
Journal of Object Technology | RESEARCH ARTICLE

Language Composition via Kind-Typed Symbol Tables
Arvid Butting∗, Judith Michael∗, and Bernhard Rumpe∗

∗Software Engineering, RWTH Aachen University

ABSTRACT The modularization of domain-specific modeling languages (DSMLs) fosters individual reuse of DSMLs in different
contexts. Within this article, we discuss how it is possible to refer to model elements of other languages when composing
different DSMLs. Related approaches usually rely on a DSML-agnostic language infrastructure that tests the compatibility of
model elements via types encoded in Strings without any consistency checks. We propose the "strongly kind-typed" symbol
table as an extension to the compiler approach to integrate the syntax of the languages using symbol tables that assign a
symbol kind to each name definition. Our approach can be integrated into language workbenches that provide a symbol table
infrastructure as part of a DSML implementation. The kind-typed symbol tables are integrated into the language workbench
MontiCore. Strongly kind-typed symbol tables utilize the type system of the language workbench’s host language to ensure type
consistency between the language-specific symbol table infrastructures during DSML composition, which ultimately supports
DSML engineering in the large.

KEYWORDS Software Language Engineering, Symbol Tables, Language Composition.

1. Introduction

Domain-specific modeling languages (DSMLs) (Combemale et
al. 2016) reduce the problem-solution gap (France & Rumpe
2007) as they use terms of specific domains, allow for domain-
specific abstractions, and prepare the foundations for domain-
specific analyses and tooling. If the UML modeling meth-
ods should be applied, UML profiles (Fuentes-Fernández &
Vallecillo-Moreno 2004) are another possibility to realize
domain-specific needs: a topic studied in particular by Anto-
nio. The fact that these languages are better tailored to domains
results in their greater use in practice, e.g., in systems engineer-
ing (Gupta et al. 2021), architecture modeling for safety critical
automotive software systems (Schlichthaerle et al. 2020), cyber
attacks in the automotive domain (Wolschke et al. 2021), the
German tax forms (Rumpe et al. 2021), marine ecosystem sim-
ulation (Johanson & Hasselbring 2017), or the verification of
valid TV program planning according to contracts (Drave et al.
2020), just to mention a few published ones.

JOT reference format:
Arvid Butting, Judith Michael, and Bernhard Rumpe. Language
Composition via Kind-Typed Symbol Tables. Journal of Object Technology.
Vol. 21, No. 1, 2022. Licensed under Attribution 4.0 International (CC BY
4.0) http://dx.doi.org/10.5381/jot.2022.21.1.a5

From a longer-term software engineering perspective, the
greater use of DSMLs has to lead to the modularization of
DSMLs as well, since this improves their reusability (Şutîi et al.
2018). This also implies, however, that they in turn can be com-
posed (Vallecillo 2010; Meyers et al. 2012). The use of models
from different languages increases the need to allow references
to model elements from other languages and thus to provide
tool support. Existing approaches using symbol tables rely on
a DSML-agnostic language infrastructure (Mir Seyed Nazari
2017) that tests the compatibility of model elements via types
encoded in Strings without consistency checks.

We tackle the research question how it is possible to refer to
model elements of other languages when composing different
DSMLs. Within this paper, we propose the concept of strongly
kind-typed symbol tables as an extension to the compiler ap-
proach. They integrate the syntax of the languages using symbol
tables that assign a symbol kind to each name definition. This
approach can be integrated into language workbenches (Erdweg
et al. 2015) that provide a symbol table infrastructure as part of
a DSML implementation. As an example, we have integrated
them into the language workbench MontiCore (Hölldobler et
al. 2021). Strongly kind-typed symbol tables utilize the type
system of the language workbench’s host language. This en-
sures type consistency between the language-specific symbol

An AITO publication

http://dx.doi.org/10.5381/jot.2022.21.1.a5

table infrastructures during DSML composition. We discuss
how strongly kind-typed symbol tables can support the four
different types of language composition within MontiCore and
critically discuss the approach.

Structure. The next section introduces an example for differ-
ent languages used to model one cyber-physical system. Sec-
tion 3 introduces the used technology stack and basic principles
for handling DSMLs. Section 4 presents the strongly kind-typed
symbol table infrastructure and Section 5 describes how it can
be used to support language composition. Section 6 discusses
our approach, Section 7 compares it to related approaches, and
the last section concludes.

2. Example
In modern model-driven software projects, heterogeneous mod-
els describe different aspects of the application (Butting & Wort-
mann 2021). In the domain of cyber-physical systems (CPS),
e.g., class diagrams can be used to describe the data types of the
CPS, automata could describe its behavior, and a CAD model
might describe its physical geometry.

For this example, we want to model an excerpt of the soft-
ware for a coffee machine. We model its data structure through
a class diagram and use an automaton to describe an excerpt of
the coffee machine’s behavior. To this end, our aim is to ensure
that the class diagram model and the automaton model do not
contradict each other due to inconsistencies.

One way to achieve consistency between such heterogeneous
models is to compose the languages to which the models con-
form. Such language composition can detect whether symbolic
references between models conforming to different languages
are valid.

For our example, the automata language represents automata
models that have states, which can optionally be initial states,
and transitions between pairs of states that are triggered by
events. The class diagram language models a simplified form
of class diagrams that contain classes with inheritance as well
as enums. Classes may have typed class attributes and enums
contain enum constants. Furthermore, class diagram models can
have named, directed, and cardinalized associations between
classes and from classes to enums. Both languages are realized
as textual DSLs with the language workbench MontiCore (Höll-
dobler et al. 2021).

Textual languages usually rely on names as identifiers for
language elements. Other languages then may refer to such
language elements via their identifying name. For example, the
automata language uses names to identify states and transitions.
Another language can use the name to refer to the state with
that name. This, obviously, requires that the name identifies the
state uniquely.

Figure 1 depicts the two textual models of the coffee machine
examples. The listing on the left side of the figure presents
the automaton CoffeeCtrl that contains the four states idle,
check, operating, and maintenance where the state idle is
marked as the initial state. The initial state has an initial action
block surrounded by curly brackets. Moreover, the automaton
model contains 4 transitions between the states. Transitions

can have trigger conditions surrounded by square brackets and
action blocks surrounded by curly brackets.

In the first line of the listing, the automaton model imports
the class Machine of the artifact CoffeeMachine, which refers
to the class diagram model with this name that is depicted on
the right side of Figure 1. Through this import statement, all
names defined in the class diagram model can be used in the
automaton model. For example, the name of the association
led in l. 10 of the class diagram model can be used in the action
blocks of the initial state (l. 4) transitions (ll. 8, 12, and 14).

These forms of links between name usages and name defini-
tions that can not only cross the boundaries of model artifacts
of a single language but also cross different languages, can
be achieved with a suitable symbol table infrastructure and
proper symbol resolution strategies. The remainder of this pa-
per introduces a suitable symbol table infrastructure that enables
realizing such links while coupling the language infrastructures
only loosely and ensuring type compatibility of the symbol table
infrastructures.

The coffee machine example introduced in this section serves
as an analytical evaluation that represents a larger class of prob-
lems, i.e., transfers to symbol table infrastructures of other
languages as well.

3. Preliminaries
We use the language workbench MontiCore (Hölldobler et al.
2021) for the compositional engineering of DSMLs. MontiCore
languages use context-free grammars that are defined using an
EBNF-like grammar format from which the workbench gener-
ates large parts of the infrastructure necessary to handle models
of these languages. Figure 2 gives an overview of the generated
infrastructures and their usage.

