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ABSTRACT When composing a domain-specific language from several language components, it is also necessary to compose
analysis and synthesis techniques, which are individually defined on these components in an efficient, ideally black-box form.
An effective way of allowing such compositions is to use specific design patterns, which are partly reflected in the tooling
code, partly reflected in the language, but also partly reflected in the language workbench (one meta-level higher), and the
generated/synthesized product code (one meta-level downward). Based on the experiences gained in compositional language
development using the language workbench MontiCore, we in detail discuss several of those design patterns, namely the
Mill, the RealThis object composition, the Template/Hook, and the TOP- Generator Patterns, and the hidden complexity of an
extended visitor infrastructure coping with the above patterns. The patterns are recorded and described in a reusable way, as
usual, allowing readers to participate from the gained insights and possible solutions.

KEYWORDS Software Language Engineering, Language Composition, Design Patterns

1. Introduction
Model-driven development (MDD) (Selic 2003) gains more and
more significance in modern engineering of various domains
such as software development (Völter et al. 2013), avionics
(Feiler & Gluch 2012), automotive (Blom et al. 2013), and
robotics (Wigand et al. 2017). It promotes models as the pri-
mary artifacts in the development process (France & Rumpe
2007) that describe the system to be engineered. Here, automa-
tion is key to foster efficient and agile design and manufacturing.
However, to realize this automation, models must be in machine-
processable form, related to a structured syntactic format and
a distinct meaning (Harel & Rumpe 2004) of the individual
constituents. Thus, models must adhere to modeling languages
specifying the concrete and abstract syntax, the semantics, a
semantic domain, and a semantic mapping from this domain to
the language elements (Cengarle et al. 2009). Generally, we dis-
tinguish between general-purpose languages (GPLs) used across
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disciplines (such as UML (Rumpe 2016) or SysML (Friedenthal
et al. 2014)) and domain-specific languages (DSLs) tailored for
a specific application domain.

The discipline for efficiently designing, implementing, main-
taining, and deploying such languages is known as software
language engineering (SLE) (Kleppe 2008). There are vari-
ous techniques for developing modeling languages. Here, two
prominent approaches are repeatedly applied: Language devel-
opment via context-free grammar (Klint et al. 2005), which
defines concrete and abstract syntax in a single effort, and via
metamodels (such as Ecore (Steinberg et al. 2008)) for deter-
mining the abstract syntax. The first approach often occurs for
specifying textual languages. In contrast, the second approach
can be applied to both textual and graphical languages; however,
being more prominent for the latter.

Since the developed modeling languages are software too
(Favre 2005), they also suffer from the same issues as programs
in ordinary software engineering. This means they are subject to
constant refinement, maintenance and evolution. Additionally,
starting from scratch is usually time-consuming and tedious.
Especially when it comes to implementing already known con-
cepts, the reuse of code via libraries has proven to be highly
beneficial in software development, increasing the development
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efficiency as well as the quality of the software. This notion
is also gradually finding its way into the discipline of SLE
(Bryant et al. 2015), where re-using (partial) languages has
great potential, e.g., for implementing different UML profiles
(Fuentes-Fernández & Vallecillo-Moreno 2004).

Generally, there are different kinds of reusability in modeling
languages. The most rudimentary form occurs at a conceptual
level, where languages support similar concepts (Medvidovic
& Taylor 2000) or, in some cases, contain similar syntactic
constructs. However, there is no actual reuse here, as these are
entirely individual development processes. Desirable would
be the reuse of the actual language definitions (i.e., grammars
or meta-models), as well as the existing tooling such as well-
formedness checks, analyses, or implementations for synthesis.

Thus, the inter-language reusability of constituents from
different technological spaces (Kurtev et al. 2002) is essential
for enabling language engineers to focus on more sophisticated
details. In this context, the composition of distinct modeling
languages (Hölldobler et al. 2018) and establishing reusable
language libraries (Butting et al. 2020) are increasingly explored.
While various composition mechanisms have been investigated
across different technological spaces, a sustainable design of the
underlying (generated) infrastructure is essential. To tackle this
challenge in traditional software engineering, the community
of object-oriented software development established various
design patterns (Gamma et al. 1995). Applying these patterns
assists in the efficient development of reusable and maintainable
software systems.

To harness the benefits of such patterns to the discipline of
SLE, in this paper, we elaborate on a catalog of design patterns
specifically tailored to language composition. These rely on
new practices as well as on modifications of existing patterns
dedicated to the distinct SLE challenges. We present our real-
ization within the MontiCore language workbench (Hölldobler
et al. 2021) and report our observations on how these designs
facilitate compositional language engineering with respect to
enabling black-box reusability of the generated and handwritten
tooling.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces preliminary work. Section 3 describes our
catalog of design patterns for compositional language design.
Section 4 discusses the advantages and disadvantages of apply-
ing the elaborated patterns, while Section 5 considers related
work. Finally, Section 6 concludes our work.

2. Preliminaries
Our work is based on foundations and discoveries within the
MontiCore language workbench and its unique features for
language composition. This section introduces both.

2.1. MontiCore
MontiCore (Hölldobler et al. 2021) is a language workbench for
the efficient conceptualization, design, implementation, and ex-
tensibility of modeling languages. These languages are created
based on context-free grammars in an EBNF-like (Wirth 1996)
syntax. Thus, the concrete and the abstract syntax of MontiCore
languages are created in a single effort.

When creating a new language, MontiCore processes the in-
put grammar and generates the foundational Java infrastructure.
The generated artifacts include a parser, abstract syntax classes,
a framework for well-formedness rules, symbol management
support, a visitor infrastructure, and code generation framework.
The parser processes textual models and transforms them into
an internal data structure, the abstract syntax tree (AST), by
instantiating the corresponding abstract syntax classes. The
AST is the abstract representation of a model, cleansed of syn-
tactic sugar. It is the primary data structure on which checks,
transformations, and synthesis are performed.

To check the well-formedness of models, MontiCore pro-
vides a so-called context condition (CoCo) framework. It en-
ables performing additional validation checks on the AST. These
are primarily context-sensitive tests or those which are difficult
or impossible to capture using the parser of a context-free gram-
mar. A common example is validating whether a used variable
has been declared before or whether it is set with a value of a
correct data type. Accordingly, CoCos are subsequent checks
that further restrict the set of valid models.

