
Journal of Object Technology | RESEARCH ARTICLE

Revisiting Fault Localization Techniques for Model
Transformations: Towards A Hybrid Approach

Paula Muñoz∗, Javier Troya∗, Manuel Wimmer†, and Gerti Kappel§
∗ITIS Software, Universidad de Málaga, Spain

†CDL-MINT, Johannes Kepler University Linz, Austria
§TU Wien, Austria

ABSTRACT The correctness of software built through model transformations highly depends on the correctness of these
transformations. Different approaches have been proposed to ensure the correctness of model transformations by checking if
pairs of input-output models satisfy a set of contracts. If a contract is not satisfied, at least one transformation rule must contain
a bug. Localizing the rules that contain bugs is key for repairing the model transformation. Among others, Spectrum-Based
Fault Localization (SBFL) is a dynamic technique to locate the faulty component of a software, and it has already been applied
in the context of model transformations considering the rules as the components. As a result, this technique proposes an
order (a so-called suspiciousness ranking) in which the rules should be inspected in order to locate the bug. However, SBFL
relies on so-called suspiciousness formulae that were created in different domains, so none of them offers a perfect behavior
in the context of model transformations. Indeed, some of the rankings for model transformations present many ties, so the
tester is uncertain as of which rule to inspect first in the ties. In this paper, we explore how SBFL can be combined with static
information in a hybrid approach in order to improve the results obtained from SBFL, specially in the case of ties in the rankings.
Our evaluation shows the potential of the hybrid approach to improve previous SBFL results for model transformations.

KEYWORDS Model transformations, Testing, Debugging, Fault localization.

1. Introduction
In Model-Driven Engineering (MDE) (Brambilla et al. 2017),
models are considered as first-class artifacts to represent com-
plex systems from various viewpoints and abstraction levels
utilizing appropriate modeling languages. Consequently, model
transformations are seen as the cornerstone of MDE (Czarnecki
& Helsen 2006; Lúcio et al. 2014; Heckel & Taentzer 2020).
They represent the core technique for manipulating and creating
models and provide an excellent trade-off between theoretical
foundations and applicability to different problem domains (Lú-
cio et al. 2014; Heckel & Taentzer 2020). Existing model trans-
formation languages provide dedicated language concepts, such

JOT reference format:
Paula Muñoz, Javier Troya, Manuel Wimmer, and Gerti Kappel. Revisiting
Fault Localization Techniques for Model Transformations: Towards A Hybrid
Approach. Journal of Object Technology. Vol. 21, No. 4, 2022. Licensed
under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2022.21.4.a7

as transformation rules, to realize model transformations often
in a declarative way. In this context, rules are matching input
elements from the source models and either produce parts of
new target models (so-called out-place model transformations)
or drive the evolution, i.e., modification of the source models
(so-called in-place model transformations) (Czarnecki & Helsen
2006).

As model transformations are also the core mechanism
to translate models to implementations realized in code—
potentially applying several transformation steps, the correct-
ness of software systems realized with MDE approaches highly
depends on the correctness of the utilized model transformations.
Therefore, it is critical to test and debug model transformations
in the context of MDE (Troya et al. 2022) as it is the case
with compilers for programming languages (Chen et al. 2020).
However, several challenges are associated with testing and de-
bugging model transformations as they are specific and complex
software systems (Baudry et al. 2006).

An AITO publication

http://dx.doi.org/10.5381/jot.2022.21.4.a7

The correctness of a model transformation can be checked,
for instance, against a set of assertions (also called con-
tracts) (Gogolla & Vallecillo 2011; Vallecillo & Gogolla 2012)
that the pairs of < input, output > models must satisfy. These
contracts act as oracle. Thus, if one of the associated contracts of
a model transformation fails, a bug must be present in the model
transformation implementation. It is common to represent these
contracts in the Object Constraint Language (OCL) (Object
Management Group 2014). OCL has become a key component
of many MDE techniques, and it provides high expressiveness.
Regarding the definition of OCL contracts, it can be observed
that the conditions of some of them are included in other con-
tracts for the same model transformation (Burgueño et al. 2015).
However, the impact this inclusion of conditions in different
contracts has in testing and debugging model transformations
has not been studied.

When an OCL contract, that we assume is correct, fails for a
model transformation, we need to locate the bugs that caused
it fail. Burgueño et al. (Burgueño et al. 2015) proposed a static
fault localization approach based on the extraction of metamodel
footprints from the contracts and the transformation implemen-
tation for locating the bug. In contrast, Spectrum-Based Fault
Localization (SBFL) for model transformations (Troya et al.
2018; Li et al. 2020; Du et al. 2020) is a dynamic approach that
requires input models and to execute the model transformation
for locating the bug. Both approaches rank the transformation
rules according to the likelihood that they contain the bug. The
tester should follow the rank order when inspecting the rules for
finding the bug in the most efficient way.

A limitation of both approaches is that it is quite likely that
more than one rule is ranked on the same position, i.e., there is
a tie in the rank (Wong et al. 2016), even for the first position.
Thus, the tester is uncertain as of which rule to inspect first. In
fact, the number of ties can be quite large in some cases, and
there is not a clear pattern for the number of ties as shown by
previous work (Troya et al. 2018).

The goal of this paper is three-fold. First, we aim to study
whether the way of implementing a model transformation is
related to the number of ties obtained in the ranks. In particular,
we aim at studying how the inheritance relationships among
transformation rules affect the ties. Second, we aim at breaking
the ties computed by pure SBFL approaches by applying the
static information in addition for the ranking process leading to
a hybrid framework, i.e., a combination of static and dynamic
information is used for the ranking process. Finally, we reason
about whether the way of specifying the contracts (Gogolla &
Vallecillo 2011; Vallecillo & Gogolla 2012) has an influence
on how fast the tester can locate the bugs following the rules’
ranks. In particular, we study if the order in which the contracts
are checked against the model transformation influences the
debugging process. These three aspects can be summarized in
the research question: To what extend can static information
enhance the effectiveness of SBFL techniques for locating faults
in model transformations? In order to answer it, we analyse and
compare against the results of a previous SBFL approach for
model transformations (Troya et al. 2018), whose replication
package is available online.

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2375201, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 8

NamedElement
name : String

PackageProperty

Class

primitiveType: String
isContainment : Boolean

complexType
0..1

0..*owned
Property owned

Elements0..*

0..*superClasses

Element
name : String

ERModelFeature

EntityTypetype
1..1

0..*features

0..* entities

Attribute
type : String

Reference

WeakReference StrongReference

Fig. 6. The UML and ER metamodels.

C2[N] and class.ownedProperty->forAll(p|entity.
features->forAll(f|f.name=p.name))

-- C4: SRC_TRG_NamedElement2Element
NamedElement.allInstances->size=Element.allInstances->
size

-- C5: SRC_TRG_Package2ERModel
Package.allInstances->size=ERModel.allInstances->size

-- C6: SRC_TRG_Class2EntityType
Class.allInstances->size=EntityType.allInstances->size

-- C7: SRC_TRG_Property2Feature
Property.allInstances->size=Feature.allInstances->size

-- C8: C2 + Property2Attribute + Nesting
C2[N] and class.ownedProperty->forAll(p|p.primitiveType
<> null implies entity.features->select(f|
f.oclIsTypeOf(Attribute))->one(f|f.name=p.name))

-- C9: C2 + Property2WeakReference + Nesting
C2[N] and class.ownedProperty->forAll(p|p.complexType
<> null implies entity.features->select(f|f.oclIsTypeOf(
Reference))->one(f|f.name=p.name and p.isContainment
implies f.oclIsTypeOf(WeakReference)))

-- C10: C2 + Property2StrongReference + Nesting
C2[N] and class.ownedProperty->forAll(p|p.complexType
<> null implies entity.features->select(f|f.oclIsTypeOf(
Reference))->one(f|f.name=p.name and not p.isContainment
implies f.oclIsTypeOf(StrongReference)))

The transformation (shown in Listing 5) contains
eight rules, where three of them are abstract. There is
a large number of inheritance relationships between
the rules: R8, R7 < R6;R6, R5 < R4;R4, R3, R2 < R1.

Listing 5. UML2ER ATL Transformation.
module UML2ER;
create OUT : ER from IN : SimpleUML;

abstract rule NamedElement{ --R1
from s : SimpleUML!NamedElement
to t : ER!Element(name <- s.name)

}
rule Package extends NamedElement{ --R2

from s: SimpleUML!Package
to t: ER!ERModel(entities<-s.ownedElements)

}
rule Class extends NamedElement{ --R3

from s: SimpleUML!Class
to t: ER!EntityType(features<-s.ownedProperties)

}
abstract rule Property extends NamedElement{ --R4

from s: SimpleUML!Property
to t: ER!Feature ()

}
rule Attributes extends Property{ --R5

from s: SimpleUML!Property(
not s.primitiveType.oclIsUndefined())

to t: ER!Attribute (type <- s.primitiveType)
}
abstract rule References extends Property{ --R6

from s: SimpleUML!Property(
not s.complexType.oclIsUndefined())

to t: ER!Reference (type <- s.complexType)
}
rule WeakReferences extends References{ --R7

from s: SimpleUML!Property (not s.isContainment)
to t: ER!WeakReference

}
rule StrongReferences extends References{ --R8

from s: SimpleUML!Property (s.isContainment)
to t: ER!StrongReference }

Tables 3 to 5 illustrate the corresponding matching
tables for the transformation and the given Tracts
(please ignore for the moment the square brackets en-
closing some numbers). Those cells without a number
indicate there is no alignment between the constraint
and the rule. The following subsection explains how
the information in these matching tables is to be
interpreted.

TABLE 3
Matching table using CC metric.

R1 R2 R3 R4 R5 R6 R7 R8
C1 0.25 0.5
C2 0.2 0.6 0.4 [0.4]
C3 0.25 0.25 0.5 0.38 0.38 0.38 0.38
C4 1.0 1.0 0.75 0.5 0.5 1 0.5 0.5
C5 0.5 1.0
C6 0.5 0.5 1.0 [1.0]
C7 0.5 0.5 1.0 0.75 0.75 0.75 0.75
C8 0.25 0.17 0.33 0.5 [0.25] [0.25] [0.25]
C9 0.28 0.22 0.22 [0.17] 0.44 0.33 [0.22]

C10 0.28 0.22 0.22 [0.17] 0.44 [0.33] 0.22

TABLE 4
Matching table using RC metric.

