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ABSTRACT The storage of user data in centralised systems is a standard procedure followed by online service providers such
as social networks. This requires users to trust these providers, and, to some extent, users are not in complete control over
their data. A potential way to bring back this control is the promotion of user-managed data vaults, i.e., encrypted storage
systems located in personal devices. Enabling communication between these data vaults could allow creating decentralised
applications where users decide which data to share, and with whom. Nevertheless, developing such decentralised applications
requires a considerable amount of work, as well as expertise in deploying secure peer-to-peer communication systems. We
present Vaultage, a model-based framework that can simplify the development of data vault-based applications by automatically
generating a secure communication infrastructure from a domain-specific model. We demonstrate the core features of Vaultage
through a decentralised social network application case study, and we report on the findings of evaluation experiments that
show Vaultage’s code generation capabilities and some performance analysis of the generated network components.
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1. Introduction
A nearly ubiquitous prerequisite for users of contemporary on-
line services is to grant service providers the right to manage
and process their data. As a consequence, user data typically
ends up stored in remote servers, where they have limited con-
trol of how it is processed or monetised. Most service providers
use Terms of Service (ToS) to define how users’ data will be
processed and protected, and it is up to the final users to accept
the terms. Unfortunately, most of these ToSs are expressed in a
language that is complex and tedious to understand (Luger et
al. 2013). As a consequence, users tend to ignore the terms and
immediately jump to use the provided services (Steinfeld 2016).

There are regulations such as the European General Data

JOT reference format:
Alfa Yohannis, Alfonso de la Vega, and Dimitris Kolovos. Vaultage:
Automatic Generation:of Secure Communication :around Decentralised
User-Managed Data Vaults. Journal of Object Technology. Vol. 21, No. 3,
2022. Licensed under Attribution - NonCommercial - No Derivatives 4.0
International (CC BY-NC-ND 4.0) http://dx.doi.org/10.5381/jot.2022.21.3.a9

Protection Regulation (GDPR) that establish a set of rules by
which service providers must abide the processing, movement,
and protection of personal data (European Union 2016). These
regulations also provide several rights to the end-users, such
as the right to be informed of the processing their data might
receive, the right to object to specific data processes (e.g., per-
sonalised marketing), or the right to be forgotten (erasure of any
user data). While the GDPR is a significant improvement in
data privacy and protection, users still need to trust their service
providers to comply with this and other relevant regulations. In
this case, users’ data is only protected by law (it requires legal
enforcement) but not by the design of the technology (preven-
tion). A breach in service providers’ systems, which commonly
are centralised, could lead to data misuse impacting millions
of users (Cadwalladr & Graham-Harrison 2018; Krebs 2013;
Gunaratna 2016; Stempel & Finkle 2017).

An alternative to data management centralised in the service
providers’ systems is to store users’ data in personally-managed
data containers that live in their own devices. Having data stored
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in personal devices grants users greater access control, and a
clearer and more reliable way to remove any data item if they
desire to do so. This kind of containers have been previously
denoted in different ways, such as data pods in the case of the
Solid framework (Solid 2017), or data vaults as in (M. Mun et
al. 2010), which is the term we also use in this work.

On the other hand, such data vaults have to deal with several
challenges, such as performance issues, or the complexity of de-
veloping trustworthy secure decentralised applications. Related
to performance, nowadays personal devices (e.g., smartphones,
laptops) come with enough computing power to host simple
applications. Therefore, reusing these devices as the machines
to run data vaults is reasonable, as seen in participatory sensing
applications (Christin et al. 2011). Nevertheless, if implement-
ing privacy-preserving services in centralised systems is already
a complex endeavour (Senarath & Arachchilage 2018), develop-
ing decentralised applications is even more complex, since such
applications have to deal with data distributed across data vaults,
data access authorisation, and secure communication between
multiple peers. Data unavailability and loss are likely to occur
if devices are offline or lost/damaged. Addressing this com-
plexity might increase the development costs of decentralised
applications.

We present Vaultage, a model-based framework for the de-
velopment of decentralised applications around user-managed
data vaults. Vaultage allows modelling both the data to be
stored in a data vault and the set of data services that external
clients can request from a vault. From a model containing this
information, Vaultage generates (1) a set of Java classes for
the application’s internal usage of the available data, and (2) a
secure communication infrastructure that can be used to facili-
tate requests and responses between clients and data vaults of a
specific application.

The core architecture of Vaultage was introduced in a previ-
ous workshop paper (Yohannis et al. 2020). As an extension of
that paper, this work includes:

– An in-depth discussion of the motivation behind the devel-
opment of Vaultage in Section 2.

– An improved and up-to-date description of Vaultage’s fea-
tures in Section 3, including new ones such as the direct
communication modes that do not require using a central
broker to relay messages between nodes, or the possibility
to transfer other types of data (e.g., media files).

– An extended evaluation – in Section 5 – to assess Vault-
age’s expressiveness and code generation capabilities by
creating several data vault-based applications. We have
also carried out performance evaluation experiments to
measure the performance implications of different commu-
nication aspects, such as encryption and the used commu-
nication mode.

– A discussion of the limitations and challenges of the pro-
posed approach in Section 4.

Finally, Section 6 presents other related works and Section 7
comments on future lines of work and concludes this paper.

