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ABSTRACT A few years ago, Antonio Vallecillo and I initiated a long-term collaboration on different matters related to MDSE. In
particular, we were interested on the possibilities of analysing models, long before they were implemented. For that, we explored
the possibility of graphically defining the behavior of systems and DSMLs. Then, using Maude as back-end tool, and by defining
a model transformation between our language for DSML definition and Maude, we were able to execute and analyze DSMLs
defined in this way. The simplicity of the setting, and the reduced effort in its implementation allowed us to explore the possibility of
considering time-related features, different forms of analysis, including reachability analysis, model checking, and statistical model
checking. The same ideas have later been also applied to multi-level modeling in the MultEcore system. This paper summarizes
the main contributions by Antonio and myself on these matters.
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1. Introduction
Model-driven software engineering (MDSE) promotes the use
of abstractions and different modelling techniques to tackle the
complexity of software by considering models as primary arti-
facts in each phase of the software engineering life-cycle (Kent
2002). Indeed, MDSE advocates the use of models as the key
artifacts in all phases of development. By using appropriate tech-
niques, whole systems can in this way be implemented, even
automatically generated, from these models, with a number of ad-
vantages (Brambilla et al. 2012). Also, these models can be used
to carry on some analysis on them, allowing us to establish certain
guarantees on the generated systems at design time. This has in
fact been a goal for the software industry for decades, comparing
itself with other branches of engineering were models and analy-
sis tools have been available for many years, and are continuously
being improved and adapted to everyday’s new challenges.

In MDSE, many different possibilities for the analysis of
models are available, from syntactic or type checkings to so-

JOT reference format:
Francisco Durán. Rewriting Logic and Maude for the Formalization
and Analysis of DSMLs, and the Prototyping of MDSE Tools. Journal
of Object Technology. Vol. 21, No. 4, 2022. Licensed under Attribution
4.0 International (CC BY 4.0) http://dx.doi.org/10.5381/jot.2022.21.4.a2

phisticated theorem proving or model checking. At development
time, more low-level facilities, like editors, collaboration tools,
typing checks, etc. are the most valuable ones. However, our
efforts mean nothing if what is being developed does not meet
our requirements, and therefore, the sooner we are able to check
properties on our models the better. And precisely in this later
type is where we are nowadays short.

To be able to define models, using concepts as close to the
problem domain as possible, different technologies for the
definition of Domain Specific Modeling Languages (DSMLs)
have been proposed (see, e.g., (Kelly & Tolvanen 2008)). The
main goal of these DSMLs is to follow the domain abstractions
and semantics, allowing modelers to perceive themselves as
working directly with domain concepts. Model transformations
may then be used to analyze certain aspects of models and then
automatically synthesize various types of artifacts, such as source
code, simulation inputs, or alternative model representations.

With these ideas in mind, and trying to use our own medicine,
several years ago Antonio Vallecillo and I initiated a collabora-
tion to explore the possibility of graphically defining the behavior
of DSMLs. The original idea was to model change as local trans-
formations of UML’s object diagrams, but we soon became aware
of graph transformation systems and tools like AGG (Taentzer
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1999) and AToM3 (de Lara & Vangheluwe 2002). The potential
of graph and term rewriting took us into the possibility of expand-
ing existing modelizations, and considered the possibility of pro-
viding support for the definition and analysis of real-time systems.
E. Rivera, who developed the e-Motions language and tool as
part of his PhD, was key in this effort. Instead of developing a full-
fledged implementation of e-Motions, the system was engineered
as a model transformation into the Maude language (Rivera &
Vallecillo 2007). Graphical support was developed as an Eclipse
plug-in, but underneath there was a formal tool giving access
to Maude’s capabilities. The approach presented three main ad-
vantages: (1) the transformation defined a formal semantics in
rewriting logic of the e-Motions system; (2) this formalization
gave access to Maude’s environment of formal tools, and (3) the
fact that rewriting logic is executable under given conditions,
allowed us to also simulate, through such a transformation, the
DSMLs defined using e-Motions. All were advantages:

– Even though in the MDSE world not much attention is paid
to the formal semantics of languages and tools, e-Motions’
semantics was made explicit, and the sound use of tools like
Maude’s reachability checker and its model checker were
made directly available.

