
Journal of Object Technology | RESEARCH ARTICLE

A Query-based Approach for Verifying UML Class
Diagrams with OCL Invariants

Hao Wu∗
∗Computer Science Department, Maynooth University, Ireland

ABSTRACT Verifying whether a UML class diagram is consistent involves finding valid instances that provably meet its
constraints defined in Object Constraint Language (OCL). Recent studies have shown that many existing tools and techniques
not only can find valid instances but also pinpoint the conflicts among the OCL constraints. However, they do not scale well and
are often unable to locate the conflicts when the number of OCL constraints significantly increases. In this paper, we present a
novel approach that is capable of verifying UML class diagrams with a large number of OCL constraints. Our approach has two
distinct features: (1) it provides a query language that allows users to choose parts of a UML class diagram to be verified. (2)
a new algorithm that can handle an extreme size of OCL invariants via concurrent verification. We have implemented a new
automated tool called: QMaxUSE. The evaluation results suggest that QMaxUSE has the potential to be adapted by industry
and offers up to 30x efficiency improvement in verifying UML class diagrams with a large number of OCL constraints.

KEYWORDS Query, OCL, Concurrency

1. Introduction
In model-driven engineering (MDE), UML class diagrams are
widely used to model structures of a system (Atkinson & Kühne
2003; Booch et al. 2005). For example, an entity of a system is
typically depicted as a class, and relationships between different
entities are represented as inheritance or associations. However,
using a UML class diagram alone is not able to express textural
constraints. To complement this, Object Constraint Language
(OCL) is introduced and used by modeling practitioners to ex-
press additional constraints that cannot be captured by the UML
graphical notation. This leads to a system that is modelled with
a UML class diagram with OCL constraints more formal. How-
ever, this also means that reasoning or verifying the consistency
of a UML class diagram becomes very challenging (Berardi et
al. 2005; Queralt & Teniente 2006).

Formally, verifying the consistency means that checking
whether a valid instance can or cannot be generated from a UML
class diagram and its OCL constraints. If it cannot be generated

JOT reference format:
Hao Wu. A Query-based Approach for Verifying UML Class Diagrams with
OCL Invariants. Journal of Object Technology. Vol. 21, No. 3, 2022.
Licensed under Attribution - No Derivatives 4.0 International (CC BY-ND
4.0) http://dx.doi.org/10.5381/jot.2022.21.3.a7

(found), then a UML class diagram is said to be inconsistent.
This implies that there exists at least one conflict in the structural
and OCL constraints defined in the UML class diagram. To
tackle this challenge, many approaches and techniques have
been proposed (Gogolla et al. 2018; Queralt et al. 2012a; Maraee
& Balaban 2007; Balaban & Maraee 2013; Wu & Farrell 2021).
There are still two main challenges remaining: (1) When a UML
class diagram is inconsistent, many existing tools are unable to
pinpoint the set of OCL constraints that cannot be satisfied. (2)
When the number of OCL constraints significantly increases,
the existing tools and techniques do not scale well(Wu & Farrell
2021; Wu 2017b).

Our previous tool MaxUSE is designed to verify a UML
class diagram by providing the user with two pieces of useful
information (Wu & Farrell 2021; Wu 2017a,b): (1) the set of
achievable features in a UML class diagram and, (2) the set of
structural constraints or class invariants that cause conflicts. By
identifying the former, users can either compute a model that
contains as many achievable features as possible or find a model
that conforms to the most desirable features. However, when
the number of OCL invariants increases MaxUSE struggles to
handle complex formulas and often times out just like many
other tools.

An AITO publication

http://dx.doi.org/10.5381/jot.2022.21.3.a7

The performance and scalability of a tool is particularly
important for industries (Ali et al. 2014; Iqbal et al. 2012; Garry
& Balfe 2012). This is because they typically have models with
a large number of OCL constraints. Hence, our aim in this paper
is to tackle the following two challenges:

1. Provide an interactive verification that allows users to in-
crementally verify the consistencies of their models by
selecting different parts of their design for analysis.

2. Offer a scalable approach that can pinpoint the conflicting
constraints when a model has a large number of complex
OCL invariants.

In this paper, we propose a query based approach to tackle
these two challenges. Our approach provides two distinct fea-
tures: (1) a query language that easily allows users to select parts
of a UML class diagram to be verified. (2) a novel algorithm
that can concurrently verify OCL invariants.

Verifying a class diagram based on queries has three main
advantages: (a) It is interactive and this is particularly useful
when a user would like to ensure the partial consistency of their
design before extending it to a more complete design. (b) When
the number of OCL constraints significantly increases, these
constraints can be decomposed into several queries that can be
verified concurrently. (c) Each query issued by users can be
stored as a procedure is available to be used as a test suite later.
This helps users to narrow down the part of their design that is
inconsistent.

To demonstrate the effectiveness of our approach, we im-
plement a new tool named QMaxUSE and we evaluate its ef-
fectiveness in answering three research questions. First, we
compare QMaxUSE against a number of existing OCL tools.
We highlight how we ascertain QMaxUses’s capabilities for
finding conflicts for large numbers of OCL invariants. Second,
we deployed QMaxUSE to our industry partner, They used it
with their sample models and from the results provided feedback
that we have analysed. The responses were positive and this
affirms that QMaxUSE has a great potential to be adapted by
the software industry. Last, we evaluate QMaxUSE on a com-
prehensive benchmark to show its true performance. The results
suggest that QMaxUSE significantly outperforms MaxUSE and
illustrates the effectiveness of our query-based approach.

We believe this paper significantly advances verification tech-
niques in the area and its contributions can be summarised as
follows:

1. We propose a new query language that allows users to pick
the parts of a UML class diagram including OCL invariants
to be verified. In this way, users are able to incrementally
verify different parts of their class diagrams by issuing
different queries. Each query can be considered as a single
test case for testing parts of their design (Section 3).

2. We propose a new algorithm that is capable of handling
large numbers of complex OCL invariants. This algorithm
works by decomposing a UML class diagram that is anno-
tated with OCL invariants into different queries that can be
verified concurrently through an SMT solver (Section 4).

3. We implement our approach into a new tool called:
QMaxUSE. This tool is fully automatic, open-source and
capable of verifying a large number of OCL invariants
(Section 5).

4. We evaluate QMaxUSE by answering three research ques-
tions (Section 6). Our evaluation results suggest that
QMaxUSE has a great potential to be adapted by the soft-
ware industry and it significantly outperforms our previous
tool MaxUSE (Wu 2017b; Wu & Farrell 2021).

In order to frame our subsequent discussions, we begin by
introducing a motivating example in Section 2.

2. A Motivating Example
In this section, we provide an example that is used throughout
this paper to illustrate how our approach works at a high level.
This example was first introduced in (Wu 2017a,b) and later
extended in (Wu & Farrell 2021). It models a university student
that can select multiple modules to study. This is shown in
Figure 1. Furthermore, this UML class diagram has 8 OCL
class invariants. These invariants impose additional constraints.
For example, inv5 indicates a student can select modules that
are available only in their year 1. A department must have some
research students and non-research students. This constraint is
reflected in inv6.

Unfortunately, this model is not consistent and a verifier
cannot find a valid instance for this model. This is because
there are two conflicts among the 8 OCL class invariants. The
first conflict is easy to spot, and it occurs between inv1 and
inv2. inv1 indicates that every person’s age is between 0 and
18, while inv2 requires that every student in a university is over
18. The second conflict is not straightforward and caused by
the invariants: inv5, inv6, inv7 and inv8. This is because a
department allows some research and non-research students
(inv6) to choose some modules (inv7) in their corresponding
year (inv5). However, inv8 indicates that modules are only
available for non-research students (inv8: between year 1 and
5).
Observation. Based on the two conflicts, we could make two
observations. We first observe that the conflict that occurs
between inv1 and inv2 places two opposite constraints on the
same attribute age in the class Person. This means that we
could put inv1 and inv2 into one group. Similarly, the second
conflict occurs in the four invariants that cover two attributes
(year in the Student and Module class) and one navigation
(s.modules) for two different classes. Thus, we could put these
invariants together into another group. Secondly, we observe
that the invariants in both groups are independent from each
other. In other words, we could consider two groups as two
queries that can be checked separately by a verifier. Based on
these observations, the 8 OCL class invariants along with the
UML class diagram (in Figure 1) can hence be decomposed into
three queries (groups) that can be verified concurrently. These
groups can be visualised as a dependency graph that is shown
in Figure 2.
1 In this example, numbers 1 to 6 are used to distinguish a student’s year.