MontiCore reads the grammar of a DSML and generates the
infrastructure needed to process models defined according to
this language such as a parser, the abstract syntax including
the Abstract Syntax Tree (AST) of the model and the symbol
table (Hölldobler et al. 2015) representing the abstract syn-
tax (Burgueño et al. 2019) of a model, as well as a visitor
infrastructure. The parser is able to read models that conform to
the defined grammar and instantiates the AST. The symbol table
enables realizing symbolic links between usages and definitions
of names. Details about the symbol table are given in Sec-
tion 4. The generated visitor infrastructure enables traversing
the abstract syntax data structure of both, the model AST and
the symbol table. This visitor infrastructure together with the
abstract syntax can be used by analyses and transformations,
e.g., to check Context Conditions (CoCos). Such CoCos are
Java classes that realize well-formedness rules of the language.
They are needed as context-free grammars do not ensure the
well-formedness of models - an aspect necessary for the further
use of models within software systems. Each CoCo is imple-
mented against an element of the abstract syntax. A visitor for
the language traverses the abstract syntax and systematically
executes the CoCo checks.

Each MontiCore grammar defines the abstract and concrete
syntax of a language via productions that define nonterminals

2

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

import CoffeeMachine.Machine;

automaton CoffeeCtrl {

initial state idle / {led = GREEN};

state check, operating, maintenance;

idle -> check

[buttonPressed] / {led = YELLOW};

check -> operating

[coffeeCounter <1234] / {makeCoffee()};

check -> maintenance

[coffeeCounter>=1234] / {led = RED};

operating -> idle

/ {led = GREEN; coffeeCounter++};

}

01

02

03

04

05

06

07

08

09

10

11

classdiagram CoffeeMachine {

class Machine {

long coffeeCounter;

boolean buttonPressed;

makeCoffee();

}

enum LED { GREEN, YELLOW, RED;}

association led: Machine -> LED [1];

}

link from a usage of the name "led" to the

definition of the name in another model,

conforming to another language

Figure 1 References between models of the automata and class diagram languages.

Model

Language

Grammar

Parser

Infrastructure

Model

AST

Visitor

Infrastructure

Symbol Table

Runtime

Environment

Code Generator

Infrastructure

generates

instantiates

traverses

reads

conforms to

reads

GENERATED

provides

uses

ABSTRACT SYNTAX

CoCos

operates on

uses

Figure 2 An overview of the generated infrastructures and
their usage

(NTs). Grammar bodies include such productions (or grammar
rules) consisting of a left-hand and a right-hand side separated
by an ’=’ sign. One NT is on the left-hand side and it is defined
by the right-hand side part of the grammar rule. The right-hand
side defines the abstract and concrete syntax and can include
terminals and nonterminals arranged as alternatives, concatena-
tions, or combinations thereof. Grammar rules are translated
into class types in the AST. Additionally, there exist several
kinds of special grammar rules, such as interface rules which
define an interface NT and are translated into interface types
in the AST. The right-hand side of an interface rule can con-
tain (cardinalized) NTs. This results in the presence of these
NTs (with matching cardinalities) in the right-hand side of rules
which implement the interface NT. This allows preventing un-
desired forms of implementations, and they can act as extension
points of a grammar.

MontiCore distinguishes four different ways of composing
languages (Bryant et al. 2015; Erdweg et al. 2012), namely in-
heritance, extension, embedding, and aggregation (Hölldobler
et al. 2021). Except for language aggregation, all forms produce
a composed language with an integrated syntax of the related
models. The MontiCore generator has to be executed to synthe-
size an integrated language tooling. Language inheritance is
indicated by an inheritance relationship between grammars. The
inheriting grammar reuses all NTs and terminals of the grammar

it inherits from. Moreover, it can extend or override some NTs.
Language extension is a particular form of inheritance, also
called conservative extension. Grammar rules reuse the start
NT of the extended language and add alternatives to any NT of
the extended language. Language embedding allows to embed
one or more languages into another one, called host language.
This is realized via extension points of the syntax in the host
language. The embedded languages realize or implement these
extension points. Language aggregation is a loose coupling,
where models remain in individual artifacts but may refer to
elements of other models via names. This form of language
composition uses composed symbol tables (see Section 4).

Additionally, MontiCore provides a code generator infras-
tructure as well as a run-time environment for each language,
which is used by the generated artifacts. The template-based
code generation infrastructure uses the FreeMarker template
engine. Moreover, the transformation into other models or the
generation of templates is also possible.

4. Strongly Kind-Typed Symbol Table Infras-
tructures

MontiCore integrates a strongly kind-typed symbol table in-
frastructure (STI) and generates an STI as part of every lan-
guage. Because it is generated, the STI can rely on language-
specific types for most of its parts, which reduces the language-
agnostic parts of the implementation in MontiCore’s runtime-
environment. The major advantage of a strongly typed symbol
table infrastructure, however, is that large parts of the com-
patibility of different STIs during language composition are
offloaded to the type system of Java.

Symbol table infrastructures serve multiple purposes and dif-
ferent languages have particular concepts, e.g., for the visibility
of names or the rules for handling qualified names. Therefore,
the STI offers default solutions for such concepts and relies on
easy adjustability of these. To this end, all generated parts of
the STI are adjustable via the top mechanism (Hölldobler et
al. 2021). With this mechanism, each generated Java class or
interface can be supplemented with a handwritten Java artifact
that extends the generated class and automatically integrates
with the remaining generated code.

3

01

02

03

04

05

06

07

08

09

10

11

12

13

14

classdiagram CoffeeMachine {

class Machine {

long coffeeCounter;

boolean buttonPressed;

makeCoffee();

}

enum LED {

GREEN, YELLOW, RED;

}

association led: Machine -> LED [1];

}

CoffeeMachine.cd

name

definition

name usage

scope of class

scope of

enumeration

scope of class

diagram

artifact scope

Figure 3 Illustration of name definitions, name usages, and
scopes in a model

The section first introduces general notions about the symbol
tables in Section 4.1 before explaining the symbols (in Sec-
tion 4.2) and scopes (in Section 4.3) of the STI in detail. Sec-
tion 4.4 describes the relations of the STI elements and the AST
of a language. Section 4.5 presents an approach for instantiating
and Section 4.6 an approach for traversing symbol tables. The
process of resolving for symbol definitions from given name
usages is described in Section 4.7.

4.1. General Notions of Symbols, Scopes, and Symbol
Tables

Before we explain the concepts behind the STI, we make some
general definitions for basic elements that appear in the context
of a symbol table.

In classical compiler construction (Aho et al. 2007), symbol
tables are part of a language’s compiler and support engineering
the type system of a language. A symbol table is a data structure
that stores all name definitions that the parser encounters while
parsing a model or program. Together with the name, the symbol
table may hold additional information belonging to the name
definition. We say that the kind of additional information and
the kind of the name that is introduced is tied to a particular
named model entity, i.e., a language syntax element. Such
named model entities, hence, are language-specific and can be
states, classes, methods, etc.

For example, the class diagram model depicted in Fig-
ure 3 defines names of different kinds. It defines names of
class diagrams (the name CoffeeMachine), type definitions
(Machine, LED), class variables (e.g., coffeeCounter), meth-
ods (makeCoffee), enum constants (e.g., GREEN), and associa-
tions (led). While the class diagram model defines the actual
names, i.e., the symbols, the class diagram language defines the
kinds of these names, i.e., the symbol kinds1.

1 Usually, languages define symbol kinds and models define symbols. Rarely, a
language defines symbols (e.g., of built-in types) or a model introduces new
symbol kinds (e.g., via stereotypes)

The additional information for each name definition of a
symbol depends on the model entity and, hence, can vary. For
example, a class variable has a type expression indicating the
variable’s type while states have a Boolean property indicating
whether the state is initial. Besides keeping kind-specific in-
formation, distinguishing symbols of different kinds enables
language engineers to allow different model elements with the
same name. For example, the class diagram CoffeeMachine
could contain a class with the name CoffeeMachine. The lan-
guage infrastructure can distinguish the names based on their
kind. Another example in Java is a class that contains a method
with the same name as the class without causing a conflict.

All names that are defined in a model may be used within
this model (or other models, but more on this later). For exam-
ple, the CoffeeMachine class diagram uses the name of the
classes Machine and Status in the association defined in l. 13
of Figure 3.