– The approach opened also the possibility to access
other tools in Maude’s formal environment (Durán et al.
2011b,a), like its theorem prover (Clavel et al. 2006), its
termination (Durán, Lucas, & Meseguer 2008; Durán et al.
2009; Durán, Lucas, Marché, et al. 2008), Church-Rosser
and coherence checkers (Durán & Meseguer 2012; Durán,
Meseguer, & Rocha 2020), or its symbolic analysis capa-
bilities (Durán, Eker, et al. 2020). We have not had the time
nor the resources to include these in the e-Motions’ tool, or
we may say that more interesting challenges got in our way.

– Even though the transformation into Maude only provided
a prototypical implementation, it presented a number of
advantages, in addition to the obvious disadvantages:

- First and foremost, even though the efficiency of term
rewriting modulo associativity, commutativity and
identity (ACU rewriting) available in Maude, it is
easy to imagine a faster implementation written in
C++ o Java.

- Furthermore, although efficiency was in our minds,
maintainability and correctness of the specifica-
tion/implementation was more important to us. In
fact, our main goal was to keep the specification at
the highest possible level. The level was so high, that
the distance between the textual representation of the
e-Motions transformation rules and the Maude rules
was close to zero. The main advantage of this is that
the transformations between e-Motions DSMLs and
Maude specifications, and back, were straightforward.
Most of the effort went into engineering the formal
semantics, the key part, and the graphical interface.

- Since the Maude specification of e-Motions satisfied
its executability requirements, the specification
was automatically executable, and we got access to
simulation, reachability analysis, and model checking

for free. The only price to pay was on the graphical
representation of the outputs of the tools back in the
Eclipse plug-in.

- The low effort in its development made it very
attractive to experiment with new features.

The approach opened several doors related to the development
of other tools, mainly related to:

– Access to new analysis techniques: statistical model check-
ing was made available to e-Motions in (Durán et al. 2016).

– Multi-level modeling (MLM): the same techniques used for
e-Motions were applied to the development of an implemen-
tation for the MultEcore system (Macías et al. 2016, 2017,
2018), a system for the development of MLM DSMLs. In
this case, a categorical semantics was provided in (Macías
et al. 2018; Wolter et al. 2020) and its full-fledged devel-
opment using Maude was presented in (Rodríguez, Durán,
et al. 2019; Macías et al. 2019; Rodríguez et al. 2022).

– Composition of DSMLs: the composition of DSMLs using
e-Motions and MultEcore, or formalized using related
technologies, was explored in (Durán, Orejas, & Zschaler
2012; Durán, Zschaler, & Troya 2012; Moreno-Delgado
et al. 2014; Zschaler & Durán 2017; Durán et al. 2017;
Rodríguez, Rutle, et al. 2019; Zschaler & Durán 2021).

– Several challenging case studies were developed.

- Using e-Motions:
· The real-time and composition capabilities of

e-Motions were exploited to model different
non-functional properties with which to analyze
systems in (Durán, Zschaler, & Troya 2012;
Troya et al. 2013).

· A significant part of Palladio was modeled in
e-Motions in (Moreno-Delgado et al. 2014).

· Self-adaptive systems were modeled and
analyzed using e-Motions in (de Oliveira et al.
2017, 2021).

· A. Moreno-Delgado won the “ease of use" award
in the 14th Transformation Tool Contest with
his specification of the Movie Database Case
(Moreno-Delgado & Durán 2014).

· The tool and several other case studies are
available from Atenea’s web site at https://
atenea.lcc.uma.es/projects/E-motions.html.

- Using MultEcore
· Coloured and other types of Petri nets were

modeled in (Rodríguez et al. 2018; Durán &
Rodríguez 2021; Rodríguez et al. 2022).

· F. Macías and A. Rodríguez have participated in
several editions of the MULTI Challenge (Macías
et al. 2017; Rodríguez & Macías 2019).

· The tool and several other case studies are
available at https://ict.hvl.no/multecore/.

The rest of the paper is structured as follows. Section 2
summarizes the main features of the e-Motions system and
its approach for the modeling of time-dependent behavior of
DSMLs. Section 3 presents the main ideas behind the support in
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MultEcore for multi-level modeling and its transformation into
Maude to provide execution and analysis facilities. Section 4
discusses the main ideas on the support for formal analysis
provided to e-Motions and MultEcore DSMLs. Section 5 widens
the discussion to some related works and concludes.