2. Background and Motivation

2.1. Data Privacy in Centralised Online Systems

Letting service providers have the responsibility of storing any
related data to that service is a comfortable choice for the end-
user, as they become free from the burden of its management and
preservation. However, there are different privacy implications
of that transfer of responsibility. For instance, as stated previ-
ously, the ways in which user data is processed and monetised
by the service provider may be obfuscated behind difficult to
understand terms of service (ToS) (Luger et al. 2013; Steinfeld
2016), to the point of inducing the creation of automated tools
for understanding ToS assisted by machine learning and natural
language processing techniques (Wilson et al. 2019). Also, even
having a clear understanding of the ToS and regulations such
as the GDPR (European Union 2016) that apply to certain data,
there have been past examples of irresponsible uses of captured
data (Cadwalladr & Graham-Harrison 2018).

Although there are several guidelines to develop applications
featuring privacy by design (Cavoukian et al. 2009; European
Network and Information Security Agency 2014), the imple-
mentation of such guidelines can be complex or in some cases
directly overlooked because of, for example, developers poor
understanding of privacy-oriented development principles, or
because of companies lacking the enforcement of such princi-
ples (Senarath & Arachchilage 2018).

Another issue of storing sensitive data of thousands or mil-
lions of users in centralised systems is that such systems become
lucrative targets for malicious attacks. When these attacks are
successful (Krebs 2013; Wakefield 2014; Gunaratna 2016; Stem-
pel & Finkle 2017), users can be affected by data breaches in
which their personal information can be publicly exposed. As
an extra problem users might face, there have been examples of
companies not being clear enough when explaining the implica-
tions or the extent of data breaches affecting their users’ data
(Zou et al. 2019).

An approach that centralised service providers can follow to
give control of this data is to store it in an encrypted form so that
even the providers themselves cannot decrypt the data. The num-
ber of applications following this approach is increasing, includ-
ing instant messaging platforms such as Signal1 or email service
providers like Tutanota2. Moreover, some advanced crypto-
graphic techniques allow performing some privacy-preserving
work over encrypted data without requiring or knowing how
to decrypt it. For instance, homomorphic encryption (Potey et
al. 2016) can be used to perform some data analysis processes
over user-encrypted data without the need to know the encryp-
tion key, which can help maintain user data privacy. Solutions
based on this encryption technique have been applied, among
others, to recommender systems (Erkin et al. 2012) and medical
data (Wood et al. 2020). Still, and despite the encryption, some
users might be reluctant to pass service providers control of
their data, in which case any approach allowing users to store
data in self-managed systems would be a viable alternative.

1 https://www.signal.org/
2 https://tutanota.com/
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2.2. Using Personal Devices in Decentralised Applica-
tions

The increase in features and computing power of personal de-
vices (e.g., smartphones, tablets, laptop/desktop computers) has
caused a surge of decentralised applications and services run-
ning in these devices during the last years. A clear example
of this surge are participatory sensing applications (Christin et
al. 2011), which use sensors found nowadays in current smart-
phones such as accelerometers, microphones, or location ones
to capture information of interest to create data services. The
capability of these devices can also be augmented by connect-
ing external sensors, to provide extra measurements such as
temperature or air quality (Sivaraman et al. 2013).

The main benefit of installing applications into already ex-
isting devices are the reduced costs when opposed to having to
deploy and maintain physical infrastructures in place. More-
over, the constant motion of some personal devices such as
smartphones can allow for extra use cases with respect to static
infrastructures, such as being able to detect traffic jams or road
bumps by the location and accelerometer sensors of a smart-
phone installed in a vehicle (Mohan et al. 2008).

On the other hand, capturing sensitive data such as location
or voice recordings carries considerable privacy implications
(Christin et al. 2011). Generally, participatory sensing applica-
tions use personal devices to obtain the relevant data, but then
this data is sent to centralised servers where it is processed and
put up to use. Consequently, thorough controls must be in place
to check what data is captured and what local data processes are
applied before being sent to a remote server (e.g., anonymisa-
tion, filtering, obfuscation). For instance, in (Maisonneuve et
al. 2009) personal devices are used to measure ambient noise
levels in different areas of a city. Instead of sending raw sound
recordings for processing (which e.g., may contain personal
conversations), sound intensity levels are calculated locally and
sent instead. Ideally, the owner of a capturing device should
be able to monitor and participate in this data control, which
should be made as transparent and understandable as possible.

2.3. User-Managed Data Vaults

(M. Mun et al. 2010) proposed the concept of personal data
vaults in the context of participatory sensing applications. These
data vaults are intermediate containers where the captured in-
formation is stored prior to being shared with service providers.
These containers are managed by the users, so they retain data
ownership and can have a fine-grain control of which data is
finally shared. The same authors later described an example of
how to use personal data vaults in an application capturing and
sharing location data (M. Y. Mun et al. 2014).

The objective of Vaultage is aligned with the work in
(M. Mun et al. 2010), as it promotes the storage of data in
user-managed data vaults, thus achieving true application decen-
tralisation. These data vaults can be queried by external entities
(e.g., service providers in a participatory sensing application),
and the vault owners control whether and how these queries are
answered. In the context of Vaultage, a data vault is composed
of the following two parts:

1. Data Schema. Data vaults have a predefined schema of
the data they can store, which depends on the application
domain. For instance, a data vault-based social network
app might store data about user posts and friends.

2. Data Services. Vaults provide data services that can be
requested to access (or, in some cases, to provide) certain
data. Continuing with the social network example, sending
a friend request, or asking for the latest published posts
could be valid data services. The set of services provided
by a data vault is similar to the REST API provided by a
web service (Pautasso 2014).