Students that are in year 6 are considered as research students.

2 Hao Wu

Figure 1 A UML class diagram with the 8 OCL class invariants shows how the students in each department can choose multiple
modules to study.

3. A Query Language
In this section, we introduce a query language that can be used
to choose parts of a UML class diagram to be verified. The
syntax of our query language is shown in Figure 3.

3.1. Class, Attribute and Association Selection
A query expression must use a select statement that allows
users to choose multiple features from a UML class diagram. A
f eature here may include a class, an attribute, an association
or an invariant. For example, the following query selects
the University, Department and Student class along with an
association teach from the UML class diagram in Figure 1.

select University, Department, Student

, Department:teach:Student

A wild character * can be used within a select statement to
choose many features. When a feature is selected, its owner is
also implicitly selected. For example, the following query

select Student.*

selects the Student class and all of its attributes (Figure 1).
However, the owner of the age and gender attributes are the
Person class. Hence, the Person class is also selected. Users
can also issue a query that explicitly selects all child or parent
classes of a specified class. This can be done using our mod-
ifiers upward and downward. Modifier upward enables our
selection algorithms to select all parent classes of a class while
in contrast downward facilitates selection of all child classes of
a class. For example, the following query selects three classes
(and their attributes): Person, Student and Child.

select downward Person.*
Currently, modifiers upward and downward are experimental.
A selection statement that uses upward or downward only
selects classes and attributes. The number of instances of an
abstract class that has no selected (non-abstract) child classes
is by default set to 0. This allows us to reason the number of
instances of abstract and non-abstract classes.

3.2. Invariant Selection
An OCL invariant is typically defined under a specified
class to indicate which class it belongs to. Based on
this principle, our query language requires a specified class
name in front of each selected OCL invariant. This is

A Query-based Approach for Verifying UML Class Diagrams with OCL Invariants 3

Person.age

inv1 inv2

Module.year

inv8

Student.year

inv7 inv3 inv5 inv6

Student.id

inv4

Figure 2 A dependency graph showing the three groups of invariants computed by QMaxUSE. Each group is marked with a
different colour and can be verified separately. The solid line arrows indicate the attributes of different classes are constrained by
different OCL invariants. The dashed arrows represent the classes or attributes that are constrained through a navigation expression
within an OCL invariant (inv5, inv7).

achieved by using the with expression. For example, the
query select Module with Student::* selects the Module and
Student class along with all the OCL invariants (inv2 to inv7)
defined under the Student class (Figure 1). Since the invari-
ants are imposed on different attributes, these attributes (used
within these invariant expressions) are also implicitly selected
(Student.age, Student.year, Student.id, Module.year). Fur-
thermore, both inv5 and inv7 use a navigation expression
(s.modules) through the choose association, so choose is also
selected here.

In some scenarios, a user may select as many features or
invariants as they like except for a few ones. To accommodate
these scenarios, we add a syntactic sugar into our grammar to
avoid a situation that a user must explicitly specify features
or invariants one by one. This is achieved by using the but
expression. The but expression allows users to exclude multiple
features or invariants from a query. For example, the following
two queries essentially select the same set of features and invari-
ants from Figure 1. In other words, they both exclude inv4 and
inv7 from selection.

select Person with Student::* but Student::inv4,

Student::inv7

select Person with Student::inv2, Student::inv3,

Student:inv5, Student::inv6

3.3. Query Pattern
By using a wild character *, a user is able to issue a query using
one or more query patterns to select a collection of features.
The rule here is that our selection algorithms only select those
features (classes, attributes and associations) that are explicitly
specified in a select statement and implicitly selects those that
are used by those features. Table 1 summarises a list of these
query patterns and their semantics.

3.4. Joint Query
A user may issue multiple queries first and then join them later
to verify a joint query that covers other parts of a class diagram.
A joint query in our language is defined by one of the three joint
operators: intersection (&), union(+) and difference(−). For

example, the query select Department.*+ select Module.* is a
joint query that uses a union operator to select all the attributes
defined in the Department class and Module class.

To facilitate joining multiple queries into a single joint query,
we allow users to name their individual query using an alias ex-
pression. For example, the following two queries are associated
with alias q1 and q2, respectively.

select Person.*, Student.*, Module.* with Student::*,

Module::* as q1

select University.*, Department.*, Module.* as q2
A joint query (intersection) can then be easily formed by using
q1 & q2 . In this case, the Module class and all its attributes

are selected.

3.5. Query Module

We provide a query module that allows users to store their pre-
defined queries so that they can be used as test cases to cover
parts of their UML class diagram. A query module is saved in
a specification file and it must contain at least one query. For
example, the following query module (QuerySet) consists of
three queries. Each query covers a part of a UML class diagram
in Figure 1.

module QuerySet

select Person.*, Student.* with Person::*, Student::* as t1

select Student.*, Module.*, Student:*:* with Student::*,

Module::* as t2

select Student.id, Department:*:* with Student::inv4 as t3

end
The first query (t1) acts as a test case that covers the features
defined in the Person and Student class including their OCL
invariants (inv1 and inv2). By verifying these features (covered
by t1), one can uncover the conflict between the two invariants
inv1 and inv2. The second query (t2) covers the set of features
about how a student chooses a module including the OCL
invariants (inv2-inv8) defined under the Student and Module
class. The verification of this set of features can reveal the

4 Hao Wu

⟨Expr⟩ ::= ⟨QueryExpr⟩

| ⟨JointQuery⟩

| (⟨QueryModule⟩)∗

⟨JointQuery⟩ ::= ⟨QueryExpr⟩ + ⟨QueryExpr⟩

| ⟨QueryExpr⟩ - ⟨QueryExpr⟩

| ⟨QueryExpr⟩ & ⟨QueryExpr⟩

⟨QueryExpr⟩ ::= select ⟨FeatureExpr⟩(, ⟨FeatureExpr⟩)∗

(⟨withExpr⟩)? (⟨butExpr⟩)? (as IDENT)?

⟨FeatureExpr⟩ ::= ⟨ClassExpr⟩ | ⟨AttrExpr⟩ | ⟨AssocExpr⟩

⟨ClassExpr⟩ ::= ⟨NameSpace⟩

⟨AttrExpr⟩ ::= ⟨NameSpace⟩ . ⟨NameSpace⟩

⟨AssocExpr⟩ ::= ⟨NameSpace⟩ : ⟨NameSpace⟩:⟨NameSpace⟩

⟨withExpr⟩ ::= with ⟨InvExpr⟩(, ⟨InvExpr⟩)∗

⟨InvExpr⟩ ::= ⟨NameSpace⟩:: ⟨NameSpace⟩

⟨butExpr⟩ ::= but (⟨FeatureExpr | InvExpr⟩)(, ⟨FeatureExpr | InvExpr⟩)∗

⟨NameSpace⟩ ::= IDENT | *

⟨QueryModule⟩ ::= module IDENT

(⟨QueryExpr⟩ | ⟨JointQuery⟩)+

end

Figure 3 The syntax of our query language.

second conflict. That is, a department allows some research and
non-research students (inv6) to choose some modules (inv7)
in their corresponding year (inv5). However, inv8 indicates
that modules are only available for non-research students (inv8:
between year 1 and 5). The last query (t3) takes care of the
rest of the features and the verification of this query does not
find any conflicts. Hence, the three queries can be considered
as three test cases covering different parts of a UML class
diagram.

