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ABSTRACT Model-Driven Engineering (MDE) is an approach to software engineering with a well-defined formal basis and rich
tool-support. For MDE tools to be actually usable by practitioners in industry, adequate debugging facilities must be provided.
This is especially true for model transformation tools, which are often declarative in the sense that they intentionally hide
low-level details such as the exact order of pattern matching and rule selection. Building debuggers for such tools is challenging,
as users require enough information to locate and understand problematic parts, but do not want to be swamped with the
technical bits and pieces of a transformation possibly consisting of hundreds of steps. In this paper, we report on our continued
research on the VICToRy debugger, a debugger for rule-based bidirectional model transformation tools. After presenting the
general idea for VICToRy in prior work, we focus in this paper on closing two gaps we have observed in research: (i) exploring
how best to support breakpoints as a means of efficiently debugging large-scale human-in-the-loop model transformations,
and (ii) how to debug the propagation of concurrent updates between multiple models, i. e., concurrent model synchronisation.
Both features allow the user to actively interact with the transformation tool: the former by switching between manual and
automated selection and application of rules, the latter by involving the user in the choice of conflicting rule applications. We
provide a qualitative evaluation of these extensions indicating that supporting breakpoints does indeed make the debugger more
accessible to users, and that we addressed the most important requirements for debugging concurrent model synchronisation.
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1. Introduction and Motivation
Model-Driven Engineering (MDE) puts models at the centre of
the software development process. This enables a wide range
of domain experts, both with and without programming ex-
perience, to contribute and collaborate on a suitable level of
abstraction. Building software systems from models involves
different consistency management operations, including model
transformation, synchronisation and consistency checks. When
developing software systems of realistic complexity, practition-
ers in industry can only use MDE tools if these provide adequate
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debugging facilities for locating and understanding problems.
This is even more the case for consistency management tools,
which, often intentionally, shield users from low-level details
such as the exact order of pattern matching and rule selection.

While development environments for General Purpose Lan-
guages (GPLs) usually provide mature debuggers for step-wise
program execution and the definition of breakpoints as well
as watchpoints, support for productive debugging provided
by MDE tools in general and consistency management tools
in particular, is often inadequate or even completely missing.
State-of-the-art consistency management tools usually run their
operations completely in the background with only input and
output made visible to the user, arguably reducing both un-
derstandability and controllability. Even for uncontroversial
transformations, we have observed that novice users are un-
able to fully understand how consistency management tools -
viewed as black-boxes - determine a specific result. We argue
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that understanding and thus trust in the results of consistency
management tools can be increased by actively involving the
user i. e., an integration expert possessing knowledge about the
involved domains, in key decisions made during the consistency
restoration process.

To explore the solution space for debugging consistency man-
agement operations, the VICToRy debugger1 was developed as
an add-on component for consistency management tools. The
rule-based approaches of (algebraic) graph transformation for
unidirectional and Triple Graph Grammars (TGGs) (Schürr
1994) for Bidirectional Transformation (BX) form the formal
basis for VICToRy. BX is an approach to consistency manage-
ment, which makes it possible to derive different operations
from a single specification of the consistency relation (Abou-
Saleh et al. 2016). VICToRy is currently integrated into the
eMoflon tool suite2 but can be potentially connected to other
Java-based TGG and graph transformation tools via provided
interfaces. This means that existing and future tools can be
enriched with debugging facilities to increase user involvement
and understanding in the transformation process.

While a step corresponds to a single instruction for most GPL
debuggers, this “smallest executable unit” is a rule application
for the VICToRy debugger. Indeed, this is what distinguishes
the VICToRy debugger from other MDE debuggers we are
aware of, which tend to focus on making the actual pattern
matching process and the generation of individual nodes and
edges observable by the user. Our approach with VICToRy is to
remain high-level and, instead of mimicking GPLs step-by-step
debuggers, to research into features that can nonetheless pro-
vide just enough information for users to locate and understand
problems with their transformations.

In this paper, we focus on two such high-level debugging
strategies. Firstly, we explore how the general idea of break-
points can be transferred to VICToRy without revealing the
technical specifics of the underlying TGG tool. Secondly, we
discuss how users can be involved in the process of conflict
resolution. While transformation and consistency checking op-
erations can, in principle, be solved without any user interaction,
determining satisfactory solutions after concurrent updates is
hardly possible without human-in-the-loop approaches involv-
ing an integration expert. This is because conflicts cannot be
avoided in general and make it impossible to restore consis-
tency and incorporate all changes at the same time. Existing
approaches (Orejas et al. 2020; Fritsche et al. 2020; Weidmann,
Fritsche, & Anjorin 2020) require the user to predefine a gen-
eral resolution strategy but emphasize that more research in this
direction is needed. Our approach with VICToRy is to involve
the integration expert actively in the conflict resolution process
via a debugger with suitable features for this task. As this is a
largely unexplored solution space, we continuously consulted
with multiple experts from the different and very diverse BX
subfields to get their feedback and suggestions to further shape
our ideas.

An initial version of the debugger was presented in prior
work (Weidmann, Anjorin, & Cheney 2020), which is extended

1 github.com/eMoflon/emoflon-victory
2 https://emoflon.org/

by different features in the current paper. As novel contribu-
tions, the current paper presents (i) a new breakpoint concept
involving breakpoints of different types, (ii) a prototype for a
concurrent synchronisation component, and (iii) an initial user
study to gather requirements for and evaluate (i) and (ii). All
concepts are demonstrated using a complex model transforma-
tion example, originating from an industrial case study from the
railway domain (Salunkhe et al. 2021; Weidmann et al. 2021).

The remainder of this paper is structured as follows: The
VICToRy debugger is compared to existing MDE debuggers in
Sect. 2, before a motivating example is introduced in Sect. 3. An
architectural overview is provided in Sect. 4, before Sect. 5 intro-
duces our breakpoint concept. Section 6 provides an overview
of the debugger’s front-end. The User Interface (UI) proto-
type of a concurrent synchronisation component is presented in
Sect. 7. The results of empirical studies with both MDE experts
and novices are summarised in Sect. 8. Sect. 9 concludes the
paper and provides some directions for future research.