R1 R2 R3 R4 R5 R6 R7 R8
C1 0.25 0.33
C2 0.25 0.5 0.5 [0.33]
C3 0.25 0.25 1.0 0.38 0.25 0.5 0.75
C4 0.5 0.33 0.38 0.5 0.25 0.33 0.33 0.5
C5 0.25 0.33
C6 0.25 0.33 0.5 [0.33]
C7 0.25 0.25 1.0 0.38 0.25 0.5 0.75
C8 0.38 0.25 1.0 0.75 [0.25] [0.5] [0.75]
C9 0.63 0.5 1.0 [0.38] 0.67 1.0 [1.0]
C10 0.63 0.5 1.0 [0.38] 0.67 [1.0] 1.0

TABLE 5
Matching table using RCR metric.

R1 R2 R3 R4 R5 R6 R7 R8
C1 0.13 0.25
C2 0.11 0.38 0.29 [0.22]
C3 0.13 0.14 0.5 0.21 0.17 0.25 0.3
C4 0.5 0.25 0.25 0.25 0.17 0.25 0.2 0.25
C5 0.17 0.33
C6 0.17 0.33 0.5 [0.33]
C7 0.17 0.2 1.0 0.3 0.21 0.38 0.5
C8 0.15 0.11 0.33 0.43 [0.14] [0.19] [0.21]
C9 0.19 0.18 0.22 [0.13] 0.36 0.33 [0.2]
C10 0.19 0.18 0.22 [0.13] 0.36 [0.3] 0.22

3.5 UML2ER case study: Pragmatics
Recall that the purpose of the matching tables is to
help find the rule(s) that caused the fault when a
constraint is not satisfied. To show how these rules

Figure 1 UML and ER metamodels for the UML2ER trans-
formation (taken from (Burgueño et al. 2015))

The remainder of this paper is organized as follows. Section 2
provides the running example and the background of this work,
i.e., model transformation and fault localization, as well as dis-
cusses open challenges in this field. Section 3 presents a hybrid
approach which combines SFBL and static information as well
as allows to improve the contract specifications by proposing
a new language for building networks of OCL contracts. Sec-
tion 4 evaluates the hybrid approach while Section 5 discusses
related work. Finally, Section 6 concludes the paper with an
outlook on future research lines.

2. Background and Running Example
This section explains the background of this work. First, we
introduce a running example for this paper which has been used
also in previous works on model transformation research (Wim-
mer et al. 2012; Burgueño et al. 2015; Troya et al. 2018). Then,
we summarize two selected approaches for dynamic and static
fault localization which we will utilize later on in the hybrid
approach, and finally, discuss open challenges of these existing
fault localization approaches to motivate the need for a hybrid
approach.

2.1. Running Example
As running example we select a model transformation taken
from the structural modeling domain: UML2ER. The trans-
formation produces Entity Relationship (ER) diagrams from
reading UML Class Diagrams as input. This transformation is
originally proposed in (Wimmer et al. 2012), and we have con-
sidered the extended version proposed in (Burgueño et al. 2015).
The model transformation implementation in ATL is shown in
Listing 1, and the source and target metamodels are displayed
in Figure 1. The aspect to highlight in this model transforma-
tion for the context of this work is the extensive use of rule
inheritance, also since the metamodels involved in the trans-
formation are utilizing inheritance relationships. If Ri < Rj
means that Ri inherits from Rj, then we have R8, R7 < R6;
R6, R5 < R4; R4, R3, R2 < R1. As we will discuss later, the
presence of inheritance relationships may worsen the results of
SBFL techniques.

module UML2ER;
create OUT : ER from IN : SimpleUML;

--R1
abstract rule NamedElement{

2 Muñoz et al.

from s : SimpleUML!NamedElement
to t : ER!Element(name <- s.name) }

--R2
rule Package extends NamedElement{
from s: SimpleUML!Package
to t: ER!ERModel (

entities <- s.ownedElements) }

--R3
rule Class extends NamedElement{
from s: SimpleUML!Class
to t: ER!EntityType (

features <- s.ownedProperties) }

--R4
abstract rule Property extends NamedElement{
from s: SimpleUML!Property
to t: ER!Feature () }

--R5
rule Attributes extends Property{
from s: SimpleUML!Property (not s.primitiveType.

oclIsUndefined())
to t: ER!Attribute (

type <- s.primitiveType) }

--R6
abstract rule References extends Property{
from s: SimpleUML!Property (not s.complexType.

oclIsUndefined())
to t: ER!Reference (

type <- s.complexType) }

--R7
rule WeakReferences extends References{
from s: SimpleUML!Property (not s.isContainment)
to t: ER!WeakReference }

--R8
rule StrongReferences extends References{
from s: SimpleUML!Property (s.isContainment)
to t: ER!StrongReference }

Listing 1 UML2ER ATL Transformation (taken
from (Burgueño et al. 2015))

As mentioned before, since the oracle for checking the correct-
ness of a model transformation is a set of OCL contracts, we
need these contracts as mandatory input for checking the trans-
formation. Listing 2 displays several contracts for the UML2ER
model transformation to give some concrete contract examples.
Please note that we use the notation proposed in (Burgueño et
al. 2015): a black triangle symbol is introduced for reasons of
brevity. It is used for defining the position within a constraint
(see triangle down symbol) which can be extended by another
constraint (which is represented with a triangle up symbol). In
our example, constraint C1 is extended constraint C2. Please
note that this notation was informally introduced for readability
purposes. We will pick this notation up for this paper and frame
it in dedicated language support in Section 3.

-- C1: SRC_TRG_Package2ERModel
Package.allInstances->forAll(p|ERModel.allInstances
->one(e|p.name=e.name [▼]))

-- C2: C1 + Class2EntityType + Nesting
C1[▲] and p.ownedElements-> forAll(class|e.entities
->one(entity|entity.name=class.name [▼]))

-- C3: C2 + Property2Feature + NESTING
C2[▲] and class.ownedProperty->forAll(p|entity.
features->forAll(f|f.name=p.name))

...

-- C8: C2 + Property2Attribute + Nesting
C2[▲] and class.ownedProperty->forAll(p|p.primitiveType.

oclIsUndefined() implies entity.features->select(f| f.

oclIsTypeOf(Attribute))->one(f|f.name=p.name))

-- C9: C2 + Property2WeakReference + Nesting
C2[▲] and class.ownedProperty->forAll(p|p.complexType.

oclIsUndefined() implies entity.features->select(f|f.
oclIsTypeOf(Reference))->one(f|f.name=p.name and p.
isContainment implies f.oclIsTypeOf(WeakReference)))

-- C10: C2 + Property2StrongReference + Nesting
C2[▲] and class.ownedProperty->forAll(p|p.complexType.

oclIsUndefined() implies entity.features->select(f|f.
oclIsTypeOf(Reference))->one(f|f.name=p.name and not p
.isContainment implies f.oclIsTypeOf(StrongReference))
)

...

Listing 2 Tracts for the UML2ER model transformation
(excerpt taken from (Burgueño et al. 2015))

There is support for checking the satisfaction of such sets of
OCL contracts in the pairs of <input,output> models after a
model transformation has been executed. One example is the
TractsTool (Atenea Research Group 2013), and another is the
OCL Classic SDK1 which is part of the Eclipse Modeling Tools.
With the help of these tools, failing contracts are reported which
are the input for the subsequent fault localization process.

2.2. Fault Localization Approaches for Model Transfor-
mations

Our work builds on two existing fault localization approaches
for model transformations. As categorized in a recent survey
on model transformation testing and debugging (Troya et al.
2022), these are spectrum-based fault localization (Troya et
al. 2018) and footprint-based fault localization (Burgueño et
al. 2015). While the former is a dynamic approach, i.e., the
model transformation needs to be executed, the latter is static,
meaning that the model transformation is not executed, but the
transformation definition is directly analyzed. We introduce
both of them in the following.

2.2.1. Spectrum-Based Fault Localization. As explained
in (Wong et al. 2016), spectrum-based fault localization (SBFL)
is a technique to estimate the likelihood of each component of a
program, e.g., statement, method, etc., of containing bugs. For
this purpose, SBFL uses the results of test cases and their asso-
ciated code coverage information. This results in the creation
of a program spectrum that details the execution information
of the program from a certain perspective, such as branch or
statement coverage (Harrold et al. 2000).

Troya et al. presented an approach to apply SBFL to model
transformations (Troya et al. 2018)—other authors also focused
on this technique recently (Li et al. 2020; Du et al. 2020). As
explained in (Troya et al. 2018), the approach requires test cases
that comprise input models for exercising the model transfor-
mation. Table 1 depicts an illustrative example showing how
SBFL is applied in the model transformation of our running
example. In the first column, the table shows the 8 transforma-
tion rules of Listing 1, where a bug has been introduced in rule
R2. The introduced bug makes the second contract in Listing 2
fail. The table shows 10 test cases for checking the correctness
of constraint C2: <tc02, tc12, . . . , tc92>—each OCL contract

1 https://eclipse.org/modeling/mdt/downloads/?project=ocl

Hybrid Fault Localization for Model Transformations 3

https://eclipse.org/modeling/mdt/downloads/?project=ocl

Table 1 Tarantula (Jones & Harrold 2005) suspiciousness values for the UML2ER model transformation when contract C2 fails

T. Rule tc02 tc12 tc22 tc32 tc42 tc52 tc62 tc72 tc82 tc92 NCF NUF NCS NUS NC NU Susp Rank

R1 • • • • • • • • • • 9 0 1 0 10 0 0.5 3

R2 (BUG) • • • • • • • • • 9 0 0 1 9 1 1 1

R3 • • • • • • • • 7 2 1 0 8 2 0.44 7

R4 • • • • • • • • • • 9 0 1 0 10 0 0.5 3

R5 • • • • • • • • • 8 1 1 0 9 1 0.47 6

R6 • • • • • • • • • • 9 0 1 0 10 0 0.5 3

R7 • • 2 7 0 1 2 8 1 1

R8 • • • • • • 5 4 1 0 6 4 0.36 8

Test Result F S F F F F F F F F

that fails for at least one test case must be analyzed individu-
ally. A cell is marked with “•” if the transformation rule of the
column has been exercised by the test case of the row. This
evaluation process produces a so-called coverage matrix (Abreu
et al. 2007). The final row contains the error vector detailing
the result (either successful (“S”) or failed (“F”)) for each test
case. In our example, we can see that only one test case tc12 is
successful and all the others are failing. Therefore, since there
is at least one test case where C2 fails, C2 is violated.