Some languages allow also multiple definitions of the same
name with the same kind in a model. To distinguish such names,
symbol tables support visibility of names. In Java, for instance,
a variable in a method and a variable inside the body of a for
loop in the method may have the same name without causing a
conflict in the compiler.

To realize such visibility concepts, the symbol table of a
language can contain scopes. A scope holds a collection of
symbols and impacts their visibility (Mir Seyed Nazari 2017).
Each scope can import symbols from and export them to other
scopes and has three particular Boolean properties: a scope can
be ordered, exporting, and shadowing. In an ordered scope,
names in the concrete syntax must be defined before they are
allowed to be used. In Java, e.g., this is the case for variable
definitions inside of method bodies. Other scopes may be agnos-
tic of such orders, such as, class attributes in Java can be used
before they are defined. An exporting scope exports symbols
for other scopes while a non-exporting scope keeps symbol defi-
nitions local. Examples in Java are the scope of a Java class that
exports symbols of (non-private) attributes and methods while
the scope of a method does not export local variable symbols.
In a shadowing scope, a local symbol of a concrete kind and
name “shadows” symbols with this name and kind imported
from other scope without causing a conflict. In non-shadowing
scopes, this situation causes a conflict. In Java, e.g., the body of
a for-loop shadows variables from the scope of the surrounding
method body.

In MontiCore, the scopes are arranged as a tree. Hence,
scopes are nested and each scope (except the scope at the root of
the tree) has exactly one enclosing scope. MontiCore supports
two special kinds of scopes: artifacts scopes and the global
scope. An artifact scope encloses the scopes of a certain model
artifact and the (singleton) global scope is the root of the scope
tree. Global scopes usually have artifact scopes as their direct
subscopes and, hence, can bridge the gap between multiple
individual model artifacts.

The type check of a compiler uses the symbol table to look
up whether the type used in a type expression refers to an actual
type definition. In this sense, type systems introduce a controlled
form of redundancy between a name of a type definition and

4

«interface»

ISymbol

AST-CD

language-specific

symbol interface

StateSymbolAutomatonSymbol

«interface»

ICommonAutomataSymbol

run-time

environment

kind-specific

symbol classes

generated

Figure 4 Classes per symbol kind.

names that refer to this definition. We refer to the process of
searching a suitable name definition from a given name usage
as symbol resolution or resolving a symbol.

Besides for type checks, the symbol table also support the
realization of well-formedness checks that involve multiple el-
ements of a model. For example, a context condition of an
automata language can check that the initial state has no incom-
ing transitions.

4.2. Kind-Specific Symbol Classes
As introduced before, the STI foresees that the language infras-
tructure contains a dedicated class for each symbol kind. This
facilitates compatibility checks during language composition
and avoids re-creating a type system for symbol kinds on top of
the type system in Java.

To properly generate STIs for each language, MontiCore
requires knowledge about (named) language elements that de-
fine symbol kinds and about the additional information that
should be associated with each symbol kind. To specify this,
language engineers can influence the generation of the STI via
the grammar of the language. To this end, each nonterminal of
a MontiCore grammar that has a name on the right-hand side
of the corresponding grammar rule can be annotated with the
keyword symbol. Through this, the nonterminal is marked as to
define a new symbol kind. The annotation can be added both to
class nonterminals and to interface nonterminals. If an interface
nonterminal defines a symbol kind, all implementing nonter-
minals also define this symbol kind. The property of defining
a symbol kind is also inherited if an (interface) nonterminal
extends another (interface) nonterminal.

From each nonterminal that defines a new symbol kind, Mon-
tiCore generates an individual Java class that represents the sym-
bol kind. The generated symbol class implements a language-
specific symbol interface that is generated once per language.
This interface extends a language-agnostic symbol interface in
the run-time environment of MontiCore.

An example for the relevant classes and interfaces for the
symbol kinds of the automata language is depicted in Figure 4.
In this language, the Automaton and the State nonterminal
define symbol kinds, as both are identifiable via names. Transi-
tions of this language are not identifiable via names and, hence,
do not introduce symbol kinds. The generated STI of the au-
tomata language contains two classes AutomatonSymbol and
StateSymbol that represent the two symbol kinds. Both classes

implement the interface ICommonAutomataSymbol that intro-
duces language-specific method signatures that are common
among all symbol kinds of the language. This interface ex-
tends the interface ISymbol that introduces method signatures
common among all symbol kinds of all languages. In the ex-
ample model of the automata language depicted in Figure 1,
there is one symbol of the symbol kind AutomatonSymbol
with the name CoffeCtrl and four symbols of the symbol kind
StateSymbol with the names idle, check, operating, and
maintenance.

The MontiCore grammar language contains a special
symbolrule notation for grammar rules that define additional
class attributes and methods for each symbol class, i.e., for
each symbol kind. From these grammar rules, the MontiCore
generator produces corresponding attributes and methods in
the generated symbol classes. For example, the class attribute
coffeeCounter depicted in Figure 3 creates a symbol of the
symbol kind ClassAttributeSymbol. In the grammar of the
class diagram language, a language engineer can add a symbol
rule to indicate that class attributes have a type expression that
keeps track of the attribute’s type.

4.3. Language-Specific Scope Types
As introduced in Section 4.1, MontiCore distinguishes the
scopes that may appear in a model from artifact scopes and
the global scope. The global scope is realized as a singleton
that is instantiated only once. Artifact scopes are created for
every model, for which the symbol table is instantiated. Similar
to nonterminals that define a symbol kind, MontiCore supports
nonterminals that span a new scope. This enables language
engineers to conceive various visibility concepts for symbols
and, hence, create different namespaces. A nonterminal that
spans a scope is introduced by adding the keyword scope to
the corresponding grammar rule. The same nonterminal can
also both introduce a symbol kind and span a scope. This com-
bination is often used to create hierarchical namespaces. In
hierarchical namespaces, symbols are addressed via qualified
names that comprise individual name parts separated by dots.
Each name part equals the name of a symbol and a consecutive
dot addresses the scope spanned by that symbol. A prefix of a
qualified name can also address the artifact in which the sym-
bols are located, where the name of the artifact may be qualified
with a package in the same way as Java.

For example, in the class diagram, the qualified name
CoffeeMachine.Machine.coffeeCounter addresses the ar-
tifact CoffeeMachine and within this artifact, the symbol
Machine. From this symbol, it accesses the spanned scope and
in this scope, again, it addresses the symbol coffeeCounter.

Contrary to the kind-specific symbol classes, MontiCore
does not generate individual scope classes per nonterminal that
spans a scope. Instead, MontiCore generates a single scope
class per language that can be configured through arguments
to reflect scope attributes, such as, being an ordered scope or
exporting symbols. However, MontiCore distinguishes scope
classes that are used within models from classes for artifact
scopes and the global scope. Artifact scopes must contain func-
tionality that deviates from the functionality of scopes within

5

CD

«interface»

IAutomataScope

AutomataScope

«interface»

IAutomataArtifactScope

AutomataArtifactScope

«interface»

IAutomataGlobalScope

AutomataGlobalScope

«interface»

IScope

«interface»

IArtifactScope

«interface»

IGlobalScope
run-time

environment

generated

Figure 5 Interfaces and classes MontiCore uses for scopes.

models to be able to address the model artifact during symbol
resolution. The global scope also requires custom functionality
to realize the resolution algorithm for the connection between
different model artifacts and to realize loading the symbol ta-
bles from foreign models. However, as artifact scopes and
the global scope share large parts of the functionality with the
scopes classes used for scopes within models, the artifact and
global scope classes are subclasses from the scope classes. This
is depicted by example of the automata language at the bot-
tom of Figure 5. The classes AutomataArtifactScope and
AutomataGlobalScope extend the class AutomataScope.