2. Related MDE Debuggers
Several approaches for debugging in MDE have been proposed,
including debugging Domain-Specific Language (DSL) code,
executing state machine models, and debuggers for model trans-
formation approaches. Table 1 provides an overview of related
MDE debuggers, and in which MDE tools they are implemented.
Aligned with this paper’s contributions, we analyse whether the
approaches support breakpoints (BP), model transformations
(MT) or only model execution, and – if yes – whether the trans-
formation approach is bidirectional (BX), being a prerequisite
for implementing a component for synchronising concurrent
updates.

Reference Implementation BP MT BX
(Bousse et al. 2015) GEMOC Studio ✓ ✗ ✗

(Laurent et al. 2013) unnamed ✓ ✗ ✗

(Wimmer et al. 2009) TROPIC ✓ ✓ (✓)
(Tichy et al. 2017) ? ✓ ✓ ✗

(Jukss et al. 2017) AToMPM ✓ ✓ ✗

(Runge et al. 2011) AGG ✗ ✓ ✗

(Mészáros et al. 2013) VMTS ✓ ✓ ✗

(Rieke 2015) TGG Interpreter ✓ ✓ ✓
(Giese et al. 2014) MOTE ✗ ✓ ✓
(Klassen & Wagner 2012) EMorF ✗ ✓ ✓
(Mierlo et al. 2017) Python PDEVS ✓ ✗ ✗

(Krasnogolowy et al. 2012) SD Interpreter ✓ ✓ ✗

(Cuadrado et al. 2018) AnATLyzer (✓) ✓ ✗

(Schönböck et al. 2013) TETRABox ✗ ✓ (✓)
(Ujhelyi et al. 2012) VIATRA2 ✓ ✓ ✗

(Kolovos 2009) Eclipse Epsilon ✓ ✓ ✗

(Oakes et al. 2018) SyVOLT ✗ ✗ ✗

Table 1 Overview of related MDE debuggers

A wide range of facilities for DSL debugging is presented in
existing work. Omniscient debugging - in contrast to stepwise
execution - provides the user with enhanced navigation and ex-
ploration features, such as reverting execution steps at runtime,
impacting performance and scalability. Therefore, approaches
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are often tailored to specific use cases, such as xDSMLs, a
subset of DSLs (Bousse et al. 2015). Laurent et al. extended
the foundational UML (fUML) by debugging facilities (Lau-
rent et al. 2013). While the approach is a tool-independent
add-on, it considers only the execution of models complying
with the fUML standard. Wimmer et al. present a debugger for
model transformations based on mediniQVT and coloured petri
nets (Wimmer et al. 2009). Both models and metamodels can
be inspected in each step of the model transformation, while
the transformation itself cannot be directed by the user. Further-
more, the authors point out that the approach suffers from the
ambiguous operational semantics of the QVT-R standard.

For debugging rule-based systems, Tichy et al. sketch how to
execute debugging steps for graph transformations, taking the
tool Henshin as an example (Tichy et al. 2017). In contrast to
our approach, the debugging of rule applications is much more
detailed and takes the matching process into account as well,
whereas an implementation is not described. Similarly, Jukss
et al. use graph transformations as an underlying formalism
for a debugger integrated into AToMPM (Jukss et al. 2017).
The approach focuses on a fine-grained inspection of the rule
application process, whereas the user is not enabled to choose
between multiple possible rule applications. For algebraic graph
transformation, the tool AGG (Runge et al. 2011) provides a
mode for stepwise execution of graph transformations. Rule
and match can be chosen by the user in each step, while it is
neither clear which rules are applicable in the current state, nor
a protocol of previous rule applications is provided. Meszaros
et al. present a visual model transformation debugger for step-
by-step execution of model transformations based on graph
transformations (Mészáros et al. 2013). Single steps of the
transformation can be influenced by the user, being restricted to
in-place model transformations, though.

Furthermore, multiple TGG tools (cf. (Leblebici et al. 2014)
for an overview) have been extended by debugging facilities,
which appear to be limited in several respects, though. A con-
cept for debugging TGGs at different levels was introduced to
the TGG Interpreter by Rieke (Rieke 2015). The debugging
facilities are, however, tightly interwoven with the specific tool
and several open challenges for practical use are mentioned.
For MoTE, a monitor is implemented which allows to stepwise
execute model transformations (Giese et al. 2014). However, the
user cannot influence the execution order, which is determined
by the order of correspondence nodes in a processing queue and
their respective types. A debugging mode is implemented for
EMorF (Klassen & Wagner 2012) as well, but both a detailed
description and the tool itself are currently not available.

Besides these rule-based approaches, debugging plays an
important role in other MDE-related fields as well. Proposed
concepts include work on Discrete Event System Specifica-
tions (DEVSs) (Mierlo et al. 2017) and story diagrams (Krasno-
golowy et al. 2012), which are each tailored to a specific tool and
use case, though. Cuadrado et al. use the AnATLyzer (Cuadrado
et al. 2018) for static analyses of ATL model transformations,
which is able to detect typing errors and conflicting rules at
compile-time. The TETRABox framework is based on the
PaMoMo language and involves white-box testing of trans-

formation languages by symbolic execution of model transfor-
mations (Schönböck et al. 2013), which is independent of the
underlying transformation language but not yet tested with re-
alistic examples. Generated traces of the underlying model
transformation tools, i.e., VIATRA (Ujhelyi et al. 2012) and
Epsilon (Kolovos 2009), to gain insights into the transformation
process. SyVOLT localises errors in the input based on igraph
and the T-Core framework (Oakes et al. 2018), while the focus
of debugging is set on detecting reasons for contract violations
rather than on the transformation process.