For each language, MontiCore comes with an infrastructure
for efficient management of symbols, the symbol table. The gen-
eral concept is adopted from compiler construction and provides
functionalities for efficient symbol resolving. Each element with
a unique referencable name is a symbol. The symbol table thus
contains the essential elements of a model, which are usually
also externally accessible (e.g., comparable to types, fields, and
methods in object-oriented programming languages). It allows
for efficient cross-referencing of elements and thus lifts the tree
structure of the AST to a graph structure.

For the efficient and type-safe traversal of AST and symbol
table, MontiCore supports a realization of the visitor pattern
(Gamma et al. 1995). It offers the general capability to provide
custom functionality for distinct aspects of the modeling lan-
guage without anchoring them directly in the model. The visitor
infrastructure is thus the foundation for implementing custom
operations and analyses. Multiple standard functionalities of
MontiCore are based on this infrastructure, such as the CoCo
framework or the symbol table.

MontiCore provides a code generation framework by default.
It processes the input AST and translates it into executable
program artifacts. For this purpose, the FreeMarker template
engine (FreeMarker 2022) is used. A template usually operates
on an AST node and represents the structure of the target code
to be synthesized. In addition, MontiCore builds a framework
around the FreeMarker engine, which supports managing the
generator templates, as well as configuring it from the outside
via hook points.

Within the MontiCore language workbench, some research
on design patterns for SLE has been conducted. These are
discussed in this paper under the particular background of com-
positional language engineering.

2.2. Language Composition
In object-oriented software engineering, best practices consider
the modularization of individual software components. These
can be composed differently and thus be reused. This notion
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gets more and more applied to SLE in the large (Hölldobler
et al. 2018) to cope with the ever-growing complexity when
developing bigger and more sophisticated modeling languages
(Vallecillo 2010). Therefore, many state-of-the-art language
workbenches feature various techniques to enable the composi-
tion (Erdweg et al. 2013) of existing language components. A
language component is a self-contained but possibly incomplete
logical unit of a language definition that is explicitly designed
for reuse and integration (Clark et al. 2015). An intuitive ex-
ample is a library of reusable expressions, literals, statements,
or types (Butting et al. 2020). Still, also full-fledged languages
can feature integrability, such as Statecharts as behavior descrip-
tion language inside a component and connector architecture
(Butting et al. 2016).

To support sophisticated SLE, MontiCore also offers dif-
ferent approaches to language composition (Hölldobler et al.
2021): Language inheritance, embedding, and aggregation. Lan-
guage inheritance generally refers adopting and expanding of
an existing language definition. This means that a modeling
language is extended by concepts and syntactic constructs in
a new grammar. In MontiCore, we generally distinguish the
terms language inheritance and extension. While both are refer-
ring to the same technical realization, extension is methodically
more restrictive as it considers conservation modifications only,
i.e., extensions without dangerous overriding. Thus, the tooling
of the original language remains reusable and extendable for
language extension.

Language embedding combines the constructs of different
modeling languages into a single integrated variant. Accord-
ingly, various language components are composed, allowing
syntactic constructs of different concepts to be modeled together
in the same artifacts. Technically, this is achieved by extending
multiple language definitions and combining their sentences in
a single grammar.

Language aggregation keeps the models of different mod-
eling languages separate but uses them in a shared context of
the target domain. Thus, distinct artifacts describe various as-
pects of a common target. For this, abstract syntax, CoCos, and
symbols of the included language spaces must be synchronized.
The design patterns we discuss in this paper mainly focus on
language extension or embedding. While aggregation is es-
sential for inter-model communication of homogeneous and
heterogeneous modeling languages, it is out of the scope of this
contribution.

3. Design Patterns for Composition Language
Engineering

One of MontiCore’s key objectives is fostering compositional
language design with particular regard to reusing provided tool-
ing (generated or handwritten). Thus, we have developed several
design patterns for combining existing language components, in-
tegrating handwritten artifacts, and enabling black-box reusabil-
ity. As these patterns are currently applied in MontiCore, they
are also reported in the corresponding handbook (Hölldobler
et al. 2021). Thus, some figures might be similar as they are
adopted from existing experiments.

3.1. RealThis
In software engineering, sometimes multiple individual objects
should act as one for the external world, allowing black-box
reusability without much configuration effort. This challenge
especially arises during compositional SLE. Often, various ob-
jects (sometimes throughout different language spaces) enable
modular parts of the overall functionality. Here, it is often con-
venient to generate independent artifacts in different generation
phases. The common challenge arising from excessive incor-
poration of individual subcomponents is the correct delegation
between them. Method calls must be delegable between arbi-
trary objects without establishing strong coupling through n to
n relationships.

For this purpose, MontiCore uses the realThis pattern. It
combines the composite pattern with delegation and callback,
managing an object group as a single instance. Thus, generally,
there is a single class whose instance acts as the externally avail-
able object. This object contains all other objects relevant for
providing the composed functionalities and serves as a distrib-
utor for the incoming method calls by delegating these to the
respective instances. If a sub-instance wants to call the function-
ality of another, it first delegates this call via a callback to the
main object, the so-called realThis, which then forwards the
call to the corresponding object.
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Composite forFunc1

Composite forFunc2

delegation of 

functionalities to 
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delegation of method calls 
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Figure 1 Example for the realThis pattern with three classes,
where the Composite class distributes the functionalities to
its attached subclasses Delegate1 and Delegate2.

To allow delegation across all composed objects with in-
tegrated callback, these instances must have a shared origin,
represented by the composing realThis object. All objects are
instances of a subclass of the composing class and thus provide
getter and setter methods for the realThis object. Figure 1 shows
a class diagram with a brief example of the corresponding archi-
tecture. Class Composite represents the superclass of the com-
posed objects. For each provided functionality, it contains an
attribute of its own type (cf. forFunc1 and forFunc2). When
the corresponding methods are called, the realThis instance
delegates to the accordingly mounted subobject. In this example,
two subclasses exist, which come with their specific realizations
of func1 and func2. The code snippet of Delegate1’s func1
shows how the objects interact with each other. The method
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func1 uses func2. Since the specific realization depends on
the overall context (i.e., the configuration in class Composite),
func2 is not called directly but indirectly via realThis.