3.6. Query Verification

In this section, we describe a verification procedure that can
automatically verify a query issued by a user via SMT solving.
Our query engine executes a query issued by a user and yields a
query result. In fact, the result returned from a query execution
is a set containing relevant classes, attributes, associations and
OCL invariants. We consider this set as a query result that

reflects parts of a UML class diagram collected by a query.
We define a query result (qr) as a 4-tuple:qr = ⟨C, A, O, I⟩
where C is a set of classes, A is a set of attributes, O is a set of
associations and I is a set of OCL invariants.

A high-level structure of our algorithm (QueryVerification)
for verifying a query is shown in Algorithm 1. To correctly
collect the relevant features from a query, our selection algo-
rithm executes a query (q) by traversing the abstract syntax tree
(AST) of a query and iteratively adds every specified feature
into a query result (qr). For an OCL invariant, the algorithm
2 also traverses the AST of an OCL invariant and implicitly
collects the classes, attributes and associations used within that
OCL invariant. Once a qr is generated, we can cast it to a set of
first-order formulas that can be verified by an SMT solver. The
encodings of a feature is similar to the ones described in (Wu
& Farrell 2021). For example, we use uninterpreted functions

2 Currently, our algorithm skips operational contracts during traversal.

A Query-based Approach for Verifying UML Class Diagrams with OCL Invariants 5

Query Pattern Semantics

A.∗ all attributes of class A (including attributes that are inherited from parent classes). All
parent classes of A including class A are also implicitly selected.

∗.∗ all classes and attributes in the current UML class diagram.

A : ∗ : B all associations between Class A and B, Class A and B are also implicitly selected.

A : ∗ : ∗ all associations that have Class A at one end. Class A is also implicitly selected.

∗ : ∗ : ∗ all associations in the current UML class diagram. Classes from association-ends are also
implicitly selected.

A :: ∗ all invariants under Class A are selected. Features (classes, attributes and associations)
used in invariants are implicitly selected.

∗ :: ∗ all invariants in the current UML class diagram.

Table 1 A summary of query patterns and their semantics

to encode classes, attributes and linear integer inequalities to
capture the multiplicities at an association-end. For an OCL
invariant, we traverse its AST and generates a formula by using
a combination of first-order theories.

Algorithm 1 QueryVerification
Input :A query that contains a set of features(q).
Output :A set that contains conflicting features (S).
S← ∅;
qr ← q.execute(); //generate a query result qr
/* generate a set of first-order formulas Φ for each feature in a
query result*/
Φ← FOLTranslate(qr.cls(), qr.attr(), qr.assoc(), qr.inv());
foreach ϕi ∈ Φ do

ϕi ← label(ϕi); //label each formula.
end
if (SMTSolve(Φ) == UNSAT) then

foreach ϕ ∈ Solver.cores() do
S.add(Interpret(ϕ.label()));

end
else

//report selected features are consistent
end
return S;

After the translation to first-order formulas, we label each
individual formula (ϕ) so it can be tracked and interpreted (back
to a feature or an OCL invariant) when the SMT solving finishes.
If Φ is unsatisfiable, the algorithm retrieves the unsat cores
from an SMT solver and pinpoints the conflicts among the OCL
invariants by interpreting each formula’s label. Otherwise we
report that the set of features selected (qr) is consistent.

4. Concurrent Verification
Since we can verify each query using the procedure (QueryVeri-
fication) shown in Algorithm 1, we may issue a series of queries
that cover different parts of a UML class diagram and verify

them separately. This is particularly powerful when the num-
ber of OCL invariants significantly increases. Our concurrent
verification algorithm takes a UML class diagram with its OCL
invariants as input and outputs a set S that contains all possible
conflicting OCL invariants. This algorithm relies on a decom-
position procedure that is capable of decomposing a set of OCL
invariants into different queries. This algorithm (ConcurrentVer-
ification) is shown in Algorithm 2.

The core of this concurrent verification algorithm is a proce-
dure Decompose. This procedure takes in a model 3 as its input
and outputs a group of queries that can be verified concurrently.
The Decompose procedure consists of three parts.

Algorithm 2 ConcurrentVerification
Input :A UML class diagram annotated with OCL invariants

(model)
Output :A set of conflicting features causing inconsistencies

(S).
Q← Decompose(model); //decompose a model into a group
of queries.
S← ∅;
foreach qi ∈ Q do

ThreadManager.start(S.add(QueryVeri f ication(qi)))
end
return S;

The first part of our Decompose procedure (shown in Al-
gorithm 3) constructs a (dependency) graph that indicates an
attribute that is imposed by one or more OCL invariant(s). To
build a dependency graph, our algorithm uses a map structure
(mapg) to remember the incoming edges. Algorithm 3 loops
through every attribute defined in a class and checks if it is
used by an OCL invariant. If an attribute (attr) is used in an
OCL invariant (inv), the algorithm then continues to check if
it already exists in our mapg. If it exists, then we add a new

3 Here, we consider a model as a UML class diagram annotated with OCL
invariants

6 Hao Wu

Module.year {inv5, inv8}

Student.year {inv3, inv6, inv5}

Student.id {inv4}

Person.age {inv2, inv1}

Table 2 A map structure (mapg) containing a list of entries
after computing Algorithm 3 on the OCL invariants defined in
Figure 1.

incoming edge. Otherwise, we create a new node in our graph
with the name of this attribute (attr) and add a new edge.

Algorithm 3 Decompose(Part 1)

foreach cls ∈ model.classes() do
foreach attr ∈ cls.attributes() do

foreach inv ∈ model.invariants() do
if IsUsed(attr, inv) then

if mapg.contains(attr) then
mapg.get(attr).add(inv); //add an edge to
the graph

else
s← ∅; //create a new set s.
s.add(inv);
mapg.add(attr, s); // create a new node in
the graph

end
end

end
end

end

Hence, after computing the 8 OCL invariants in Figure 1
using Algorithm 3, we get the following entries in our map
structure. For example, the first entry means that the year
attribute defined in the Module class is used in both invariants
inv5 and inv8.

The second part (shown in Algorithm 4) of our Decompose
procedure first creates a new set G that is used to store a group of
invariants. It then checks every entry in map, merges two entries
that have common invariant(s) into one and adds each group of
invariants (created in map) into G. The intuition behind this
is that if two entries have at least one common invariant, this
implies that two different attributes are used within an invari-
ant. Hence, other invariants that use these two attributes must
also be included because they may have a chance of causing a
conflict. For example, the first and second entry in Table 2 have
a common invariant inv5. This means that the two attributes
Student.year and Module.year are used in inv5. Thus, the first
two entries in Table2 are merged. Hence, our new set G now
contains three sets of invariants shown in Table 3.

Group 1 {inv3, inv6, inv5, inv8}

Group 2 {inv4}

Group 3 {inv2, inv1}

Table 3 A set G containing three groups of invariants.

Algorithm 4 Decompose(Part 2)
G ← ∅; //create a new set G.
foreach ei ∈ map //entry ei do

foreach ej ∈ map //entry ej do
/*merge two entries that share common invariant(s).*/
if (ei ̸= ej) and (ei ∩ ej ̸= ∅) then

ei = ei ∪ ej
map.remove(ej)

end
end
G.add(ei) //G contains entries from map including merged
ones.

end

The final part of our Decompose procedure is shown in
Algorithm 5. This part takes care of the OCL invariants that use
a navigation expression. A navigation expression represents a
collection of objects whose type is a class. We use another map
structure mapt to remember a collection of object types used in
a navigation expression. For example, after constructing mapt
for the UML class diagram in Figure 1, it contains an entry
of [Module, {inv5, inv7}]4. This is because both invariants
(inv5 and inv7) use a navigation expression (s.modules). We
then go through each group of invariants (g) to check if any
group contains at least one invariant recorded by mapt. If it
does, this implies that these invariants (recorded by N) impose
constraints on a common set of features covered by g. Hence,
we merge them, update G and mark the corresponding entry in
mapt. For example, {inv5, inv7} is merged with Group 1 in
Table 3 resulting in Table 4.