In total, no MDE debugger we are aware of fulfils the require-
ments of being tool-independent, offering a breakpoint concept,
and supporting bidirectional transformations at the same time.
For a detailed overview of debugging and testing model trans-
formations, the interested reader is referred to a recent survey
by Troya et al. (Troya et al. 2022).

3. Motivating Example
In order to motivate the necessity of both breakpoint facilities
for MDE debuggers and user interaction when synchronising
concurrent updates, we consider a practical case study from
the railway domain presented in prior work (Salunkhe et al.
2021; Weidmann et al. 2021). For engineering railway systems,
the well-known Systems Modeling Language (SysML) (Holt
& Perry 2019) can be synergetically combined with the formal
language Event-B (Abrial & Hallerstede 2007), with which
safety properties can be verified. A BX between models of the
two languages ensures that consistency is maintained throughout
the development process.

This motivates us to take a closer look at the definition of the
consistency relation. Suppose that a BX between the two lan-
guages has been defined, and the SysML state machine depicted
in Fig. 1 results from a backward transformation of the Event-B
code in Fig. 2. The Event-B machine can be considered as
well-formed, i. e., it does not contain any syntactic errors. The
SysML state machine, however, involves a dangling outgoing
edge from the START state, which violates the syntax of the
SysML language. It is non-trivial, though, to identify the source
of the error: It can either originate from the Event-B model and
be reproduced by the transformation engine, or the specification
of the BX in use is incorrect, or both issues even occur at the
same time.

Machine START

STOP
/ finish := TRUE;

Figure 1 Faulty SysML model

In order to detect the source of the error, it seems desirable
to step-wise execute the backward transformation. As Fig. 1
and 2 have shown the model instances in concrete syntax, the
abstract syntax shall be briefly introduced at this point. Figure 3
depicts the relevant excerpt of the SysML metamodel for state
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1 MACHINE Machine
2 VARIABLES START STOP finish
3 ...
4 EVENTS
5 INITIALISATION =̂
6 ...
7 COMPLETION =̂
8 WHEN
9 isin_START : START = TRUE

10 THEN
11 leave_START : START := FALSE;
12 act1 : finish := TRUE;
13 END
14 END
15

Figure 2 Equivalent Event-B code

machines to the left, the Event-B metamodel to the right. To
improve readability, only multiplicities different from 1 for the
source and 0..* for the target of an association are depicted.
For representing the consistency relation with TGGs, a third
“correspondence” model is used that maps related language con-
structs of source and target. Visually, the mapping is represented
in form of hexagons.

Statemachine

name : EString

Machine

name : EString

Transition

name : EString

State

name : EString

Effect

name : EString

body : EString

Event

name : EString

Action

name : EString

action : EString

Variable

name : EString

events

transitions

subvertex

variables

actions

source target

effects

Port

name : EString

ports

11

Pseudostate

kind : EString

: Sm2M

: P2V

: S2V

: T2E

: E2A

Guard

name : EString

predicate : EString

guards

Figure 3 SysMLToEventB: Triple metamodel

The Statemachine class defines the primary behaviour of
the modelled system and consists of States, Transitions, and
Ports. The Event-B Machine, which consists of Variables
and Events, has the same purpose, so these classes correspond

to each other. The States of a SysML state machine (“START”
and “STOP” in Fig. 1) correspond to Variables in the Event-B
model (l. 2 in Fig. 2). The same holds for Ports in SysML mod-
els (“finish”), which are used for communication with external
components. Pseudostates are a special form of States that
are used to represent transient states, such as the initial state.

A Transition in SysML represents the directed relation
between a source and a target State. Activating a Transition
is similar to the occurrence of an Event in Event-B (ll. 5 and
7), thus these elements are connected via a correspondence.
An Event incorporates Guards to restrict its occurrences and
Actions that take place during the Event (l. 9). Actions in
Event-B (l. 12) thus correspond to Effects in SysML, with
which the respective transitions are annotated. There are also
generated actions (l. 11) that do not correspond to any effect
in SysML. To keep the example small and understandable,
only a subset of the language constructs from the original case
study is covered here. The interested reader is referred to prior
work (Salunkhe et al. 2021; Weidmann et al. 2021) for a more
detailed description.

Besides the (triple) metamodel, a set of rules is used to define
the consistency relation. A TGG-based consistency manage-
ment operation, e. g., a backward transformation from Event-B
to SysML, consists of a sequence of rule applications, which is
made accessible to the user via the VICToRy debugger. Due to
space limitations, only two rules are shown to demonstrate the
rationale of rule-based consistency management.

Figure 4 shows the TGG rule StatemachineToMachine,
which creates a state machine sm in the SysML model, and
connects it to an Event-B machine m via a correspondence node.
All elements are coloured green and marked up with a ++, which
indicates that the respective elements are created when applying
the rule. The expression at the bottom of Fig. 4 ensures that the
values of the name attributes of sm and m are equal. Expressions
of this kind are denoted as attribute conditions.

StateMachineToMachine

sm : Statemachine m : Machine

++

: Sm2M

++ ++

sm.name = m.name

Figure 4 TGG rule: StatemachineToMachine

The second rule PortToVariable adds a port p to a state ma-
chine sm, and connects it to a variable v in the Event-B model
(cf. Fig. 5). Again, the names of p and v must be equal. In
contrast to StatemachineToMachine, the rule also involves black
elements without mark-ups, which we denote as context ele-
ments. Context elements are required to exist before applying
the rule, which is determined by pattern matching on the (triple)
graph instance. In the concrete example, the rule Statema-
chineToMachine can create the required context elements for
applying PortToVariable. Note that in both Fig. 4 and Fig. 5, the
declarative forms of the respective TGG rules are shown, which
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have to be operationalised for specific tasks, such as forward or
backward transformations.