Therefore, any application wishing to include data vaults
into its architecture must implement an infrastructure to per-
sist the defined data schema and to enable communications to
receive and respond to supported requests. The fact that data
is stored in a decentralised way can make network configura-
tion more complex (e.g., routing or firewall aspects). Also,
asynchronous/parallel processing of requests and responses are
required, which might cause synchronisation, locking, racing,
and timing problems. While data vaults can in principle be
applied to any application domain, commonalities of the in-
frastructure for data management and communication create an
opportunity for code reuse and automatic generation (Brambilla
et al. 2012), which is leveraged by Vaultage.

2.4. Running Example: Fairnet
We present Vaultage using as example a data-vault based social
network, named Fairnet. In Fairnet, each user is the owner of
a data vault, and they can communicate with other users by
sending requests to their respective vaults. We describe next
the two features that define a data vault as described in the
previous section: its data schema and the data services that can
be requested.

2.4.1. Data Schema A Fairnet vault stores the following
information of its user:

– As profile information, only the name of the user is stored.
– A list of accepted friends, of which we store their name.

We also store their public identifier for communication
in the decentralised network generated by Vaultage. As
Section 3.1.1 explains later in the paper, this identifier is the
public key of a key pair used for asymmetric encryption.

– A list of created posts. A post is composed of an id, a title,
a text content, a timestamp, and a list of the identifiers of
the files attached to the post. Posts are private by default,
but they can be marked as public. A private post can only
be accessed by the owner of the vault, while public posts
can also be accessed by their friends.

– A list of files that are attached to a post. Each file has an
identifier, a name and its byte contents.

2.4.2. Data Services There are four different requests that
can be sent to a Fairnet vault:

– addFriend(friendName: String): Boolean: ask for a con-
firmation to become a friend of another user. This request
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includes the name that identifies the requester and can be
answered with a positive or negative response. If the friend
request is confirmed, the requester will be set as a trusted
requester, and therefore, any following requests will be
accepted.

– getPosts(): Post[*]: ask for the list of posts of a user3.
Each post in the returned list contains the identifier and
title fields, but not its content or the list of files that are
attached.

– getPost(postId: String): Post: ask for the content of a
specific post owned by the user. This vault will send the
requested post with all its fields if the post is marked as
public and the requester is a friend of the owner, otherwise,
it will reject the request.

– getFile(fileId: String): File: ask for a file, which can be an
image, video, audio, document, or other file types, attached
by a user to one of their posts.

3. Vaultage
Vaultage is a model-based framework for simplifying the de-
velopment of data vault-based applications. It achieves that by
(1) providing reusable core functionalities and components for
exchanging encrypted, structured messages between peers, (2)
generating application-specific strongly-typed wrappers for the
messaging, and (3) generating skeleton code for application-
specific functionalities. This way, developers can focus on
developing the business logic of an application without having
to worry about message/data exchange and encryption.

We present first the different aspects of the secure network
architecture generated by Vaultage for each concrete data vault-
based application. Then, we show how data vaults can be repre-
sented as models, which are used as input of a code generation
process to obtain the presented architecture.

3.1. Network Architecture
Vaultage provides a secure communication infrastructure for
clients to send requests to the data services of a vault. This com-
munication is similar to how client-server REST architectures
work (Pautasso 2014).

The following sections describe how messages are secured
by encryption, and the two possible modes of communication
between a client and a vault: brokered and direct messaging.

3.1.1. Encryption Decentralisation makes encryption a key
aspect to secure communications. All requests to the data ser-
vices of a vault and the associated response messages are se-
cured with asymmetric encryption (Rivest et al. 1978), so every
node that is involved in some sort of communication with the
system is expected to own both a public and a private key. When
a message is sent to a data vault, a double encryption of the
message is performed, in the following order:

1. The message is encrypted using the private key of the sen-
der. This allows verifying that a message comes from a
legitimate source and shields the system against imperson-
ation attacks.

3 For simplicity we don’t consider paging results in this minimal example.

2. A second encryption is performed on top of the first one,
using this time the receiver’s public key. This is to ensure
that the contents of the message are only accessible by the
receiver.

When a message is received, inverse decryption is performed,
i.e., by using the private key of the receiver first and then the
sender’s public key. This double encryption mechanism ensures
the authenticity of the sender and that only the expected re-
ceiver should be able to access the message contents. Currently,
Vaultage uses RSA 2048-bit key-pair generation and ciphering
provided by Bouncy Castle4.

3.1.2. Brokered Messaging As data vaults are decentra-
lised, we opted for using a relay communication system pro-
vided by a message broker, since users’ devices do not usually
have stable IP/DNS addresses where they can be reached by
their peers and they may even be behind firewalls that prevent
direct incoming connections. There are several message broker
applications available, such as Apache ActiveMQ5 (the one
currently in use by Vaultage), Kafka6, and Mosquitto (Light
2017).

In the case of ActiveMQ, any data vault wanting to receive
messages has to subscribe with a representative identifier at the
broker server, so that every message addressed to that identifier
finally reaches the data vault. Vaultage ingrains into the network
configuration the use of asymmetric encryption described in
the previous section by using the public key of each node as its
identifier at the broker server. Thus, every time a peer wants
to send a message to a data vault, it only needs to send the
double-encrypted message to the broker server using the vault’s
public key as destination.