Next, we gather each entry in mapt that is not marked into
a new group. This is because we know that these invariants
(returned from mapt.get(cls)) do not share common features
imposed by existing groups of invariants. Hence, they can be
safely gathered into a separate group. Then, we add the invari-
ants that are not covered by our existing groups of invariants
into G. Finally, G contains k groups of invariants. To produce a
query for each group, we generate a select statement for every
invariant including those features that are used within an OCL
expression. The number (k) of queries in Q represents that a
model can be verified with k threads. For example, the UML
class diagram in Figure 1 can be decomposed into 3 queries for
the 3 entries in Table 4.

4 mapt.get(Module) returns inv5 and inv7.

A Query-based Approach for Verifying UML Class Diagrams with OCL Invariants 7

Group 1 {inv3, inv6, inv5, inv8, inv7}

Group 2 {inv4}

Group 3 {inv2, inv1}

Table 4 A set G that has three groups of invariants. This im-
plies that the UML class diagram in Figure 1 can be decom-
posed into 3 queries and verified concurrently using 3 threads.

Algorithm 5 Decompose(Part 3)

foreach cls ∈ mapt.entries() do
foreach g ∈ G do

if mapt.get(cls) ∩ g ̸= ∅ then
g← g∪mapt.get(cls); //returns a set of invariants
G.update(g);
//mark this entry in mapt
break;

end
end

end
foreach e ∈ mapt.entries() do

if e is not marked then
/*add those invariants do not share features with other
ones.*/
G.add(mapt.get(e));

end
end
//Create a new group g′ for the remaining invariants
G.add(g′); //add remaining invariants
Q← ∅; //create an empty set of queries
foreach g ∈ G do

/*generate a query for each group*/
Q.add(GenerateQuery(g));

end
return Q;

Though our Decompose procedure takes navigations into ac-
count, it may not cover “all possible” scenarios that could escape
detection by our Decompose procedure. Currently, we are in-
vestigating more scenarios and plan to improve the Decompose
procedure in the future. However, the Decompose procedure
presented in this Section at the very least covers many of the
essential usages of navigations in an OCL invariant.

5. Implementation
We have built a prototype tool called QMaxUSE(Wu 2022).
QMaxUSE is built on top of MaxUSE (Wu 2017b; Wu & Farrell
2021). QMaxUSE implements our query language in Section 3
and a concurrent verification algorithm in Section 4. The overall
architecture of QMaxUSE is shown in Figure 4. QMaxUSE
is fully automatic, written in Java and consists of nearly 33k
lines of code. Approximately 3.5k lines of code are dedicated
to the new verification algorithms. QMaxUSE can be run on
Windows 10, Linux (Ubuntu) and MacOS (Big Sur). QMaxUSE
is a command-line based verification tool. It is open-source and

currently available at:

https://github.com/classicwuhao/qmaxuse

QMaxUSE has four layers: front-end, query engine,
translation and solver. The first three layers can be considered
as QMaxUSE’s query compiler that is mainly responsible for
parsing OCL, executing queries and generating corresponding
SMT formulas for the solver layer.

Front-end. At the front-end layer, QMaxUSE uses parsers
from USE to generate ASTs (abstract syntax trees) for a class
diagram and OCL invariants. QMaxUSE provides a simple
query language that allows users to choose a part of a class
diagram and its OCL invariants to be verified. To parse a query
issued by a user, we have designed and implemented a query
parser. This parser is able to read multiple queries simultane-
ously from a specification file and produce corresponding ASTs.

Query Engine. QMaxUSE’s query engine uses a set of
selection algorithms to traverse the ASTs generated from
the front-end layer to produce a query result. A query result
essentially contains a set of classes, attributes, associations and
OCL invariants to be verified. At this layer, QMaxUSE also
provides a specialised algorithm (Decomposer) that is able to
decompose a class diagram along with OCL invariants into
a set of different queries. These queries can then be verified
concurrently using a query verification procedure.

Translation. At the translation layer, QMaxUSE uses a
first-order translator to translate a query into a set of first-order
formulas that can be verified by the SMT solver. The translation
here is similar to the one described in (Wu & Farrell 2021).
To translate an OCL invariant, we traverse its AST and use a
dedicated engine to generate a well-formed SMT2 formula.

Solver. We design a new interface (SolverManager) to reduce
the interaction overhead between the translation and solver layer.
This interface is able to directly interact with an SMT solver and
can be extended to multiple SMT solvers. Currently, QMaxUSE
uses Z3 as its default SMT solver and we plan to support multi-
ple SMT solvers in the future (De Moura & Bjørner 2008).

Figure 5 shows the verification result returned from
QMaxUSE for a query:

select Person.*, Student.* with Person::inv1, Student::inv2

QMaxUSE’s query engine selects the relevant features and
launches our query verification algorithm (Algorithm 1) to for-
mally verify this query. The result returned from QMaxUSE
shows that there is a conflict between two invariants and the
Student class in Figure 1.

Figure 6 shows a screenshot of running QMaxUSE. In fact,
this screenshot shows the verification results from our concur-
rent verification algorithm (Algorithm 2 described in Section 4).
QMaxUSE uses 3 threads to verify the UML class diagram in
Figure 1 and pinpoints 2 conflicts. Note that QMaxUSE adds
one additional axiom during the translation to SMT. This axiom

8 Hao Wu

https://github.com/classicwuhao/qmaxuse

Figure 4 The overall architecture of QMaxUSE.

Figure 5 A screenshot showing the verification result re-
turned from QMaxUSE for a single query.

Figure 6 A screenshot showing the verification results re-
turned from QMaxUSE for the UML class diagram in Figure
1.

requires that every-non abstract class must be instantiated at
least once. If a user wishes to explicitly specify the number of
instances of a class (including an abstract class), we recommend
to use size operation. This allows QMaxUSE to use a separate
encoding that is solely focusing on the number of instances
without intervening other axioms. Hence, the Student class is
also included in core 1 in Figure 6. In other words, removal of
either inv1 or inv2 makes the Student class instantiable.

6. Evaluation
We evalue QMaxUSE by answering the following 3 research
questions:

– RQ1. How does QMaxUSE compare to other existing
tools?

– RQ2. Does QMaxUSE have the potential to be applied
to industry-size problems?

– RQ3. What is the true performance of QMaxUSE?

6.1. Answer to Research Question 1 (RQ1)
To answer RQ1., we reviewed the literature in this area and have
found that there are a large number of approaches and techniques
that have been proposed. However, most of them are evaluated
without using a comprehensive benchmark (Cadoli et al. 2007;
Cabot et al. 2014; Garis et al. 2011; Kuhlmann et al. 2011;
Balaban & Maraee 2013). This makes it particularly difficult for
us to assess their performance and scalability against QMaxUSE.
To effectively compare it to existing tools, we decide to select
those have been highly cited by others or where their tools are
available to download. We studied their approaches and examine
their tools by running them with the provided examples to assess
their capabilities.

Table 5 summarises our selected features and comparison
results. We choose these features mainly because we believe
they represent a collection of essential features that an OCL
verification or analysis tool should possess (Gogolla et al. 2013).
For example, an OCL verification tool should at least be able
to cover a range of OCL language features and return relevant

A Query-based Approach for Verifying UML Class Diagrams with OCL Invariants 9

information if there exists some OCL constraint conflicts. We
firmly believe these features are important to help users to better
understand and improve their models (Wu & Farrell 2021).