PortToVariable

sm : Statemachine m : Machine

p : Port v : Variable

ports variables

: Sm2M

++

: P2V

++++
++ ++

p.name = v.name

Figure 5 TGG rule: PortToVariable

In order to detect the root cause of the incorrect transforma-
tion result, these two rules are probably irrelevant, though, as
the problematic part of the SysML model, i. e., the dangling
edge going out of the START state, is not affected by the rules. It
would therefore be helpful to define breakpoints that pause the
transformation, e. g., when transitions are created, or when rules
are applied that connect transitions to states. While this example
is kept minimal for demonstration purposes, the specification of
such breakpoints would substantially reduce time and efforts for
debugging transformation sequences that consist of hundreds of
rule applications.

Instead of analysing the problem’s origin, it could also hap-
pen that SysML and Event-B experts update the respective mod-
els independently to remove the error. In case that the experts do
not follow the same approach to improve the situation, it is espe-
cially challenging to restore consistency, as changes might be in
conflict with each other. To overcome this issue, we propose a
concurrent synchronisation UI as an extension of the VICToRy
debugger, which enables the user to resolve such conflicts in
a reasonable manner. Before turning towards the advanced de-
bugging concepts, the debugger’s software architecture will be
sketched in the upcoming Sect. 4.

4. Architecture
VICToRy can be connected to different Java-based TGG tools
by implementing an interface for transferring data between the
debugger and the respective tool. An overview of this interface
is depicted in Fig. 6. Compositions have multiplicities of 1
and 0..*, if not stated otherwise. The central component of
this interface is the DataPackage class, which bundles the
data that is transferred between VICToRy and the TGG tool.
A DataPackage contains all relevant Rules, Matches, and
Rule Applications. Multiple Matches can be determined
for the same Rule. Furthermore, a RuleApplication object
is created when a Rule is applied for a concrete Match.

These three classes are represented as Graphs consisting of
Nodes and Edges. There exists a mapping from each Edge to a
source and a target Node, reflecting the categorical approach to
graph transformation (cf. (Ehrig et al. 2006)). The Nodes have a
set of Attributes, and a Domain, i. e., a marking that indicates
whether they belong to the source or target model. For Edges,

the domain can be determined from their source and target
nodes: If both Nodes are part of the source (target) model, the
Edge also belongs to the source (target) model. If Edges con-
nect Nodes of different domains, VICToRy considers the Edge
as a correspondence link (EdgeType “CORR”). Within a rule
or a graph instance, Edges have the EdgeType “NORMAL”.
Mappings between rules and graph instances are represented as
Edges of type “MATCH”. Finally, each element has an Action,
indicating whether the element is created, translated (marked),
or required as context by the rule.

The component diagram in Fig. 7 describes how the debug-
ger has been embedded into the eMoflon tool suite, and can
potentially be connected to other Java-based TGG tools. The
tool suite consists of the two main components IBeX (Weid-
mann et al. 2019) and Neo (Weidmann & Anjorin 2021), which
both implement the interface to the debugger. The VICToRy
adapter is tool-specific and needs to be implemented in order
to connect the debugger to a TGG tool. It is responsible for
providing both the debugger and the TGG tool with the required
information, as shown in Fig. 6. The debugger itself consists
of a controller that delegates user commands to the adapter,
and, in turn, receives updated information about new matches
and the current state of the models. All relevant information is
made available to the user via the UI, whereas the breakpoint
manager is responsible for checking breakpoint conditions. In
the following, an overview of the breakpoint concept (Sect. 5)
and the UI (Sect. 6) will be provided.

5. Breakpoint Concept

While performing a consistency management task with VIC-
ToRy, the tool switches between the two modes RUN and BREAK,
as depicted in Fig. 8. In the RUN mode, possible matches for
rules are collected and one of them is chosen to be applied. In
case of multiple options, rule applications are chosen according
to a configurable component (e. g., at random in the simplest
case) without user interaction, which is the usual work-flow for
model transformation tools. This procedure is repeated until
no further matches can be found (leading to the termination
of the process) or until a breakpoint is reached. In the latter
case, the tool switches to the BREAK mode, where the VICToRy
UI (Fig. 9) is visible and each rule application requires a user
interaction: Either the user lets the tool choose the next rule
application, or selects a rule application manually from the list
of all options. To return to the RUN mode, the user resumes the
automated choice of rule applications by a corresponding UI
command. This behaviour is similar to debugging concepts in
contemporary Integrated Development Environments (IDEs),
but without the possibility of stepping into a rule application.

The implementation of the breakpoint concept follows a
slightly more complex work-flow, as there are multiple evalua-
tion times for breakpoints: A breakpoint can be hit either after
the pattern matching step (as shown in Fig. 8), after the match
selection, or after the actual rule application. As the handling of
breakpoints is equal for all evaluation times, the diagram was
simplified to preserve readability.
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DataPackage

RuleApplication

name : String

index : String

Match

name : String

blocked : boolean

Rule

name : String

Graph

Node

name : String

type : String

Edge

label : String

«enumeration»
EdgeType

NORMAL

CORR

MATCH

Attribute

name : String

type : String

value : Object

«enumeration»
Action

CONTEXT

CREATE

TRANSLATE

«enumeration»
Domain

SRC

TRG

0..*

1

0..*

1

0..*

1

0..*

1

0..* 1

src

trg

1

1
0..*

0..*

1 1

1
1

0..*

Figure 6 Data exchange with VICToRy

VICToRy Adapter

Data Structure 
Wrapper

Adapter Controller

VICToRy

Debugger
Controller

UI Breakpoint 
Manager

TGG Tool

eMoflon::IBeX eMoflon::Neo

Figure 7 Integrating VICToRy into the eMoflon tool suite

While the previously described work-flow applies to all
breakpoints of the VICToRy debugger, there are multiple types
of breakpoints that serve different purposes. They can be subdi-
vided into model breakpoints, match breakpoints, and combined
breakpoints, which will be explained in the remainder of this
section. Due to the estimated substantial efforts, pattern and
node breakpoints have not been implemented yet, all other types
are part of the VICToRy debugger.