As MontiCore supports multiple inheritance on grammars for
achieving language composition, the scopes that are defined per
language have to reflect this inheritance. However, Java does
not support multiple inheritance for classes. Hence, MontiCore
realizes most of the scope functionality via default methods in
scope interfaces. Each scope class implements a corresponding
scope interface. Through this, the inheritance of scope inter-
faces can follow the language inheritance controlled through
the grammar and the default methods in scope interfaces can
be reused during language composition. The scope classes, on
the other hand, are primarily used for internal purposes, such
as, managing the access to scope attributes via getter and setter
methods. The functionality in scope classes cannot be reused
for language composition.

An overview of the scope interfaces generated for
the automata language is depicted in the center row
of Figure 5. The interfaces IAutomataArtifactScope
and IAutomataGlobalScope extend the interface
IAutomataScope. Each scope interface is implemented
by the corresponding scope class.

Similar to the ISymbol interface, the run-time environment
of MontiCore contains language-agnostic interfaces for (artifac-
t/global) scope interfaces.

4.4. Relationship Between Symbols, Scopes, and AST
The abstract syntax data structure of a language includes sym-
bol classes, scope interfaces & classes, and the classes that
constitute the AST data structure. These classes are tightly
coupled to each other through various relationships as depicted
in Figure 6. Each symbol class (depicted left) and each scope
(depicted bottom) are associated with an optional AST node
(depicted right). If the symbol table has been instantiated from
the result of parsing a model, the AST nodes are always present.
If, however, the symbol table has been loaded from a symbol

AST-CD

symbol

spannedScope

*

0..1

enclosingScope

subScopes
*

1

0..1

enclosingScope

0..1

Scope

AST NodeSymbol

enclosingScope

spanningSymbol

0..1

0..1

symbol

0..1

0..1

1

Figure 6 Relationships between scopes, symbols, and AST
nodes.

file, the AST nodes are not present. In the reverse direction, an
AST node has an association to a symbol if the corresponding
nonterminal introduces a symbol kind and an association to the
scope if the nonterminal spans a scope. Each AST node and
each symbol has an enclosing scope. A scope contains symbols.
As in MontiCore, scopes are arranged in a tree-shape, all scopes
(except the global scope) have an enclosing scope and each
scope may have subscopes.

Additionally, a scope may be bidirectionally associated with
a symbol that spans the scope. This association supports the
qualification of names to make these globally unique, which is
required for symbol resolution.

As the STI uses symbol classes strongly typed per symbol
kind, scope classes strongly typed per language, and AST node
classes strongly typed per nonterminal, the relations between
symbols, scopes, and AST nodes are also realized as attributes
with the strongest possible types. The relations between scopes
and from AST nodes to scopes can be realized with the scope
type of the language. A scope contains individual data structures
per symbol kind and, hence, also per symbol class. Therefore,
these can be strongly typed as well. An AST node may define
at most one symbol kind, which enables to indicate the concrete
type of the symbol kind’s class.

However, a symbol kind may be defined by different nonter-
minals, e.g., if the symbol-defining nonterminal is an interface
nonterminal. Therefore, the relation from an AST node to a
symbol cannot be typed with a single concrete symbol class.

4.5. Instantiating Symbol Tables
In the STI, symbol tables are instantiated via scope genitors
that traverse the AST data structure with the language’s visitor
infrastructure. To realize a correct nesting of scopes, the scope
genitor internally manages a stack of scopes, where the current
scope is always on top of the stack.

At the beginning of instantiating the symbol table of a model
artifact, a new artifact scope instance is created and added as
first element to the scope stack. Afterward, the AST of the
model is traversed with the language’s traverser. For each non-
terminal, the scope genitor implements the visit method for
the corresponding AST class and sets the current scope as the
enclosing scope.

For each nonterminal that defines a symbol kind, the scope
genitor further creates a new symbol of the correct symbol kind.

6

Analogously, the scope genitor creates new scopes on each
nonterminal that spans a scope. After a new scope is created, it
is put on top of the scope stack and, hence, set as the current
scope. At the end of visiting and traversing the nonterminal that
spans the scope, the scope is removed from the scope stack and
the stack below is set as current scope.

All created symbol and scope objects are linked to each other
and to the AST nodes as described in Section 4.4. Beyond this,
the attributes of symbol rules and scope rules should be initial-
ized as well. However, this initialization cannot be generated
as the information required for the initialization is not specified
in the grammar. Instead, language engineers have to customize
the symbol table instantiation to initialize such attributes.

The symbol table instantiation can be customized by apply-
ing the top mechanism (Hölldobler et al. 2021) to the scope gen-
itor class. Furthermore, all scope genitor classes are generated
with hook point methods that have an empty implementation
by default and are called at certain phases of the symbol table
creation. These hook points include methods that are called
before and after each instantiation of a symbol of a specific
kind and at the beginning and the end of the entire symbol table
creation process.

4.6. Traversing Symbol Tables

As introduced in Section 3, the traverser infrastructure of a
language can traverse the AST data structure. However, in the
STI, the visitor infrastructure is also capable of traversing the
symbol table data structure of a language. In this, the traverser
of a language offers methods to traverse scopes and symbols.
By default, the symbol tables are traversed as part of traversing
the AST. Hence, traverse methods for scopes traverse all
symbols that are directly located in the scope and the traverse
methods of symbols do not traverse anything. This default
behavior can be altered by customizing the language traverser.
For instance, for serializing symbol tables without traversing the
AST, a custom implementation with a novel traversal strategy is
provided. In this example, a scope traverses all local symbols
and symbols that span a scope also traverse the spanned scope.

4.7. Symbol Resolution

An essential functionality of the symbol table of a language
is the symbol resolution, i.e., to search the name definition
that corresponds to a given name usage. Symbol resolution
searches the scopes and considers all symbol visibility rules.
We introduce the main concepts of the symbol resolution, an
in-depth introduction of the symbol resolution algorithm would
go beyond the scope of this paper.

Resolution of a symbol s with the kind k in the STI begins
with searching for a symbol with the name s in the list of sym-
bols of kind k in the current scope. This part of the algorithm is
called the local symbol resolution. If no symbol was found, the
resolution begins with local symbol resolution in the enclosing
scope of the current scope. This is proceeded until either a
symbol is found or the current scope is an artifact scope. This
phase of the resolution is called bottom-up intra-model symbol
resolution.

In the artifact scope, the symbol name is prepared for inter-
model symbol resolution, i.e., the resolution in foreign models.
As preparation, the name of the model is qualified. Depending
on the language, there may be different possible qualifications
for a name to look up and the symbol resolution tests all of these
“candidates” for qualified names. For example, in Java, potential
qualifications may be all import statements of a model that end
with a star (’*’). The inter-model resolution continues in the
global scope, which attempts to load artifacts that may contain
the symbol based on the given qualified name. The symbol
tables of all these artifacts are loaded, either from persisted
symbol table files or by parsing the models and creating the
symbol tables from their ASTs. After all these symbol tables
have been loaded, the global scope has new artifact scopes
as subscopes. If the same artifacts are to be used for another
symbol resolution, they do not have to be loaded again.

Afterward, the symbol resolution continues with the top-
down intra-model symbol resolution in all of the considered
artifact scopes. This part of the resolution begins with local
symbol resolution in each artifact scope and from there, contin-
ues resolution in the subscopes iteratively. This procedure can
ignore scopes that are spanned by symbols that do not match
the expected parts of the qualified name that is resolved for.

All parts of the symbol resolution are realized in different
resolve methods of the scope interfaces. As the scopes are
strongly typed with the language, the resolved symbol kind can
be encoded into the method names. This avoids passing the
symbol kind to the resolution algorithm as an argument, which
would require using reflection (at least to some extend). For
example, the interface IAutomataScope contains methods for
resolving all symbol kind the the automata language is aware
of. This includes the methods resolveState for resolving
symbols of the kind StateSymbol and resolveAutomaton
for resolving AutomatonSymbols.