Based on the coverage matrix and error vector, a multitude
of different SBFL formulae have been presented in order to
rank the program statements, i.e., in our context transforma-
tion rules, regarding their suspiciousness, i.e., the probability
of being faulty (Troya et al. 2018). The suspiciousness value
is always in the range [0,1]. It is assumed that low values in-
dicate a low probability of containing a fault and high values
indicate a high probability. The suspiciousness value for each
transformation rule in Table 1 is displayed in the “Susp” column,
which in this case has been computed by the well-known fault
localization technique Tarantula (Jones & Harrold 2005). The
suspiciousness value of each rule, according to this technique, is
computed as (NCF/NF)/(NCF/NF + NCS/NS), where NCF
is the number of failing test cases that cover the rule, NF is the
total number of failing test cases, NCS is the number of success-
ful test cases that cover the rule, and NS is the total number
of successful test cases—for more information the interested
reader is referred to (Wong et al. 2016; Troya et al. 2018) for
detailed explanations. This yields to a ranking according to
each rule’s suspiciousness value, as shown in the last column,
where top-ranked transformation rules have a higher probability
to hold the fault. In the example, the rule that contains the bug
is ranked first, but tied with R7.

In order to evaluate how effective the produced rankings are,
the EXAM score is proposed (Yu et al. 2008; Xie et al. 2013).
It computes the percentage of statements in a program that has
to be examined until the first faulty statement is reached, i.e., in
our context,

EXAMScore =
Number o f rules examined

Total number o f rules

An important aspect to consider is that suspiciousness tech-
niques can provide the same value for different elements. Thus,
these elements are tied at the same position in the ranking, e.g.,
rules R2 and R7 in Table 1. These ties need to be broken in
order to decide which rule to inspect first, but no technique has
been proposed to break the ties in the context of model transfor-
mations yet. Thus, in order to measure the effectiveness when
there are ties, the faulty rule is inspected first in the best-case
scenario. In contrast, in the worst-case scenario it is inspected
last. There is also the average-case scenario, which considers
both the best and worst cases. In our example, assuming that
the rule R2 is examined in second place (worst-case scenario),
the EXAM score of Tarantula would be 2

8 = 0.25, i.e., 25% of
the rules have to be inspected in order to locate the bug.

As we can see by the formula, the possible values for the
EXAM score depend on the number of rules of the model trans-
formation under test, which goes in the denominator of the
formula. In our example, the best EXAM score we could expect
is 1

8 = 0.125, which is the case in which the buggy rule is
examined first, i.e., the tie is broken in favor of the buggy rule
in our example.

2.2.2. Footprint-Based Fault Localization. The work
by Burgueño et al. (Burgueño et al. 2015) focuses on a static
approach for locating buggy rules in model transformations.
OCL contracts (Gogolla & Vallecillo 2011; Vallecillo &
Gogolla 2012), such as those presented in Listing 2, are
also used here as oracle. By extracting the footprints, i.e.,
metamodel elements, used in the contracts and in the model
transformation rules, matching functions are constructed to au-
tomatically generate alignments between model transformation
specifications (OCL contracts) and implementations (transfor-
mation rules). Such alignments are key ingredients for further
interpreting the test results, i.e., the result of the contracts

4 Muñoz et al.

Table 2 Matching tables for contract C2 in the UML2ER
model transformation, taken from (Burgueño et al. 2015).

R1 R2 R3 R4 R5 R6 R7 R8

CC 0.2 0.6 0.4 0 0 0.4 0 0

RC 0.25 0.5 0.5 0 0 0.33 0 0

RCR 0.11 0.38 0.29 0 0 0.22 0 0

evaluation. As example of footprints, the ones extracted from
contract C2 in Listing 2, we have [NamedElement, Package,
Package.name, Package.ownedElements, Class,
Class.name, Element, ERModel, ERModel.name,
ERModel.entities, EntityType, EntityType.name].
Regarding rule Package (R2) in Listing 1, its footprints
are [Package, Package.ownedProperties, ERModel,
ERModel.entities].

In summary, the input for this approach is the set of OCL
contracts that have failed as a result of a testing process (using
for instance the tools mentioned in Section 2.1). The first step
is to extract the footprints of the model transformation specifi-
cation and implementation, i.e., of every failing OCL contract
and for every transformation rule. Then, the extracted footprints
are compared for each contract and rule combination. The per-
centage of footprint overlaps is analyzed in order to build the
so-called matching tables. There are three types of matching
tables, as explained later—please refer to (Burgueño et al. 2015)
for a deeper explanation. Finally, these matching tables must
be interpreted and the final outcome is a ranking of the rules for
each failing OCL contract. The order of the rules indicates the
likelihood of containing the fault. Like in SBFL, the effective-
ness of these rankings can be computing using the EXAM score
as explained before.

Three different matching tables are constructed after the
footprints are extracted, each one providing a certain viewpoint
on the alignment (Burgueño et al. 2015):

– The constraint coverage (CC) metric focuses on con-
straints, so tables obtained for it are to be consulted by
rows.

– The rule coverage (RC) metric focuses on rules, so tables
obtained for it are to be read by columns.

– The relatedness of constraints and rules (RCR) metric is
related to both constraints and rules, so the table can be
consulted by rows and columns.

Table 2 unites the values of the three matching tables for contract
C2 of our running example. Each row displays the results of a
different matching table for this contract. Without going into
much detail (the interested reader is referred to (Burgueño et al.
2015) for details), we can see that contract C2 must be related
to R2 according to the three rows, since cell [C2,R2] contains
the highest value of the footprints alignment (in the case of the
RC formula, it is tied with [C2,R3]).

2.3. Open Challenges
Troya et al. (Troya et al. 2018) compared the two approaches
previously explained. For this, they used the same four model

transformations, the same mutants and the same set of contracts
in order to check which of the two approaches offers a better
EXAM score. Since the results in (Burgueño et al. 2015) of the
matching tables are not expressed in terms of suspiciousness
rankings and EXAM scores, Troya et al. (Troya et al. 2018)
adapted the results to be expressed in these terms. They discov-
ered that both approaches result in ties among several rules in
the different suspiciousness rankings.

The inheritance relationships among model transformation
rules is one of the reasons for having ties in the rankings. Imag-
ine we have, for instance, R3 < R2 < R1 (notation explained
in Section 2.1) in a model transformation and rule R3 is exe-
cuted. This means that, implicitly, R2 and R1 are executed too.
If we assume to have an error in one of the three mentioned
rules, it is not possible to differentiate between them based on
the suspiciousness rankings as all three rules will have the same
suspiciousness value. The presence of ties in the rankings is
problematic, and it yields bad results for the EXAM score in
the worst-case scenario, and different numbers in this score for
the best- and worst-case scenarios. Ideally, the EXAM score in
the best- and worst-case scenarios should be the same, meaning
there are no ties. To the best of our knowledge, no technique has
been studied in the literature to break ties in SBFL for model
transformations. This leads us to the first challenge.

Challenge 1: Breaking ties in SBFL rankings. In fact,
having a look at the suspiciousness rankings of the four best
techniques for SBFL (namely Kulcynski2, Mountford, Ochiai
and Zoltar as reported in (Troya et al. 2018)), we can see that
all of them have ties for our running example composed by 18
mutants applied to 14 contracts, making 252 scenarios (every
contract is checked against every mutant), in which we find 42,
47, 42, and 39 ties respectively.

Another aspect that has not been considered in approaches
for SBFL or those based on footprints is the order in which
failing OCL contracts are inspected in order to repair the model
transformation. As we have seen in our running example (cf.
Section 2.1), the OCL contracts defined for the UML2ER model
transformation present some dependencies among them. For
instance, if C1 is failing, also many other contracts such as C2
and C3 are failing. This brings us to the second challenge.

Challenge 2: Establishing an order in failing OCL con-
tracts to inspect. We hypothesize that the order in which OCL
contracts are inspected and the corresponding rules corrected
has an influence in the overall effort for model transformation
repair. Checking the most general OCL contracts first, consider-
ing the dependency on the other contracts, may help pinpoint
the errors in the rules more precisely.

3. A Hybrid Fault Localization Framework for
Model Transformations

We now describe two novel solutions to help in the model trans-
formation debugging process. First, we introduce an advanced
contract language which provides more structure during the def-
inition and execution of contracts. Second, we provide a hybrid
framework which combines the usage of dynamic and static
information for fault localization in model transformations.

Hybrid Fault Localization for Model Transformations 5

3.1. Overview
In Figure 2, we give an overview of the approach proposed in
this paper. The approach extends existing work on spectrum-
based fault localization for model transformations (Troya et
al. 2018) by providing two main extensions (green colored
components in the figure). First, the model transformation spec-
ification is no longer just a set of OCL contracts, but a layered
network of contracts which allows a more detailed analysis
during the debugging process by ranking the failing contracts
themselves. Second, the rankings of suspicious rules produced
by SBFL for model transformation are post-processed by a dedi-
cated component which analyses static information of the model
transformation specification and implementation (the footprints
approach described in Section 2.2.2 and other static informa-
tion). Based on this information, re-rankings can be performed
and, in particular, ties, i.e., suspicious rules having the same
ranks, may be resolved by prioritizing a particular rule from the
ties. The following two subsections will present both extensions
in more detail.

3.2. Extended Contract Language
In this subsection, we introduce an extended contract language
for model transformation specification which adds additional
structures to OCL-based constraints. With the help of this lan-
guage, improved contracts can be defined which serve as input
for the fault localization process as shown on the left-hand side
of Figure 2. In particular, the language is inspired by best
practices for software testing such as the prepare-do-check ap-
proaches2 which separate different computations needed for
testing a certain contract into different phases. Furthermore,
the language is providing two additional features for defining
OCL contract networks. First, it allows to define dependencies
between constraints, i.e., a constraint has as precondition the
satisfaction of other constraints in order to be evaluated. Second,
the contracts may define concrete extension points, i.e., hooks,
in order to allow their extension by other contracts. The meta-
model of the new language for constraints is shown in Figure 3.
As can be seen in the figure, the contract concept is still the
central one, but now we allow in addition to have source and
target queries to collect elements needed for formulating the
condition to be check in dedicated steps. Furthermore, we have
the hook concept introduced explicitly as well as the dependen-
cies between the contract, for the last point see the reflexive
relationship.