5.1. Model Breakpoints

The break conditions of model breakpoints solely depend on the
current state of the model instance at hand.

– Model size breakpoint: This breakpoint type counts the
number of nodes in the triple. As soon as a predefined size
is reached, the breakpoint is hit. The intention behind this
type is to pause the transformation process at some point
to inspect the intermediate result.

– Pattern breakpoint: Breakpoints of this type are hit as
soon as a specified pattern can be matched on the host
graph at least once. Especially for detecting domain con-
straint violations, such as multiplicity constraints defined
in the metamodel, this breakpoint type is useful.

5.2. Match Breakpoints

Match breakpoints refer to the current match to be applied, i. e.,
the condition rather depends on the next transformation step
than on the entire model instance.

– Rule name breakpoint: With this breakpoint type, the
transformation process breaks each time a predefined rule
(identified by its name) is applied. This type is handy
in cases where the user assumes that the definition of a
particular rule is faulty.

– Number of matches breakpoint: For a predefined number
n, a breakpoint of this type is hit if at least n matches are
collected. The counted matches can be restricted to one or
multiple rules.

– Element type breakpoint: Every time an element of a
specific type is created, the breakpoint condition is fulfilled.
Element types of all three models can be used.

– Attribute condition breakpoint: Attribute conditions
specify the consistency relation between attributes in
source and target model (cf. Fig. 4 and 5). However,
this breakpoint type is not restricted to conditions that are
attached to the rules of the TGG at hand. Any boolean
expression that can be defined using the meta-model at-
tributes and Java standard language features can be ex-
pressed, making this breakpoint type especially powerful.

6 Weidmann et al.



Consistency management process
TGG tool

Do pattern
matching step

[yes]

Select match
automatically

Apply match

Stop criterion
reached?

VICToRy

Evaluate
breakpoints

Enter BREAK
state[yes]

Enter RUN
state

Breakpoint
hit?

Mode? [RUN]

[Step]

[BREAK]

[no]

[Run]

[no]

User

Select match
manually

[Manual]

user
command?

Figure 8 Breakpoint concept of the VICToRy debugger

– Node breakpoint: Finally, this breakpoint type pauses
the transformation process as soon as a particular node,
identified by its ID, is part of a match. It can be used in
situations for which it is probable that a fault occurs when
a specific node is created or translated.

5.3. Combined Breakpoints
Combined breakpoints can be formed out of all previously de-
scribed breakpoint types (also denoted as “atomic” breakpoints).
In a combined breakpoint, both atomic and combined break-
points can be connected with AND, OR, and NOT, such that a
propositional logic over breakpoints is defined. Considering a
breakpoint as a boolean variable that is true if and only if the
breakpoint condition is fulfilled, the combined breakpoint is hit
as soon as the formed expression is true.

6. An Overview of the User Interface
The conceptual introduction to the architecture and the break-
point concept of the VICToRy debugger is complemented with
a brief presentation of the UI in this section. An overview of
features of VICToRy from the UI perspective is provided, that
can help novice users explore an unknown TGG and enable
experts to detect faults in a complex specification.

6.1. Configurable Visualisation of Rules and Matches
First, the main windows of the debugger will be presented (cf.
Fig. 9). To understand the effects of a rule application on a
concrete model, it is essential to visualise both the rule and the
resulting model changes at runtime. VICToRy supports both
features via its visualisation section l1 . It shows the visuali-
sation of a model triple resulting from applications of the rules
StatemachineToMachine (Fig. 4) and PortToVariable (Fig. 5).

The background colour of source model elements is peach,
while target model elements have a rose background. Correspon-
dences are represented as dashed black lines. The visualisation
of rules and the resulting triples is based on PlantUML3 and is
generated automatically on rule and match selection, which will
be explained later in the course of this section. Editing rules is
only possible in the underlying TGG tool, meaning that rules
cannot be adapted at runtime.

To cope with a wide range of TGG rule sizes, model sizes,
and the varying proficiency of users, it is crucial to be able to
configure the visualisation. Via a pop-up menu l2 , the user
has a range of configuration options (available via clicking the
“User Options” button):

– Choice of displayed elements: For each domain (source,
target, correspondence), the user can hide the respective
elements. For rules, it is also possible to display only
context elements and thus focus on the structure required
for a match of that rule on the model instance.

– Abbreviation of labels: For nodes, edges, and correspon-
dences, it is possible to display the labels completely, in an
abbreviated form containing the first and last three letters,
or not at all.

– Neighbourhood of matches: As models of realistic size
can become too large to be completely displayed within
the debugger, only the match of a selected rule applica-
tion and a configurable neighbourhood of this match is
displayed. The distance of a node to the match is defined
as the shortest path from this node to any node contained in
the match; nodes in the match itself are assigned a distance
of 0. The k-neighbourhood of a match contains all nodes
with a distance of at most k ∈ [0; 3].

3 https://plantuml.com/
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6.2. Interactive Overview of Applied Rules
Changes in the visualisation can be triggered by selecting rules
or potential rule applications from the rule section l3 or actual
rule applications from the protocol section l4 .

The rules section provides an overview of all rules of the
TGG. The entire rule set of the example TGG SysMLToEventB
consists of 14 rules, which are depicted as a list, and involves
node types that are not part of the metamodel of Fig. 3. For each
rule in the list, the number of available matches in the current
model and the number of applied matches are displayed together
with the name of the rule. Rules with a dark grey background are
not applicable in the current state of the model, whereas rules
with a white background have at least one applicable match.
This provides a quick overview and is useful for TGGs with a
large number of rules. Furthermore, rules that have never been
applicable are crossed out, providing a quick visual indication
of rules that might be problematic.