2. The graphical modeling of time-dependent
behavior of DSMLs with e-Motions

DSMLs are typically defined by means of their structural
aspects—with their corresponding abstract and, in some
cases, concrete syntaxes. These definitions allow the rapid
development of languages and some of their associated tools,
such as editors, browsers, etc. Then, typically, to perform some
type of analysis on or to generate code from these models, they
are transformed into formalisms or programming languages with
the appropriate tool support. However, the semantics of such
DSMLs is embedded in the model transformations, and provided
by the target formalism, what constrains the rapid definition of
such languages. To overcome this situation, different authors
have proposed different ways of providing an operational
semantics as part of the definition of DSMLs, possibly being the
most successful one the one using graph transformation systems
(GTS) (Rozenberg 1997), with systems such as AToM3 (de
Lara & Vangheluwe 2002), AGG (Taentzer 1999) or e-Motions
(Rivera et al. 2009b) implementing it.

The specification of the explicit behavioral semantics of
DSMLs helps in MDSE activities such as quick prototyping,
simulation, or analysis. Ensuring semantic properties of models
is important because any error in a model can easily become a
systemic error in the system under development. E.g., AGG and
e-Motions provide support for the simulation of models defined
conforming to user-defined DSMLs. These and other languages
provide support for different kinds of analysis as well, like
termination checks, critical pair analysis, or reachability analysis
(see, e.g., (Taentzer 1999) and (Rivera et al. 2009a)). Tools like
CheckVML (Schmidt & Varró 2003), GROOVE (Rensink 2003)
and e-Motions (Rivera et al. 2009b) support the model checking
of systems whose behavior is specified by graph transformation
systems. The e-Motions tool also provides support for statistical
model checking of user-defined DSMLs (Durán et al. 2016).

One way of specifying the dynamic behavior of a DSL is
by describing the evolution of the modeled artifacts along some
time model. In MDSE, this can be naturally done using model
transformations supporting in-place update (Czarnecki & Helsen
2003). The behavior of the DSL is then specified in terms of
the permitted actions, which are in turn modeled by the model
transformation rules. In these transformation languages, source
and target models are always instances of the same metamodel
(i.e., they are endogenous transformations), and rules are used
to (1) describe the preconditions of the actions to be triggered,
and (2) represent the effects of these actions in the model. If
these transformations use the concrete syntax associated to a
DSML, they allow designers to work using only domain specific
concepts (de Lara & Vangheluwe 2008), thus raising the level of
abstraction and making behavioral specifications more intuitive
and natural both to specify and understand.

In critical domains, such as real-time and embedded systems,
timeouts, timing constraints and delays are essential concepts.
Therefore, these concepts should be explicitly modeled in
their behavioral specification to enable a proper analysis and
simulation. However, only a few of the current approaches deal
with time-dependent behavior. Besides, current approaches
do not allow users to model action-based properties, making
them inexpressible or forcing unnatural changes to the system
specification (Meseguer 2008).

In e-Motions, standard in-place rules were extended so that
time and action statements could be included in the behavioral
specifications of a DSML. Features like on-going actions,
periodicity, and different execution modes, namely eager and
lazy, turned to be essential aspects when trying to capture some
critical properties of real-time systems. The e-Motions system
provided a graphical framework aimed at defining behavioral
specification models, amenable for their integration in MDSE
processes. Its precise behavioral semantics was given by
mapping it into Real-Time Maude (Ölveczky & Meseguer 2007).

Figures 1-2 show the basic elements of the definition of a
DSML using e-Motions, specifically a DSML for production
systems. Its metamodel is shown in Figure 1. A production
system is composed of different kinds of machines: generators,
transfers, assemblers and containers. Generators produce items,
transfer machines move them through different trays, assemblers
consume them to create new ones, and containers store the
assembled items. Machines take their inputs from and put their
results in trays which contain items up to their capacity. Figure 2
shows then a production model for hammers. It is composed of
generators of heads and handles, a transfer machine that moves
the generated heads and handles to the input tray of an assembler,
an assembler that combines heads and handles to form hammers,
and a container that stores (an unlimited number of) hammers.

In our Maude representation of e-Motions, models are
represented by sets of objects: Nodes are represented as objects,
and node attributes by object attributes. Edges are represented
by object attributes too, each one representing the reference
(by means of object identifiers) to the target node of the edge.
Thus, models are structures of the form mm{obj1 obj2 ...objN},
where mm is the name of the metamodel, and the obji are the
objects that represent the corresponding nodes. Then, given the
appropriate definitions for all classes, attributes and references
in its corresponding metamodel, Figure 3 shows the Maude term
representing the hammers production model depicted in Figure 2.