SD

c:Composite

callback to 

composing object

d1:Delegate1 d2:Delegate2

func1()

func1()

getRealThis()

return cfunc2()

func2()

«setup»

«usage»

setForFunc1(d1)

setForFunc2(d2)

setRealThis(c)

setRealThis(c)

Figure 2 Sequence diagram for the execution sequence in an
architecture following the realThis pattern.

Figure 2 shows the general setup and usage of the object
structure. In this example, there are three objects in total: Con-
tainer c:Composite, which represents the shared realThis
instance, and the objects d1:Delegate1 and d1:Delegate2
for the sub-functionalities func1 and func2. First, the object
group is initialized. Therefore, the sub-objects for the selected
functionalities are attached to the composing object c using the
corresponding setter methods (e.g., setForFunc1). To enable
a callback during runtime, objects d1 and d2 have to know the
realThis instance. For convenience reasons, this is performed
directly from the composing object.

Using the functionalities of the assembled object group al-
ways starts from the encapsulating instance, the realThis (i.e.,
object c of Figure 2). In this example, we call func1. As a cor-
responding object is available for this functionality (i.e., d1), the
call is delegated to it. Following the specification of Figure 1,
d1 contains the functionality func1 but requires func2, which
is provided externally in d2. Since the invocation sequence is
configured via realThis, d1 performs a callback to the main
object with the instruction to invoke func2. Finally, the call is
delegated to d2, which completes the behavior sequence in this
example.

This way, objects without any factual knowledge about
each other can interact and function as a composed unit. The
realThis instance is the only entity that knows the configura-
tion of the functionalities and their associated objects. Although
the structure shown appears rather shallow, the pattern can,
in fact, operate on any number of indirection levels. Thus,
for example, object d1 could delegate its functionality again.
Important is that the actual realThis instance is passed on
transitively to all contributing objects.

Generally, an attribute does not have to be set for every
functionality. If it remains empty, this functionality is simply
not used, which can be sufficient in various situations. On the

other hand, an object can also offer several functions when
hooked into the composing object multiple times.

Despite the advantages of the pattern, especially in composi-
tional SLE, its use always comes with a certain overhead. For
instance, the object group must be initialized correctly, which
means that the composing objects must have their attributes
assigned correctly, and the realThis instance is set properly
for all objects. Although the initialization for a default config-
uration can often be generated, a manual setup, if required, is
cumbersome. Additionally, many indirection levels lead to a
huge stack of method delegations during runtime, which can
affect runtime and traceability.

The described design explains the original variant of the re-
alThis pattern. Furthermore, there are different variants with
advantages and disadvantages. For example, the pattern can also
be implemented without a common superclass. The generated
visitor infrastructure (cf. Section 3.5) uses a variant in which
classes of the composed objects have no inheritance relation-
ship to the class of the composing object to deliberately keep
inheritance hierarchies flat.

3.2. TOP Mechanism
When creating a modeling language and associated infrastruc-
ture, there eventually comes the point when the generated in-
frastructure needs to be extended manually. The seamless in-
tegration of handwritten into generated code poses a special
challenge since, on the one hand, the generated functionality
should be extended with as little effort as possible. Still, on
the other hand, a new generation must not overwrite the man-
ual modifications. Therefore, considering the separation of
concerns (Hürsch & Lopes 1995), it is widely accepted that
handwritten and generated artifacts should be strictly separated
from each other. Please note that there are other approaches
for directly integrating handwritten sources code into generated
artifacts. For example, the Eclipse Modeling Framework (EMF)
(Steinberg et al. 2008) allows methods to be modified directly in
generated artifacts. The modifications are protected by a special
tag so that they are not overwritten when the artifact is regen-
erated. For an extensive overview of embedding handwritten
code, we refer to (Greifenberg et al. 2015).

Traditionally, the generation gap pattern (Vlissides 1998)
envisions an extension of the generated artifacts via subclassing.
While this strictly separates the different sources, this approach
has the disadvantage of a large overhead, even for small changes.
The handwritten subclasses have to be integrated at the using (or
instantiating) locations of the generated code, which usually re-
quires at least an additional customization of the corresponding
builder or factory (if such design patterns are used at all).

Therefore, we have developed the TOP mechanism in Mon-
tiCore, which allows creating handwritten extensions of Java
artifacts that are automatically integrated into the generated
infrastructure. This mechanism has the advantage that lan-
guage developers can directly extend the classes of concern
without worrying about their usage. This allows for extending
the implementation, such as overriding methods, changing their
signatures, or introducing completely new functionality. The
TOP mechanism is sensitive to handwritten artifacts given in
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Figure 3 Application of the TOP mechanism for the generated infrastructure of an automata language. The mechanism automati-
cally detects handwritten artifacts, creates corresponding TOP classes, and redirects associations and builder targets.

a dedicated, configurable path. For each generated class, the
generator checks whether there is a corresponding hand-coded
implementation available. If so, it alters the generation process
such that an alternative class with the suffix TOP1 is generated
instead (giving this pattern its name). The TOP class features
the same functionalities as the actual generated class, allowing
for a comfortable extension. However, the application program-
ming interface (API) of the remaining infrastructure (generated
or handwritten) now points to the custom implementation. Thus,
seamless integration is achieved without any additional effort.

We show the effect of the TOP mechanism using a simple
Automaton example in Figure 3. The left-hand side (a) shows
the default generation of a class ASTAutomaton, which contains
lists of ASTState and ASTTransition. Additionally, builders
are generated for all domain classes, here exemplified by the
ASTStateBuilder. Since transitions represent connections
between states, the corresponding class also has source (src)
and target (tgt) associations to ASTState. In this situation,
there are no hand-written classes yet, so the entire infrastructure
is generated and self-contained.

