.

Example 5 Let us consider the following two uncertain invari-
ants about an e-mail system:

context Message inv MaxLength:
self.length <= [ *small* 128,

*medium* 256,

*large* 512]
context Folder inv MaxCapacity:

[ *low* self.maxCapacity < 50,

*high* self.maxCapacity >= 100 ]
context Folder inv CompressFolders:

self.compressed = [ *low* true,

*small* false ]

Several scenarios are considered for the message length
(small, medium or large messages) and the capacity of the
server (low, high). Folders can be compressed, and according
to our labels compression should be activated if the server has
low capacity and deactivated if the message length is small.
However, a problem arises in a scenario where labels “small”
and “low” are both selected: a conflict appears and we do
not know what was the intended meaning for the invariant
Compression.

Unknowns In some cases, designers may have no informa-
tion about the value of a particular subexpression in an OCL
constraint. The designers can denote this fact by using the key-
word unknown. This keyword acts as a place-holder to denote
the part of the constraint that is not certain at the moment.

Example 6 Users of a library system who have been sanctioned
(e.g., because they have damaged books or returned them late)
may be forbidden from borrowing books for some time. During
the early stages of the design of a library’s information system,
the designer may have an incomplete picture of the situations
that trigger this penalty. Hence, this situation can be described
as follows:

context User::borrow(b: Book)
pre: self.pendingBooks.size() < self.quota

and self.lateBooks→isEmpty()

and self.damagedBooks = 0
and unknown

post: self.pendingBooks.includes(b)

Documentation The syntax presented in this paper focuses
on the definition of uncertain constraints. However, an aspect
which is as important as these definitions is the documentation
of the decisions behind them. Designers need to record why
certain characteristics of the integrity constraints are considered
uncertain and which are not, which alternatives were considered,
which were discarded and the reasons why this happened. For
instance, when defining labels, it is important to document
the vocabulary of labels used in a model and their meaning.
This information will be useful to debug potential issues with
conflicting labels.

Defining a notation and tool support for documenting these
design decisions is considered out of the scope of this paper.

3. Analysis of Uncertain OCL Constraints
Several existing tools provide facilities to analyze, test, validate
or verify OCL constraints included in UML models (Brucker &
Wolff 2008; Cabot et al. 2014; Dania & Clavel 2016; Kuhlmann
et al. 2011; Rull et al. 2015; Soeken et al. 2010; Soltana et al.
2020; Wu 2017). Nevertheless, such tools do not support uncer-
tain OCL expressions. In the following, we describe how we can
leverage existing tools in order to analyze uncertain OCL mod-
els. In this way, it may be possible to detect problems such as
unsatisfiable OCL constraints or inconsistencies between OCL
constraints early on, i.e., even when some of these constraints
are still uncertain.

We present two alternative methods offering a different trade-
off regarding the precision and cost of the analysis.

Exact method This methods enables the generation of all
the potential concrete variants for uncertain OCL constraints. To
do this, starting from the innermost uncertain OCL subexpres-
sion, we generate a copy of the OCL constraint that takes each
alternative as its value. Each copy is a concrete OCL expression
with no uncertainty that can be checked using existing tools
with no adaptations required. Constraints including unknowns
will be excluded from this concretization1.

A challenge of the exact method in practice is its computa-
tional complexity. Given that a model may have n uncertain
expressions (each with 2 or more alternatives), there is a risk of
potential combinatorial explosion as all combinations need to
be generated (at least 2n variants or more).

Example 7 Let us revisit the uncertain age requirement from
Example 3. Using the exact method, we would generate the four
concrete invariants corresponding to each potential alternative:

context User inv Adult_A: self.age >= 18
context User inv Adult_B: self.age >= 19
context User inv Adult_C: self.age >= 20
context User inv Adult_D: self.age >= 21

1 A more detailed analysis could consider taking into account the known part of
the OCL expression.
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If this system included another uncertain OCL invariant with
3 alternatives, then the system would have 4 × 3 = 12 concrete
realizations: all combinations of concrete realizations of each
uncertain invariant.