In addition to writing contracts in a more structured and con-
cise way, the new language also contributes to the separation
of different concerns which are for instance tested at once as
done in Listing 1. By having the dependencies and hooks for
the contracts, these concerns can be more easily separated. The
benefit is that if a contract fails, the cause of having the failing
contract is more clear as each contract is now only considering
one particular concern. Furthermore, the language allows to
provide for more guidance by first executing contracts which are
concerned with the first levels of the containment hierarchy of a
model, e.g., check first that a package is correctly transformed

2 Unit testing best practices supported by C# https://docs.microsoft.com/en-us/
dotnet/core/testing/unit-testing-best-practices.

into a model before one reasons about the classes contained
in a package, or that the elements are already available before
their container correspondence is validated. This also helps
to speed-up the testing processes as we aim to find a failing
contract fast and do not have to consider depending ones at all.
Furthermore, the new contracts also allow for more efficient
execution as results between the contracts can be easily cached.
In the following, we demonstrate how the contracts from List-
ing 1 are now defined and improved in the extended contract
language as shown in Listing 3.

-- C1
-- SRC Elements
var packages = Package.allInstances;
-- TRG Elements
var models = ERModel.allInstances;
-- CHECK
packages ->forAll(p|models->one(m|p.name=m.name H1));

-- C2_1 depends on C1
-- SRC Elements
var classes = packages.ownedElements -> flatten();
-- TRG Elements
var entities = models.entities -> flatten();
-- CHECK
classes ->forAll(c|entitites->one(e|c.name=e.name));

-- C2_2 depends on C2_1
-- CHECK extends C1.H1
and p.ownedElements -> forAll(c|m.entities -> one(e|e.name=

c.name H2)

-- C3_1 depends on C2_2
-- SRC Elements
var properties = classes.ownedProperty -> flatten();
-- TRG Elements
var features = entities.features -> flatten();
-- CHECK
properties -> forAll(p|features->one(f|p.name=f.name));

-- C3_2 depends on C3_1
-- CHECK extends C2_2.H2
and c.ownedProperty -> forAll(p|e.features -> one(f|f.name=

p.name))

Listing 3 Tracts for the UML2ER model transformation

-- C2 footprints
[NamedElement, NamedElement.name, Package, Package.name,

Package.ownedElements, Class, Class.name, Element,
Element.name, ERModel, ERModel.name, ERModel.entities,
EntityType, EntityType.name]

-- C2_1 footprints
[NamedElement, NamedElement.name, Class, Class.name,

Element, Element.name, EntityType, EntityType.name]

-- C2_2 footprints
[NamedElement, NamedElement.name, Package, Package.

ownedElements, Class, Class.name, Element, Element.
name, ERModel, ERModel.entities, EntityType,
EntityType.name]

Listing 4 Footprints for Extended Conctract Language

If we revisit the contracts specified in Listing 1, there are several
possibilities to provide improved specifications. Let us start with
contract C1. In Listing 3, C1 is defined as in Listing 2, however,
we make use of the preparation source and target queries before
we check the condition which should hold between the source
and target elements. For C2, we first of all split the contract
into the two main parts: (i) checking for name equivalences of
classes and entities, and (ii) checking the containment relation-
ship, i.e., the elements have to be in the respective containers.
For the first part, we make use of constraint C2_1 which depends

6 Muñoz et al.

https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-best-practices
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-best-practices

Model
Transformation

Source Models

OCL Contracts
Network

Spectrum-based
Fault Locator

any
failure?

Ranked list of non-satisfied
OCL constraints

OCLi

OCLj

…

trm

trn

trl

…

trn

trm

trp

…

Suspiciousness-
based ranking

for OCLi

Suspiciousness-
based ranking

for OCLj

Model
Transformation’

User locates and
fixes faulty rules

no

yes

Debugging
ends

…

Static
Information

Re-ranker
&

Tie-breaker

Static
Information

Collector

Figure 2 Overview on Hybrid Fault Localization Approach (extension of the version in (Troya et al. 2018), new or adapted com-
ponents shown in green)

Contract

Hook

SRC Query

TRG Query

Check

Preparation

dependsOn

uses

1..1

0..*

provides
0..1

0..*

0..1

Figure 3 Extended Contract Language for Model Transforma-
tions

on C1 and which is making use of the variables defined in C1
to compute the set of classes and entities in the preparation part
before we check for the name equivalences. Contract C2_2 is
depending on C2_1 and is making use of the hook H1 provided
in C1. For C3 of Listing 1, we make the analogous changes to
improve its definition by using two subcontracts and making
use of the newly introduced contract language.

Furthermore, we would like to discuss the benefits of this
extended constraint language. First, the dedicated constraints for
checking for existence and for containment in separation result
also in more specific footprints, as shown in Listing 4. Second,
the reuse of variables between the contracts allow for speed-up
of checks as not for every contract all model elements have to
be queried again and again. Third, the failing contract can be
returned fast, others may be executed in the back to provide
further rankings of failing contracts or are skipped based on
user preferences.

Finally, to consider the impact of using the preparation/check
pattern and the separation of concerns principle for contracts on
the extracted footprints used for fault localization, let us perform
a short example. Let us focus on the extraction of the footprints
out of the original OCL contracts as presented in Section 2 with

the footprints concerning the reformulation in the extended con-
tract language. In particular, we focus on the contracts C2 and
C3 as they are reformulated by two subcontracts each for check-
ing containment and equivalence in separation. C2_1 is now
more related to R3, while C2_2 is more related to R2. Actually,
this allows for a better fault localization, as R2 is responsible
for the containment and R3 is responsible for generating the
equivalent target elements from the source elements.

3.3. Break Ties in Suspiciousness Rankings

As explained in Section 2.2.1, the ranks provided by SBFL tech-
niques3 can have ties. A tie does not give any hint to the tester
as to which transformation rule needs to be inspected first since
it may recommend to check more than one rule with the same
priority. Out of the 18 SBFL techniques studied in (Troya et al.
2018), we selected the four that provided better results, namely
Kulcynski2, Mountford, Ochiai and Zoltar, for the context of
this work.

In this paper, we propose two approaches for breaking the
ties and guide the tester to the potentially buggy rule first. The
first one involves using the footprints technique (Burgueño et al.
2015) explained in Section 2.2.2. The second one is related to
the analysis of the inheritance between the transformation rules,
because we noticed that most of the ties involved rules related
by inheritance.

3.3.1. Using Footprints to Break Ties The static informa-
tion retrieved from the matching tables provides a value between
0 and 1 for every pair of contract and transformation rule, which
indicates the likelihood of that constraint detecting a bug pro-
duced by the corresponding transformation rule. The higher
this value, the greater the likelihood. There are three different
calculation methods to obtain the matching-tables values, as
presented in (Burgueño et al. 2015).

3 We use the terms SBFL techniques and suspiciousness formulae indistinctly

Hybrid Fault Localization for Model Transformations 7

In our approach, we will use these static values provided by
the matching tables to break the ties when the suspiciousness
formula used gives us the same value for two different trans-
formation rules and study how this affects the final EXAM
score.

For example, let us check the example in Table 3. The rows
include the N values for all the transformation rules and the sus-
piciousness values are calculated using the Mountford (Wong et
al. 2012) formula. With the result of the suspiciosness formula,
we obtain the SBFL rank. The rule coverage (RC) is one of
the static formulas which relate the corresponding rule with the
constraint C1. In this example, we have two ties, one concerning
the buggy rule. The suspiciousness value was calculated using
the Mountford formula (Wong et al. 2012), but we would still
get a tie by using any formula since all the N values, the ones
used in all suspiciousness formulas, are all the same.

With this, we obtain a tie in the rank for positions 1 and 4. To
solve these ties, we employ the static formula RC. In the highest
ranked case, the value of RC for the buggy rule NamedElement
is greater than the one for the rule Package, so we break the tie
by assigning a higher ranking to the buggy rule. This way, we
solve the tie and obtain a new ranking with the buggy rule first.
We do the same for the second tie, obtaining the new ranking.

3.3.2. Using Inheritance Relationships to Break Ties
During our analysis of the obtained data, we realized that most
of the ties involve two rules with some inheritance relationship
between them. This happens because some part of the inher-
iting rule is the same as its parents, which means that we are
implicitly executing the parent rule, so the N values can be the
same.

Our approach consists in checking if there is a tie that in-
volves more than two rules, where at least two of them are
related by inheritance. If this is the case, we should break the
tie by increasing the rank of the inheritance-related rules so that
the tester checks those first.

For example, if we check again Table 3, we notice that the
tie in rank one is between two rules related by inheritance:
Package extends NamedElement. If we had the third rule in
this tie, meaning that we would have three rules with rank 1, we
would solve the tie by promoting Package and NamedElement
to be the ones with rank one and demoting this third rule to the
second position.

In the case of these ties with inheritance, the buggy rule
may be in the super rule or the sub-rule, but it is needed to
recommend the tester that they should check them both. This
happens because the parent rule defines some behavior that is
inherited by the sub-rule, and at the same time, the sub-rule may
refine the behavior defined by the parent. This forces us to have
to check both to find the bug.

4. Evaluation
In this section, we evaluate the novel parts introduced in the
fault localization pipeline presented in the previous section. For
this purpose, we perform an experiment for assessing the impact
on the ranking of suspicious rules. Finally, we provide a critical
discussion of the results.

4.1. Overview
The approach presented in Section 3.3 aims to resolve the ties
when applying SBFL for model transformations. This section
evaluates its effectiveness by showing the results we have ob-
tained through the example of the UML2ER transformation,
which was already analyzed in the previous work (Troya et al.
2018). In this way, we can compare the results obtained with
the prior approach against the approach presented in this paper,
demonstrating the effectiveness of the new approach.