On the right side (b), a handwritten implementation of the
ASTState class is now added, for instance, to extend the class
with new methods. Since the generator is sensitive to this class,
it creates ASTStateTOP instead when regenerated, which con-
tains the default implementation. The remainder of the gen-
erated infrastructure still uses the expected ASTState class,
which means the handwritten class is already integrated with-
out additional effort. The associations of ASTAutomaton and
ASTTransition thus automatically refer to the manual imple-
mentation and no longer to the generated artifact. Furthermore,
the ASTStateBuilder now also returns instances of the hand-
written class. Since ASTState extends the generated artifact
ASTStateTOP, it directly inherits all required features of the
corresponding AST node.

Generally, the handwritten class does not have to inherit
from the generated TOP class. However, this is strongly rec-
ommended since the generated artifacts additionally provide
a lot of standard functionality, such as common interfaces or

1 TOP is written in all capital letters to contrast with class names as they are
rarely written in upper case.

connections to the symbol table and the visitor infrastructure.
Extending the generated artifacts makes the change effort mini-
mal and applies only to the modified content.

As presented, the TOP mechanism offers a convenient so-
lution for integrating handwritten artifacts into the generated
infrastructure. It is a special variant of the generation gap pat-
tern, which reacts sensitively to manual input and adapts the
generation process accordingly. Since the customized content is
seamlessly integrated, this mechanism is also particularly suit-
able for compositional SLE since changes are made available
across language boundaries without additional effort.

3.3. Template Hook Pattern
The template hook pattern, often known as the template method
in its original presentation (Gamma et al. 1995), is one of the
most basic patterns in traditional object-oriented software en-
gineering. While its application is already common practice,
its fundamental concept offers particular advantages in the do-
main of SLE. The term template in this context generally means
a blueprint for object-oriented behavior implementations and
does not refer to FreeMarker templates that MontiCore uses for
generation.

In the template hook pattern, an algorithm is implemented
such that the general behavior is realized in a given blueprint
method, the so-called template. Partial computations are shifted
into modular functions, which are not part of the template itself.
The template calls these more modular functionalities, which
results in the so-called hooks. This allows customizing the
general algorithm by simply overriding individual hook methods
during subclassing. As a result, a developer does not always
have to redevelop an entire algorithm for marginal changes,
which generally facilitates the separation of concerns.

In MontiCore, we exhaustively apply the template hook pat-
tern as it is a perfect supplement when integrating handwritten
implementations (Hölldobler et al. 2021). Thus, in MontiCore,
we design the generated infrastructure explicitly for providing
various hook methods. In this case, such hooks lead to flexibly
extensible generated code. As introduced in Section 3.2, Mon-
tiCore uses the TOP mechanism to integrate handwritten code
with generated parts. As this mechanism utilizes subclassing as
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well, it perfectly integrates with the template hook method, as it
allows for overriding specific parts. Thus, almost all methods
in a generated class can act as hook methods. As in the case
of the TOP mechanism, the generator is sensitive to handwrit-
ten extensions when subclassing and renames the generated
superclass, such that the handwritten class not only adapts the
implementation but also extends the signature. This is an advan-
tage over the traditional generation gap (Vlissides 1998) pattern
as it fosters a seamless integration of handwritten artifacts in the
generated infrastructure without further integration effort. This
also supports compositional language design, as manually filled
hooks are automatically reused in tooling across the language
spaces.

CD

TemplateHookClass

default implement-

tation or abstract

«gen»

CustomHookClass

«hc»

+ templateMethod()

+ hookMethod()

+ hookMethod()

�

template 

calls hook

customized 

implementation

Figure 4 Template hook method via subclassing.

In general, MontiCore mainly uses two different realizations
of the template hook pattern: an integrated and a delegated
variant. Figure 4 shows an example of the integrated option, in
which a hook method is directly overwritten via subclassing.
This version is the standard form and is used, for example, when
using the TOP mechanism (cf. Section 3.2). In contrast, Fig-
ure 5 shows a variant in which hook methods are relocated to a
corresponding hook class. This has the effect that the template
class always implements the same behavior and delegates hook
calls to external classes, which can vary with the implementa-
tion. This variant contains more overhead but has the advantage
that a hook’s behavior is interchangeable even during the run
time. In MontiCore, this variant is used, for example, in the
visitor infrastructure (cf. Section 3.5).

CD

TemplateClass

«gen»

+ templateMethod()

template 

calls hook

HookClass

CustomHookClass

«hc»

+ hookMethod()

+ hookMethod()

�
customized 

implementation

Figure 5 Template hook method using delegation to explicit
hook classes

In MontiCore, we apply this design pattern not only to ex-
tend the generated infrastructure but also to extend the generator
itself. MontiCore uses the FreeMarker template engine for code

generation. The textual templates (not to be confused with the
term template of the overall pattern) are transformed into exe-
cutable Java artifacts. We extend the engine with a controller,
coordinating the management FreeMarker templates. Figure 6
shows an exemplary template in FreeMarker for generating a
simple class. In the body of this class, we define an explicit
hook point for the manual extension of the class contents (cf.
defineHookPoint(...), l.3). By default, this hook point is
empty and will be skipped during generation. However, if a gen-
erator user binds this hook point to one or multiple FreeMarker
templates, the controller will translate these templates and inte-
grate the result concerning the current content. Furthermore, the
FreeMarker template in Figure 6 presents delegating the genera-
tion of attributes (l.6) and methods (l.10) to dedicated templates.
In MontiCore, we use these standard template calls as implicit
hook points. Thus, it is possible to reconfigure a template call
with another to get more flexibility in the generation process.
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public class ${ast.getName()} { 

${defineHookPoint("ClassContent:Elements")}

<#list ast.getCDAttributeList() as attribute>

${tc.include("cd2java.Attribute", attribute)}

</#list>

<#list ast.getCDMethodList() as method>

${tc.include("cd2java.Method", method)}

</#list>

}

.ftl

explicit hookpoint

implicit hookpoints

Figure 6 Template hook method for the FreeMarker genera-
tor engine using implicit and explicit template hooks.

3.4. Mill
Even with powerful patterns for integrating handwritten and
generated artifacts or composing multiple objects, enabling
black-box reuse of code poses a specific challenge in SLE.
Implementations are always written against the current API, so
the passed data structure of the composed language might not
match the functionality’s infrastructure. In fact, this problem
arises for each kind of composable component. For instance,
the data structure must be extensible concerning subclasses
of known data types that allow the data structure’s extension
without changing the provided functionality of a component.
Simultaneously, black-box reuse of component functionality,
even on a slightly new data structure, must be preserved without
requiring adaptations for the extended, composed case or any
need to be recompiled. Thus, component functionality should
also be usable in a compositional environment, even if it creates
new objects.