Figure 1 shows how the brokered communication works
using the Fairnet example. Each Fairnet user subscribed to an
ActiveMQ broker as described in the previous paragraph, and it
has access to a message queue, which the broker uses to deposit
messages coming from other users. The figure depicts a request
example where a user (Alice) is sending a friend request to
another user (Bob). The request originates from Alice sending a
friend invite to Bob through the Fairnet app (step 1). This action
is translated into an addFriend request message, including the
appropriate parameters (step 2). In this case, the parameters are
the destination of the message (i.e. the “Bob” queue/data vault)
and the user’s name that sends the friend request (“Alice”). The
message broker relays this request into Bob’s queue, which is
received and translated into a Fairnet friend request in Bob’s
app (step 3). Then, in step 4, Bob accepts the friend invite from
Alice. This acceptance is encoded as an addFriend response
message, with “Alice” as the recipient of the response, and the
true boolean value to indicate that Bob has accepted the friend
invite (step 5). As before, the message arrives at Alice’s queue
through the broker, and it is translated into a notification of
Bob’s acceptance of the friend request (step 6).

4 https://bouncycastle.org/
5 https://activemq.apache.org/
6 https://kafka.apache.org/
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Figure 1 Brokered network architecture provided by Vaultage
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Figure 2 Direct messaging mechanism in Vaultage

3.1.3. Direct Messaging Vaultage also supports direct mes-
saging for those cases where establishing a direct, broker-less
connection between two nodes is possible. This mode of mes-
saging is faster and more efficient, as there is no need to use
an intermediate broker as a relay. For instance, in Figure 1,
if Alice and Bob interchanged their connection details to al-
low direct communication, any further requests could be sent
directly between their devices, such as the getPosts request
that is depicted in steps 7 and 8 at the top of the figure. Direct
messaging can also reduce the broker server’s load, especially
when the communication involves exchanging larger assets such
as videos, audio, and images.

Vaultage makes direct communication possible by enclosing
the IP and port of a node supporting this mode of communication
in every message sent. This way, the receiving end could know
the sender’s address and then initiate a direct TCP/IP connection
to send any subsequent messages.

Figure 2 depicts a scenario where Alice wants to access the
post with id P1 from Bob, as well as a file IMG1 attached to
that post. Assuming that Alice and Bob are already subscribed
to the broker (steps 1 and 2), and that they are friends already,
Alice starts by sending a request to get Bob’s P1 post through
the broker (step 3). In addition to the request, the message
also contains Alice’s connection details – IP address and TCP
port – that can be used to enable direct messaging. Due to the
asynchronous nature of Vaultage, Alice could do other opera-
tions after sending the request (step 4) such as listening to any
other incoming requests and responses, whether via a broker or
directly from other requesters. After receiving Alice’s request
(step 5), Bob’s vault uses Alice’s network details to establish a
direct connection (step 6), and then use that direct connection to
send Alice the requested P1 post (step 7). Using this connection
facilitates the posterior interchange of the IMG1 file through a
getFile request that only involves Alice and Bob vaults (steps
8 and 9). If a direct connection cannot be established, Bob’s
Fairnet app automatically uses the broker to send back his P1
post instead (steps 10 and 11), and it does the same for the
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posterior file request (steps 12-15).

3.2. Data Vault Representation
The first task for developers when using Vaultage involves cre-
ating a model to define a data vault application. This model
contains both the data schema and services provided by the data
vault (see Section 2.3) and conforms to the Ecore (Steinberg
et al. 2008) metamodel presented in Figure 3. Note that the
metamodel contains similar concepts to the ones found in UML
class diagrams. Thus, we could have decided to reuse UML,
including any specific terms such as vaults in a UML profile.
Opting for the definition of a new metamodel is only an imple-
mentation choice based on our previous expertise and personal
preference.

A Vaultage model contains one or more Vaults. A vault
is composed of Features, which define the data schema; and
Services, which determine the data services offered by each
vault (see Section 2.3). Features can be either Attributes hav-
ing a primitive type (defined as DataType following Ecore’s
denotation) or References, whose type is an Entity. An entity
is a class-like composite type, which has a name and a set of
features. The services of a vault have a name, a set of Parame-
ters, and a return type. Parameters also have a type, and both
parameters and services can use as type either an entity or a
data type. This is managed through the Classifier term that
again originates from Ecore terminology. Features, services and
parameters can be multi-valued, which is managed with their
many attributes.

As an example, Figure 4 shows the Vaultage model of Fair-
net, which conforms to the metamodel of Figure 3. To limit the
verbosity of representing such a model, we have used a mixture
of a class and an object diagram: vaults and entity instances are
represented as classes, including their original type (e.g., Fair-
netVault is a Vault, Post is an Entity). Features are represented
as attributes for both vaults and entities, and vault services are
represented as class operations. In the figure, a FairnetVault is
a vault containing a name, and lists of Friends, Posts and Files,
which compose the data schema of Fairnet. This vault has four
operations, one for each data service defined in Section 2.4.

3.3. Code Generation
The Vaultage generator has been implemented using the Epsilon
Generation Language (EGL) (Rose et al. 2008), and the genera-
tion templates produce code in the Java language. The generator
takes as input a data vault model as described in Section 3.2,
and produces classes for different concerns. The code generator
takes care of providing all the scaffolding code required to man-
age the secure messaging system. This way, developers only
need to care about specifying how vault requests and responses
will be handled, while not having to control how these requests
and responses reach their target nodes.