The UML2ER example is particularly interesting to test our
new process, because it contains many inheritance relationships
between its transformation rules. Such relationships generate a
significant number of ties in the suspiciousness rankings. This
is why, during the analysis, we aimed to create a new version
of this model transformation. We redefined the transformation
rules by eliminating the inheritance relationships that exist be-
tween them. In this way, we re-analyze the existence of ties and
re-evaluate the EXAM score for the new implementation.

In addition, to further optimize the use of the static approach,
we defined a new method that aims to optimize the score ob-
tained in the matching tables by considering the composition
between contracts, e.g., by using hooks, and transformation
rules, e.g., by using inheritance relationships.

In the following subsections, we discuss the results of these
approaches, analyzing the number of ties we can solve, as well
as the effect on the EXAM score, in order to answer the follow-
ing research question.

4.2. Research Question
One of the challenges we aim to tackle with our proposal is
improving the bug localization by complementing the Spectrum-
based approach with static information (considering both, foot-
prints and other transformation definitions such as inheritance
relationships). With this, the research question that we intend to
answer is: To what extend can static information enhance the
effectiveness of SBFL techniques for locating faults in model
transformations?

4.3. Study Setup
In our evaluation, we use the following three methods to define
the same problem and analyze the obtained results:

Original. The input material used for the analysis is the
same as used in the work of (Troya et al. 2018), enhanced with
our approach to break ties. This will allow us to compare our
results with the ones obtained as described in Section 2.2.1.

No hierarchy. In order to analyze the effect of using in-
heritance in the definition of the transformation rules and the
existence of ties in the results of the Spectrum-based analysis,
we have performed a flattening refactoring of the transformation
rules by removing inheritance relationships.

For example, in the following Listing 5, we can see how the
Class rule, inherited initially from NamedElement, is defined
without using the latter. We performed equivalent changes for
all rules, resulting in a smaller set of rules. The full set of
transformations, and the complete analyses we have performed,
are available in our project repository (Muñoz et al. 2022).

8 Muñoz et al.

Table 3 Mountford (Wong et al. 2012) suspiciousness values for the UML2ER example when C1 fails for Mutant 10 (adapted
from (Troya et al. 2018))

T. Rule NCF NUF NCS NUS NC NU Susp Rank RC New Rank

WeakReferences 3 97 0 0 3 97 0.0206 6 0.4 6

References 6 94 0 0 6 94 0.0212 8 0.33 8

Attributes 13 87 0 0 13 87 0.0229 4 0.28 5

Class 29 71 0 0 29 71 0.0281 3 0.33 3

Package 100 0 0 0 100 0 1 1 0.67 2

NamedElement (BUG) 100 0 0 0 100 0 1 1 1 1

Property 13 87 0 0 13 87 0.0229 4 0.5 4

StrongReferences 4 96 0 0 4 96 0.0208 7 0.4 7

module UML2ER;
create OUT : ER from IN : SimpleUML;

rule Class{
from s: SimpleUML!Class
to t: ER!EntityType (

name <- s.name,
features <- s.ownedProperty)

}

Listing 5 UML2ER ATL Transformation Flattened

Constraints and rules embedding. As we have mentioned in
previous sections, in the UML2ER case study there is a large
amount of composition among contracts and among transforma-
tion rules.

This means that if the most abstract contract fails, all those
that also include the abstract contract as one of their conditions
(composed with the and operator) will fail too. Therefore, we
check the contracts from the less to the most concrete one.
In this approach, we do not consider the conditions that are
present in a previous contract when we perform the footprints
extraction. This means that, for each contract, we only extract
the footprints out of those conditions that are not present in any
previous contract. The extended contract language presented
before in Section 3 favors such analysis.

By doing this, we can optimize the scores obtained in the
matching tables, focusing the affinity only on the conditions spe-
cific of each contract—let us recall the matching tables are used
in this paper to break the ties. For example, let us consider con-
tracts C1 and C2 in Listing 2. In C1, we would consider all their
elements for extracting the footprints (i.e., [NamedElement,
NamedElement.name, Package, Package.name,
Element, Element.name, ERModel, ERModel.name]),
and in C2, only the elements of the second condition of the
contract (i.e., [NamedElement, NamedElement.name,
Package, Package.ownedElements, Class,
Class.name, Element, Element.name, ERModel,
ERModel.entities, EntityType, EntityType.name]).

Concerning the rules, the inheritance relationships mean
that some elements do not appear explicitly during the static
analysis, i.e., the footprints for these elements are not extracted.

For example, if we look at the NamedElement rule from which
all the other rules inherit, it refers to the assignment of element
names. Although this transformation rule is executed every
time any other rule is executed, none of them reflects the effect
they have in the name attribute in their footprint. Therefore, in
our approach, we include the elements of the super-rule when
collecting the elements of a sub-rule, so that the footprints or
the former appear also in the footprints of the latter. This will
further increase the affinity with the contracts that genuinely
check all the elements specified in the transformation rule, even
if the inheritance is involved. The embedding for Class rule
is available in Listing 6, in which we can see how we add the
footprints of the super-rule.

module UML2ER;
create OUT : ER from IN : SimpleUML;

rule Class extends NamedElement {
from s: SimpleUML!Class
to t: ER!EntityType (

features <- s.ownedProperties)
}

NamedElement footprints: [NamedElement, NamedElement.name,
Element, Element.name]

Class footprints: [NamedElement, NamedElement.name, Class,
Class.name, Class.ownedProperty, Element, Element.name
, EntityType, EntityType.name, EntityType.features],

Listing 6 Embedding for rule Class

To evaluate the effectiveness of the approaches applied, we will
employ the following metrics:

Number of ties. We count the number of ties present in the
Spectrum-based approach data to study the effect of defining
the rules with and without inheritance.

Number of ties resolvable by static information. By count-
ing the number of ties we can actually break with static in-
formation, we are able to determine the effect of applying the
embedding method for footprints extraction and whether it im-
proves error localization. Additionally, we can also determine
the effectiveness of the static information for breaking the ties
derived from the SBFL methods, and if it can improve the results
obtained by such methods.

Hybrid Fault Localization for Model Transformations 9

Number of ties resolvable by inheritance. Similarly to the
previous metric, this one allows us to reason about how many of
these ties have to do with the inheritance defined between rules.

EXAM score. This value will allow us to determine whether
we have improved the rankings we suggest by breaking the ties
(explained in Section 2.2). The EXAM score will be evalu-
ated taking into account the three scenarios mentioned in Sec-
tion 2.2.1: worst-case, best-case, average-case.

4.4. Results
The effect of problem definition on the number of ties. As we
mentioned in Section 4.3, we defined three different methods to
define the rules and contracts with the intention of reducing the
number of ties to optimize the performance of SBFL techniques.
In Table 4, we have the number of ties generated for the selected
suspiciousness formulas. As we can see in the first row of
the table, the original approach generates the same number of
ties as the rules and contracts embedding approach. The no
hierarchy approach gets rid of all the ties. However, we cannot
conclude that this would be true in other cases where, even with
the absence of inheritance, there are ties, so we would need to
present further research with other examples.

Effectiveness of the tie breaking techniques. With respect
to the proposed techniques for breaking the ties when there
is one, we can see how the inheritance approach is able to
solve all the ties. This means that all the ties present in our
example were related to the inheritance relationship between
rules. It happens because part of the super-rule is executed in
the sub-rule, generating similar N values for the Spectrum based
analysis, and most of the rules in the UML2ER example inherit
from each another.

On the other hand, the static approach is able to solve at
least half of the ties in most cases for both the original and
embedding approach. The results are similar for the CC and
RCR formulas for the original and embedding approach both
approaches, having around 50% of the ties solved. However,
in the latter approach we get better results for the RC formula,
reaching almost 50% for all suspiciousness formulae, in which
with the original approach, we were only able to solve around
30% of the ties. This means that we can obtain better-optimized
matching tables for the RC technique thanks to the embedding
approach.

The effect of our approach on EXAM scores. First of all,
we shall remind that, in the case of ties where the buggy rule is
involved, the EXAM score in the best-case scenario assumes the
buggy rule is inspected first in the tie, the EXAM score in the
worst-case scenario assumes it is inspected last in the tie, and
the EXAM score in the average-case scenario gives the average
of both.

The purpose of our approach is to break ties between rules
with the same suspiciousness values. Regarding the EXAM
score, this means that, when the buggy rule is involved in a tie,
our approach will be improving the average- and worst-case
scenarios when the tie is broken by promoting the buggy rule.
The worst-case scenario will not change if the tie is broken by
demoting the buggy rule—in this case, the EXAM score in the
average-case scenario will be worse. Regarding the EXAM

score in the best-case scenario, it will not change if the tie is
broken by promoting the buggy rule, while it will be worse if
the tie is broken by demoting the buggy rule. Therefore, by
analyzing the EXAM scores, we are able to make conclusions
about the effectiveness of our approach.

Table 5 shows the results for the worst-case scenario. As
mentioned before, we are focusing on the four suspiciousness
formulae that gave the best results in (Troya et al. 2018). Let
us focus on the mean values in the table. The value of the
EXAM score obtained in (Troya et al. 2018) is present in the
[Original,Original] cells for all four formulae. Then, cells
[Original,Embedding] display the EXAM score with our
embedding implementation for extracting the footprints and
without using techniques for breaking the ties. Similarly, cells
[Original,No hierarchy] display the EXAM score with
the implementation without inheritance. In the latter case, please
note that EXAM score values are higher. The reason is we have
now 5 rules instead of 8, so the best EXAM score is 0.2, while
the best EXAM score having 8 rules is 0.125 (the second best
EXAM score will also be higher, and so on).

The remaining rows (Inheritance, Static CC,
Static RC and Static RCR) refer to the technique used
to break the ties, as explained above. Having a look at the
Original column, we can see that most static techniques
enhance the bug localization process, since the EXAM score
in the worst-case scenario has been reduced (i.e., improved).
Thus, by using the same implementation of the UML2ER model
transformation as in (Troya et al. 2018) as well as the same
process for footprints extraction as in (Burgueño et al. 2015),
the use of static information has a positive influence when
breaking the ties. We have highlighted in bold those cells that
have the best values (the lowest EXAM scores). Please note
that, in all cases, the information from the three matching
tables is better for breaking the ties than breaking the ties by
using the information regarding rule inheritance. This suggests
we could use the matching tables to break ties in model
transformations that do not have inheritance relationships.
The results of this table can be complemented with those of
Tables 6 and 7 (Appendix A), which contains the EXAM
scores in the best- and average-case scenarios. Regarding the
average-case scenario, we can see that the matching tables with
CC information produce the best results when ties are broken.
Finally, the results in the best-case scenario suggest that, by
breaking the rules using the rules inheritance information,
the buggy rule is demoted the fewest number of times when
breaking the ties.