The dynamic behavior of the system is then specified as an in-
place model transformation, which is composed of a set of rules.
Each one of these rules represents a possible action of the system.
For example, the PLS system has rules modeling each of the
possible actions that may occur: generation of a head, generation
of a handle, carrying a part along a conveyor, etc. Figure 4 shows
the Carry rule. In general, these rules are of the form l : [NAC]∗×
LHS → RHS, where l is the rule’s label (its name, Carry in
this case); LHS (its left-hand side), RHS (its right-hand side),
and NAC (negative application conditions) are model patterns
that represent certain (sub-)states of the system. The LHS and
NAC patterns express the precondition for the rule to be applied,
whereas the RHS one represents its postcondition, i.e., the effect
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Figure 1 A production system metamodel.

Figure 2 A Production System Model.

ProductionSystem {
< ’hg : HeadGen | counter : 10, xPos : 0, yPos : 2, in : empty, out : ’c1 >
< ’hag : HandleGen | counter : 10, xPos : 0, yPos : 0, in : empty, out : ’c2 >
< ’c1 : Conveyor | items : empty, xPos : 2, yPos : 2, in : ’hg, out : ’t1 >
< ’c2 : Conveyor | items : empty, xPos : 2, yPos : 0, in : ’hag, out : ’t1 >
< ’t1 : Tray | capacity : 4, items : empty, xPos : 4, yPos : 1, in : (’c1, ’c2), out : ’a >
< ’a : Assembler | speed : 3, xPos : 6, yPos : 1, in : ’t1, out : ’c3 >
< ’c3 : Conveyor | items : empty, xPos : 8, yPos : 1, in : ’a, out : ’t2 >
< ’t2 : Tray | capacity : 4, items : empty, xPos : 10, yPos : 1, in : ’c3, out : null > } .

Figure 3 Maude term representing the hammers production model in Figure 2.

of the corresponding action. In the case of the Carry rule, we can
observe how, in its left-hand side, there is a part in a conveyor
preceding a tray. In its right-hand side, we observe how the part
is now in the tray. Thus, a rule can be applied, i.e., triggered, if
an occurrence (or match) of the LHS is found in the model and
none of its NAC patterns occurs. Thus, the Carry rule models
the action of moving a part from a conveyor to its subsequent
tray. Notice that the rule includes information, not only on how
the interconnections between objects may change, or whether
objects are created or destroyed, but also how their attributes may
change as a result of the application of a rule. The header of the
rule may also have information on its timed application, including
whether it is instantaneous or not, and in such a case its duration,
whether it is periodic or not, and if so what is its period, etc.

The simulation of the system begins with some initial
configuration—as the one in Figure 2—by consecutively
applying the different rules. In fact, on a given model, different

rules may be applied—on the same objects or on differnet
ones—and the same rules may be applied on different ways,
that is, there might be different matches of the left-hand side
of the rule with different parts of the current model. Using
the default strategy, rules are applied non-deterministically,
and if several matches are found for some of the rules, one of
them is non-deterministically selected and applied, producing
a new model where the match is substituted by the appropriate
instantiation of its RHS pattern (the rule’s realization). The
model transformation proceeds by applying the rules in a
non-deterministic order, until none is applicable—although this
behavior can be usually modified by some execution control
mechanism. The possibility of defining execution strategies,
perhaps taking advantage of Maude’s strategy language, seems
an interesting line of future research (Clavel, Durán, et al. 2007).
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Figure 4 The Carry rule.

3. A Rewriting Logic Semantics for MultEcore

Most of the existing approaches for MDSE are based on the
Object Management Group’s 4-layer architecture (Meta Object
Facility 2016). In these approaches, the number of levels that
designers can use to specify modelling languages is restricted:
one for (meta)models and one for their instances. However, it
has extensively been argued that in many situations the two-level
restriction may lead to different problems, including model con-
volution, accidental complexity, and mixing concepts belonging
to different domains—see, e.g., (de Lara et al. 2014; Atkinson &
Kühne 2008) for discussions on these issues. By using multilevel
modelling (MLM), modellers are no longer forced to fit their mod-
elling language specifications within two levels of abstraction.
Instead, in MLM, models can be organised into multiple lev-
els (Atkinson & Kühne 2001). MLM techniques are excellent for
the creation of DSMLs, especially when focusing on languages
with dynamic behaviour, since behaviour is usually defined at the
metamodel level, while it is executed (at least) two levels below at
the instance level (de Lara & Guerra 2010b; Atkinson et al. 2015).