5. Language Composition
Modularization of languages supports the reusability of entire
languages or parts of these. In general, the techniques for this
and their benefits are known from component-based software
engineering (Naur & Randell 1968). Languages can only be
modularized in combination with suitable means for language
composition (Erdweg et al. 2012). As introduced in Section 3,
MontiCore distinguishes four different kinds of language com-
position. All of these rely on the symbol table to bridge the
individual languages. As language extension and language em-
bedding in MontiCore rely on language inheritance, it suffices
to consider composing the STIs for language inheritance and
for language aggregation.

5.1. Language Inheritance in the STI
During language inheritance, the symbol table infrastructures of
the involved languages have to be composed. This is required for
a language to resolve in all scopes and for all symbol kinds of the
inherited languages. Ideally, all parts of the reused language’s
STIs are reused without modifying these, without recompiling
the code for inherited languages, and without causing code

7

duplication between the code for the actual language and the
code reused from other languages. Because MontiCore supports
multiple inheritance on languages, the STIs also must support
multiple inheritance.

To achieve this, the scopes of the languages are realized by
scope classes and interfaces as introduced in Section 4. The
inheritance of scope interfaces, artifact scope interfaces, and
global scope interfaces follows the inheritance of the languages.
Through this, the resolve algorithm, which is realized as de-
fault methods, can be completely reused. Via the top mecha-
nism (Hölldobler et al. 2021), any handwritten adjustments to
the resolve algorithm that are performed in the default meth-
ods are reused as well. Scope, artifact scope, and global scope
classes, however, cannot be reused for language composition.
Hence, we recommend carrying out handwritten adjustments
to scopes via the interfaces and not via the classes whenever
possible.

The symbol classes of inherited languages can be reused
without modification. The scopes genitors, which instantiate
symbol tables, rely on the visitor infrastructure of the languages.
The visitor infrastructures of MontiCore languages are com-
positional: the individual visitors for a language are modular
and the traversal strategy for the composed language delegates
to the visitors of individual languages (Hölldobler et al. 2021).
Thus, scope genitors are also compositional. For each inherited
language, the scope genitor of the language traverses the AST
nodes for nonterminals defined in the language and creates the
symbol kinds introduced in the language.

A challenge in reusing scope genitors is the creation of the
correct scope objects. For instance, in the automata language,
the scope genitor creates instances of the class AutomataScope.
If, e.g., a language extends the automata language to add hi-
erarchical states, the scope genitor of the automata language
is reused. In this case, however, the scope genitor of the au-
tomata language has to create scope instances of the class
HierarchicalAutomataScope instead. Obviously, it should
be avoided that the automata language itself is aware of the hier-
archical automata language that extends it. To create the correct
scope objects, e.g., for setting the enclosing scope of AST nodes,
scope genitors use a language mill. A language mill is a cen-
tral configuration point for obtaining objects of builder classes
for all reconfigurable parts of the language infrastructure. It is
realized as singleton class that MontiCore generates for each lan-
guage. For example, the scope genitor of the automata language
instantiates a new scope by calling Automata.scope(), which
internally uses a class AutomataScopeBuilder to create the
new scope.

The hierarchical automata language can reconfigure
the automata mill to use the class Hierarchical-
AutomataScopeBuilder instead, which is part of the
hierarchical automata language and creates new instances of the
scope class of the hierarchical automata languages. Through
this, the automata language can be configured from external
languages without causing dependencies from the reusing (i.e.,
hierarchical automata) language to the reused (i.e., automata)
language.

Aut CD

Shared

via shared grammar

Aut CD

Unifying

via unifying grammar

via symbol files

CD Aut

sym
write read

Aut CD

via resolvers

AutCD

language

Figure 7 Four different ways to achieve language aggregation
between the languages Aut and CD.

5.2. Symbol Adapters
In all forms of language composition in MontiCore, the situa-
tion may occur that the kind of an exchanged symbol that one
language provides does not match the kind of the symbol that an-
other language expects. For example, it may be the case that the
class diagram language in the example provides class attribute
symbols, but the automata language requires symbols used in
the guard expressions to be of a different kind, e.g., variable
symbols. This can be solved by creating symbol adapters.

A symbol adapter is a class that realizes the adapter pat-
tern (Gamma et al. 1995) for the classes that realize two symbol
kinds. A symbol adapter, hence, is a handwritten class that
subclasses the symbol class of the target symbol kind and has
an attribute of the source symbol kind. Internally, the symbol
adapter has to override all necessary methods of the target sym-
bol class and delegate the implementation to methods of the
source symbol kind, i.e., the adaptee.

In the example, the symbol adapter would adapt from class
attribute symbols to variable symbols. The adapter class, hence,
would extend the class VariableSymbol and have an attribute
adaptee of the type ClassAttributeSymbol, to which it del-
egates in the method implementations. This symbol adapter can
be created by customizing the symbol resolution for variable
symbols. The customization would plug into this resolution, e.g.,
at dedicated hook point methods. It internally would resolve for
class attribute symbols in the scopes of the class diagram lan-
guage. If this resolution finds a suitable class attribute symbol,
it instantiates the adapter class and returns it as the result of the
resolution for variable symbols in the automata language.

It would also be possible to describe symbol adapters in
terms of models of a "composition meta-language". However,
MontiCore currently relies on Java classes to realize adapters
to avoid limiting language engineers in the adapter realization
that may perform complex calculations. Nevertheless, the im-
plementation of symbol adapters is usually straight-forward.

5.3. Language Aggregation in the STI
Languages in MontiCore can be aggregated in different ways.
We distinguish two different forms of language aggregation

8

that rely on language inheritance. Language aggregation can
be achieved between languages that inherit from a common,
“shared” language that introduces all symbol kinds that are
exchanged between the language. Through this, no symbol
adapters are required, as all scopes can resolve for all symbol
kinds. An example for language aggregation for two languages
Aut and CD via a shared grammar is depicted in the top left
of Figure 7. In the example (cf. Figure 1), the automaton model
uses class attributes of the class diagram model. Therefore,
the symbol kind for class attributes has to be introduced in the
Shared language.

Similarly, languages can be aggregated by creating a new
grammar that unifies the grammars of the languages that are
to be aggregated. An example for this is depicted in the top
right of Figure 7. This form of language aggregation is similar
to language embedding, but instead of grammar rules that in-
tegrate the syntaxes of the languages, the novel grammar only
creates a new start rule that uses the start rules of the aggregated
languages as alternatives. The scope of the unifying language
then is able to resolve for all symbol kinds introduced in any of
the aggregated languages. This includes, in particular, also the
symbol kind for class attributes.

A further option for creating an aggregation of languages is
to make use of symbol resolvers. This option does not rely on
language inheritance, but instead reconfigures one or more of
the input languages. This is depicted by example in the bottom
left of Figure 7. Symbol resolvers are classes that carry out the
resolution for a foreign symbol kind and adapt it to a symbol
kind that the language is aware of. Symbol resolvers can be
added to the global scope of a reused language to reconfigure its
resolving algorithm. In the example, the aggregated language
has to introduce a resolver that is added to the automata lan-
guage. This resolver resolves for the class attribute symbols in
class diagram models and adds their result to the resolution in
the automata language.

Alternatively, languages can be aggregated by exchanging
symbol tables via symbol files. For this option, at least one of
the aggregated languages has to export their symbol tables to
symbol files. Other languages can read such files and import
the symbol tables or parts of these. For this option, the symbol
files have to contain symbol tables either in a language-agnostic
representation or the loading language has to be able to extract
the relevant information from the symbol file although it is
unaware of the language that has stored the file.

Language aggregation via shared or unifying grammars have
the advantage that they produce an integrated scope that is ca-
pable of resolving all symbol kinds of the aggregated language.
Therefore, the language aggregation results in a completely
unified symbol table data structure. However, the aggregation
couples the aggregated languages to each other and requires to
execute the MontiCore generator. This increases the effort for
adding new languages to the language aggregation.