Regarding the consideration of our embedding proposal for
obtaining the footprints of rules and constraints (as explained
in Section 4.3), the results are displayed in the Embedding
column. We can see that the results are not improved with
respect to the previous column except for the RC measure,
with a minimal improvement. Plus, still, the RCR measure in
the original extraction of the footprints is more effective for
breaking the ties than this one in the worst- and average-case
scenarios, and the CC measure is even better in the average-case
scenario.

Finally, we have displayed the No hierarchy column sim-

10 Muñoz et al.

Table 4 Number of ties for the UML2ER case study.
Original Embedding No hierarchy

Mountford Kulcynski2 Zoltar Ochiai Mountford Kulcynski2 Zoltar Ochiai Mountford Kulcynski2 Zoltar Ochiai

Ties 47 42 39 42 47 42 39 42 0 0 0 0

Inheritance
Solved 47 42 39 42 47 42 39 42 - - - -

Unsolvable 0 0 0 0 0 0 0 0 - - - -

Static

Solved by CC 24 24 21 24 24 22 19 22 - - - -

Solved by RC 14 12 12 12 21 20 20 20 - - - -

Solved by RCR 28 16 24 16 21 20 19 20 - - - -

Unsolvable 11 8 8 8 10 8 8 8 - - - -

ply for completeness purposes. Having no ties in this imple-
mentation, the EXAM score in all scenarios is the same in all
cases.

4.5. Answering the research question
By performing the analysis of the presented hybrid approach
for the UML2ER example, we found that the use of static in-
formation allows to enhance the rankings provided by SBFL
techniques, as we improve the results in the worst- and average-
case scenarios. This means that the static information is used
to break ties in which the buggy rule is present by promoting
the position of the buggy rule in most cases. We are aware of
the fact that this hybrid approach also points to the non-buggy
rule in some of the cases, leading to a demote of the buggy
rule in the suspiciousness ranking, as represented by the EXAM
scores in the best-case scenario. Still, we get an improvement
in the average EXAM Score, meaning that we get better results
than the original approach even with this shortcoming. The
best results are obtained using the static CC approach. With it,
we get the closest to the best average-case values, and it is the
second-best for the best and worst cases. If the average-case
values are better, it means that if the tester decides randomly
which rule to check first in a tie, it would still get worse results
than the ones by the hybrid approach.

Answering our RQ, static information is able to improve
the effectiveness of SBFL techniques for locating faults in case
there are ties in the SBFL tables, produced by inheritance rela-
tionship between rules. In these cases, we are able to improve
the average case, which means that we perform better than a
random approach for selecting the buggy rule in a tie. Still,
there is potential to improve the tie-breaking approach as the
best case could not be realized by the presented technique.

However, we have seen that, at least for this case study, the
new proposal for footprints extraction both in contracts and
rules considering embeddings does not really offer a positive
effect in the effectiveness for the suspiciousness rankings.

4.6. Threats to validity
We now discuss threats to validity of our results based
on (Wohlin et al. 2012).

Construct validity is concerned with the relationship between
theory and what is observed. In our study, we only used one
single metric, i.e., the EXAM score, to evaluate the perfor-

mance of the presented approach in comparison with a previ-
ous study (Troya et al. 2018). Of course, other metrics are
available (Wong et al. 2016), e.g., T-score (Liu et al. 2006),
P-score (Zhang et al. 2009), and N-score (Gong et al. 2012) to
mention just a few. We decided to use the EXAM score as it is
a standard metric in SBFL research and it is directly applicable
in the comparison to previous work which was one of our main
goals.

Internal validity is concerned with those factors that might
affect the results of our evaluation. In the first place, we have
taken as starting point the results of the research work by Troya
et al. (Troya et al. 2018). Thus, our results may be biased for this
particular set of inputs. Another threat is about the extension
of the inputs. We use a limited number of OCL contracts and
mutants for one transformation case. In particular, we have used
14 OCL contracts and 18 mutants reused from (Troya et al. 2018)
in order to ensure comparison. In addition, the mutants provided
by (Troya et al. 2015) are a subset of the operators defined
in (Sánchez-Cuadrado et al. 2017) representing semantic faults
which may be introduced by transformation developers (Mottu
et al. 2006).

Finally, external validity is concerned with the question to the
extent it is possible to generalize the findings of the evaluation.
The first threat is that the results of our experiments have been
obtained with only one transformation case, which of course
threatens the generalizability of our results. However, we have
focused on already well-studied model transformation where
rules have inheritance relationships defined. The reason for this
is that rule inheritance relationships result in many ties, and our
work is precisely about breaking these ties.

Another threat to external validity is that we have considered
rules as components as it was done in previous work. Of course,
there are also other components which could be considered such
as helper functions or even a more fine-grained notion such
as lines of code inside a transformation rule. Studying this as-
pect, we leave as subject for future work as our intention was
to compare to existing approaches using rules as components.
A final threat, related to the previous one, is that the approach
has been applied to model transformations implemented in ATL.
The main reason was to use the same technology as the pre-
vious works on the topic. We plan to extend the prototype to
transformations written in different languages.

Hybrid Fault Localization for Model Transformations 11

Table 5 EXAM score in the worst-case scenario for the UML2ER case study.

Original Embedding No hierarchy

Technique mdn mean sd mdn mean sd mdn mean sd

Mountford

Original 0.250 0.374 0.309 0.250 0.374 0.309 0.200 0.419 0.323

Inheritance 0.250 0.369 0.308 0.250 0.369 0.308 0.200 0.419 0.323

Static CC 0.250 0.336 0.320 0.188 0.336 0.322 0.200 0.419 0.323

Static RC 0.250 0.350 0.310 0.250 0.340 0.315 0.200 0.419 0.323

Static RCR 0.125 0.331 0.317 0.250 0.340 0.313 0.200 0.419 0.323

Kulcynski2

Original 0.250 0.360 0.307 0.250 0.360 0.307 0.200 0.416 0.324

Inheritance 0.250 0.360 0.307 0.250 0.360 0.307 0.200 0.416 0.324

Static CC 0.125 0.326 0.317 0.125 0.329 0.318 0.200 0.416 0.324

Static RC 0.250 0.343 0.308 0.125 0.332 0.312 0.200 0.416 0.324

Static RCR 0.125 0.324 0.314 0.188 0.332 0.311 0.200 0.416 0.324

Zoltar

Original 0.250 0.379 0.316 0.250 0.379 0.316 0.200 0.416 0.324

Inheritance 0.250 0.379 0.316 0.250 0.379 0.316 0.200 0.416 0.324

Static CC 0.250 0.354 0.321 0.250 0.357 0.323 0.200 0.416 0.324

Static RC 0.250 0.367 0.312 0.250 0.356 0.316 0.200 0.416 0.324

Static RCR 0.250 0.350 0.317 0.250 0.357 0.314 0.200 0.416 0.324

Ochiai

Original 0.250 0.363 0.312 0.250 0.363 0.312 0.200 0.416 0.324

Inheritance 0.250 0.363 0.312 0.250 0.363 0.312 0.200 0.416 0.324

Static CC 0.125 0.329 0.322 0.125 0.332 0.323 0.200 0.416 0.324

Static RC 0.250 0.346 0.312 0.125 0.335 0.317 0.200 0.416 0.324

Static RCR 0.125 0.326 0.318 0.188 0.335 0.316 0.200 0.416 0.324

5. Related Work

There are several works which focus on testing and debugging
of model transformations. A detailed survey on the topic has
been recently published in (Troya et al. 2022). With respect
to the contribution of this paper, we focus on approaches that
propose to locate bugs in model transformations in the following
discussion on related work.

As explained in Section 2, the work by Troya et al. (Troya et
al. 2018) was the first applying SBFL in the context of MTs, ob-
taining promising results. They applied 18 different techniques
for SBFL, and concluded that four of them outperformed the
rest. Our approach builds on this work and proposes a method-
ology to improve the fault localization process. Li et at. (Li et
al. 2020) presented another SBFL approach for model transfor-
mations. They proposed to use weighted test models as well as
weighted rule coverage to improve the performance of SBFL for
model transformations. In addition, Du et al. (Du et al. 2020)
also considered SBFL for model transformations without having
to manually define oracles. Instead, the oracle is generated by
applying metamorphic testing techniques (Segura et al. 2016).
However, none of these mentioned SBFL approaches deals with
breaking the ties in the suspiciousness rankings, which is the
focus of our work.

Aranega et al. (Aranega et al. 2009a,b) proposed to locate

model transformation faults by inspecting the traces after the
model transformation is executed. In this line of work, local
and global traces are built during the model transformation
execution. In case there is an error in the output model found,
the traces are automatically analysed in order to select a set
of likely buggy rules. Then, a manual inspection process is
required to find the actual buggy rule in the set of the likely
buggy rules.

There are additional approaches to locate faults in model
transformations using traces, also considering model-to-text
transformations. Examples are the works by García et al. (Gar-
cia et al. 2014) and by Dhoolia et al. (Dhoolia et al. 2010).
García et al. (Garcia et al. 2014) focus on MOFScript, a model-
to-text transformation language, and augment its native trace
model with fine-grained traceability between transformation ele-
ments and locations in generated text files. Dhoolia et al. (Dhoo-
lia et al. 2010) associates taint marks with input model elements
and propagate the taint marks by a dedicated transformation
engine to generate a taint log. In the produced log, the taint
marks are associated with substrings of the output. Thus, erro-
neous elements in the output can be projected back to the related
input model elements with the help of the taint marks which is
important information for the debugging process.

While the approaches described above require to execute

12 Muñoz et al.

the model transformation under test, there are also works that
propose static approaches for fault localization. One example
is the work by Burgueño et al. (Burgueño et al. 2015) we have
described in Section 2.2.2. In our work we have used this
technique as a basis in order to break the ties obtained with
SBFL.