Most of the tools we selected are capable of verifying the
consistencies of a UML class diagram annotated with OCL in-
variants except for CD2Alloy. They support a range of OCL
language features: quantifiers, collections, arithmetic & logic
operators and navigations. Currently, QMaxUSE does not sup-
port verification of OCL operational contracts 5. From Table 5,
we can now identify two major limitations in these tools. (1)
many tools can only process a small sample of OCL invariants
and do not provide a benchmark for evaluating much larger and
complex OCL invariants. (2) when a UML class diagram is
inconsistent, they are unable to pinpoint conflicting OCL in-
variants. In comparison to these tools, our tool QMaxUSE has
an advantage of providing a comprehensive benchmark with
a large number of OCL invariants containing conflicting ones
among them. The complexities and size of OCL invariants that
QMaxUSE can handle are shown in the benchmark evaluation
of Section 6.3 (our answer to RQ3).

From RQ1, we find that it is a really difficult task to assess
the scalability and performance of existing OCL analysis tools
without using a common benchmark (Wu 2018). Thus, ≥ 50
in the Table 5 indicates the number of OCL invariants available
for assessing a tool. It does not indicate a particular tool’s
scalability because their true performance cannot be decided
based on the available OCL invariants provided. In general, this
is mainly caused by two problems. (1) Most of the tools do
not provide a click-to-run feature and require a number of steps
for their configuration and the installation of many libraries.
This significantly reduces the usability of a tool. (2) Many tools
only provide a small number of sample models for testing and
evaluation. If users would like to gain a sense of the performance
capability of a tool, they either have to manually write a large
number of OCL invariants themselves or find a model that is
already built in a format that can be accepted by the tool. This
can immediately reduce the level of interests in using or taking
time to explore the capabilities of the tool. In contrast to the
tools in the Table 5, QMaxUSE is easy to install and use. It does
not require users to configure or install libraries and provides
a full benchmark so that a user can immediately gain a sense
of QMaxUSE’s features and performance. More importantly,
we welcome all kinds of feedbacks from users to guide us to
improve QMaxUSE’s usability and performance.

6.2. Answer to Research Question 2 (RQ2)
We demonstrated QMaxUSE to a team of engineers from Sun
Yat-sen University Cancer Center (SYSUCC) 6. This team has
a total of 56 members and most of them are familiar with ba-
sic accounting rules. They are mainly responsible for testing
and maintaining payment systems at SYSUCC. Part of their
payment system was originally modelled using UML by a third-
party vendor. Hence, they are familiar with basic UML and
OCL notations. Currently, they are planning to upgrade their

5 We plan to implement a technique for verifying OCL operational contracts in
the next major release(Wu 2019; Wu. & Timoney. 2020).

6 Team leader: huangxinx@sysucc.org.cn

IT infrastructure including payment systems. We presented a
short tutorial about QMaxUSE and distributed it to them. They
tried and tested QMaxUSE on three sample models they had
recently built. Two of them were originally from the initial
design (that had been created many years ago) to model part
of their payment systems. UML class diagrams were used for
code generation but not for OCL invariants that are mainly used
for design purpose. Most of the OCL invariants (about 115)
defined for these two models deal with numerical constraints
about payment information and transactions. One of the their
models uses a significant number of string constraints (about
150) to model their invoice handling process. For their sample
models, QMaxUSE exhibited its capabilities by handling more
than 100 invariants and successfully finding two design flaws
(conflicting constraints) in one of their models. The summary of
the feedback received from these engineers is shown in Figure
7.

Before using QMaxUSE, the majority of this team from
SYSUCC thought there is a huge gap between the current verifi-
cation tools created in academia and the requirements of indus-
try. After testing QMaxUSE on their sample models, 49 (88%)
of them believe that QMaxUSE is capable of minimising this
gap by handling larger models than the tools they had previously
used. They think the query language provided by QMaxUSE is
particularly useful. This is because they now can issue different
queries and each of them can be considered as a test case for
testing/verifying different parts of their designs. 4(7%) of them
think QMaxUSE is not suitable for some of the models that have
string constraints such as a particular format for an invoice title.
Currently, QMaxUSE does not provide string reasoning and
skips an OCL invariant that uses a string type. Hence, we plan
to integrate QMaxUSE with an efficient string solver. 3(5%) of
people are unsure about QMaxUSE because they are not con-
vinced that whether UML and OCL could be useful for building
complex models.

In terms of QMaxUSE’s usability, a few engineers com-
mented that it would be much better to explicitly display se-
lected features before launching a verification procedure for
interaction purposes. This is because they would prefer logging
the selected features and precisely knowing which part of the
UML has been chosen. Hence, we modified QMaxUSE’s selec-
tion algorithms so that it now shows the features covered by a
query.

In summary, QMaxUSE is demonstrated to live up to the
expectation that it is capable of handling large number of OCL
invariants and has a great potential to be adapted for industry-
size problems. The team from SYSUCC is now considering
to integrate a query-based verification tool into their existing
system and QMaxUSE could be one of the key components to
their next upgrade.

6.3. Answer to Research Question 3 (RQ3)

Benchmark. We use a benchmark from (Wu & Farrell 2021)
to show the complexities and size of OCL invariants that
QMaxUSE can handle. This benchmark consists of two parts.

10 Hao Wu

Name
OCL

Cons Conf Conc ≥ 50
Qtf Col Op Nav Oc

EMF2CSP (González Pérez et al. 2012; Cabot et al. 2014) ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

OCL-Lite (Queralt et al. 2012b) ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

CD2Alloy (Maoz et al. 2011) ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

USE (Gogolla et al. 2018) ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗

ASMIG (Wu et al. 2013) ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗

MaxUSE (Wu 2017b; Wu & Farrell 2021) ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓

QMaxUSE (Wu 2022) ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Table 5 Comparison between QMaxUSE and other exisitng tools. Qtf=support quantifier, Col=support collection, Nav=support
navigation, Oc=support operational contracts, Cons=consistency verification, Conf=pinpointing conflicts, Conc=support Concur-
rency, ≥ 50 =more than 50 sample OCL invariants available.

Figure 7 A summary of feedback from SYSUCC. 88% of
the team members believe QMaxUSE has potential to be
applied to industrial problems. 7% of the team members think
QMaxUSE is unsuitable for solving industrial problems. 5%
of the team members are unsure about QMaxUSE.

The first part (Group A 7) contains a list of models collected
from (Gogolla et al. 2013) that was originally designed as a
small benchmark for evaluating OCL invariants. The second
part (Group B - Group E) contains a much larger and complex
number of OCL invariants. We choose this benchmark 8 as it
not only covers a wide range of OCL language features (nested
quantifiers, inheritance, multiplicities, collections, navigation
and a mixture of arithmetic/logic operators) but also a large
number of conflicted OCL invariants.
Experiment Setup. We setup two experiments to effectively
evaluate QMaxUSE’s stability and performance. For the first
experiment, we use MaxUSE to verify the full set of features
of the models from our benchmark. MaxUSE is a tool that is

7 Group A contains one class diagram that uses a recursive OCL expression.
Currently, QMaxUSE cannot handle recursive calls. Hence, this class diagram
is removed from Group A.

8 Currently, QMaxUSE supports OCL language features defined in this bench-
mark and skips other features. This is due to the capabilities of our first-order
translator (Figure 4).

able to find achievable features and pinpoint conflicting features
without using our query language and concurrent algorithm. We
then use QMaxUSE’s query language and its concurrent algo-
rithm to verify each model from our benchmark. For the second
experiment, we evaluate QMaxUSE’s concurrent verification
algorithm on the models from our benchmark 9 but with a fixed
number of threads. For both experiments, we use the Z3 SMT
solver version 4.8.10 and run both tools on a machine that has a
six 2.8GHz cores (Intel i5-9400F) with 16G memory.
Results. The complete benchmark and our both experimental
results are shown in Table 6 and Table 7. Our results suggest
that QMaxUSE is able to decompose OCL invariants into many
different queries and all queries can be verified efficiently using
a small number of threads. Compared to MaxUSE (without
query and Decompose algorithm), our Decompose algorithm
significantly reduces a large model into a number of smaller
size of formulas. This boosts QMaxUSE’s performance in
verification and it can gain up to 30x efficiency improvement.
For example, MaxUSE takes 131.23 seconds to verify B3 in
Group B without using our query and Decompose techniques
while QMaxUSE is able to finish its verification in just 4.6
seconds. This is particularly powerful and many large models
that could not previously be verified now can be tackled by
QMaxUSE. For example, D4 has about 101 invariants that
cannot be verified within 20 minutes. However, QMaxUSE is
able to break it into 56 smaller queries and verify them in about
8 seconds.
Analysis. QMaxUSE can significantly improve verification per-
formance. This is mainly due to two reasons. (1) We directly
extract unsat cores from the SMT solver (Z3) through its dedi-
cated APIs. This is fundamentally different from our previous
tool MaxUSE. The algorithms used in MaxUSE employ a two
phase verification algorithm (Wu & Farrell 2021). At the first
phase, it tries to satisfy as many OCL invariants as possible
by reducing to a weighted MaxSMT problem. At the second
phase, it pinpoints conflicting invariants by solving the set cover
problem (Liffiton & Sakallah 2008). Though this algorithm is