Although there exist diverse approaches for MLM—see
e.g., (de Lara & Guerra 2010a; Atkinson & Gerbig 2016; Macías
et al. 2017)—we focus here on the approach proposed by the tool
MultEcore (Macías et al. 2017), formally specified in (Macías
et al. 2018, 2019). Specifically, MultEcore is a language and tool
for the definition of DSMLs following the MLM approach. In
MultEcore, the structure of systems is captured by a hierarchy of
models, where each element of a model is typed by an element in
a model at an upper level. In MultEcore, one can also explore the
behavioural dimension of the specified multilevel hierarchies. As
Groove (Rensink 2003) or e-Motions, MultEcore also proposes
the definition and simulation of behavioural models based on
reusable model transformations. However, in this case, instead
of relying on traditional two-level modelling hierarchies, it does
it for model hierarchies of any size.

Following an approach similar to the one discussed in
Section 2, in (Macías et al. 2019; Rodríguez, Durán, et al. 2019;
Rodríguez et al. 2022), the possibility of using Maude for
providing a rewriting-logic semantics to MultEcore’s MLM
DSMLs and using it for execution and analysis was researched.
Given an MLM definition of a DSML using the MultEcore

facilities, a corresponding Maude (Clavel, Durán, et al. 2007)
specification can be automatically generated. In this way, the
MultEcore editing facilities become a complete development
environment in which we can, not only edit our MLM models,
but also experiment with them through their simulation and
execution, and analyse them by giving access to Maude’s
verification tools. Also, as for e-Motions, the syntactical
facilities of Maude allowed us to use a representation of MLM
hierarchies and MCMT rules very close to that of MultEcore.
Indeed, again, this minimal representation distance facilitated
the automation of the bidirectional transformation between them.

For illustration purposes, let us use an MLM version of
the PLS example. The PLS hierarchy, generated from the
real implementation of the PLS multilevel hierarchy created
with the tool MultEcore, is shown in Figure 5. Details on the
definition of the example can be found in (Macías et al. 2019)
or in MultEcore’s web site. But let us try to identify the main
elements in this hierarchy here.

The hierarchy displays a top model, called generic_plant (Fig-
ure 5a), where we define abstract concepts related to product lines
that manufacture physical objects. At the top of any hierarchy,
at level zero, we assume Ecore, with types EClass and ERefer-
ence that may be used to type elements in lower levels. In the
generic_plant model, Machine defines any device that can create,
modify or combine objects, which are represented by the concept
Part. In the first case, we indicate the relation from a generator-
like machine to the part it generates with the creates relation. In
order for parts to be transported between machines or to be stored,
they can be inside Containers, and this relation is expressed by
the contains relation. All machines may have containers to take
parts from or to leave manufactured ones in. These two relations
are identified with the in and out relations, respectively.

The second level of the hierarchy contains two models, that
define concepts related to specific types of plants. On the left,
Figure 5b, we can see the hammer_plant model, where the final
product Hammer is created by combining one Handle and one
Head. Both hasHandle and hasHead relations express this fact.
The type of these two relations is EReference (from Ecore),
since there is no relation defined for parts in generic_plant,
because the concept of assembling parts is too specific to be

Rewriting Logic and Maude for MDSE 5



Figure 5 Hierarchy for the PLS case study

located in generic_plant. In the hammer_plant model we also
define three types of machines. First, GenHandle and GenHead,
that create the corresponding parts, indicated by the two creates
arrows. And secondly, Assembler, that generates hammers by
assembling the corresponding parts. Finally, the model contains
two specific instances of Container, namely Conveyor and Tray.
The cout arrow between them indicates that a Conveyor must
always be connected to a Tray.

The other model in the second level, depicted in Figure 5c,
contains another specification of a manufacturing plant, in this
case for stools. In this model, the relations between Stool, Leg
and Seat resembles those of Hammer, Handle and Head. The
multiplicity of the arrow between the first two indicates that
a Stool must have exactly three Legs. Two different types of
machine, GenLeg and GenSeat, manufacture Legs and Seats,
respectively. The remaining one, Gluer, takes three Legs and a
Seat and creates a Stool out of them. Finally, the only container
defined for this kind of plant is Box.