This compositional setting is especially troublesome because
even the mere instantiation of an object or the traversal of a
composed data structure creates enormous challenges. When
instantiating an object, a constructor cannot be used because
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the specific data type is unknown (and always different) in the
compositional context. The general use of builders or factories
is appropriate here, but in this case, it is only of limited use
since these also have to be instantiated on the one hand but must
also be kept completely interchangeable, ultimately resulting in
the same issue. Accordingly, we need an additional indirection
level, a kind of builder for the builder, which can be configured
statically and globally from the outside for the respective com-
posed context. We call this construct the mill, which gives the
design pattern its name.

The basic idea of the mill is to give the developer a function-
ality of a static access point, which can be used to get all varying
instances. Thus, for example, the mill can suitably instantiate
any builder, which then, in turn, creates the actual classes. A
developer does not have to care about the specific type of the
builder but only asks the mill for the appropriate instance.

G1Mill

+ init()

+ initMe(G1Mill me)

+ G1Parser      parser()

# G1Parser      _parser()

+ G1Traverser traverser()

# G1Traverser _traverser() 

+ ASTFooBuilder fooBuilder()

# ASTFooBuilder _fooBuilder()
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# ASTFooBuilder _fooBuilder()

+ ASTBarBuilder barBuilder()
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when calling G2Mill.init()

providing identical functionality

1. instantiates

CD

Figure 7 The mill contains static and non-static methods to
create a global yet configurable accessor for the infrastructure.

In MontiCore, we use this concept not only for domain
classes (i.e., the AST) but also for any construct exchange-
able in the compositional context, such as the parser, visitor
infrastructure, or symbol table. Figure 7 shows the generated
mills for two languages, G1 and G2, where G2 extends G1. In
this example, we assume that G1 provides the class ASTFoo. G2
overrides this class with its custom variant and also introduces
the class ASTBar. The mill itself follows the static delegator
pattern. This means that for each functionality, a static method
is designated as the external access point, while an internal in-
stance method provides the actual functionality. For instance,
this can be observed in G1 since two methods are provided
for each of the provider functionalities. The respective static
method delegates to the instance method. When instantiating
an ASTFooBuilder, for example, a developer uses the call of
the static method G1Mill.fooBuilder(). It delegates to the
particularly configured instance method. By default, in the non-
compositional case, this is the _fooBuilder() method of the
same class.

The mill for the G2 language operates analogously. The
interesting scenario occurs when functionalities provided at the
G1 level should be used in the compositional context of G2,

for instance, the instantiation of the ASTFooBuilder. As the
class ASTFoo is overridden in the context of G2, so is its builder,
and thus the corresponding G2 variant of the builder must be
used. However, the mill pattern enables exactly this flexible
exchangeability from the outside. Calling the init method of
the G2Mill also automatically invokes the initMe method of
the G1Mill with an instance of the G1MillForG2. This class
is the link between the two language spaces and overrides the
instance methods of the G1Mill. If a static access method is
now called within the G1Mill, it delegates to the corresponding
methods of G1MillForG2, which in turn provides the required
functionalities from the G2Mill instance.

This way, functionalities of different language spaces can
be developed independently but still be used collaboratively in
a compositional context. It is noteworthy that while the mill
pattern is very powerful, it also comes with great responsibility
towards the developers. On the one hand, it is important to use
the mill or a builder obtained via the mill for each instantiation.
If developers do not follow this convention, it can lead to invalid
instances in the data structure or, in the worst case, create type
clashes at runtime for the compositional case. On the other
hand, the initialization of the mill must be performed only once
at the beginning of a program run. This explicitly means that a
provided functionality should only use a mill but never reinitial-
ize or reset it since this has unpredictable consequences in the
composed infrastructure.

3.5. Visitor Infrastructure for Compositional Language
Design

Implementing sophisticated tooling for a modeling language
typically involves providing functionalities or analyses for a
parsed model, requiring traversing the AST or symbol table.
Following the separation of concerns, it is often advantageous
to implement the operations separately from the explicit nodes
and reuse a shared traversal algorithm over the model instance.
The visitor pattern (Gamma et al. 1995) tackles this problem
by transversing an (often tree-like) data structure and providing
visit methods for the individual node types, which realize the
desired operations. Thereby the navigation is decoupled from
the actual functionality, which allows generating the general
traversal strategy for a language, such that only the custom
implementation has to be added manually.

MontiCore provides a customized realization of this pattern,
tailored for language engineering and reusability in a composi-
tional scenario. Here, the traversal algorithm is separated from
the data structure to keep it independently adjustable. Generally,
MontiCore generates the essential infrastructure for the visitor-
pattern realization. For each visitable AST node (or symbol)
of a language, the following methods (Hölldobler et al. 2021)
are provided by default (here, on the example of the AST node
ASTFoo):

• handle(ASTFoo node) defines the iteration algorithm on a
node. By default, it calls visit, traverse (the children),
and endVisit.

• traverse(ASTFoo node) defines a climbdown strategy
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(i.e., the traversal of the children). The default is depth-
first with no guaranteed order.

• visit(ASTFoo node) is called when entering the node.
By default, it contains no behavior and represents a cus-
tomizable extension point for the desired functionality.

• endVisit(ASTFoo node) is called when leaving the node.
It is an analog hook point to the visit method.

Furthermore, each traversable node implements an accept
method. The visitor infrastructure triggers this method to sim-
ulate double dispatching. Since Java only supports single dis-
patching, this detour guarantees that a visited node is recognized
in a type-correct manner. This is achieved by calling accept
when traversing a node, which, in turn, triggers the handle
method with itself as an argument.

CD«interface»

G1Traverser

G1TraverserImplementation

«interface»

G1Handler

«interface»

G1Visitor2

0..1

*

G1InheritanceHandler

language G1

Figure 8 Generated visitor infrastructure for a language G1.