Labels can be used to prune those variants where labeling
is not preserved, i.e., an alternative labeled L is selected in
an uncertain OCL expression but in another uncertain OCL
expression the alternative labeled L is discarded.

Example 8 Let us revisit our labeled uncertain constraints
from Example 4. Even though there are four combinations
of alternative values, if we take the labels into account, only
two concrete realizations are possible:

context User inv Adult_EU:
self.age >= 18

context User::gdprRequired(): Boolean
post consent_EU: result = true

context User inv Adult_USA:
self.age >= 21

context User::gdprRequired(): Boolean
post consent_USA: result = false

Again, each of these concrete realizations can be checked
using existing UML/OCL analysis tools.

Approximate method In order to improve the efficiency
of the analysis of uncertain OCL constraints, it is possible to
consider an approximate method. This method aims to reduce
the number of variants being generated by aggregating the set
of potential alternative values of all alternatives. As a trade-off,
this approach may produce false negatives: it may detect some
errors, but it will be unable to detect all of them.

The criteria that we will use for this aggregation is the fol-
lowing. Given an uncertain OCL expression with alternatives
[ alt1, . . . , altN ]:

– If the uncertain OCL expression is of boolean type, and
it appears inside boolean operators (and, or, xor, not, im-
plies) or a universal or existential quantifier, we will only
generate two concretizations:

(alt1 and alt2 and ... and altN)
(alt1 or alt2 or ... or altN)

One concretization represents a system that is more restric-
tive (an under-approximation) while the other represents a
system that is more relaxed (an over-approximation). An
analysis of the OCL constraint is required to identify which
of the two concretizations is the over/under-approximation.

– If the uncertain OCL expression is of numeric type and
is used within a relational operator (>,<,≤,≥) or a
min/max/floor/round/abs operation, we will generate
two concretizations:

alt1.min(alt2.min(.....altN-1.min(altN)))
alt1.max(alt2.max(.....altN-1.max(altN)))

That is, we will only consider the lower and upper bound
of the interval. In particular, if the numeric alternatives
are defined as lower..upper, we will directly use lower
and upper as the two concretizations.

Example 9 Let us revisit our uncertain age requirement from
Example 3. Considering our approximate method of realization,
only two concrete realizations would be generated:

context User inv Adult_MIN: self.age >= 18
context User inv Adult_MAX: self.age >= 21

These two realizations allow us to test the boundary cases
of the age attribute. Given that in this scenario we are using
a relational operator, the extreme values may be sufficient to
identify relevant properties of the constraint. For example, we
may discover that an age requirement of 18 conflicts with other
constraints within the system. On the other hand, it may be
possible for problems to arise in one of the intermediate values
(i.e., 19 and 20) that are not being tested explicitly. Thus, while
this approach can help us to identify errors efficiently, it is not
sufficient to ensure the lack of errors.

Implementation We have implemented a tool2 to support
designers aiming to use our uncertainty extension of OCL. The
tool implements the exact method, with a simple command-line
interface receiving an uncertain OCL specification as input and
providing as output its set of potential concretizations. Then,
these concretizations can be used as input to other tools support-
ing regular OCL.

The tool is implemented in Java, using JFlex and CUP for
creating the uncertain OCL parser. It supports all features of
the OCL extension used in the examples presented in this paper,
such as the unknown keyword, uncertain invariants, alternative
expressions, integer ranges and labels. Uncertain expressions
can be nested. Moreover, the tool automatically detects and
removes concretizations with conflicting labels. Nevertheless,
the tool still does not support the approximate method.

4. Example
In the following, we discuss an example to illustrate how to
model design uncertainty in OCL constraints. To this end, we
will consider a class diagram modeling a fragment of the infor-
mation system of a newly created bank, which includes several
uncertain integrity constraints.

Figure 1 depicts the UML class diagram on which the in-
tegrity constraints are defined. Clients may have several types
of banking products: accounts, credit cards, loans (such as
mortgages) or personal insurance. Each product requires the
payment of a monthly fee. For the sake of simplicity, all cur-
rency amounts used in this diagram (such as balances or fees)
use Real values rather than defining a custom Currency datatype.