Aggregation through resolvers and symbol files requires less
coupling between the languages but also keeps the symbol tables
of the individual languages separated from each other.

6. Discussion
While the presented approach for realizing symbol tables is
technologically tied to the MontiCore language workbench, its
concepts should be transferable to other language workbenches.
With means to translate languages defined via grammars into
metamodels (Butting, Jansen, et al. 2018) or to create internal
DSLs from grammars (Butting, Dalibor, et al. 2018), a broader
range of technological spaces can be covered.

With the STI, languages can be composed with loose cou-
pling of the language infrastructures only. It suffices to bridge
the scopes of the STIs involved in the language, which can be
achieved either by relying on a common inherited language that
introduces common symbol kinds or by introducing suitable
symbol adapters. However, the STI as presented in this paper
would not allow language engineers to completely decouple ar-
bitrary languages. To overcome this limitation, we implemented
a mechanism to persist symbol tables and load persisted symbol
tables. The loading STI can then be configured to load also
symbols of kinds the language is not aware of at all.

We have applied the STI in a great variety of modeling lan-
guages, some of which are open-source2. These languages
include class diagrams, object diagrams, automata, feature dia-
grams, statecharts, sequence diagrams, use case diagrams, and
the MontiArc (Butting et al. 2017) component & connector
ADL. The presented approach for generating STIs for these lan-
guages was successfully applied and can represent the symbol
tables of all these languages. However, most languages required
manual adjustment of the STI at some parts. It was necessary
to extend the scopes genitor of most languages to correctly in-
stantiate symbol attributes. In some languages, such as the class
diagrams, it was also necessary to adjust the symbol resolution.

As explained in Section 4 and Section 5, the STI requires
to integrate the scope types of different languages during all
forms of language composition that rely on language inheritance.
Otherwise, a language cannot resolve symbol kinds it is not
aware of. However, for the current realization of the STI it does
not always suffice to be aware of the actual symbol kind that
is resolved for. For nested scopes, it is also necessary to adapt
all foreign symbol kinds that may span an enclosing scope of
the scope that contains the symbol that is resolved for. In the
example of the class diagram language, a type symbol spans
a scope that contains the class attribute symbols. If such a
class attribute symbol should be resolved, e.g., in the automata
language as part of a guard expression, it is not sufficient that the
automata language is aware of the symbol kind for class attribute
symbols. Additionally, it must be aware of type symbols to be
able to search for class attribute symbols in the scopes these
span.

Built-in types can be realized as symbols that are added
directly to the global scopes once. Through this, all models of a
language are able to resolve these symbols and the symbols do
not have do be duplicated, which could cause inconsistencies.

In MontiCore, it is a deliberate decision that all model ele-
ments that define symbols must be identifiable through names
that modelers indicate. In other words, it is not desired that

2 Open-source MontiCore languages at Github: https://github.com/MontiCore

9

https://github.com/MontiCore

model elements that can be identified via derived names or
by other means of identification (e.g., source position) define
symbols.

With the STI, languages can be aggregated although their
infrastructure remain completely separated. The composed
language can also add adapters to compose languages that,
otherwise, would not be compliant to another. This enables
engineering the languages independent of another, which fos-
ters language engieering in the large. This is also a suitable
foundation for realizing product lines of modular language com-
ponents (Butting et al. 2019, 2020).

7. Related Work

Beyond MontiCore, there is a number of language workbenches
that can be used to define textual DSLs via grammars, such as
Neverlang (Vacchi & Cazzola 2015), Rascal (van der Storm
2011), Spoofax (Kats & Visser 2010), and Xtext (Bettini
2016). Other language workbenches, such as EMF (Stein-
berg et al. 2008), GEMOC Studio (Degueule et al. 2015), and
MetaEdit+ (Tolvanen & Kelly 2009) use metamodels for defin-
ing the syntax of merely graphical DSLs. In metamodels, con-
sistency is typically achieved in different ways than by using
symbol tables. One could compare different, mainly metamodel-
based approaches such as (Leduc et al. 2017), (Garmendia et
al. 2019), (Voelter 2013), or (Voelter et al. 2013) more pre-
cisely with our approach, however, this would require a large,
comprehensive study that tests each approach with examples.

The STI presented in this paper is integrated into the cur-
rent version of the language workbench MontiCore. Previ-
ously, MontiCore supported the symbol management infras-
tructure (SMI) to realize symbol tables for its languages (Mir
Seyed Nazari 2017). While the STI and the SMI share large
parts of the general notions behind symbol tables, the specific
concepts for realizing symbols, scopes, and the symbol resolu-
tion in Java differ. The SMI largely relies on language-agnostic
realizations for scopes that are contained in the run-time en-
vironment of MontiCore. While this reduces the number of
generated artifacts, it is more difficult to apply customization
to the scopes, as the top mechanism cannot be applied spe-
cific to a single language. Our experiences have shown, that
language-specific customizations of scopes (e.g., for custom
symbol resolution strategies) are used frequently.

Furthermore, language-agnostic scopes cannot have
language-specific symbol resolution methods. Instead, the SMI
passes the symbol kind to the resolution algorithm as an argu-
ment. To realize this in Java, specific classes for each symbol
kind are generated and objects of these are passed to the resolve
methods as method arguments. The STI avoids the unnecessary
complexity of recreating a type system for symbol kinds and
passing symbol kind objects between scopes. A side effect of
kind-specific resolve method names is that scopes of different
languages are not automatically compatible. An advantage of
language-agnostic scopes is that no adaptation has to be per-
formed for scopes during language composition. However, the
disadvantage is that adjusting the resolution per symbol kind is
not easily possible.

The language workbench Spoofax (Kats & Visser 2010)
supports realizing type systems via the name binding lan-
guage (Konat et al. 2012). Contrary to the STI and the SMI, the
name binding language relies on declarative rules that describe
the type system. While in the STI, symbol kinds differentiate
between names for different model elements, the name binding
language uses different name spaces to differentiate between
different model elements. The STI demands that language engi-
neers indicate a symbol kind for each name definition, whereas
the name binding language uses a default namespace for all
name definitions that are not explicitly added to a different
namespace. Both the STI and the name binding language enable
using scopes, but the STI manages symbols in separate data
structures for each scope while the name binding language uses
a joint data structure for the symbols of all scopes.

8. Conclusion

We expect that the need for heterogeneous models to describe
different aspects of an application will grow. Some example
domains are the modeling of structure and behavior of CPS
used within digital twins (Bordeleau et al. 2020; Brockhoff et al.
2021), process models and resources defined in class diagrams
for assistive systems which support human behavior (Michael et
al. 2020), or the composition of class diagrams and architectural
languages for the deployment of IoT systems (Kirchhof et al.
2022). Using models from two languages where one has an
inheritance relationship to the other one might be interesting for
languages which are used in requirements engineering, where
models can be underspecified, and then in system design, where
implementation details have to be added. Examples include,
e.g., to use only classes, attributes, and relations in class dia-
grams for analysis and later on also methods and their signatures
for generating code, or if we have human-centric information
in requirements models that should be used in design modeling
languages (Grundy et al. 2021). Moreover, kind-typed sym-
bol tables enable enhanced functionalities for reusable model
libraries (Dalibor et al. 2022), e.g., providing model sets of
different languages which use symbols of each other and can be
reused in combination.

Within this paper, we have shown how it is possible to refer
to model elements of other languages when composing different
DSMLs. Our approach to realize this are strongly kind-typed
symbol tables as an extension to a generative approach. Strongly
kind-typed symbol tables utilize the type system of the language
workbench’s host language to ensure type consistency between
the language-specific symbol table infrastructures during DSML
composition, which ultimately supports DSML engineering in
the large. In future, it would be useful to develop a technique
for behavioral semantics of models (Rivera & Vallecillo 2007;
Rivera et al. 2009), that provides information about the behavior
on symbol level.

Learning from others and being inspired by the work of
brilliant colleagues like Antonio is an important pillar of our
scientific work. It is a privilege to have him as part of our
community.