Figure 5 shows a class diagram containing the main classes
generated from the Fairnet model of Figure 4. The classes of
this diagram have been organised in three groups: (a) relevant
classes from the Vaultage framework that have been manually
programmed and provide general functionality such as mes-
sage encryption or broker and direct messaging communication

capabilities; (b) classes specific to the developed application
that have been partially generated by Vaultage, but that need
to be completed or instantiated by the developers to deliver
application-specific functionalities; (c) fully generated classes,
again specific to the application defined in the input model. We
describe now the more relevant classes by their origin in the
input model and their usage in the Vaultage framework.

– Entities of the data vault model are transformed to plain
old Java object classes (POJOs). These classes contain the
entity features as basic Java attributes and references, and
their only methods are getters and setters to access these
features. Friend, Post, and File are the generated classes
from the respective entities in the model.

– Vault classes contain the features defined in the input
model in the same way that the entities described above.
Additionally, vaults have methods for the provided data
services. In the figure, there is a single vault class
(FairnetVault), which belongs to the partially generated
classes. This class is partially generated because its service
methods (e.g. addFriend, getPosts) are initially empty,
and it is the task of the Fairnet developers to provide their
implementation. These implementation classes are only
generated once, so that developers do not have to manu-
ally create them from scratch. Basically, when a Fairnet
vault receives a request message, such as addFriend, the re-
sponse is generated by invoking the addFriend method of
the FairnetVault class, and this response is packed and sent
in a response message to the requester. Lastly, part of the
functionality of the FairnetVault class is included into the
FairnetVaultBase superclass. For instance, the signatures
for the service methods must not be modified by develop-
ers because other generated code depends on that, so these
signatures are included into FairnetVaultBase. There is
yet another superclass from Vaultage, denoted Vault, that
contains generic functionality such as the management of
the encryption key pairs.

– Remote Vault classes allow sending requests and re-
sponses to a concrete vault type. At the right part of the
figure, there is a RemoteFairnetVault class, which can
be used to send a request to a concrete FairnetVault by
means of its public key (Section 3.1 explains how this key
is used as an identifier in the broker communication). This
class has a pair of methods for each data service of the
vault. The first method allows to send a request to that
service of a remote vault (e.g. addFriend), and the sec-
ond method is used to respond to a received request (e.g.
respondToAddFriend).

– Request Handlers are responsible for processing request
messages and invoking the appropriate vault methods to
obtain a response. The response to a received request
is sent back through a RemoteFairnetVault instance, as
described in the previous paragraph. There is a request
handler for each vault (e.g. FairnetRequestHandler), and
it is fully generated.

– Response Handlers determine how a client (e.g. a Fairnet
user requesting a service from a remote vault) processes

6 Yohannis et al.



Figure 3 Vaultage metamodel depicted in Ecore

Figure 4 Fairnet model conforming to the metamodel of
Figure 3

the returned response. For instance, in step 6 of Figure 1,
Alice received Bob’s acceptance of her friend request. As
the response is positive, the Fairnet app automatically adds
Bob as one of Alice’s friends. If the response was neg-
ative, though, this addition would not take place. That
logic has been defined in the Fairnet app by extending
the AddFriendResponseHandler and implementing its run
method, which has a result boolean parameter that provides
the outcome of the original friend request.

– A FairnetBroker is generated for launching the Apache
ActiveMQ broker server. It allows certain modifications,
such as configuring the port in which the broker server is
started.

4. Limitations

In this section, we highlight some limitations of our approach.
While the inclusion of personal data vaults can improve the

privacy, security and users’ control over any personal data used
by the application (Henman & Dean 2004; M. Mun et al. 2010;
Ladjel et al. 2019), it does not come without challenges:

1. Availability. Currently, Vaultage stores user data on single
devices, such as laptops or smartphones. Such an approach
makes it less reliable than storing it on a cloud service
that supports replication, and it can limit the availability
of data stored in vaults to peers (e.g. when the devices
are off or without internet connection). Adding support
for synchronisation between devices could mitigate this by
enabling users to maintain redundant copies of their vaults
in multiple devices. Synchronisation also opens the possi-
bility to acquire specific devices that are always connected
under users control, in the same way that CloudLocker7

promotes for providing personal cloud storage.

2. Data Veracity. While asymmetric encryption allows se-
curing the communication between sender and receiver
(see Section 3.1.1), the veracity of certain data cannot be
certified by a single user of an application. For instance,
if Fairnet allowed users to give likes to other users’ posts,
it is not possible to verify the real number of likes that
a post has by simply asking their owner, as they might
provide a wrong value in search of personal gain (Seo
et al. 2019). Another example of important application
data that requires verification is the reputation of a user
in an online auction market (Pavlou & Ba 2000). Such
data might require additional certification, such as crypto-
graphic signatures by the users that liked a post, or an ex-
ternal blockchain-based registry of user likes (Hawlitschek
et al. 2018).

3. Security. Vaultage uses private and public keys to decryp-
t/encrypt data and the public keys as the identifiers of users.
Once a malevolent actor obtains the private key of a user
(e.g. Bob), this actor could impersonate the original user

7 https://www.cloudlocker.eu/en/index.html
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Figure 5 A simplified class diagram of the classes that are automatically generated by Vaultage for the Fairnet example (domain-
specific wrappers (green) and skeleton code(yellow)) and core classes of Vaultage (white).

in the network. To fix such an issue, in the case of Fair-
net, Bob needs to create a new account and tell his friends
that his previous account has been hijacked so that they
can remove the old account and add Bob to the new one.
Centralised systems address these issues by allowing to
change the login details, i.e., the user’s password. How-
ever, this approach also comes with its own risks. Once
a centralised system is breached (Stempel & Finkle 2017;
Gunaratna 2016), the malicious actor might be able to
access many users’ data and take over their accounts. De-
centralised applications are less attractive for cyberattacks,
as in most cases breaching a single user is not as profitable
as obtaining the data of thousands or millions of users.
Another way in which malicious users can attempt to af-
fect the communications of a Vaultage app is by flooding
the broker server with a lot of fake requests. For these
issues, including multi-factor authentication (Dasgupta et
al. 2017) can increase the security of decentralised apps,
as it does for centralised ones. Such an authentication can
allow changing compromised key pairs at an account level,
and it can permit a broker to only accept requests coming
from authenticated users. Recent works also show that it
is possible to use decentralised authentication (Lux et al.