Clients who do a lot of business with the bank (e.g., paying
a large amount of fees) may be awarded a VIP status, which
offers several benefits. On the other hand, clients with a low
balance and/or large loans may be considered a credit risk and
may be forbidden from performing certain operations.
2 The tool can be found at https://github.com/SOM-Research/uncertain-ocl.
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Figure 1 UML class diagram describing the information system of an online bank.

Bank accounts are special products that may be related to
several clients: one is identified as the owner while the rest
are considered authorized to withdraw money. Owners can
decide to freeze an account, forbidding any money from being
withdrawn. Accounts can also be set as the billing accounts for
a particular loan, as long as the loan belongs to the owner of the
account or an authorized person.

The following OCL invariants summarize some integrity
constraints of this information system: fees, rates and debts
should not be negative amounts; and accounts associated to
loans should be billable.

context Product inv PositiveFees:
self.monthlyFee > 0.0

context Loan inv NonNegativeDebts:
self.principal >= 0.0

context Loan inv NonNegativeRates:
self.interestRate >= 0.0

context Account inv OwnerNotInAuthorized:
self.authorized→excludes(self.client)

context Loan inv AccountBillable:
self.client = self.billingAccount.client or
self.billingAccount.authorized→

includes(self.client)

Nevertheless, the bank is still defining the business rules for
managing some aspects of these products. For example, the
following topics are still open:

– The number of unpaid mortgages that a client can have at
a given point in time.

context Loan::paid(): Boolean
body: self.principal = 0.0

context Mortgage inv MultipleMortgages:
if (not self.paid()) then

Mortgage.allInstances()→select(m |
m <> self and (not m.paid()) and
m.client = self.client)→size() <=

[0..2]
else

true

endif

– What criteria will be used to identify VIP clients, e.g., a
threshold in the amount of monthly fees, a total balance
among all the owned accounts, . . .

-- Total fees payed monthly by a client
context Person::totalFees(): Real

body: self.product→collect(p:Product|
p.monthlyFee)→sum()

-- Total balance of a client
-- Should loans be included?
context Person::totalBalance(): Real

body: self.product→collect(p: Product |
if (p.oclIsTypeOf(Account)) then

p.oclAsType(Account).balance
else [ 0.0,

if (p.oclIsKindOf(Loan)) then

p.oclAsType(Loan).principal
else

0.0
endif ]

endif)

context Person inv VIPClient:
self.vip =
[ ( self.totalFees() >= 500.0 ),
( self.totalBalance() >= 1000.0 ) ]

– What fees will be paid for accounts that are overdrawn.
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All accounts are charged a base maintenance fee of 20
euros. At design time, we do not know whether overdrawn
accounts will be charged an overdraft fee. Moreover, in
case there is an overdraft fee, we have not decided yet how
it will be computed. Two alternative ways of doing it are:
as a a flat amount on top of the base fee (30 euros more,
i.e. 50 euros in total) or as a percentage of the overdraft
amount instead of the base fee (e.g., 5%).

context Account inv NegBalanceFees:
[ if self.balance <= 0.0 then

self.monthlyFees =
[ 50.0, -(self.balance*0.05) ]

else

self.monthlyFees = 20.0
endif,
self.monthlyFees = 20.0 ]

– What is the maximum interest rate in a loan, as setting a
very high rate may be perceived as predatory behavior and
generate bad publicity.

context Loan inv MaxInterestRate:
self.interestRate <= unknown

– Whether the owner of an account can freeze it if a loan is
billing that account.

[? context Loan inv NoFrozenAccount:
(not self.paid()) implies
(not self.billingAccount.frozen) ]

The definition of these uncertain constraints induces the
following number of alternative concretizations:

Invariant Alternatives #

MultipleMortgages Max 1-3 mortgages per client 3

VIPClient Minimum fee or min balance 4

Balance includes loans or not

NegBalanceFees 20, 50 or 5% of balance 3

MaxInterestRate Threshold for max rate ?