The two models at the bottom of the hierarchy, in Figures 5d
and 5e, represent specific configurations of a hammer PLS
(hammer_config) and a stool PLS (stool_config). They contain
specific instances of the concepts defined in the level above,
organized to specify correct product lines, in which parts get
transferred from generator machines to machines that combine
them to obtain the final manufactured products.

In MultEcore, the operational semantics of the system is
captured by using the multilevel language so-called Multilevel

Coupled Model Transformations (MCMTs), which were
formally introduced in (Macías et al. 2018), and which extends
traditional model transformation rules to multilevel models.
Indeed, the rewriting logic semantics of MLM hierarchies
and MCMTs used to specify such languages presented some
interesting challenges. However, once such semantics was
available, we were able to provide support for some experimental
features, namely the parametrization of the tool with different
languages to specify attribute values and conditions—the use
of OCL and Standard ML was reported in (Durán & Rodríguez
2021)—and the use of nested and cross-level boxes for the
specification of patterns in the rules.

As for e-Motions, the operational semantics of a DSML
is given by a set of rules, MCMTs in this case, modeling the
different actions that may happen in the system. As an example,
Figure 6 shows the SendPartOut rule, used for moving a created
part from its generator into the output container of this machine.
This rule displays a META block in which we identify elements
from two different models, separated with a red line. At the
top level, we mirror part of the generic_plant model, defining
elements like out and contains, that are used directly as types
in the FROM and TO blocks.

A Maude specification of multilevel hierarchies and MCMTs
provides a formal semantics of MultEcore models in rewriting
logic. Based on such formalisation, the transformation
MultEcore←→Maude is automated. The Maude specification
obtained from MultEcore models using the above transformation
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Figure 6 Rule SendPartOut: a part leaves the machine that created it

is executable, and it can therefore be used to simulate MultEcore
models in Maude. Once the rewriting logic specification of a
MultEcore model is available, we can use the tools in Maude’s
formal environment to analyse it. The constructed infrastructure
that connects MultEcore with Maude is detailed in (Rodríguez,
Durán, et al. 2019; Rodríguez et al. 2022).

We do not provide here a full description of the Maude
semantics, but we would like to point out a few key issues:

– Each MultEcore object (including both a hierarchy and its
MCMTs) is mapped into a corresponding Maude object.

– References and conditions are handled in exactly the same
way, by using references as names, and using the same set
of expressions (types and operators) for conditions.

– One of the major challenges are in the handling of
boxing and the performing of the rewriting on multilevel
hierarchies. A two-steps process has been developed to
handle them. For each MCMT, a rule without the boxes is
generated. When Maude finds a match for such a rule, it
gets enough information to process the cardinalities of the
most-external boxes. Then, using the metaprogramming
capabilities of Maude, a second rule with the corresponding
number of replicas of the boxes is generated on the fly,
which is used to take the corresponding rewriting step using
the original partial substitution. Nested boxes are processed
one level at a time, recursively unfolding the boxes, and
expanding the matching until no further boxes are left. Lets
and conditions inside boxes are processed at each step.

– There might be boxes crossing multiple META levels, so
that specific instantiations must be handled consistently.

– The support for OCL is based on the Maude semantics of
OCL proposed in (Roldán & Durán 2011).

Additional information on MultEcore is available at
https://ict.hvl.no/multecore/.

4. Formal analysis of e-Motions and MultEcore
DSMLs

The specification of the explicit behavioral semantics of DSMLs
helps in MDSE activities such as quick prototyping, simulation,
or analysis. Ensuring semantic properties of models is important
because any error in a model can easily become a systemic error
in the system under development. As mentioned in the previous

sections, and explained in details in some of the papers we have
already referred to, the formalization of both e-Motions and
MultEcore have allowed us to provide access to some of the tools
offered in the Maude environment (Durán et al. 2011a,b; Clavel,
Durán, et al. 2007). Specifically, reachability analysis and model
checking have been made available for both e-Motions (Rivera
et al. 2009a) and MultEcore (Rodríguez et al. 2022). For
MultEcore, the use of equational abstraction (Meseguer et al.
2008) was exemplified in (Rodríguez et al. 2022) to model check
systems with infinite state spaces.