2020), so that a centralised authentication server does not
store the credentials of all users of a Vaultage application.

4. Control. Data that has been transferred to a requester
is no longer under the control of the data provider. For
example, Alice can do malicious activities with Bob’s posts
and files (e.g. pictures) that she obtained via requests to
Bob’s data vault. In this case, Bob cannot control any of
Alice’s actions. This issue is inherent to any sharing of
data through online services, and it could be mitigated
by establishing understandable terms of use within the
application so that data misuses that violate such terms can
be legally pursued.

5. Evaluation
In this section, we describe our evaluation of Vaultage. We start
by presenting different data vault applications that showcase the
capabilities of Vaultage. Then, we report on experiments we
carried out to measure the overall performance of Vaultage’s
communication. We also highlighted the performance impact
of certain aspects of the communication, such as using bro-
kered or direct communication, and the cost of double message
encryption.
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Application
Model

Lines

Generated

Code Lines
Ratio

Fairnet 24 447 1:19

Pollen 20 338 1:17

Synthesiser 8 256 1:32

Table 1 Vaultage model length (in lines of code) against the
generated code.

5.1. Data Vault Applications Generation
We have created three data vault applications – Fairnet, Pollen,
and Synthesiser – to evaluate the code generation capabilities
of Vaultage. All these applications can be found online in Vault-
age’s open-source repository8. The examples of this paper are
contrived and somewhat minimal to help readers understand
how Vaultage works and to show how Vaultage can be applied
to different contexts. With Vaultage’s modelling and code gen-
eration capabilities, adding more services to these examples
would be trivial, as developers would just need to define the new
services at model level and most of the implementation code
related to these would be auto-generated.

We used the cloc9 tool to measure the degree of automation
that Vaultage provides by calculating the ratio between the
number of lines in the input model (LM) and the number of
lines of generated code (LG) for each application. Table 1
shows the obtained ratios, as well as the absolute line counts.
Comments and empty lines were excluded from these counts.

Each data vault application has a specific objective that
makes it different to the others. Since Fairnet was already
introduced in Section 2.4, the following sections only discuss
Pollen and Synthesiser.

5.1.1. Pollen This application is an example of using Vault-
age purely for its communication capabilities. Pollen is a
polling application that uses Multi-Party Computation tech-
niques (MPC) (Goldreich 2002) to perform aggregated polls
securely and without leaking the answers of individual partici-
pants. For instance, it is possible to ask a set of participants some
questions (e.g. a 1-to-10 rating about a government decision,
an opinion on a workplace policy, or a teacher’s performance),
while ensuring that any person participating in the poll cannot
know the response of any other participant, and that the orig-
inator of the poll is also only able to see the final aggregated
responses of all participants. Therefore, Pollen’s main benefit is
a non-trivial communication problem that has been very useful
for polishing Vaultage’s auto-generated message handling archi-
tecture so that it becomes easy to use for data vault application
developers.

Figure 6 shows the Vaultage model for Pollen. Vaults in
Pollen are the users who participate in MPC polls. There are
two types of supported polls: number polls are answered by

8 https://github.com/York-and-Maastricht-Data-Science-Group/vaultage
9 https://github.com/AlDanial/cloc

Figure 6 Pollen’s Vaultage model.

giving a single number (e.g. what is your age/salary?), while
multi-valued polls require selecting from a set of options (e.g.
select from 1 to 5 your satisfaction with the garbage collection
system in your neighbourhood).

An example of a number poll is shown in Figure 7. Let’s
say that Alice wants to obtain the average salary between Bob,
Charlie, and her. To do that, she initiates a poll by sending a
sendNumberPoll request to the first of the three participants,
which in this case is Bob. When Bob receives the request,
instead of immediately answering it, it sends a new request to
the next participant in the list (Charlie) as part of the multi-
party computation calculation. This process continues until the
poll reaches again its originator, which in the example happens
when Charlie sends back the question to Alice. Then, instead
of answering with her real salary, Alice returns a large fake
number as the response. What Charlie does then is responding
to the intermediate request sent by Bob, for which Charlie adds
his real salary to the fake number provided by Alice. This
way, Bob receives a response from Charlie but he is not able
to discern Charlie’s salary from the aggregated value. When
Bob receives this response, he aggregates his real salary and
responds back to the original request from Alice. So, Alice
receives an aggregate number resulting from adding the fake
value and both Bob and Charlie’s salaries, so Alice is not able to
determine the specific salary of any of them (and these salaries
would be more obfuscated as the number of participants grows).
The last thing that Alice needs to do is subtract the original fake
value and add her own salary, so she can calculate the average
salary from that result.