NoFrozenAccount Can/cannot freeze billing acc. 2

That is, in this example there are 3 × 4 × 3 × 2 = 72 poten-
tial concretizations. Notice that invariant MaxInterestRate
cannot be analyzed until more information is known about the
maximum interest rate allowed. Nevertheless, being able to
include this uncertain invariant reminds the designer and other
stakeholders that it will be necessary to select a maximum rate
at some point of the design process.

These concretizations can be used together with model find-
ers in order to compute sample instances or identify potential
inconsistencies among some of the uncertain constraints. For
example, imagine that we want to test what happens in our sys-
tem if we have an account with a zero balance by adding the
following invariant:

context Account inv ZeroBalance:
Account.allInstances()→

exists(a: Account | a.balance = 0.0)

By using a model finder, we discover that 24 of the proposed
concretizations have a consistency problem: in this scenario
there are no valid instances that satisfy all integrity constraints
simultaneously. The problem is caused by the interaction of the
integrity constraint PositiveFees and one of the concretiza-
tions of NegBalanceFees, the one that charges a fee of 5% of
the missing balance.

context Account inv NegBalanceFees_3:
if self.balance <= 0.0

self.monthlyFees = -(self.balance*0.05)
else

self.monthlyFees = 20.0
endif

Notice that the fee is also computed as 5% of the balance
when the balance is zero. In this situation, the fee is 5% of zero
(that is, zero), so a client can avoid paying fees simply by having
a balance of zero. This contradicts invariant PositiveFees
requiring all fees to be greater than zero. The design can be
modified to fix this problem in several ways: accepting zero fees
in some products, adding a base flat fee to the 5% of balance
when a client has negative balance or apply a regular fee in
the case when the balance is zero (by rewriting the condition
self.balance <= 0.0 to self.balance < 0.0 in invari-
ant NegBalanceFees).

5. Discussion
Our proposal is a first step towards a complete support for
design-time OCL uncertainty concerns. This section discusses
a few possible extensions to our proposal.

5.1. Support for Real and String data types
A list of concrete Real values and String literals could be directly
expressed as separate alternatives using the regular syntax for
uncertain expressions.

However, when needing to express a set of Real options,
our convenient range notation for Integer expressions cannot
be directly used as there is an infinite number of potential real
value options in a range. An option to overcome this would be
to extend our syntax by indicating the max number of decimal
digits to be used when unfolding the range, or the increase to
apply to the lower bound iteratively until reaching the upper-
bound.

Ranges for String values could be expressed as a (finite) reg-
ular expression. All Strings accepted by the regular expression
would be part of the range.

5.2. Manipulating uncertain OCL expressions
We have seen how we can analyze and validate uncertain OCL
expressions. We may want to manipulate them as part of a
model-to-model or a model-to-text transformation, too. For
example, when we have an uncertain OCL precondition in a
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UML class method that should be translated into an equivalent
if check for the corresponding Java class method automatically
derived from the UML one. Same as we do not want to wait
for all uncertainties to be clarified before analyzing the system,
we may also want to be able to start creating and refining lower
level models as soon as possible.

If the transformation does not use as input any uncertain
OCL expression the target model is generated as usual. Oth-
erwise, the target model must be created such that its set of
potential concrete expressions is the same as if we had applied
the transformation on every single input concrete variant.

Existing works covering transformation techniques for partial
models (see the related work in Section 6) could be reused here,
as OCL expressions can be regarded as instances of the OCL
metamodel.

5.3. Not all uncertainties need to be equally uncertain
Our notation enables designers to indicate the several potential
alternative values of a particular uncertain expression but all
alternatives are regarded as equally probable.

We could go one step further and add a confidence degree
to each alternative value. Then, this confidence level could be
used to favour some specific scenarios in the analysis phase. In
particular, this confidence could allow us to define a default or
preferred alternative, which can be used to perform a quick anal-
ysis in situations where a recomputation of all concretizations
is not desiarable.