10

References

Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2007).
Compilers: Principles, Techniques, and Tools. Pearson Edu-
cation.

Bettini, L. (2016). Implementing Domain-Specific Languages
with Xtext and Xtend. Packt Publishing Ltd.

Bordeleau, F., Combemale, B., Eramo, R., van den Brand, M.,
& Wimmer, M. (2020). Towards Model-Driven Digital Twin
Engineering: Current Opportunities and Future Challenges.
In Ö. Babur, J. Denil, & B. Vogel-Heuser (Eds.), Systems
Modelling and Management (pp. 43–54). Springer. doi:
10.1007/978-3-030-58167-1_4

Brockhoff, T., Heithoff, M., Koren, I., Michael, J., Pfeiffer, J.,
Rumpe, B., . . . Wortmann, A. (2021). Process Prediction
with Digital Twins. In Int. conf. on model driven engineering
languages and systems companion (models-c) (p. 182-187).
ACM/IEEE. doi: 10.1109/MODELS-C53483.2021.00032

Bryant, B., Jézéquel, J.-M., Lämmel, R., Mernik, M., Schindler,
M., Steinmann, F., . . . Völter, M. (2015). Globalized Do-
main Specific Language Engineering. In B. Combemale,
B. H. Cheng, R. B. France, J.-M. Jézéquel, & B. Rumpe
(Eds.), Globalizing Domain-Specific Languages (p. 43-69).
Springer. doi: 10.1007/978-3-319-26172-0_4

Burgueño, L., Ciccozzi, F., Famelis, M., Kappel, G., Lambers,
L., Mosser, S., . . . Wimmer, M. (2019). Contents for a Model-
Based Software Engineering Body of Knowledge. Software
and Systems Modeling, 18(6), 3193–3205. doi: 10.1007/
s10270-019-00746-9

Butting, A., Dalibor, M., Leonhardt, G., Rumpe, B., & Wort-
mann, A. (2018). Deriving Fluent Internal Domain-specific
Languages from Grammars. In International Conference
on Software Language Engineering (SLE’18) (p. 187-199).
ACM. doi: 10.1145/3276604.3276621

Butting, A., Eikermann, R., Kautz, O., Rumpe, B., & Wortmann,
A. (2019). Systematic Composition of Independent Language
Features. Journal of Systems and Software, 152, 50-69. doi:
https://doi.org/10.1016/j.jss.2019.02.026

Butting, A., Haber, A., Hermerschmidt, L., Kautz, O., Rumpe,
B., & Wortmann, A. (2017). Systematic Language Extension
Mechanisms for the MontiArc Architecture Description Lan-
guage. In European Conference on Modelling Foundations
and Applications (ECMFA’17) (p. 53-70). Springer. doi:
10.1007/978-3-319-61482-3_4

Butting, A., Jansen, N., Rumpe, B., & Wortmann, A. (2018).
Translating Grammars to Accurate Metamodels. In Inter-
national Conference on Software Language Engineering
(SLE’18) (p. 174-186). ACM. doi: 10.1145/3276604
.3276605

Butting, A., Pfeiffer, J., Rumpe, B., & Wortmann, A. (2020). A
Compositional Framework for Systematic Modeling Lan-
guage Reuse. In 23rd ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Systems
(p. 35–46). ACM. doi: 10.1145/3365438.3410934

Butting, A., & Wortmann, A. (2021). Language Engineering for
Heterogeneous Collaborative Embedded Systems. In Model-
Based Engineering of Collaborative Embedded Systems

(p. 239-253). Springer. doi: 10.1007/978-3-030-62136-0_11
Combemale, B., France, R., Jézéquel, J.-M., Rumpe, B., Steel,

J., & Vojtisek, D. (2016). Engineering Modeling Languages:
Turning Domain Knowledge into Tools. Chapman & Hal-
l/CRC Innovations in Software Engineering and Software
Development Series.

Şutîi, A. M., van den Brand, M., & Verhoeff, T. (2018). Ex-
ploration of modularity and reusability of domain-specific
languages: an expression DSL in MetaMod. Computer Lan-
guages, Systems & Structures, 51, 48-70. doi: 10.1016/
j.cl.2017.07.004

Dalibor, M., Heithoff, M., Michael, J., Netz, L., Pfeiffer,
J., Rumpe, B., . . . Wortmann, A. (2022). Generating
Customized Low-Code Development Platforms for Digital
Twins. Journal of Computer Languages (COLA), 70. doi:
10.1016/j.cola.2022.101117

Degueule, T., Combemale, B., Blouin, A., Barais, O., &
Jézéquel, J.-M. (2015). Melange: A Meta-language for
Modular and Reusable Development of DSLs. In 8th Interna-
tional Conference on Software Language Engineering (SLE).
Pittsburgh, United States.

Drave, I., Henrich, T., Hölldobler, K., Kautz, O., Michael, J., &
Rumpe, B. (2020). Modellierung, Verifikation und Synthese
von validen Planungszuständen für Fernsehausstrahlungen. In
D. Bork, D. Karagiannis, & H. C. Mayr (Eds.), Modellierung
2020 (p. 173-188). Gesellschaft für Informatik e.V.

Erdweg, S., Giarrusso, P. G., & Rendel, T. (2012). Language
Composition Untangled. In 12th Workshop on Language
Descriptions, Tools, and Applications (pp. 1–8). doi: 10.1145/
2427048.2427055

Erdweg, S., van der Storm, T., Völter, M., Tratt, L., Bosman,
R., Cook, W. R., . . . van der Woning, J. (2015). Evaluating
and comparing language workbenches: Existing results and
benchmarks for the future. Computer Languages, Systems &
Structures, 44, 24-47. (SI on the 6th and 7th Int. Conf. on
Software Language Engineering (SLE’13 and SLE’14)) doi:
10.1016/j.cl.2015.08.007

France, R., & Rumpe, B. (2007). Model-driven Development
of Complex Software: A Research Roadmap. Future of
Software Engineering (FOSE ’07), 37-54. doi: 10.1109/
FOSE.2007.14

Fuentes-Fernández, L., & Vallecillo-Moreno, A. (2004). An
Introduction to UML Profiles. UML and Model Engineering,
2.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995).
Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Professional.

Garmendia, A., Guerra, E., de Lara, J., García-Domínguez,
A., & Kolovos, D. (2019). Scaling-Up Domain-Specific
Modelling Languages through Modularity Services. In-
formation and Software Technology, 115, 97–118. doi:
10.1016/j.infsof.2019.05.010

Grundy, J., Khalajzadeh, H., McIntosh, J., Kanij, T., & Mueller,
I. (2021). HumaniSE: Approaches to Achieve More Human-
Centric Software Engineering. In R. Ali, H. Kaindl, &
L. A. Maciaszek (Eds.), Evaluation of Novel Approaches
to Software Engineering (pp. 444–468). Springer. doi:

11

10.1007/978-3-030-70006-5_18
Gupta, R., Kranz, S., Regnat, N., Rumpe, B., & Wortmann,

A. (2021). Towards a Systematic Engineering of Indus-
trial Domain-Specific Languages. In IEEE/ACM 8th Int.
Workshop on Software Engineering Research and Indus-
trial Practice (SE&IP) (p. 49-56). IEEE. doi: 10.1109/
SER-IP52554.2021.00016

Hölldobler, K., Kautz, O., & Rumpe, B. (2021). MontiCore
Language Workbench and Library Handbook: Edition 2021.
Shaker Verlag. Retrieved from http://www.monticore.de/
handbook.pdf

Hölldobler, K., Mir Seyed Nazari, P., & Rumpe, B. (2015).
Adaptable Symbol Table Management by Meta Modeling
and Generation of Symbol Table Infrastructures. In Domain-
Specific Modeling Workshop (DSM’15) (p. 23-30). ACM. doi:
10.1145/2846696.2846700