These methods are distributed across the generated visitor
infrastructure, which includes, for each language, the inter-
faces Traverser, Visitor2, and Handler, as well as the
class TraverserImplementation. Figure 8 presents this in-
frastructure for the language G1, containing the corresponding
interfaces and classes, each individualized with the prefix of the
respective language name.

The infrastructure follows a compositional design in which
the traverser encapsulates all other objects involved in a func-
tionality. Therefore, a variant of the realThis pattern (cf. Sec-
tion 3.1) is applied, where the traverser is the conceptual access
point for all actions, which delegates method calls to the correct
instances. The attached objects, in turn, know the encapsulating
traverser and can delegate back to it if necessary. The traverser
contains the default behavior for dealing with traversed nodes,
thus implementing the handle and traverse methods for all
types of nodes. It applies a depth-first climbdown strategy. To
customize the handle or traverse implementations, a correspond-
ing handler can be attached. The traverser does not use its
default in such a case but delegates to the new behavior. For
visit and endVisit calls, it always delegates to the corre-
sponding hooked Visitor2 instances. The traverser is, in its
realization, divided into two parts: an interface and an imple-
menting class. Here, a language developer implements against
the interface, which provides the necessary method signatures.
The class additionally handles the attributes management for at-
tached visitors or handlers (Hölldobler et al. 2021). The reason

for this bipartition is the reusability of standard implementa-
tions in compositional language construction. Generally, the
traverser interface extends all traverser interfaces of the ex-
tended languages, reusing their behavior. This leads to multiple
inheritance, which is only possible in Java via interfaces.

The Visitor2 interface of a language provides visit and
endVisit methods for each node, intended for customization.
A language developer can implement and attach these interfaces
to a traverser. During traversal, the traverser delegates to the cor-
responding custom implementation. When entering a node, the
visit method is called. Analogously, the endVisit method is
triggered when leaving the respective node (i.e., when all child
nodes have been traversed). In contrast to the traverser, a visi-
tor is language-specific, containing only visit and endVisit
methods for the nodes introduced in the respective grammar.
Thus, the traverser supports binding visitors of all included sub-
languages to implement behavior specific to different language
components in a composed scenario. Furthermore, a traverser
manages lists of visitors, allowing for executing multiple func-
tionalities in a single run. When processing a node, it calls
the visit/endVisit methods of all hooked visitors. While
this mechanism increases efficiency, a language developer must
ensure that the attached visitors do not cause any conflicts due
to potential side effects.

Furthermore, MontiCore generates the Handler interface.
While the traverser already contains a default implementation
for handle and traverse methods, a handler enables their
customization. It allows adjusting the traversal algorithm for
specific nodes while preserving the default for the others. Simi-
lar to the visitor interface, the handler is language-specific, thus
containing methods only for the associated sublanguage. The
difference is that a traverser allows at most one handler for each
sublanguage instead of a list since it only makes sense to adjust
the traversal strategy once. According to the used variant of the
realThis pattern, a handler delegates all method calls back to the
traverser, which in turn manages their distribution. Thus, the
handler offers to customize the traversal strategy individually.
In most cases, however, the default depth-first approach should
be sufficient, such that a handler is not required.

Finally, MontiCore already generates a variant of the handler,
the InheritanceHandler. It implements the corresponding
interface and overwrites its methods. The reason is that the
default traversal algorithm only visits a node as its most spe-
cific type. However, since AST nodes can extend others, it is
often desirable for a node to also be handled as its more gen-
eral type. This is especially important in the compositional
case to enable the reuse of already implemented behavior. The
InheritanceHandler solves this problem by triggering for
each node not only the most specific visit and endVisit
methods but also those of its supertypes. When realizing func-
tionalities via the visitor pattern, the InheritanceHandler
should thus be preferred to support reusability in language com-
position.

Figure 9 shows the control flow of a traverser with an at-
tached visitor implementation, here on the example of a pretty
printer. The traversal is started by calling accept(t) on a
node (here: ast). This, in turn, calls the handle method of the
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tool:G1Tool pp:G1PrettyPrintert:G1Traverserast:ASTFoo

accept(t)
handle(ast) visit(ast)

print(name)

traverse(ast)

endVisit(ast)
print("\n")

getName()

return name

Figure 9 Control flow of a traverser with an attached visitor
implementation on the example of a pretty printer.

traverser with itself as parameter, thus enabling double dispatch-
ing. The traverser delegates to the visit method of the pretty
printer and passes ast as argument. The printer, in turn, reads
the name attribute of the passed node and prints it. After com-
pleting the visit call, the traverser traverses the node. In this
simple example, we assume that there are no other child nodes,
leaving this operation empty. Thus, the traverser finally triggers
the printer’s endVisit method, which produces a line break
in the output. This way, the presented infrastructure enables
performing complex operations on AST and symbol table. The
complexity is largely hidden to the language developer, who
ideally only has to implement visitor interfaces and hook these
into a traverser.

:G1Traverser

Implementation
G1Mill

G1MillForG2

G2Mill

«G1»

«G2»

protected G1Traverser _traverser() {

return new G1TraverserImplementation();

}

protected G1Traverser _traverser() {

return new G2TraverserImplementation();

}

protected G2Traverser _traverser() {

return new G2TraverserImplementation();

}

:G2Traverser

Implementation

:G2Traverser

Implementation

G1Mill.traverser();

G1Mill.traverser();

G2Mill.traverser();

initializes 

G1Mill with 

G1MillForG2

Figure 10 The instantiation of a traverser via mill in a com-
posed scenario. The mill always returns the correct traverser
instance with respect to the current language space.

The presented visitor infrastructure is tailored explicitly for
its application in compositional language engineering. As ex-
plained, the traverser interfaces inherit from their respective
sublanguage counterparts to provide the appropriate methods

for the nodes of all included language components. Neverthe-
less, a developer can only implement functionality based on the
traverser known in the current language. Overall, this limits the
black-box reusability of visitor configurations since an extend-
ing language may introduce new node types that are unknown
to the original traverser. To enable reusability without manual
adjustments, the traverser must be automatically replaced by a
more specific variant. MontiCore realizes this functionality in
combination with the mill pattern. Figure 10 shows the adaptive
replacement of the traverser using the example introduced in
Section 3.4. The language G2 extends G1. To ensure a correct
traverser instance at each language level, the traverser must
always be initialized via the associated mill. Thus, a developer
for G1 functionalities must consistently create it using the mill
with the static call G1Mill.traverser(). Due to the real-
ization of the mill as static delegator, the same call leads to a
corresponding instance of the G2Traverser in the context of
G2. This is because the actual instance of G1Mill has been
replaced by G1MillForG2, which delegates the instantiation.
Thus, by combining the mill pattern with the concrete realization
of the visitor pattern, MontiCore supports adaptable traversers
enabling black-box reusability in language composition.