5.4. Collapsing uncertain alternatives
The most challenging aspect of managing uncertain OCL ex-
pressions is the need to take into account all their possible
concretizations every time we need to operate on them.

The approximate method from Section 3 is a good strat-
egy to reduce the combinatorial explosion problem but we still
need to deal with large expressions combining all the possible
alternatives. There are several alternatives to deal with this
combinatorial explosion, such as using the confidence value
mentioned in the previous subsection to select the most likely
alternative for a quicker analysis.

Another option would be, for every uncertain expression, to
reduce the alternatives to the single most constraining one. On
the one hand, this is one of the possible worst-case scenarios
for the model. On the other hand, it enables the removal of the
uncertainty in order to analyze the model using standard OCL
tools while avoiding any type of combinatorial explosion issue.
One can think of this approach like the most extreme version
of the approximate method where we do not only reduce the
number of different constraints to consider but also the size (in
terms of number of subexpressions) of each constraint, speeding
up their preliminary evaluation.

Another possibility is, instead of choosing the most constrain-
ing one, to do the opposite and take the less constraining one to
simulate the best-case scenario.

Note that deciding the most/least constraining alternative de-
pends on the specific operator/s appearing in the subexpression
and (recursively) the parent elements of such subexpression.

6. Related Work

There is extensive work dealing with different types of uncer-
tainty in software modeling and design such as measurement
uncertainty, belief uncertainty, behaviour uncertainty and de-
sign uncertainty, as well as recent secondary studies such as
the survey by Troya et al. (Troya et al. 2021), in which they
report on the state of the art on representing uncertainty in soft-
ware models. In this section, we focus on existing works on
uncertainty in software and systems which use a model-based
approach paying special attention to those works focusing on
design uncertainty.

6.1. Modeling Design Uncertainty using Partial Models

Partial models are models that help represent the uncertain
alternative scenarios of a system early in the design phase, which
can be later refined when more information is available. The
partial models contain partialities that are a set of notations
applied to the models to represent various uncertainties (Salay
et al. 2012; Salay & Chechik 2015). For instance, the May
partiality represents the uncertainty about the presence of a
model element in a model, and the Abs partiality represents
uncertainty about the number of model elements in a model.
Using partialities, it is also possible to define formal conditions
for uncertainty to reduce refinement between not only individual
models but within model transformations (Salay et al. 2015),
too.

Partial models have been applied to solve problems of differ-
ent nature. Related to our work, in (Salay et al. 2013), Salay et
al. used partial models for representing uncertainties in software
requirements. They use an approach to reduce uncertainty in
requirements by modeling the requirements with a particular
type of partiality called MAVO using the i* language (com-
prising of actors, goals, tasks and resource). Further Horkoff et
al. (Horkoff et al. 2014) use the i* language to capture goal mod-
els. The i* model is converted to FOL and then to a partiality
for analysis (Salay et al. 2013).

Partial models are also applied in specific areas, such as
software product lines. Famelis et al. (Famelis et al. 2017)
discuss the presence of uncertainty in the domain of software
product line engineering and proposes different ways to resolve
it.

Finally, in (Famelis & Chechik 2019), Famelis et al. propose
a methodological approach for managing uncertainty using par-
tial models that characterize the tasks needed to manage the
lifecycle of uncertainty-related design decisions.

Techniques based on partial models provide an extensive
insight on how uncertainty can be captured using models, in
particular, state machines and timed automata. However, these
models do not support the definition of integrity constraints
using dedicated languages such as OCL to make them more
meaningful and precise. Thus, the approach presented in this
paper complements some of these other works based on partial
models, as we do not capture design uncertainty in models but
in the integrity constraints that enrich those models.
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6.2. Design space exploration in Uncertain Model Trans-
formations

In (Eramo et al. 2015), Eramo et al. deal with the inconsistencies
due to the synchronization process in bidirectional transforma-
tions as a process of reducing uncertainty. They proposed a
metamodel-independent approach to represent a solution space
by means of a model with uncertainty. Later, they extended their
work to translate the unknown uncertainty at design-time into
known uncertainty at run-time by generating multiple choices.
They achieve this by means of using delta lenses (Diskin et
al. 2016). While these two works are tailored for bidirectional
transformations and the particular problem caused by their non-
bijective nature, our approach does not focus on this particular
case. Nevertheless, our approach can be used to capture design
uncertainty in model transformations written in languages with
support to OCL such as ATL and QVTo. In such as case, our
proposed strategies will generate alternative transformations,
each one considering a possible scenario.