Johanson, A. N., & Hasselbring, W. (2017). Effectiveness
and Efficiency of a Domain-Specific Language for High-
Performance Marine Ecosystem Simulation: A Controlled
Experiment. Empirical Software Engineering, 22(4), 2206-
2236. doi: 10.1007/s10664-016-9483-z

Kats, L. C., & Visser, E. (2010). The Spoofax Language
Workbench: Rules for Declarative Specification of Lan-
guages and IDEs. In 25th Annual ACM SIGPLAN Conf.
on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2010) (pp. 444–463). doi: 10.1145/
1932682.1869497

Kirchhof, J. C., Rumpe, B., Schmalzing, D., & Wortmann,
A. (2022). MontiThings: Model-driven Development and
Deployment of Reliable IoT Applications. Journal of Systems
and Software, 183, 1-21. doi: https://doi.org/10.1016/j.jss
.2021.111087

Konat, G., Kats, L., Wachsmuth, G., & Visser, E. (2012). Declar-
ative Name Binding and Scope Rules. In Int. Conf. on Soft-
ware Language Engineering (SLE’12) (pp. 311–331). doi:
10.1007/978-3-642-36089-3_18

Leduc, M., Degueule, T., Combemale, B., van der Storm, T., &
Barais, O. (2017). Revisiting Visitors for Modular Extension
of Executable DSMLs. In ACM/IEEE 20th International
Conference on Model Driven Engineering Languages and
Systems (MODELS) (p. 112-122). doi: 10.1109/MODELS
.2017.23

Meyers, B., Cicchetti, A., Guerra, E., & de Lara, J. (2012).
Composing Textual Modelling Languages in Practice. In 6th
Int. Workshop on Multi-Paradigm Modeling (MPM’12) (pp.
31–36). ACM. doi: 10.1145/2508443.2508449

Michael, J., Rumpe, B., & Varga, S. (2020). Human Behavior,
Goals and Model-Driven Software Engineering for Assistive
Systems. In Enterprise Modeling and Information Systems
Architectures (EMSIA 2020) (Vol. 2628, p. 11-18). CEUR
Workshop Proceedings.

Mir Seyed Nazari, P. (2017). MontiCore: Efficient Development
of Composed Modeling Language Essentials. Shaker Verlag.

Naur, P., & Randell, B. (Eds.). (1968). Software Engineer-
ing: Report of a conference sponsored by the NATO Science
Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels,
Scientific Affairs Division, NATO.

Rivera, J. E., Durán, F., & Vallecillo, A. (2009). For-
mal Specification and Analysis of Domain Specific Mod-
els Using Maude. SIMULATION, 85(11-12), 778-792. doi:
10.1177/0037549709341635

Rivera, J. E., & Vallecillo, A. (2007). Adding Behavior to
Models. In 11th IEEE Int. Enterprise Distributed Object
Computing Conference (EDOC 2007) (p. 169-169). doi:
10.1109/EDOC.2007.40

Rumpe, B., Michael, J., Kautz, O., Krebs, R., Gandenberger, S.,
Standt, J., & Weber, U. (2021). Digitalisierung der Gesetzge-
bung zur Steigerung der digitalen Souveränität des Staates
(Vol. 19). Nationales E-Government Kompetenzzentrum e.
V.

Schlichthaerle, S., Becker, K., & Sperber, S. (2020). A Domain-
Specific Language Based Architecture Modeling Approach
for Safety Critical Automotive Software Systems. In Software
Engineering Workshops 2020. CEUR-WS.org.

Steinberg, D., Budinsky, F., Merks, E., & Paternostro, M. (2008).
EMF: Eclipse Modeling Framework. Pearson Education.

Tolvanen, J.-P., & Kelly, S. (2009). MetaEdit+: Defining and
Using Integrated Domain-Specific Modeling Languages. In
24th ACM SIGPLAN Conf. Companion on Object Oriented
Programming Systems Languages and Applications (pp. 819–
820). doi: 10.1145/1639950.1640031

Vacchi, E., & Cazzola, W. (2015). Neverlang: A frame-
work for feature-oriented language development. Com-
puter Languages, Systems & Structures, 43, 1–40. doi:
10.1016/j.cl.2015.02.001

Vallecillo, A. (2010). On the Combination of Domain Specific
Modeling Languages. In T. Kühne, B. Selic, M.-P. Gervais, &
F. Terrier (Eds.), Modelling Foundations and Applications (pp.
305–320). Springer. doi: 10.1007/978-3-642-13595-8_24

van der Storm, T. (2011). The Rascal Language Workbench.
CWI. Software Engineering [SEN].

Voelter, M. (2013). Language and IDE Modularization and
Composition with MPS. In R. Lämmel, J. Saraiva, & J. Visser
(Eds.), Generative and Transformational Techniques in Soft-
ware Engineering IV: International Summer School, GTTSE
2011, 2011. Revised Papers (pp. 383–430). Springer. doi:
10.1007/978-3-642-35992-7_11

Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander,
M., Kats, L. C. L., . . . Wachsmuth, G. (2013). DSL En-
gineering - Designing, Implementing and Using Domain-
Specific Languages. dslbook.org. Retrieved from http://
www.dslbook.org

Wolschke, C., Marksteiner, S., Braun, T., & Wolf, M. (2021).
An Agnostic Domain Specific Language for Implementing
Attacks in an Automotive Use Case. In 16th International
Conference on Availability, Reliability and Security (ARES
2021). ACM. doi: 10.1145/3465481.3470070

About the authors
Arvid Butting received his B. Sc. and M. Sc. degrees in com-
puter science from the RWTH Aachen University, in 2014 and
2016. Currently, he is a research assistant and Ph.D. candidate
at the Software Engineering chair at RWTH Aachen University.

12

http://www.monticore.de/handbook.pdf
http://www.monticore.de/handbook.pdf
http://www.dslbook.org
http://www.dslbook.org

His PhD thesis is about the systematic composition of language
components in the language workbench MontiCore. His re-
search interests cover software language engineering, software
architectures, and model-driven development. You can contact
the author at butting@se-rwth.de or visit www.se-rwth.de.

Judith Michael is PostDoc and leads the model-based assistance
and information services team at the Software Engineering chair
at RWTH Aachen University. Her PhD thesis at Universität Kla-
genfurt was about cognitive modeling for assistive systems. Her
research focus is model-driven software engineering and soft-
ware architectures, domain-specific languages, and (conceptual)
modeling in a variety of domains and applications. Recent work
deals with software architectures of assistive and information
systems, digital twins and digital shadows in the production
domain, privacy-preserving system design, smart assisted living,
and human behavior goal modeling. You can contact the author
at michael@se-rwth.de or visit www.se-rwth.de.

Bernhard Rumpe is heading the Software Engineering chair at
RWTH Aachen University, Germany. Earlier, he had positions
at INRIA Rennes, Colorado State University, TU Braunschweig,
Vanderbilt University, Nashville, and TU Munich. His main
interests are rigorous and practical software and system de-
velopment methods based on adequate modeling techniques.
This includes agile development methods as well as model-
engineering based on UML/SysML-like notations and domain
specific languages. He also helps to apply modeling, e.g. to
autonomous cars, human brain simulation, BIM energy manage-
ment, juristical contract digitalization, production automation,
cloud, and many more.
He is author and editor of 34 books including "Agile Modeling
with the UML" and "Engineering Modeling Languages: Turn-
ing Domain Knowledge into Tools". You can contact the author
at rumpe@se-rwth.de or visit www.se-rwth.de.

13

mailto:butting@se-rwth.de?subject=Your paper "Language Composition via Kind-Typed Symbol Tables"
www.se-rwth.de
mailto:michael@se-rwth.de?subject=Your paper "Language Composition via Kind-Typed Symbol Tables"
www.se-rwth.de
mailto:rumpe@se-rwth.de?subject=Your paper "Language Composition via Kind-Typed Symbol Tables"
www.se-rwth.de