In a different line of research, the work by Sánchez-Cuadrado
et al. (Sánchez-Cuadrado et al. 2014; Sánchez-Cuadrado et al.
2015, 2017; Sánchez-Cuadrado et al. 2018; Sánchez-Cuadrado
et al. 2018; Sánchez-Cuadrado 2020) present also a method
for statically analysing ATL model transformations. However,
instead of checking contracts, the goal is to find typing errors
and other issues which can be statically found such as conflicting
rules. The approach is implemented in the AnATLyzer tool,
which also supports test-driven development of ATL model
transformations (Sánchez-Cuadrado 2020).

Finally, there is a dedicated work which applies symbolic
execution for debugging model transformations (Oakes et al.
2018). The approach is based on the SyVOLT tool for verifying
DSLTrans transformations. SyVOLT is able to produce the full
state space for a model transformation, i.e., representing all
possible executions. Having the full state space allows SyVOLT
to prove structural contracts for the model transformation. It
not only reports and localizes errors in model transformation
implementations, but also in the contracts of model transfor-
mations. In our work we assume to localize errors only in the
implementation and make use of SBFL based on concrete input
models instead of symbolic execution.

To sum up, given the existing work on testing and debugging
of model transformations, to the best of our knowledge, we are
the first ones who combine static and dynamic fault localization
techniques for model transformations in a hybrid framework.

6. Conclusion and Future Research Lines
In this paper, we have presented an enhanced contract language
and a hybrid framework which combines dynamic and static
fault localization approaches proposed in previous research. A
first evaluation shows the benefits of aiming for a hybrid ap-
proach especially for breaking ties is rankings of suspicious
rules. While these results seem promising for aiming for a hy-
brid framework, there are still several open topics which are
worth to be investigated in fault localization for model transfor-
mations. In the following we outline several research directions
for future work in this field.

Research Line 1: Locating Bugs inside Rules. The inheri-
tance cases have shown that locating bugs inside rules may be a
promising feature. Finding the problem in a more fine-grained
manner may be important to reason about if the query or gener-
ation parts of the transformation rules are buggy or even further
going down to filter expressions or feature assignments of these
parts. However, this would also require a more fine-grained
tracing of the transformation execution which is currently not
available out-of-the-box for most transformation languages and
engines.

Research Line 2: Model Footprints. There is the opportu-
nity to compute additional spectrums such as considering the

footprints on models, i.e., model coverage of rules and con-
straints executions. This opportunity may be a compromise
between the existing dynamic and static approaches and may
provide another dimension to break ties.

Research Line 3: Parallel Contract Evaluation. The ex-
tended contract language may be used for providing improved
execution modes for checking contracts. One approach may
be parallelization as we have several start points, i.e., contracts
without preconditions, and then, execute the different indepen-
dent contracts in parallel as already done for model transforma-
tion implementations (Cuadrado et al. 2022).

Research Line 4: Dedicated User Interfaces for Debug-
ging. The hybrid framework provides several information
sources which are quite extensive to be explored. In addition,
how the transformation rules are actually shown for debugging
as well as the constraints may have a huge impact on the effi-
ciency of the debugging process. Thus, we consider research on
dedicated user interfaces for debugging of model transforma-
tions as an important line of research to better support testers
and allow to have an aggregated view on the dynamic and static
debugging information.

Verifiability
For the sake of verifiability, all artifacts of the experiments are
available in our project repository (Muñoz et al. 2022).

Acknowledgments
This work is partially supported by the European Commission
(FEDER) and Junta de Andalucia under project EKIPMENT-
PLUS (P18-FR-2895), by the Spanish Government (FED-
ER/Ministerio de Ciencia e Innovación – Agencia Estatal de In-
vestigación) under project COSCA (PGC2018-094905-B-I00),
by the Austrian Science Fund (P 30525-N31), and by the Aus-
trian Federal Ministry for Digital and Economic Affairs and the
National Foundation for Research, Technology and Develop-
ment (CDG).

References
Abreu, R., Zoeteweij, P., & van Gemund, A. J. C. (2007). On the

Accuracy of Spectrum-based Fault Localization. In Testing:
Academic and Industrial Conference Practice and Research
Techniques (TAICPART-MUTATION 2007) (p. 89-98). doi:
10.1109/TAIC.PART.2007.13

Aranega, V., Mottu, J.-M., Etien, A., & Dekeyser, J. (2009a).
Traceability mechanism for error localization in model trans-
formation. In Proc. of ICSOFT (pp. 66–73).

Aranega, V., Mottu, J.-M., Etien, A., & Dekeyser, J. (2009b).
Using Trace to Situate Errors in Model Transformations. In
Proc. of ICSOFT (pp. 137–149). doi: 10.1007/978-3-642
-20116-5_11

Atenea Research Group. (2013). TractsTool. (http://atenea.lcc
.uma.es/index.php/Main_Page/Resources/Tracts)

Baudry, B., Dinh-Trong, T., Mottu, J.-M., Simmonds, D.,
France, R., Ghosh, S., . . . Le Traon, Y. (2006). Model
Transformation Testing Challenges. In Proc. of IMDT (pp.
1–10). Retrieved from https://hal.inria.fr/inria-00542781

Hybrid Fault Localization for Model Transformations 13

http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Tracts
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Tracts
https://hal.inria.fr/inria-00542781

Brambilla, M., Cabot, J., & Wimmer, M. (2017).
Model-Driven Software Engineering in Practice
(2nd edition). Morgan&Claypool. doi: 10.2200/
S00441ED1V01Y201208SWE001

Burgueño, L., Troya, J., Wimmer, M., & Vallecillo, A. (2015).
Static Fault Localization in Model Transformations. IEEE
Transactions on Software Engineering, 490–506. doi: 10
.1109/TSE.2014.2375201

Chen, J., Patra, J., Pradel, M., Xiong, Y., Zhang, H., Hao, D.,
& Zhang, L. (2020). A Survey of Compiler Testing. ACM
Comput. Surv., 53(1), 4:1–4:36. doi: 10.1145/3363562

Cuadrado, J. S., Burgueño, L., Wimmer, M., & Vallecillo, A.
(2022). Efficient Execution of ATL Model Transformations
Using Static Analysis and Parallelism. IEEE Trans. Software
Eng., 48(4), 1097–1114. doi: 10.1109/TSE.2020.3011388

Czarnecki, K., & Helsen, S. (2006). Feature-based survey of
Model Transformation Approaches. IBM Systems Journal,
621–646. doi: 10.1147/sj.453.0621

Dhoolia, P., Mani, S., Sinha, V. S., & Sinha, S. (2010).
Debugging Model-Transformation Failures Using Dynamic
Tainting. In Proc. of ECOOP (pp. 26–51). doi: 10.1007/
978-3-642-14107-2_3

Du, K., Jiang, M., Ding, Z., Huang, H., & Shu, T. (2020).
Metamorphic testing in fault localization of model trans-
formations. In Proc. of SOFL+MSVL (pp. 299–314). doi:
10.1007/978-3-030-41418-4_20

Garcia, J., Azanza, M., Irastorza, A., & Diaz, O. (2014). Testing
MOFScript Transformations with HandyMOF. In Proc. of
ICMT (pp. 42–56). doi: 10.1007/978-3-319-08789-4_4

Gogolla, M., & Vallecillo, A. (2011). Tractable Model Transfor-
mation Testing. In Proc. of ECMFA (pp. 221–235). Springer.

Gong, C., Zheng, Z., Li, W., & Hao, P. (2012). Effects of Class
Imbalance in Test Suites: An Empirical Study of Spectrum-
Based Fault Localization. In Proc. of COMPSAC Workshops
(p. 470-475). doi: 10.1109/COMPSACW.2012.89

Harrold, M. J., Rothermel, G., Sayre, K., Wu, R., & Yi, L.
(2000). An empirical investigation of the relationship between
spectra differences and regression faults. Software Testing,
Verification and Reliability, 10(3), 171–194.

Heckel, R., & Taentzer, G. (2020). Graph Transformation
for Software Engineers - With Applications to Model-Based
Development and Domain-Specific Language Engineering.
Springer. doi: 10.1007/978-3-030-43916-3

Jones, J. A., & Harrold, M. J. (2005). Empirical Evaluation
of the Tarantula Automatic Fault-localization Technique. In
Proc. of ASE (pp. 273–282). ACM. doi: 10.1145/1101908
.1101949

Li, P., Jiang, M., & Ding, Z. (2020). Fault Localization With
Weighted Test Model in Model Transformations. IEEE Ac-
cess, 14054–14064. doi: 10.1109/ACCESS.2020.2966540

Liu, C., Fei, L., Yan, X., Han, J., & Midkiff, S. P. (2006).
Statistical debugging: A hypothesis testing-based approach.
IEEE Transactions on Software Engineering, 32(10), 831–
848. doi: 10.1109/TSE.2006.105

Lúcio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim,
G., . . . Wimmer, M. (2014). Model Transformation Intents
and Their Properties. Software and Systems Modeling, 1–35.

doi: 10.1007/s10270-014-0429-x
Mottu, J.-M., Baudry, B., & Le Traon, Y. (2006). Mutation anal-

ysis testing for model transformations. In Proc. of ECMFA
(pp. 376–390). doi: 10.1007/11787044_28

Muñoz, P., Troya, J., & Wimmer, M. (2022). FL4MT reposi-
tory. GitHub. Retrieved from https://github.com/paumunoz/
FL4MT

Oakes, B. J., Lucio, L., Verbrugge, C., & Vangheluwe, H.
(2018). Debugging of Model Transformations and Contracts
in SyVOLT. In Proc. of MODELS Workshops (pp. 532–537).