In (Laghouaouta & Laforcade 2020), the authors use the
partial patterns to express various possibilities of transformation
scenarios. Partial patterns are based on partial models (Salay et
al. 2012). This approach uses a configuration model that can
be seen as the specification of the uncertain transformation. As
mentioned above, when comparing our approach to those based
on partial models, while these focus on the transformation itself
without considering integrity constraints, our work focuses on
the latter.

Finally, Burgueño et al. (Burgueño et al. 2018) propose an
approach to deal with measurement uncertainty in model trans-
formations. For this, they use the concept of confidence, which
is the degree of belief that one has on the occurrence of each
model element. While this approach focuses on uncertainty at
the instance level and assumes that the design of the model is
certain, our current proposal focuses on design-time uncertainty.

6.3. Capturing Instance-Level Uncertainty in MBE
Vallecillo et al. (Burgueño, Mayerhofer, et al. 2019; Bertoa
et al. 2020) present an approach and methodology to capture
measurement uncertainty in instances of UML/OCL models.
They have extended the basic UML/OCL datatypes with new
datatypes such as UReal, UInteger and UString and have defined
an algebra of operations for these new types.

Zhang et al. propose U-Model (Zhang et al. 2016), a detailed
conceptual model to capture uncertainties in cyber-physical sys-
tems (CPS). The uncertainties are defined as lack of knowledge
on inputs, states, outputs and events. Using U-Model uncer-
tainties can be identified and captured at all levels: application,
infrastructure, and integration. In (Zhang et al. 2019) the authors
extend U-Model for testing purposes.

There are works that capture uncertainty of epistemic nature,
this is, due to limited data, evidence or knowledge. Martin-
Rodilla et al. (Martín-Rodilla & Gonzalez-Perez 2019) propose
the ConML language to annotate the elements of instance mod-
els with information representing the user’s confidence in the
truthfulness of that element. Burgueño et al. (Burgueño, Clarisó,
et al. 2019; Burgueño et al. 2022) propose an UML profile and
its operationalization to express the degree of belief uncertainty

that an agent has about the elements of an instance model using
probabilities and subjective logic.

Unlike other previous works, Giese et al. (Giese et al. 2011)
propose the use of runtime models as a means to cope with un-
certainty during development-time and runtime. This approach
is suitable for different types of models such as architectural
and behavioral models.

All the previous works differ from our approach in the fact
that they deal with uncertainty at an instance level while our
approach considers uncertainty at the design level. Furthermore,
even in those works which allow the user to define OCL con-
straints, these constraints are assumed to be correct and are not
questioned. On the contrary, our proposal considers the uncer-
tainty that a modeler may find when defining OCL constraints.

7. Conclusions
We have proposed a mechanism to extend OCL in order to
support uncertainty in the definition of integrity constraints. The
proposed approach allows designers to introduce uncertainty
within OCL expressions. Moreover, it is possible to leverage
existing tools for the analysis of OCL constraints in the analysis
of this uncertain constraints. This facilitates detecting faults
even in the presence of uncertain constraints.

Our current tool supports an exact method for managing
uncertainty: generating all concrete variants of uncertain con-
straints. A limitation of this approach is the (potential) combi-
natorial explosion in the number of variants. As future work,
we plan to address the discussion points presented in Section 5
and extend our toolset to support the approximate method (see
Section 3), in order to reduce the impact of the combinatorial
explosion in large specifications. We also plan to study the
interplay between uncertainty about integrity constraints and
uncertainty about modeling concepts, particularly in behavioral
models.
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