All matches of a rule can be viewed as sub-entries by expand-
ing the corresponding rule entry in the list. When selecting a
rule from this list, it is visualised in the right part of the UI l1 .
To apply a rule, the user can either double-click on a particular
match, select the match and press the “Apply” button, or simply
double-click the rule to apply a random match of this rule. The
buttons ”Run” and ”Step” instruct the debugger to select the
next match automatically (cf. Fig. 8). The user command is del-
egated to the connected TGG tool, which must handle the actual
rule application. As soon as VICToRy receives a response, the
UI is updated to reflect the new state of the model and available
matches.

The VICToRy debugger provides traceability information by
keeping track of all previous rule applications. This sequence of
rule applications is referred to as the (transformation) protocol.
For each protocol entry, the name of the rule as well as a unique
ID for the rule application is displayed. If a protocol entry is
selected, the state of the model as created by all rule applications
up to and including the selected one is displayed with a con-
figurable neighbourhood. It is also possible to select multiple
entries: the respective rule applications are then combined into
a single step and visualised accordingly.

Several buttons provide the user with additional functional-
ity l5 . The “Show complete model” button resets the selection
in the left part of the screen and visualises the entire triple in-
stance. The three models in their current state can be stored
as XML Metadata Interchange (XMI) files to continue the de-
bugging process later (“Save models”). It is also possible to
start the transformation process from scratch again (”Restart”)
or to stop the process completely (”Quit”). Finally, breakpoints
can be defined on a separate screen, which is explained in the
following.

6.3. Breakpoint Menu
The definition of breakpoints (cf. Sect. 5) for the debugging
process is possible via a pop-up menu that can be opened by se-
lecting the “Configure Breakpoints” button on the main window.
A list of breakpoints of different types is depicted in Fig. 10 and
11. The colour scheme indicates that the model size breakpoint

(in grey) is deactivated, whereas the number of matches break-
point (in green) is evaluated after the pattern matching step.
The combined breakpoint (in black) is evaluated also after the
automatic selection step. Below the list of breakpoints, further
options enable the user to configure the breakpoint. The options
differ depending on the breakpoint type, such that the UI is
dynamically adapted to the type of the selected breakpoint.

In Fig. 10, an element type breakpoint as part of the com-
bined breakpoint is selected. The element type can be chosen
via a drop-down menu, currently the type Trigger is selected.
The evaluation time depends on the configuration of the com-
bined breakpoint, but it is possible to disable the element type
breakpoint at this level.

Figure 10 Element type breakpoint

The configuration of the combined breakpoint is depicted
in Fig. 11. Besides the element type breakpoint of Fig. 10, it
consists of a rule name breakpoint for the rule TransitionTo-
Event. By using the combination type AND, we specify that the
combined breakpoint is hit only if the conditions for both sub-
breakpoints are fulfilled. Via the radio buttons on the bottom,
the user can choose whether the conditions must be fulfilled
by the same match, or whether it is sufficient if the conditions
are fulfilled by different matches. Combined breakpoints can
also be used as part of other combined breakpoints, making it
possible to create complex nested structures.

After providing an overview of the debugger’s main com-
ponent, the prototypical implementation of the concurrent syn-
chronisation component is sketched in the following Sect. 7.

7. Concurrent Synchronisation Component

Existing TGG-based approaches to concurrent model synchro-
nisation (Orejas et al. 2020; Fritsche et al. 2020; Weidmann,
Fritsche, & Anjorin 2020) compute solutions in a fully auto-
mated manner. While this strategy is time-efficient and min-
imises manual efforts, the acceptance of a consistency manage-
ment tool would benefit substantially from involving the user
into the resolution of controversial decisions. To improve the
situation, we designed a concurrent synchronisation component,
enabling the user to influence the synchronisation process.
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Figure 11 Combined breakpoint

As this component – to the best of our knowledge – is the
first of its kind, the requirements for such an interactive synchro-
niser are largely vague. Clarifying the requirements and taking
design decisions carefully seemed to be very important for the
development process of the concurrent synchronisation com-
ponent due to the novelty of an interactive model synchroniser.
The ARCADIA method (Voirin et al. 2015), which originates
from the systems engineering domain and recently gained popu-
larity for software development processes as well, was used to
design the prototype. ARCADIA, which was frequently used
in industrial contexts already, promotes a view-point-driven ap-
proach and emphasizes a clear distinction between need and
solution (Roques 2016). In an iterative manner, artefacts of
previous phases are re-used in later phases of the development
process. Due to time restrictions, we focussed on the opera-
tional analysis and system analysis phases to construct a first
UI prototype, whereas ARCADIA involves three further phases
building upon them. Up until now, a standalone UI prototype
was developed; the actual integration into the VICToRy debug-
ger is left to future work.

The front-end of the developed UI prototype is depicted in
Fig. 12. In the middle section l1 , the current state of the model
instance is visualised. It shows a problematic situation resulting
from independent changes that aim at removing the errors from
the example instances of Fig. 1 (SysML) and 2 (Event-B): The
SysML engineer has connected the states “START” and “STOP”
with a transition, whereas the Event-B expert has deleted the
“STOP” state and introduced a self-loop on the “START” state.
This leads to two conflicts: First, the “STOP” state cannot be
deleted and set as the target of the transition at the same time,
denoted as create-delete conflict. Second, the transition cannot
have two targets, which in this case is considered as a create-
create conflict. For details on the TGG-based detection and
classification of conflicts, the interested reader is referred to
Fritsche et al. (Fritsche et al. 2020).

The colour scheme for the backgrounds of source and target
model elements is the same as for the main component, but
the semantics of the elements’ frames is different: It indicates
whether the respective element is created, deleted, or remains
unchanged, as shown in the legend on the bottom right l2 .

On the left-hand side l3 , a list of conflicting changes that
have not been resolved yet is presented to the user. For each
conflict, all involved elements are listed. Each element of the
list, or the entire conflict, can be highlighted in the visualisation
via bold lines by selecting it in the conflict list. For each conflict,
the user can choose whether it shall be resolved manually or
automatically, as shown in the open context menu l4 . For a
manual resolution, the user selects one of the generated descrip-
tions. In the concrete example, the component offers the user to
resolve the create-create conflict by choosing either of the states
as target for the transition. The automatic resolution chooses an
option based on a predefined policy.