This is, however, not enough, other tools are available to check
or analyze diverse properties on systems, or to be able to handle
more complex systems not satisfying the requirements of these
tools. For example, since applications become more and more
complex, and model checking is a very expensive procedure,
both in time and space, its use is infeasible in many cases. A very
important class of systems that falls out of the scope of classical
model checkers are real-time stochastic systems. The methods
used to verify quantitative properties of stochastic systems
are typically based on numerical methods (Jansen et al. 2007),
that iteratively compute the exact (or approximate) measure of
paths satisfying relevant logical formulas. Although tools like
PRISM (Hinton et al. 2006) and UPPAAL (Bengtsson et al. 1995)
have shown very successful in the analysis of this kind of systems,
explicitly constructing the corresponding probabilistic model is
infeasible in many cases. An alternative method that solves this
problem is based on statistical methods, similar to Monte Carlo
simulations. By testing our hypothesis on many executions of
a system, we may infer statistical evidence on the satisfaction
or violation of the specification. Thus, properties like “the proba-
bility of completing task X with Y units of energy is greater than
0.3” or “the average amount of energy required to complete task
X with confidence interval α and error bound β” can be checked.
YMER (Younes 2005) and VeStA (Sen et al. 2005) were pio-
neering tools implementing these techniques. Well-established
tools PRISM and UPPAAL have more recently also included
capabilities for statistical model checking—see (Kwiatkowska
et al. 2011) and (Bulychev et al. 2012).

Statistical methods have another advantage in the context
of DSMLs: are “easy” to use and “cheap”. As other model-
checking methods, statistical model checking is completely
automatic, and can be used where other methods fail. But
they can also be used for “normal” systems with a shorter
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computation time. Since statistical model checking assumes
the existence of inaccuracy in its results, answers are calculated
provided a confidence interval and an error bound. As may be
expected, these requirements have an impact on the number of
samples to be processed, and therefore on the evaluation time.

To be able to use the PVeStA tool (AlTurki & Meseguer 2011)
(an extension and parallelization of VeStA), the transformation
of e-Motions models was modified so that the generated Maude
specifications satisfy the requirements of the tool (Durán et al.
2016). Such Maude specifications are therefore suitable to be
stochastically analyzed using PVeStA.

5. Related Works and Wrap up
As pointed out from the beginning of the paper, the purpose of
this work was to present some of the works that came up as result
of the initial exploration that Antonio Vallecillo and myself
initiated several years ago. Actually, it was not exhaustive in all
the ideas and publications that came up from that collaboration,
nor has made a completed overview of the works that we
developed jointly or with other collaborators.

Some of the original ideas our work was based on are due to
other authors. For example, one way to specify the semantics
of a language is to define a translation from expressions in that
language into expressions in another language with well defined
semantics (Harel & Rumpe 2004). These semantic mappings
between semantic domains are very useful, not only to provide
metamodels with semantics, but also to be able to simulate,
analyze or reason about them using the logical and semantical
framework available in the target domain (Cuccuru et al. 2007).

For example, some works specify the behavioral semantics
of models by using visual rules (de Lara & Vangheluwe 2004;
Ehrig et al. 2006), which prescribe the preconditions of the
actions to be triggered and the effects of such actions. These
pre- and postconditions are given visually as models that use
the concrete syntax of the DSL. This kind of representation is
quite intuitive, because it allows designers to work with domain
specific concepts and their concrete syntax for describing the
rules (de Lara & Vangheluwe 2008). Graph transformation is one
of these rule-based approaches. The most common formalization
of graph transformation is the so-called algebraic approach,
which uses category theory to express the rewriting (Ehrig et al.
2006). This approach supports a number of interesting analysis
techniques, such as detecting rule dependencies (Ehrig et al.
2006) or calculating critical pairs (minimal context of pairs of
conflicting rules) (Heckel et al. 2002).

However, graph transformation offers limited support for
other kinds of analyses, such as reachability analysis, model
checking, etc. This is why some authors define semantic
mappings between graph transformation and other semantic
domains, and then back-annotate the analysis results to the
source notation (Cabot et al. 2008; de Lara & Vangheluwe 2004,
2008; Heckel et al. 2002). This possibility allows one to use the
techniques specific to the target semantic domain for analyzing
the source models. For example, in (Baresi & Spoletini 2006)
rules are translated into Alloy in order to study the applicability
of sequences of rules and the reachability of models; in (Baldan

et al. 2001) rules are translated into Petri nets to check safety
properties; in (Varró 2004) they are transformed into Promela for
model-checking; and in (Büttner & Gogolla 2006; Cabot et al.
2008) rules are transformed into OCL pre- and postconditions for
rule analysis (e.g., conflict detection) using standard OCL tools.