5.1.2. Synthesiser This is a performance testing tool that al-
lows evaluating the architecture generated by Vaultage. Figure 8
shows the Vaultage model of Synthesiser. Vaults in Synthesiser
are denoted as workers, which store no data, and offer two data
services: increment and getTextSize. An increment request
provides a number as a parameter, and it is always responded
with the following number (i.e. it adds one). This request is
useful to perform stress tests with multiple workers receiving re-
quests at the same time. For instance, in one of the implemented
experiments workers receive a number of tasks to perform, each
of these consisting of sending an increment request to another
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«Vault»
Alice: User

«Vault»
Alice: User

«Vault»
Bob: User

«Vault»
Bob: User

«Vault»
Charlie: User

«Vault»
Charlie: User

poll = new NumberPoll
("What is your salary?")

sendNumberPoll(poll)

sendNumberPoll(poll)

sendNumberPoll(poll)

fake_salary (big number)

partial1 = fake_salary +
Charlie's salary

partial2 = partial1 +
Bob's salary

total = partial2 -
FAKE_SALARY +
Alice's salary

Figure 7 Example of an aggregated salary survey in Pollen.

Figure 8 Synthesiser’s Vaultage model.

worker of the network. A worker finishes its work when all
tasks have been completed, i.e., when it has sent and received
back the provided number of tasks to complete. Figure 9 shows
an example of a worker requesting 10 tasks to another worker.
Given a network configuration that includes the traffic pattern
for workers to distribute tasks among them, this application
can be used to measure how much time is required to com-
plete a certain number of tasks per worker. Also, by using the
same Synthesiser network configuration, we can compare the
performance of other system aspects, e.g., different encryption
mechanisms, ways of handling request or response messages,
or how data is retrieved and stored in a vault. The other request,
getTextSize, simply returns the size of the String text received
as a parameter. This request is useful to test how the Vault-
age network responds against messages of increasing size by
controlling the size of the text parameter.

5.2. Vaultage Performance
We evaluated the performance of the vaults generated by Vault-
age in a controlled network setup. We have profiled the time
spent in the different aspects of the communication process,
such as encryption and brokered/direct messaging. We have
also included variations in the profiled experiments by modified
the number and size of the messages.

The controlled network setup for the evaluation is depicted

requester

requester

«Vault»
worker: Worker

«Vault»
worker: Worker

number := 1

loop [while number <= 10]

increment(number)

number++

number

Figure 9 Requester sending 10 tasks to a Synthesiser worker

Figure 10 The controlled network setup for performance
evaluation.

in Figure 10. This setup is composed of three nodes: the first
node is the broker server node that runs Apache ActiveMQ on
a cloud computing service, and the second and third nodes run
Synthesiser worker vaults (see Section 5.1.2). Both the second
and third nodes start a fixed number of workers in parallel.
Workers from the second node act as requesters that send tasks
to the workers in the third one. The broker node runs on a cloud
system with Ubuntu 20.04 as operating system, one core of an
AMD EPYC 7601 32-Core Processor 2.2 GHz, 1 GB RAM, and
Java OpenJDK 8. The requester node runs with Ubuntu 20.04
operating system as well, a 4-core Intel(R) Core(TM) i5-7200U
CPU @ 2.5 GHz, 16 GB RAM DDR4, and Java OpenJDK
11. The worker node runs Windows 10 in a 4-core Intel(R)
Core(TM) i7-6500U CPU @ 2.5 GHz, 12 GB RAM DDR3, and
again Java OpenJDK 11.

5.2.1. Stress Test The objective of this evaluation was to
measure the total time required for a set of requester workers
to get the results of a fixed number of assigned tasks. We used
3 requesters on the second node and 3 workers on the third
node, with the message broker running in the cloud node. This
experiment used the increment Synthesiser request, so an initial
number was incremented as many times as request operations
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Figure 11 Completion times of Synthesiser worker tasks
in brokered/direct and encrypted/plain messaging with an
increasing number of operations.

Message
Size

Brokered Direct

Encrypted Plain Encrypted Plain

60 KiB 1.91 0.18 1.59 0.02

120 KiB 3.60 0.26 3.10 0.04

180 KiB 5.21 0.34 4.59 0.04

240 KiB 6.89 0.40 6.11 0.05

300 KiB 8.53 0.47 7.56 0.06

1.5 MiB 42.57 2.00 37.02 0.18

Table 2 Seconds required to process a large text message
request with respect to the encrypted/plain and brokered/direct
messaging aspects

were sent by a requester. The work size ranged from 50 tasks per
requester worker up to 250 tasks. To ensure our measurements
were trustworthy, each Synthesiser run was run 7 times per work
size, but we only took the last 5 values to reduce the warm-up
effects of initial executions. Then, 95% confidence intervals
for the times of each work size were calculated. The averaged
values and their confidence intervals are depicted in the bar
chart of Figure 11. Based on the values of these intervals, the
measurements were stable across all work sizes.

The figure shows the weight that encrypting transmitted mes-
sages has in the total time required for a Synthesiser run to
complete, both in brokered and direct messaging. The results
show that, on average, plain messaging takes up to 42% and 49%
less time in brokered and direct messaging, respectively, over
the time required to complete a Synthesiser run with encryption.
This kind of experiments could also be useful to compare dif-
ferent encryption approaches, e.g., measuring the cost of using
greater RSA encryption key lengths. In Figure 11, it can also
be noticed that there is a consistent penalty of using brokered
messaging over the direct one. The penalties are 47% and 54%
for encrypted and plain messaging respectively.