On the right-hand side l5 , some statistical numbers are
shown that help the user keeping track of the applied changes.
In the tool bar l6 , additional features of the concurrent synchro-
nisation component are depicted: As for the main component,
storing the current state of the models on disk (“Save” button)
and configuring the visualisation (“Set Preferences”) is possible.
In case of undesired effects of the last action, the user can step
back to the previous state. Furthermore, the user is in charge of
accepting the final (conflict-free) solution as an outcome of the
synchronisation process, and can trigger consistency checks at
any point of time. Further opportunities and challenges will be
discussed in Sect. 8.2 based on the feedback we received from
experts during the development process.

8. Evaluation
In order to qualitatively assess the usefulness of VICToRy for
involving the user into consistency management operations, we
conducted an empirical evaluation with MDE experts from dif-
ferent subfields. This section can only provide a brief summary
of the results, the interested reader is referred to a more exten-
sive discussion in prior work (Jose 2021; Srivastava 2021). Our
evaluation aims at answering two research questions related to
motivational aspects for MDE debuggers:

RQ1 How valuable are breakpoints in different debugging sce-
narios and for different types of faults compared to debug-
ging without breakpoints?

RQ2 How can a concurrent synchronisation component support
the manual resolution of conflicts? Which features should
such a component offer?

8.1. Breakpoint Concept
To assess the value that the introduced breakpoint concept adds
to the debugger, semi-structured interviews with five TGG ex-
perts were conducted in May and June 2021. The goal of the
interview process was to gather feedback and suggestions for
future improvements, both for specific breakpoint types and for
the general handling of the debugger.

10 Weidmann et al.
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Breakpoint Assessment Suggestions
Model size Suitable for exploring new TGGs. The PlantUML visualisation should be exchanged,

it might crash even for medium-sized models. The
scope could be restricted to a specific element type.

Number of matches Also a suitable breakpoint for exploration purposes.
Could be used to detect faults, if a rule is applied
more often than expected.

Rule name Intuitive and easy to use. It can be used to detect
the misbehaviour of a certain rule, or to skip rather
uninteresting rule applications.

For larger TGGs, the selection of multiple rules
would be a handy feature, e. g., by using regular
expressions.

Element type Similar to the rule name breakpoint, it is easy to
use and understandable.

The user should define whether the breakpoint
holds for created or translated elements (or both).

Attribute condition Can be used when searching for specific matches
or rule applications. Another typical use cases is
to find faults in attribute conditions of TGG rules.
While it is a powerful feature for experts, it can get
confusing for novices.

A drop-down menu or an auto-completion feature
could support inexperienced users in defining ad-
vanced conditions.

Combined Enables the user to define statements of proposi-
tional logic for breakpoints. The visualisation as a
tree structure is appropriate.

Plausibility checks should be added to avoid faults
in the breakpoint definition itself.

Table 2 Feedback for specific breakpoints

Setup: Each interview started with a short presentation that
introduced the problem along with a running example in the
context of the FamiliesToPersons benchmark (Anjorin et al.
2017). Subsequently, each implemented breakpoint type was
briefly described and demonstrated based on the tool. After
each demonstration, the participants were given the opportunity
to comment on typical use cases for such a breakpoint type and
the usefulness in the respective context. In the third part of the
interviews, a faulty version of the FamiliesToPersons TGG, i. e.,
a version with a few distorted rules, was shown to the experts.
The VICToRy debugger was then used to detect those faults,
such that the experts could comment on the usefulness of the
debugger (including the breakpoint concept) in general.

Results: The experts’ feedback concerning single breakpoint
types and the debugger in general is summarised in Tab. 2 and 3.
Regarding the breakpoint types, the combination of element type
breakpoints and attribute condition breakpoints was perceived
as very powerful. All implemented breakpoint types are useful
for different purposes. The two types that were left to future
work (pattern and node breakpoints) were regarded as useful
additions, involving a presumably high implementation effort,
though.

Also, the overall feedback for the debugger was largely posi-
tive. While the breakpoint concept is powerful and offers several
configuration options, the handling of the debugger is perceived
as adequate for the intended user group. In accordance with
our observations in prior work (Weidmann, Anjorin, & Cheney
2020), the experts stated that the debugger is very helpful to un-
derstand why certain transformation steps take place, but unable
to explain why, e. g., a particular rule is not applied.

8.2. Concurrent Synchronisation Component

To receive early feedback throughout all design phases of the
component, we conducted semi-structured interviews with ten
MDE experts between October 2020 and February 2021. Ex-
perts from different fields (TGGs, BX, and other sub-branches
of MDE) were involved to gather requirements and assess the
prototype from different perspectives.

Setup: Similar to the evaluation of the breakpoint concept,
each interview started with a brief introduction to the problem
based on a running example. As the interviews took place
in parallel to the development process, we both incorporated
feedback from earlier interviews and adapted the interviews’
structure continuously. While the first five interviews were
purely based on diagrams, the last five interviews included a
live demo of the current state of the prototype (cf. Fig. 12).

Results: In the following, a short summary of the gathered
feedback is provided, grouped by six aspects that played an
important role in all interviews.

Goal: The concurrent synchronisation component should
be able to list conflicting changes and provide the user with
different options for resolving them. Besides resolving conflicts
manually, it should be possible to start an automated resolution
process, e. g., for incorporating uncontroversial changes.

Actors: All experts agreed on involving both technical and
human actors into the synchronisation process. The “back-
ground operation”, i. e., the synchronisation operation of the
underlying tool, can be regarded as a technical actor. There
were different opinions about the involved human actors: While
some experts stated that one or two domain experts should use
the tool (resolving conflicts collaboratively by negotiations),
others regarded an integration expert as the system’s key user.
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Criterion Assessment Suggestions
User Interface Clean and well-structured, the visualisation of rules

and (partial) models, and the history of rule appli-
cations are useful.