9 We exclude Group A here since it contains only a small number of OCL
invariants.

A Query-based Approach for Verifying UML Class Diagrams with OCL Invariants 11

Name
Structure Size MaxUSE(sec) QMaxUSE (sec)

Invariants Nodes Quantifiers Operators Time Queries Time

G
ro

up
A

A1 6 30 3 9 0.38 2 0.364

A2 7 52 8 1 0.148 1 0.087

A3 1 7 2 1 0.174 3 0.426

A4 8 73 7 18 0.204 3 0.241

G
ro

up
B

B1 27 150 10 30 4.528 23 2.022

B2 45 266 13 57 56.846 32 3.046

B3 68 430 9 111 131.23 42 4.604

B4 90 599 23 152 158.911 68 7.151

B5 136 925 44 228 TO 90 118.64

G
ro

up
C

C1 29 201 24 33 38.167 19 3.413

C2 43 279 28 51 91.319 33 5.954

C3 66 413 42 82 154.33 58 6.051

C4 98 698 69 137 TO 68 8.111

C5 156 1008 100 184 TO 99 114.41

G
ro

up
D

D1 22 174 23 36 4.373 18 1.575

D2 47 286 29 68 32.357 35 3.112

D3 61 324 23 72 27.026 46 5.083

D4 101 753 102 163 TO 56 8.211

D5 166 1143 131 225 TO 95 14.026

G
ro

up
E

E1 31 294 12 86 11.559 17 1.701

E2 39 452 18 135 42.255 20 2.779

E3 37 403 31 102 59.535 27 2.587

E4 105 985 56 246 TO 42 4.464

E5 167 1134 68 325 TO 45 3.653

Table 6 Evaluation results. Invariants=number of OCL invariants, Nodes=size of invariant ASTs, Quantifiers=number of quan-
tifiers, Operator=number of arithmetic and logic operators. TO= Timeout (20min), MaxUSE=QMaxUSE without query and
concurrent verification support.

12 Hao Wu

Name 8 Threads 4 Threads 2 Threads 1 Thread

B1 2.145 2.174 2.986 3.957

B2 3.093 3.230 3.648 4.429

B3 4.654 4.856 5.290 5.790

B4 7.160 7.172 7.804 8.787

B5 118.541 118.860 118.922 122.580

C1 3.425 3.454 3.691 4.406

C2 5.840 5.846 5.978 6.309

C3 6.125 6.200 6.374 6.381

C4 8.113 8.293 8.513 10.563

C5 114.460 115.41 116.391 118.831

D1 1.572 1.572 1.592 1.602

D2 3.112 3.112 3.242 3.506

D3 5.075 5.083 5.632 6.903

D4 8.221 8.245 8.347 9.906

D5 14.045 14.383 14.983 15.890

E1 1.700 1.720 1.723 1.820

E2 2.740 2.774 3.778 4.890

E3 2.565 2.580 2.599 3.420

E4 4.428 4.774 5.778 6.890

E5 2.565 3.080 3.899 5.420

Table 7 Evaluation results form QMaxUSE with a fixed num-
ber of threads. The time unit here is seconds.

generic, it can be used for any solvers that do not support unsat
core extraction. However, it can easily become very slow when
the number of formulas increases. QMaxUSE operates differ-
ently from MaxUSE. It directly extracts unsat cores from the
solver without implementing an extra layer on top of the solver.
However, the limitation here is that a solver must support unsat
core extraction. (2) Our results from Table 7 suggest that the
Decompose algorithm in Section 4 is able to generate a num-
ber of much smaller size of formulas. These formulas can be
verified efficiently using a small number of threads (even using
a single thread). This can significantly improve QMaxUSE’s
performance and makes it possible to verify a large number of
OCL invariants. We observe that the number of nested quanti-
fiers in a formula (∀ ∃) can pose a significant challenge to the
solver. Therefore, a verification engine that relies on the solvers
may have the same challenge especially when the number of
nested formulas dramatically increases. In a different manner,
QMaxUSE is able to shift solving these large size of formulas
to runs on a much smaller size of formulas. This yields a much
better result and performance.

6.4. Strengths and Limitations
During the evaluation of QMaxUSE, we have identified the
strengths and limitations of QMaxUSE, respectively.
Strengths. 1 Our query language can provide users with a
way of incrementally verifying their UML class diagrams with
OCL invariants by selecting different parts of their design. Each
query issued by a user can be considered as a test case and this
is particularly useful when users adopt test-driven development
for their software development lifecycle. 2 Our concurrent
verification algorithms can efficiently handle a large number and
complex OCL invariants. This algorithm can not only verify the
consistencies of a UML class diagram but also efficiently pin-
point conflicting OCL invariants. This is particularly powerful
when the number of OCL invariants significantly increases.
Limitations 1 After discussion with the engineers from
SYSUCC, we realised that many industrial problems possess
many string constraints. Currently, QMaxUSE does not sup-
port string reasoning and skips an OCL invariant uses a string
expression. Hence, we are working on improving QMaxUSE
by integrating an efficient string solver. 2 Our verification
algorithms rely on extracting unsat cores from an SMT Solver.
However, not every SMT solver supports unsat core extrac-
tion. Furthermore, different SMT solvers might have their own
strengths in solving a particular type of constraints. In the fu-
ture, we plan to make a new solver-interface that allows users to
choose the solver that has the best performance in a particular
type of constraint solving. 3 Though our benchmark covers
a wide range of OCL features including: nested quantifiers,
navigations, (arithmetic/logical) operators and operations on
collection data types. However, QMaxUSE does not support
full range of OCL features such as closure operators and navi-
gation (using self keyword). Hence, there is a gap between the
full set of OCL features and current version of QMaxUSE.

7. Related Work
Recently, a significant number of approaches and techniques
have been proposed to verify UML class diagrams (Büttner et al.
2012; Soeken et al. 2010; Wille et al. 2012; Balaban & Maraee
2013; Maraee & Balaban 2014; Milicevic et al. 2015). However,
most of them suffer two main issues: (1) when a UML class
diagram is inconsistent, they are unable to pinpoint conflict-
ing OCL invariants. (2) when the number of OCL invariants
increases, they do not scale well and often unable to progress
(Cabot et al. 2014; Kuhlmann et al. 2011; Dania & Clavel 2016;
Maoz et al. 2011). Among them, MaxUSE represents a new
generation of verification tools in this area(Wu & Farrell 2021;
Wu 2017b,a). It is able to verify a UML class diagram anno-
tated with ranked OCL invariants and locate constraint conflicts.
However, MaxUSE does not scale well when a large number
of complex OCL invariants introduced. QMaxUSE advances
the technique by implementing a query language and a new
concurrent verification algorithm.

Approaches based on constraint solving techniques also have
emerged (Büttner et al. 2012; Soeken et al. 2010; Wille et al.
2012; Dania & Clavel 2016; Wu et al. 2013; Kuhlmann et al.
2011; Wu 2016; Soeken et al. 2011). For example, Cabot et al.