One of the problems of these approaches is due to the fact
that they require, from the DSL designer, deep knowledge of the
target language in order to specify the transformations. However,
this problem can be partially overcome if the transformations can
be automated, using, e.g., model transformation techniques. For
example, in (de Lara & Vangheluwe 2008) the authors are able to
generate the transformations from rule-based Domain-Specific
Visual Languages (DSVLs) into semantic domains with an
explicit notion of transition, such as Place-Transition Petri
Nets. The generated transformation is expressed in the form of
operational triple graph grammar rules that transform the static in-
formation (initial model) and the dynamics (source rules and their
execution control structure). Similarly, in (Cabot et al. 2008) the
authors describe how graph transformation rules can be mapped
into OCL pre- and postconditions for rule analysis. However,
as the own authors describe in their paper, not all kinds of graph
transformations can be automatically transformed into OCL, and
the analyses that can be conducted are somehow limited.

Other approaches use UML behavioral models to represent
the system dynamics. For example, in (Engels et al. 2000)
operational semantics are represented using UML collaboration
diagrams, which are then formalized into graph transformation
rules. In (Fischer et al. 1998), Story Diagrams are presented as
a new graph rewrite language based on UML and Java. More
precisely, the authors propose the use of UML together with
pieces of Java code to express a graph rewrite language mixed
with object-oriented data concepts. The whole specification
(including dynamic behavior) is then transformed into Java
classes and methods, although not all kinds of story patterns can
be translated automatically. Again, the kind of analysis is limited
in these approaches.

Kermeta (Muller et al. 2005) is an extension of EMOF for spec-
ifying operational semantics. It enriches the EMOF metamodel
with an action specification metamodel, introducing another new
language to express specifications of algorithms. Simulation and
execution possibilities are available for this approach.

Other works propose model transformation languages to
specify the semantics of DSLs. For example, in (Markovic &
Baar 2008), QVT is proposed to specify the semantics of OCL.
Then, QVT rules are specified between models conforming to
the same metamodel, representing in such a way the metamodel
behavior, thus acquiring in-place transformations semantics
(as graph transformations have). Analysis capabilities are not
provided in this case. The MOMENT-QVT tool (Boronat et
al. 2006) is a model transformation engine that provides partial
support for the QVT Relations language. It is based on an
algebraically defined operator, ModelGen, which permits the
definition of directed declarative transformations.

Another interesting approach for defining semantic mappings
in order to specify the semantics of a language is the semantic
anchoring method (Chen et al. 2005). Semantic anchoring
relies on the use of well-defined “semantic units” of simple,
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well-understood constructs and on the use of model transforma-
tions that map higher level modeling constructs into configured
semantic units. This approach uses Abstract State Machines as
a semantic framework, and Microsoft’s Abstract State Machine
Language (AsmL) and associated tools for programming,
simulating and model checking ASM models (Chen et al. 2005).
One problem with this kind of approaches is that they normally
force the introduction of yet another notation for specifying the
mappings (Narayanan & Karsai 2006), or require the mappings
to be proved to be correct. By using a single semantic domain
(such as our proposal with Maude), we avoid the need of defining
the so-called semantic mappings.

Related to these proposals, other works also try formalize the
concepts of concrete metamodeling languages, such as UML
or OCL, in Maude. In fact, Maude offers several options to
represent and manipulate object-oriented systems, depending
on the way in which objects, attributes and references are
represented; whether reflection is used or not, etc. For example,
MOVA (Clavel, Egea, & da Silva 2007) is another Maude-based
modeling framework for UML, which provides support for OCL
constraint validation, OCL query evaluation, and OCL-based
metrication. In MOVA, both UML class and object diagrams are
formalized as MEL theories. MOMENT (Boronat et al. 2005)
is a generic model management framework which uses Maude
modules to automatically serialize software artifacts. It supports
OCL queries and is also integrated in Eclipse.

In (Romero et al. 2007), Romero et al. presented a proposal
for representing and manipulating models based on the use of
Maude, which not only was expressive enough for these purposes,
but also offered good tool support for operating with models.
Specifically, it showed how some basic operations on models,
such as model subtyping, type inference, and metric evaluation,
can be easily specified and implemented in Maude, and made
available in development environments such as Eclipse.

There is a huge amount of work ahead. We believe that all
these works, from which we have inspired, and on which we
have built our own contributions, represent a good basis for the
development of tools, but also for the understanding of the field,
the different techniques to apply, and its targets.
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