4. Discussion

The presented design patterns for compositional SLE are based
on our experiences in engineering modeling languages in Monti-
Core. However, the catalog is obviously just a starting point and
does not claim to be complete. Other patterns are conceivable,
which are tailored to specific issues. Table 1 provides a con-
densed overview of the presented catalog. Generally, applying
these patterns enhances functionality, especially for language
composition, but often increases complexity and requires addi-
tional attention by language developers.

The presented patterns have been developed to support the
engineering of modeling languages, especially in a composi-
tional context, in which the syntax and existing tooling of the
individual language spaces can be reused. However, despite
applying these patterns, it is still possible to build invalid com-
posed languages. Constructs of different language components
may be mutually exclusive, or a language designer may ex-
plicitly choose to override pre-existing productions restricting
the overall language. This could cause parsing issues but also
conflicts and clashes in the AST. To improve this situation, we
introduce the term conservative extension in MontiCore (Höll-
dobler et al. 2021). Languages are extended conservatively if all
models of the extended sub-languages are still valid models of
the resulting composed language. This implies fewer conflicts
(such as type clashes) and increased black-box reusability of
existing tooling on the AST.

While the patterns provide substantial support for composi-
tional SLE, language engineers also require a large amount of
foresight to adhere to a pattern’s specifications. This is most
obvious in the example of the mill (cf. Section 3.4), which must
be used consistently for instantiating new objects and must not
be initialized or reset negligently. In this case, the application
is particularly deceptive since engineers have hardly any im-
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Table 1 Overview of the proposed design patterns for compo-
sitional SLE with use case, objectives, and (dis-) advantages.

realThis

Use Case Multiple individual objects should act as a single in-
stance for the external world.

Objectives • combines composite with delegation and callback

• manages an object group as a single instance

Advantages • black-box reusability of composed functionalities

• shared central entity reduces number of relationships

• generation of default configurations possible

Disadvantages • many delegation steps during runtime

• custom configurations potentially cumbersome

TOP mechanism

Use Case Automatic integration of handwritten artifacts into the
generated infrastructure.

Objectives • detects custom counterparts of generated artifacts

• incorporates handwritten classes instead of generated

Advantages • seamless integration of handwritten code

• no additional integration effort

• no overriding of customizations when re-generating

Disadvantages • naming convention

template hook

Use Case Splitting a computation or generation step into multiple
modular functionalities.

Objectives • enables exchangeable atomic functionalities

⇒ facilitates the integration of handwritten code

• modularization of code generators

Advantages • small modification and extension effort

• good cooperation with the TOP mechanism

• modular computation steps and generation templates

Disadvantages • additional maintenance effort for template entities

mill

Use Case For composed languages, objects should be instantiated
adaptively with respect to their current context.

Objectives • provides a globally exchangeable builder for builders

Advantages • black-box reusability of compsed functionalities

• flexible exchange of builders due to a static delegator

Disadvantages • direct benefits hidden for base language developers

• responsibility to intrinsically adhere to the pattern

visitor infrastructure for compositional SLE

Use Case Implementing additional functionalities on a (poten-
tially compositional) data structure

Objectives • traverses data structure to add external functionalities

Advantages • adding functionality without altering of data structure

• automatic adaption of traversal to new data structure

• black-box reusability of composed functionalities

• built-in double-dispatching

Disadvantages • rather complex compared to original visitor pattern

mediate advantages within their own language compared to the
direct use of corresponding builders. The effects of the pattern,
and thus also potential errors due to incorrect use, only become
apparent during composition and the intended black-box reuse
of functionalities.

Our generated infrastructure is designed to be particularly
robust for composed SLE while adhering to the presented de-
sign patterns. However, this comes with the disadvantage of an
excessively complex structure, increasing the barrier to entry
for development. For instance, the realization of the visitor pat-
tern splits the functionality across multiple composed elements.
While this increases reusability, it imposes a rather complex
design compared to the original visitor pattern. Nevertheless,
we think this complexity is justified as the standard case is still
relatively straightforward, and the complexity ultimately pays
off for sophisticated composed modeling languages.

Finally, our work concentrated on design patterns for SLE
that could foster reusability in a compositional setting. How-
ever, we did not elaborate on the composition of their code
generators. Generator composition is an interesting field with
open challenges, such as synchronizing existing generators or
their produced artifacts. While some application domains have
specifically tailored approaches (Ringert et al. 2015), the overall
topic is still ongoing research.

5. Related Work
Different software engineering design patterns have been pre-
sented in detail over the past decades (Gamma et al. 1995).
They help to develop, maintain, and sustainably evolve modern
software systems. In the following, we provide an overview
of patterns related to our catalog. Often, these are related to
existing ones or introduce variations for compositional SLE.

5.1. Delegation and State
Generally, the behavior of a given class is modifiable using
inheritance. Any call to the overridden method is handled by the
overriding method. An alternative to behavior modification in
object-oriented programming languages is given by delegation
(Lieberman 1986) (also known as redirection (Smith & Stotts
2002)) based on object composition.

During delegation, the object receiving the request delegates
the request to a contained object (delegate) which handles the
request. The object’s behavior can thus be modified by exchang-
ing the delegate. Additionally, multiple methods using multiple
delegates allow for more flexibility than given by inheritance,
especially for programming languages only allowing for single
inheritance, such as Java.