A Query-based Approach for Verifying UML Class Diagrams with OCL Invariants 13

use constraint programming (CP) to reprogram a UML class
diagram with OCL invariants into a constraint satisfaction prob-
lem (CSP) that is solved later using constraint solvers (Cabot et
al. 2009; González Pérez et al. 2012; Cabot et al. 2014). Büttner
et al. use the Z3 SMT solver to verify the correctness of the
ATL transformation, while Clavel and Dania use Prover 9 and
Z3 to check the satisfiability of OCL constraints (Büttner et al.
2012; Clavel et al. 2009).

Alloy as a model finder, is a popular tool that receives much
attention in many areas including the Model Driven Engineer-
ing (MDE) community (Jackson 2002; Torlak & Jackson 2007).
There has been much work on using Alloy to test/verify specifi-
cations of both semi-formal models and formal specifications
(Perrouin et al. 2010; Gheyi et al. 2005; Milicevic et al. 2015).
Since Alloy can be used to find model instances, research with
Alloy has been highly active (Anastasakis et al. 2010; Garis et
al. 2011; Kuhlmann et al. 2011; Kuhlmann & Gogolla 2012a,b).
Most of this literature uses Alloy as a back-end reasoning engine
to check consistencies of a UML class diagram. Among them,
Anastasakis et al. focus on a transformation between UML
class diagrams and Alloy’s relational specification language
(Anastasakis et al. 2007, 2010). In (Kuhlmann et al. 2011),
Kuhlmann et al. integrate kodkod (Alloy’s reasoning engine)
into the USE modeling tool and translate OCL collection data
types into Alloy (Kuhlmann & Gogolla 2012b). The main ad-
vantage of using Alloy is that it possesses a dedicated algorithm
for finding minimal conflicts in the specification (Torlak et al.
2008). Hence, users are not required to have knowledge about
SAT encoding details. However, Alloy currently does not sup-
port concurrent verification. Thus, Alloy cannot deal with large
numbers of complex OCL invariants. In particular, expressions
involves a number of arithmetic operators. This is because these
operators can cause a plain SAT-solver to suffer bit-blasting.
Therefore, approaches using Alloy as a basis for a constraint
solving engines are restricted by this functionality (Anastasakis
et al. 2007; Kuhlmann et al. 2011; Maoz et al. 2011; Garis et al.
2011; Kuhlmann & Gogolla 2012a)

Graph-based approaches are also widely used in verifying the
consistencies of a UML class diagram (Ehrig et al. 2009; Hoff-
mann & Minas 2010, 2011; Balaban & Maraee 2013; Maraee &
Balaban 2014). Among them, Ehrig et al. propose an instance-
generating graph grammar for creating instances of a metamodel.
In particular, they use an attributed type graph to capture class
diagram structures, and the concept of layered graph grammars
to order rule applications. However, this approach cannot han-
dle OCL constraints. Winkelmann et al. present a method for
translating a subset of OCL constraints into graph constraints
(Winkelmann et al. 2008). The OCL constraints in this approach
are restricted to equality, size and attribute operations. Others
in this domain devise specific algorithms that generate consis-
tent graphs. For example, Balaban and Maraee propose a very
specialised algorithm called FiniteSat for deciding (finite) sat-
isfiability of class hierarchy and generalisation constraints that
are defined over UML class diagrams (Balaban & Maraee 2013).
The FiniteSat algorithm transforms a class diagram with multi-
plicity constraints into a linear inequality system. However, this
algorithm does not support any OCL constraints. More recently,

Semeráth et al. proposed a new graph solver that is capable
of generating a much larger number of objects (Semeráth et
al. 2018). Their approach utilises a combination of multiple
advanced graph-based and SAT-solving techniques to achieve
large-scale graphs generation.

Model transformation languages such as ATL usually pro-
cess a large number of transformation rules that conform to
the OCL standard. Hence, the slicing techniques introduced in
this area is also relevant to our work. For example, Cheng et
al. propose a slicing technique for ATL model transformations
(Cheng & Tisi 2017, 2018). Their technique can decompose a
set of transformation rules into multiple sub-goals and captures
a more precise fault localization using static trace information.
Cuadrodo et al propose a method for the static analysis of ATL
model transformations (Cuadrado et al. 2017). This method can
compute a set of small metamodel footprints of the transforma-
tion that later on can then be solved by a model finder. This can
reduce model finding times and yields a very fast analysis.

Different slicing techniques have been applied to UML
class diagrams and OCL invariants (Sun et al. 2013; Lano &
Kolahdouz-Rahimi 2010; Shaikh et al. 2010). UML2CSP is a
tool that can slice a UML class diagram into submodels that can
be verified within ECLipSE Constraint Programming Systems
(Cabot et al. 2007). However, UML2CSP cannot partition a
model if a common class or attribute is used by several OCL
constraints. This means that it provides no improvement to the
verification time. Sun et al. introduce a slicing technique that is
able to decompose a UML class diagram with OCL invariants
into different model fragments (Sun et al. 2013). These model
fragments can later be analysed separately using the Alloy an-
alyzer (Chang 2007). Kevin et al. propose slicing techniques
for UML models including class diagrams and state machines
(Lano & Kolahdouz Rahimi 2011). Their approach focuses
on reactive specifications and the set of class invariants are
converted into a series of conjunctions of predicates.

By comparing these approaches, QMaxUSE fundamentally
differs from these approaches by providing a query language
and a new algorithm that is capable of improving the verification
time significantly. This query language gives users freedom to
choose the parts of a UML class diagram to be verified and in-
crementally help them to eliminate design flaws in their models.
Our concurrent algorithm can help them quickly identify the
conflicting constraints even when the number of OCL invariants
increase significantly.

8. Conclusions & Future Work
In this paper, we have presented a query based approach to
verifying UML class diagrams with a large number of OCL
invariants. Our prototype tool QMaxUSE demonstrates its po-
tential to be adapted by industry. We believe that our approach
advances current verification techniques in two unique ways:
(1) It allows users to incrementally test/verify their design via
a query language. (2) A large number of OCL invariants now
can be decomposed into individual queries that can be verified
concurrently.

During the work described in this paper, we identify two

14 Hao Wu

interesting research directions. We outline the possible ap-
proaches here. (1) Many industry-size problems rely on string
constraints to express their business rules. QMaxUSE currently
does not support string reasoning. We are investigating multiple
string solvers and will assess their capabilities by evaluating
them on a comprehensive OCL string benchmark. We plan to
integrate string solvers into QMaxUSE in the near future. We
are investigating multiple string solvers and will assess their
capabilities by evaluating them on a comprehensive OCL string
benchmark. (2) During our evaluation of QMaxUSE, we find
that different SMT solvers has its own strengths and limitations
in solving different types of constraints. To fully harness their
performance, we plan to introduce an artificial intelligence (AI)
based approach that will predict the performance of a SMT
solver and then provide a recommendation (Healy et al. 2016).
One possible way is to train set of constraint problems and asso-
ciated solver performance times. A machine learning algorithm
that would then identify the best solver to use when a new but
similar set of OCL constraints is presented.

Acknowledgments
We would like to thank the reviewers of this document template
for their helpful comments and suggestions.

References
Ali, S., Yue, T., Zohaib Iqbal, M., & Panesar-Walawege, R. K.

(2014). Insights on the use of ocl in diverse industrial appli-
cations. In D. Amyot, P. Fonseca i Casas, & G. Mussbacher
(Eds.), System analysis and modeling: Models and reusability
(pp. 223–238). Cham: Springer International Publishing.

Anastasakis, K., Bordbar, B., Georg, G., & Ray, I. (2007).
UML2Alloy: A challenging model transformation. In Inter-
national conference on model driven engineering languages
and systems (p. 436-450). Springer.

Anastasakis, K., Bordbar, B., Georg, G., & Ray, I. (2010).
On challenges of model transformation from UML to Alloy.
Software and System Modeling, 9(1), 69-86.

Atkinson, C., & Kühne, T. (2003). Model-driven development:
A metamodeling foundation. IEEE Software, 20(5), 36-41.