5.2.2. Increasing Message Sizes Test The objective of
this experiment was to profile the time used by the vaults when
handling messages of increasing sizes, again with respect to the

encrypted/plain and brokered/direct aspects of the messaging.
To do so, we used the other data service provided by Synthesiser
workers, getTextSize. We constructed request messages con-
taining texts with sizes ranging from 60 KiB to 1.5 MiB. The
results can be found in Table 2. We can see that encryption takes
the majority of the message time, as plain messages take from
90.6% at 60 KBs to 95.3% at 1.5 MBs less time to complete in
brokered communication and from 98.2% at 60 KBs to 99.5% at
1.5 MBs in direct communication. With respect to the commu-
nication mode, and on average, sending large messages through
the broker server is 1.15 times slower in encrypted mode and
7.51 times slower in plain mode than using direct messaging.

Referring again to the results of Table 2, if we aim for the 2-
second rule (Nah 2004), which is the maximum waiting time if
we want to keep a user engaged with a system, then an encrypted
brokered message with a size of around 60 KBs would meet
the threshold. For unencrypted brokered messaging, a 1.5-MB
message is still acceptable for the standard. In contrast, plain
direct messaging can still handle a message with a size of more
than 22 MBs in 2 seconds if it is linearly projected based on the
data.

5.2.3. Threats to Validity In terms of threats to validity,
there are factors in our evaluation environment setup (Figure
10) that can affect the performance of Vaultage in real-world
conditions. For instance, differences in computing power of
each node (e.g., processor, memory, etc.) and the speed of
network connection can translate into different results to the
ones of our evaluation. Also, while deploying the broker server
in a remote cloud node is a realistic scenario, the lack of control
over how the cloud provider administers this node might be
affecting the obtained results. We tried to mitigate these issues
by executing the experiments several times and at message sizes
large enough to make the results more robust against the effects
of variance and noise.

6. Related Work
Providing users with full control of which personal data they
want to share with third parties is a service currently offered by
several applications. A good example of these is Solid (Solid
2017), which is based on the storage of users data in personally-
managed pods (somewhat equivalent to Vaultage’s vaults). Any
third-party application made interoperable with Solid can re-
quest access to pods, and the only ones who can grant this access
are the pods’ owners (i.e. the users). Solid does not impose
any restrictions for the location where pods are stored, so it
allows avoiding centralised backends and opens the possibility
for users to store their data locally. However, Solid pods need to
be stored in a location with a publicly accessible IP/DNS, which
makes them unsuitable for running on mobile devices and lap-
tops, and the data is not encrypted by default. We plan to study
the potential benefits of supporting some Solid components in
Vaultage, such as its user authentication infrastructure. Applica-
tions following similar approaches are Digi.me10, CozyCloud11,

10 https://digi.me/
11 https://cozy.io/en/
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or CloudLocker12, among others.
Related to communication aspects, there are several model-

driven approaches that aim to ease the definition of network
configurations. These approaches focus mostly on informa-
tion flow and access control (Basin et al. 2011; Perez et al.
2013; Gerking & Schubert 2019), which are general concerns
of any network infrastructure. However, less effort has been
put into the automatic generation of secure network communi-
cation interfaces such as the ones provided by Vaultage. We
have only found one application aiming to generate this kind
of communication-related code, in the context of the Internet
of Things systems. These systems are composed of (generally)
low-power sensor and actuator devices that interchange data in
a distributed network to provide some functionalities, such as
controlling the air-conditioning system of a smart home instal-
lation. The CyprIoT framework (Berrouyne et al. 2019) allows
defining the communication of these systems by means of two
domain-specific languages for the specification of the network
configuration and the network policies that must be enforced,
respectively. From these specifications, model-to-text transfor-
mation is performed to generate the network code to deploy in
the system’s IoT devices, freeing engineers from having to deal
with low-level network details. While Vaultage does not offer a
way to specify fine-grained network constraints, it is a general-
purpose framework that supports solid encryption mechanisms
for communication between more complex nodes than the usual
IoT devices.

This work is an extension of our previous workshop paper
(Yohannis et al. 2020). Some of the new features we added are
the direct communication mode between vaults, which allows
a vault to send a message directly to another vault without the
relay of a central broker, and the support for transferring data
in other types (e.g., media files). We also extend the previous
paper by adding an in-depth discussion on the motivation be-
hind this work and a description of Vaultage’s features. We
expand the evaluation of the expressiveness and code generation
capabilities of Vaultage by including new use cases (Pollen and
Synthesiser). We also add a load test to measure the implica-
tion of message sizes on Vaultage’s performance in different
communication aspects. Lastly, we discuss the limitations and
challenges associated with the proposed distributed architec-
ture.

7. Conclusions and Future Work
We have presented Vaultage, a framework intended to support
developers when creating data vault applications. Vaultage
offers automatic code generation of decentralised data vault net-
works, including brokered and direct messaging between vaults
and securing messages through double encryption mechanisms.
Vaultage has been used to generate three different data vault
applications: Fairnet (a social network), Pollen (a polling/survey
application), and Synthesiser (for network performance testing).

For our future work, we plan to integrate Vaultage with
payment wallets and cryptocurrency networks to allow vault
owners to monetise their data services. Also, we plan to study

12 https://www.cloudlocker.eu/en/index.html

how to enable users to concisely query and aggregate data stored
in multiple data vaults from a high-level query language or
interface. We will also analyse if enabling some network policy
configurations in Vaultage could be useful for some objectives,
such as preventing malicious behaviours (e.g., denegation of
service attacks).
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