Using a single delegate in which all requests are passed
toward one can alter an object’s behavior by exchanging the
delegate in a similar way to interchanging the object with an-
other object where both objects’ classes differ but derive from
the same base class. However, unlike an actual change of the
object, the state pattern allows to seemingly change the state
of the object without updating all of its references. We use
the additional flexibility provided by the state pattern in the
realThis pattern, where we, instead of having multiple states,
store multiple delegates at the same time.
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5.2. Strategy
Interchangeability of algorithms can be achieved by having each
algorithm contained in its particular class (concrete strategy)
(Gamma et al. 1995). Each concrete strategy implements a
common interface (strategy) that can be used in a context. In-
terchanging a concrete strategy with another is reflected in a
change of the program’s behavior when the strategy is called.
This pattern can be used in conjunction with delegation, chang-
ing the object’s behavior. Alternatively, a strategy is transmit-
table to and from methods enabling complex algorithm design.
Overall, the strategy pattern is fairly comparable to the state
pattern. In the same way, the realThis pattern may be used to
combine strategies using multiple partial implementations.

5.3. Template Method
When encountering multiple method implementations that only
partially differ, decreasing code duplication can be achieved by
exchanging these methods with one template method (Gamma
et al. 1995). The template method contains the common parts
of the given algorithms, while the the original parts are given
by calls to hook points; These hook point methods (re-)define
the details of the algorithms. The behavior of the template
method can be changed by overriding the hook point methods
in a subclass. Alternatively, the template method pattern can be
combined with delegation, implementing the original parts in
sub-classes of the delegates. The TOP mechanism makes heavy
use of this concept by having every method in the generated
code be a hook point with default behavior to potentially be
overridden in the corresponding subclass.

5.4. Bridge
As the implementation of interfaces by inheritance strongly
couples the implementation to the respective interfaces, fur-
ther decoupling enables greater future modifiability. To this
extent, an interface and its implementations are replaced by a
class delegating its request, forming a bridge between interface
and implementation (Gamma et al. 1995). A change of the
delegate does not require changes in the derived classes of the
class responsible for delegating. Replacing the delegate has a
similar effect as replacing the base class, which implements
the interface without modification to the derived class. This
concept is compatible with the realThis pattern, as any class
containing multiple delegates can be further extended with more
methods and their implementations can again be realized using
the realThis pattern.

5.5. Adapter
Another option to decouple interfaces and their implementations
is not requiring the implementations to implement the specific
interfaces. Instead, an adapter class is introduced, which imple-
ments the interface (Gamma et al. 1995). The adapter then uses
the class with a different interface (adaptee) to implement the
target interface. The adaptee only consists of lightweight logic
to mitigate the difference between the adaptee’s interface and
the target one. The adapter pattern allows to implement classes
and use them without modifications in a new context. Figure 7

shows how this is used in the mill pattern. G1MillForG2 im-
plements the interface of G1Mill using the implementations
provided by the G2Mill.

5.6. Factory Method

While the program’s behavior can be modified using subclass-
ing, objects of said subclasses are required and thus are required
to be instantiated. As such, dependent on the given state of
the program, different subclasses are required. To decouple
the decision of which class to instantiate, one may use a fac-
tory method (Gamma et al. 1995). A factory method is used
instead of a specific constructor; it returns a new instance of a
corresponding subclass, while the decision of which subclass to
instantiate is left to the implementation of the factory method.
The factory method’s behavior can itself be modified using sub-
classing. Thus object creation of specific subclasses can be
achieved within code without knowledge of said subclasses.
Factory methods are part of the mill pattern to provide the cor-
rect types when one language extends another.

5.7. Singleton

A singleton class is one that guarantees never to have multiple
instances. Additionally, the instance is globally accessible. To
this end, a static method can be used to get the only instance
stored as a global state, e.g., as a static attribute of the singleton
class. To control the number of instances, the constructor is
made inaccessible. In its place, a (static) method may be used
for initialization if and only if there is no instance already. Mill
instances of the corresponding pattern are conceptually similar
to singletons providing static methods with interchangeable
implementations (e.g., factory methods that return different
instances given language extension).

6. Conclusion and Dedication to Antonio’s
Birthday

Historically, we were interested in providing tools for effective
agile use of the UML in software development. Discovering
that developing such a tool is itself a complex task, which
must become more agile and effective. In doing so, we started
our efforts in developing the MontiCore language workbench,
which meanwhile allows us to not only develop UML analysis
and synthesis tools but also address the SysML and various
domain-specific languages, where quite a number of them are
not especially dedicated to software and not even to systems
engineering. Agility largely comes from the ability to reuse
predefined components without having to modify their internals.
MontiCore, therefore, did put considerable emphasis on compo-
sitionality. The presented design patterns were to some extent
developed, adapted, or also reused directly for this effort.

Much of the work done in MontiCore was heavily influ-
enced by Antonio’s work. For instance, Antonio’s work on
UML profiles (Fuentes-Fernández & Vallecillo-Moreno 2004)
inspired us to look at customizability and especially variability
of languages (Butting et al. 2018, 2021), both on semantics and
syntactic elements. A special highlight also was his works on
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using functional programs and term rewriting techniques avail-
able in Maude to breathe behavioral life into the UML (Romero
et al. 2007; Rivera et al. 2009).

His and his colleagues’ work on model transformations (Val-
lecillo et al. 2012; Troya Castilla & Vallecillo Moreno 2011;
Rivera et al. 2009; Gogolla & Vallecillo 2011) helped us to un-
derstand how to improve internal transformations when synthe-
sizing code, but also what is needed to systematically synthesize
explicit transformation languages that are based on the concrete
syntax of the underlying modeling language (Hölldobler et al.
2015).

The WebML approach (Moreno et al. 2007) showed us how
to use the UML for modeling and cutting out larger parts of a
complete software system as done in MontiGem (Gerasimov,
Michael, et al. 2020) for generating financial management sys-
tems (Gerasimov, Heuser, et al. 2020), digital twin cockpits (Dal-
ibor et al. 2020), low-code platforms (Dalibor et al. 2022), or
assistive systems (Michael et al. 2020).

There are many more such influences, e.g., Antonio’s work
on model differencing (Rivera & Vallecillo 2008) that we use
for our model differencing techniques (Maoz et al. 2011).

This all shows that Antonio is a brilliant and diligent software
engineer who is an important member of our community with
many, many highly valuable contributions. Antonio is and has
always been a very inspiring colleague when we met in various
conferences and workshops over the years.

Our work would not have been the same if he wasn’t there.
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