The visualisation of translation markers would be a
helpful improvement for model transformation and
consistency checking operations.

Features Sufficient for practical use. All breakpoints are
helpful, especially the combination of the break-
points for element types and attribute conditions.

Further configuration facilities could be imple-
mented, a pattern breakpoint would be useful to
examine graph constraints.

User Interaction The interaction possibilities with the debugger are
well-structured and understandable.

A handy feature would be to undo rule applications
(as for the concurrent synchronisation component).
This must be supported by the TGG tool as well.

Usability Positive feedback in general. It is valuable that
the main window, the configuration pop-up and the
breakpoint menu can be used in parallel.

More support for the attribute condition breakpoint
and another visualisation technique (cf. Tab. 2).

General Eases the access of novices (students and practition-
ers) to TGG tooling. Useful for why-debugging,
but not for why-not-debugging.

A quantitative user study and connections to other
TGG tools could underpin the debugger’s applica-
bility.

Table 3 General feedback for the VICToRy debugger

Capabilities (main features): First and foremost, the com-
ponent should provide visual support for change and conflict
detection and resolution on models. A history or list of changes
and resolved conflicts with time stamps should give an overview
of the current state and recent actions. The tool should also be
able to provide an “explanation” of the conflict in some way,
and offer consistency checks to validate the results.

Resolution process: Both manual and automated conflict
resolutions should be possible, resembling a “mixed-initiative
approach” known from the human computer interaction domain.
During the process, it should be possible to undo and redo opera-
tions, and to have a preview for the effects of possible next steps.
The confirmation or acceptance of the final solution should al-
ways be done by the user. Interestingly, the expert disagreed
on whether the conflict resolution should operate on the level
of rule applications (undoing and redoing rule applications as
in (Fritsche et al. 2020)) or user edits (performing arbitrary edit
operations on graphs as in (Weidmann, Fritsche, & Anjorin
2020)). A question that remained open is how to automatically
generate (understandable) descriptions of conflicts.

Additional features: Some of the suggested features were
considered as handy, but not mandatory for the synchronisa-
tion process. The tool could offer a comparison of the current
state and the previous state to visualise the effects of the last
change. In accordance with the main debugger, an option to
save intermediate model states was suggested. Furthermore,
configuration options such as label abbreviation and hiding, and
displaying the neighbourhood of a sub-graph (cf. Sect. 6) are
perceived as helpful. Some features that could not be integrated
into the prototype are search functionalities for, e. g., particular
conflicts or elements, and tutorials or wizards to ease the access
of novices to the tool.

Visualisation options: The visualisation of models and high-
lighting of conflicts is perceived as very helpful, but the experts
criticised that the reordering of elements after each edit opera-
tion in PlantUML is confusing. The resolved conflicts should

be marked as such to visualise the changes made during the syn-
chronisation process. A legend that explains the visual syntax
in use was considered as necessary. Some persons stated that a
visual concrete syntax would be helpful for domain experts, but
is hard to implement.

Overall, helpful feedback could be gathered for multiple
aspects, including usability, conflict resolution strategies, and
visual modelling aspects. In most cases, there was agreement
between the experts, encouraging us to integrate the suggested
features into the prototype.

8.3. Summary
Revisiting our research questions, the expert interviews indi-
cate that the introduced breakpoint concept substantially eases
detecting faults in either models or rules as precise conditions
for pausing the transformation process can be defined (RQ1).
An extension towards why-not-debugging facilities (Anjorin &
Cheney 2019) still seems to be necessary to properly address
bug finding tasks. For the interactive resolution of conflicting
changes in concurrent synchronisation scenarios, requirements
and feature requests were gathered in a series of expert in-
terviews that ended up in a UI prototype (RQ2). The actual
integration of the concurrent synchronisation component into
VICToRy is left to future work, though.

8.4. Threats to Validity
The most striking issue of the evaluation procedure is its purely
qualitative nature. For assessing the breakpoint concept and
designing the concurrent synchronisation component, only 5
+ 10 experts were involved in the interview process. Many of
them possess expert knowledge about TGGs and have worked
with the eMoflon tool suite before. The interviews followed a
uniform structure, but due to the lack of a standardised ques-
tionnaire and open discussion phases, the results are not fully
repeatable. As no quantitative experiments were conducted,
we cannot provide hard empirical evidence for efficiency, ef-
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fectiveness or user satisfaction. While we cannot generalise
our results, our goal was not to measure the improvements of
using VICToRy along with MDE tooling but rather to explore
the design space in a realistic setting and receive early feedback
from MDE experts for current features and possible extensions
of VICToRy.

9. Conclusion and Future Work
We presented the add-on component VICToRy for interactively
visualising single steps of different consistency management
tasks. A concept for switching between different debugging
modes via breakpoints is presented. Breakpoints of different
types can be configured in many ways and combined to form
complex breakpoint conditions. A component for interactively
synchronising conflicting changes after concurrent updates was
designed to address the special challenges of concurrent model
synchronisation. Besides the inspection of possible rule ap-
plications in the current state, the user can retrace the prior
transformation process using a transformation protocol. The
TGG-based tool is fully integrated into the eMoflon tool suite
but can be used along with other Java-based MDE tools via a
defined interface.

Carrying forward our research on user-centred consistency
management, we plan to implement the two remaining break-
point types, and to fully integrate the concurrent synchronisation
component into VICToRy. While expert interviews were con-
ducted to assess the applicability of this component, structured
user acceptance tests with respect to the understandability and
controllability of the consistency restoration process are left
to future work. As an extension towards supporting why-not
debugging, information about why rule applications are not ap-
plicable in certain situations should be presented to the user. In
this way, logical faults in TGG rules or a mismatch with expec-
tations in provided input models and tests can be detected.
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