Object Management Group. (2014). Object Constraint Lan-
guage (OCL) Specification. Version 2.4. (OMG Document
formal/2014-02-03)

Sánchez-Cuadrado, J. (2020). Towards interactive, test-driven
development of model transformations. Journal of Object
Technology, 19(3), 1–12. doi: 10.5381/jot.2020.19.3.a18

Sánchez-Cuadrado, J., Guerra, E., & de Lara, J. (2015). Quick
fixing ATL model transformations. In Proc. of MODELS (pp.
146–155). doi: 10.1007/s10270-016-0541-1

Sánchez-Cuadrado, J., Guerra, E., & de Lara, J. (2017). Static
analysis of model transformations. IEEE Transactions on
Software Engineering, 868–897. doi: 10.1109/ISSRE.2014
.10

Sánchez-Cuadrado, J., Guerra, E., & de Lara, J. (2018).
Quick fixing ATL transformations with speculative analy-
sis. Software and Systems Modeling, 779–813. doi: 10.1007/
s10270-016-0541-1

Segura, S., Fraser, G., Sánchez, A., & Ruiz-Cortes, A. (2016).
A survey on metamorphic testing. IEEE Transactions on
Software Engineering, 805–824. doi: 10.1109/TSE.2016
.2532875

Sánchez-Cuadrado, J., Guerra, E., & de Lara, J. (2014). Un-
covering Errors in ATL Model Transformations Using Static
Analysis and Constraint Solving. In Proc. of ISSRE (pp.
34–44).

Sánchez-Cuadrado, J., Guerra, E., & de Lara, J. (2018).
AnATLyzer: An Advanced IDE for ATL Model Transfor-
mations. In Proc. of ICSE Companion (pp. 85–88). doi:
10.1145/3183440.3183479

Troya, J., Bergmayr, A., Burgueno, L., & Wimmer, M. (2015).
Towards systematic mutations for and with ATL model trans-
formations. In Proc. of ICSTW Workshops (pp. 1–10). doi:
10.1109/ICSTW.2015.7107455

Troya, J., Segura, S., Burgueño, L., & Wimmer, M. (2022).
Model transformation testing and debugging: A survey. ACM
Comput. Surv.. doi: 10.1145/3523056

Troya, J., Segura, S., Parejo, J., & Ruiz-Cortés, A. (2018).
Spectrum-based fault localization in model transformations.
ACM Transactions on Software Engineering and Methodol-
ogy, 1–50. doi: 10.1145/3241744

Vallecillo, A., & Gogolla, M. (2012). Typing model transfor-
mations using tracts. In Proc. of ICMT (pp. 56–71). doi:
10.1007/978-3-642-30476-7_4

Wimmer, M., Martínez, S., Jouault, F., & Cabot, J. (2012). A
catalogue of refactorings for model-to-model transformations.
Journal of Object Technology, 11(2), 2:1–40. doi: 10.5381/
jot.2012.11.2.a2

14 Muñoz et al.

https://github.com/paumunoz/FL4MT
https://github.com/paumunoz/FL4MT

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., & Regnell, B.
(2012). Experimentation in Software Engineering. Springer.
doi: 10.1007/978-3-642-29044-2

Wong, W. E., Debroy, V., Li, Y., & Gao, R. (2012). Software
Fault Localization Using DStar (D*). In Proc. of SERE (p. 21-
30). doi: 10.1109/SERE.2012.12

Wong, W. E., Gao, R., Li, Y., Abreu, R., & Wotawa, F. (2016).
A Survey on Software Fault Localization. IEEE Transactions
on Software Engineering, 42(8), 707–740. doi: 10.1109/
TSE.2016.2521368

Xie, X., Chen, T. Y., Kuo, F.-C., & Xu, B. (2013). A Theoretical
Analysis of the Risk Evaluation Formulas for Spectrum-based
Fault Localization. ACM Trans. Softw. Eng. Methodol., 22(4),
31:1–31:40. doi: 10.1145/2522920.2522924

Yu, Y., Jones, J. A., & Harrold, M. J. (2008). An Empirical
Study of the Effects of Test-suite Reduction on Fault Lo-
calization. In Proc. of ICSE (pp. 201–210). doi: 10.1145/
1368088.1368116

Zhang, Z., Chan, W., Tse, T., Hu, P., & Wang, X. (2009). Is
non-parametric hypothesis testing model robust for statistical
fault localization? Information and Software Technology,
51(11), 1573 - 1585. doi: 10.1016/j.infsof.2009.06.013

About the authors
Paula Muñoz is a PhD candidate at the University of Málaga.
She graduated in Software Engineering from the University of
Málaga in June 2019. Her research focuses on the precise speci-
fication and testing of software systems using models. Contact
her at paulam@uma.es.

Javier Troya is Associate Professor of Software Engineering at
the University of Malaga, Spain. Before, he was a post-doctoral
researcher, assistant and associate professor at the University of
Seville, Spain (2016-2020), and a post-doctoral researcher in the
TU Wien, Austria (2013-2015). His current research interests
include Model-based Software Engineering, Software Testing
and Uncertainty modeling. Contact him at jtroya@uma.es, or
visit http://webpersonal.uma.es/de/jtroya.

Manuel Wimmer is a full professor in, and the head of,
the Department of Business Informatics – Software Engi-
neering at the Johannes Kepler University Linz, Austria.
His research interests include software engineering, model-
driven engineering, and cyber-physical systems. Contact him
at manuel.wimmer@jku.at, or visit https://se.jku.at/manuel
-wimmer

Gerti Kappel is full professor at the Institute of Information
Systems Engineering at TU Wien, chairing the Business In-
formatics Group. Since the beginning of 2020 she acts as the
dean of the Faculty of Informatics at TU Wien. Her current re-
search interests include Model Engineering, Web Engineering,
and Process Engineering, with a special emphasis on cyber-
physical production systems. You can contact the author at
kappel@big.tuwien.ac.at or visit https://www.big.tuwien.ac.at/
people/gkappel.

A. EXAM score tables

Hybrid Fault Localization for Model Transformations 15

mailto:paulam@uma.es
mailto:jtroya@uma.es
http://webpersonal.uma.es/de/jtroya
mailto:manuel.wimmer@jku.at
https://se.jku.at/manuel-wimmer
https://se.jku.at/manuel-wimmer
mailto:kappel@big.tuwien.ac.at
https://www.big.tuwien.ac.at/people/gkappel.
https://www.big.tuwien.ac.at/people/gkappel.

Table 6 Best EXAM Score for UML2ER case study.

Original Embedding No hierarchy

Technique mdn mean sd mdn mean sd mdn mean sd

Mountford

Original 0.125 0.310 0.324 0.125 0.310 0.324 0.200 0.419 0.323

Inheritance 0.125 0.304 0.323 0.125 0.304 0.323 0.200 0.419 0.323

Static CC 0.125 0.314 0.322 0.125 0.318 0.324 0.200 0.419 0.323

Static RC 0.250 0.344 0.313 0.250 0.340 0.315 0.200 0.419 0.323

Static RCR 0.125 0.328 0.318 0.250 0.340 0.313 0.200 0.419 0.323

Kulcynski2

Original 0.125 0.301 0.318 0.125 0.301 0.318 0.200 0.416 0.324

Inheritance 0.125 0.301 0.318 0.125 0.301 0.318 0.200 0.416 0.324

Static CC 0.125 0.308 0.319 0.125 0.314 0.319 0.200 0.416 0.324

Static RC 0.250 0.339 0.309 0.125 0.332 0.312 0.200 0.416 0.324

Static RCR 0.125 0.322 0.315 0.188 0.332 0.311 0.200 0.416 0.324

Zoltar

Original 0.125 0.324 0.326 0.125 0.324 0.326 0.200 0.416 0.324

Inheritance 0.125 0.324 0.326 0.125 0.324 0.326 0.200 0.416 0.324

Static CC 0.125 0.336 0.321 0.250 0.342 0.322 0.200 0.416 0.324

Static RC 0.250 0.363 0.312 0.250 0.356 0.316 0.200 0.416 0.324

Static RCR 0.250 0.349 0.318 0.250 0.357 0.314 0.200 0.416 0.324

Ochiai

Original 0.125 0.304 0.323 0.125 0.304 0.323 0.200 0.416 0.324

Inheritance 0.125 0.304 0.323 0.125 0.304 0.323 0.200 0.416 0.324

Static CC 0.125 0.311 0.323 0.125 0.317 0.324 0.200 0.416 0.324

Static RC 0.250 0.342 0.313 0.125 0.335 0.317 0.200 0.416 0.324

Static RCR 0.125 0.325 0.319 0.188 0.335 0.316 0.200 0.416 0.324

16 Muñoz et al.

Table 7 Average Case EXAM Score for UML2ER case study.

Original Embedding No hierarchy

Technique mdn mean sd mdn mean sd mdn mean sd

Mountford

Original 0.188 0.342 0.315 0.188 0.342 0.315 0.200 0.419 0.323

Inheritance 0.188 0.337 0.314 0.188 0.337 0.314 0.200 0.419 0.323

Static CC 0.188 0.325 0.320 0.156 0.327 0.322 0.200 0.419 0.323

Static RC 0.250 0.347 0.311 0.250 0.340 0.315 0.200 0.419 0.323

Static RCR 0.125 0.329 0.317 0.250 0.340 0.313 0.200 0.419 0.323

Kulcynski2

Original 0.188 0.331 0.311 0.188 0.331 0.311 0.200 0.416 0.324

Inheritance 0.188 0.331 0.311 0.188 0.331 0.311 0.200 0.416 0.324

Static CC 0.125 0.317 0.317 0.125 0.322 0.318 0.200 0.416 0.324

Static RC 0.250 0.341 0.308 0.125 0.332 0.312 0.200 0.416 0.324

Static RCR 0.125 0.323 0.314 0.188 0.332 0.311 0.200 0.416 0.324

Zoltar

Original 0.188 0.351 0.320 0.188 0.351 0.320 0.200 0.416 0.324

Inheritance 0.188 0.351 0.320 0.188 0.351 0.320 0.200 0.416 0.324

Static CC 0.188 0.345 0.320 0.250 0.349 0.321 0.200 0.416 0.324

Static RC 0.250 0.365 0.312 0.250 0.356 0.316 0.200 0.416 0.324

Static RCR 0.250 0.349 0.318 0.250 0.357 0.314 0.200 0.416 0.324

Ochiai

Original 0.188 0.333 0.316 0.188 0.333 0.316 0.200 0.416 0.324

Inheritance 0.188 0.333 0.316 0.188 0.333 0.316 0.200 0.416 0.324

Static CC 0.125 0.320 0.322 0.125 0.324 0.323 0.200 0.416 0.324

Static RC 0.250 0.344 0.312 0.125 0.335 0.317 0.200 0.416 0.324

Static RCR 0.125 0.326 0.318 0.188 0.335 0.316 0.200 0.416 0.324

Hybrid Fault Localization for Model Transformations 17