Balaban, M., & Maraee, A. (2013). Finite Satisfiability of
UML Class Diagrams with Constrained Class Hierarchy.
ACM Transactions on Software Engineering and Method-
ology, 22(3), 24:1–24:42.

Berardi, D., Calvanese, D., & Giacomo, G. D. (2005). Reason-
ing on UML class diagrams. Artificial Intelligence, 168(1–2),
70-118.

Booch, G., Rumbaugh, J., & Jacobson, I. (2005). The Uni-
fied Modeling Language User Guide The Second Edition.
Addison-Wesley Professional.

Büttner, F., Egea, M., & Cabot, J. (2012). On verifying ATL
transformations using ‘off-the-shelf’ SMT solvers. In Inter-
national conference on model driven engineering languages
and systems (p. 432-448). Springer.

Cabot, J., Clarisó, R., & Riera, D. (2007). UMLtoCSP: a
tool for the formal verification of UML/OCL models using
constraint programming. In 22nd international conference on

automated software engineering (p. 547-548). Atlanta, GA:
IEEE Computer Society.

Cabot, J., Clarisó, R., & Riera, D. (2009). Verifying UML/OCL
operation contracts. In International conference on integrated
formal methods (p. 40-55). Springer.

Cabot, J., Clarisó, R., & Riera, D. (2014). On the verification
of UML/OCL class diagrams using constraint programming.
Journal of Systems and Software, 93, 1-23.

Cadoli, M., Calvanese, D., Giacomo, G., & Mancini, T. (2007).
Finite model reasoning on UML class diagrams via constraint
programming. In Artificial intelligence and human-oriented
computing (p. 36-47). Springer.

Chang, F. (2007). The Alloy Analyzer 4.0. http://alloy.mit.edu/.
Retrieved from http://alloy.mit.edu/

Cheng, Z., & Tisi, M. (2017). A deductive approach for fault
localization in atl model transformations. In Fundamental
approaches to software engineering (pp. 300–317). Springer.

Cheng, Z., & Tisi, M. (2018). Slicing ATL model transfor-
mations for scalable deductive verification and fault localiza-
tion. International Journal on Software Tools for Technology
Transfer, 20(6), 645–663.

Clavel, M., Egea, M., & de Dios, M. A. G. (2009). Checking
unsatisfiability for OCL constraints. Electronic Communi-
cation of the European Association of Software Science and
Technology, 24.

Cuadrado, J. S., Guerra, E., & de Lara, J. (2017). Static analysis
of model transformations. IEEE Transactions on Software
Engineering, 43(9), 868-897.

Dania, C., & Clavel, M. (2016). Ocl2msfol: A mapping to
many-sorted first-order logic for efficiently checking the sat-
isfiability of ocl constraints. In International conference on
model driven engineering languages and systems (p. 65-75).
ACM.

De Moura, L., & Bjørner, N. (2008). Z3: an efficient SMT
solver. In International conference on tools and algorithms
for the construction and analysis of systems (p. 337-340).
Springer.

Ehrig, K., Küster, J. M., & Taentzer, G. (2009). Generating
instance models from meta models. Software and Systems
Modeling, 8(4), 479-500.

Garis, A., Cunha, A., & Riesco, D. (2011). Translating Al-
loy Specifications to UML Class Diagrams Annotated with
OCL. In International conference on software engineering
and formal methods (p. 221-236). Springer.

Garry, D., & Balfe, T. (2012). Experiences using OCL for
business rules on financial messaging. In Proceedings of
the 12th workshop on OCL and textual modelling (p. 65–66).
New York, NY, USA: Association for Computing Machinery.
doi: 10.1145/2428516.2428529

Gheyi, R., Massoni, T., & Borba, P. (2005). A rigorous approach
for proving model refactorings. In International conference
on automated software engineering (pp. 372–375). ACM.

Gogolla, M., Büttner, F., & Cabot, J. (2013). Initiating a
benchmark for UML and OCL analysis tools. In International
conference on tests and proofs (pp. 115–132). Springer.

Gogolla, M., Hilken, F., & Doan, K. (2018). Achieving model
quality through model validation, verification and exploration.

A Query-based Approach for Verifying UML Class Diagrams with OCL Invariants 15

http://alloy.mit.edu/

Computer Languages, Systems and Structures, 54, 474–511.
González Pérez, C. A., Buettner, F., Clarisó, R., & Cabot, J.

(2012). EMFtoCSP: A tool for the lightweight verification of
EMF models. In International workshop on formal methods
in software engineering: Rigorous and agile approaches
(p. 44-50). IEEE.

Healy, A., Monahan, R., & Power, J. F. (2016, November 8).
Predicting SMT solver performance for software verification.
In 3rd workshop on formal integrated development environ-
ment (Vol. 240, p. 20-37). Limassol, Cyprus.

Hoffmann, B., & Minas, M. (2010). Defining models - meta
models versus graph grammars. Electronic Communications
of the EASST , 29, 1-14.

Hoffmann, B., & Minas, M. (2011). Generating instance graphs
from class diagrams with adaptive star grammars. In Interna-
tional workshop on graph computation models. Electronic
Communications of the EASST.

Iqbal, M. Z., Ali, S., Yue, T., & Briand, L. (2012). Experi-
ences of applying uml/marte on three industrial projects. In
R. B. France, J. Kazmeier, R. Breu, & C. Atkinson (Eds.),
Model driven engineering languages and systems (pp. 642–
658). Berlin, Heidelberg: Springer Berlin Heidelberg.

Jackson, D. (2002). Alloy: a lightweight object modelling no-
tation. ACM Transactions on Software Engineering Method-
ologies, 11(2), 256-290.

Kuhlmann, M., & Gogolla, M. (2012a). From uml and ocl
to relational logic and back. In International conference on
model driven engineering languages and systems (p. 415-
431). Springer.

Kuhlmann, M., & Gogolla, M. (2012b). Strengthening SAT-
based validation of UML/OCL models by representing collec-
tions as relations. In Modelling foundations and applications
(Vol. 7349, p. 32-48). Springer.

Kuhlmann, M., Hamann, L., & Gogolla, M. (2011). Exten-
sive validation of OCL models by integrating SAT solving
into USE. In International conference on objects, models,
components, patterns (p. 290-306). Springer.

Lano, K., & Kolahdouz-Rahimi, S. (2010). Slicing of uml mod-
els using model transformations. In Proceedings of the 13th
international conference on model driven engineering lan-
guages and systems: Part ii (p. 228–242). Berlin, Heidelberg:
Springer-Verlag.

Lano, K., & Kolahdouz Rahimi, S. (2011, 05). Slicing tech-
niques for uml models. The Journal of Object Technology,
10. doi: 10.5381/jot.2011.10.1.a11

Liffiton, M. H., & Sakallah, K. A. (2008, Janurary). Algorithms
for computing minimal unsatisfiable subsets of constraints. J.
Autom. Reason., 40(1), 1-33.

Maoz, S., Ringert, J. O., & Rumpe, B. (2011). CD2Alloy: Class
diagrams analysis using alloy revisited. In International con-
ference on model driven engineering languages and systems
(p. 592-607). Springer.

Maraee, A., & Balaban, M. (2007). Efficient reasoning about
finite satisfiability of UML class diagrams with constrained
generalization sets. In 3rd european conference model driven
architecture (p. 17-31). Springer.

Maraee, A., & Balaban, M. (2014). Removing redundancies

and deducing equivalences in UML class diagrams. In In-
ternational conference model-driven engineering languages
and systems (p. 235-251). Springer.

Milicevic, A., Near, J. P., Kang, E., & Jackson, D. (2015).
Alloy*: A general-purpose higher-order relational constraint
solver. In International conference on software engineering
(pp. 609–619). IEEE.

Perrouin, G., Sen, S., Klein, J., Baudry, B., & l. Traon, Y.
(2010, April). Automated and scalable t-wise test case gener-
ation strategies for software product lines. In International
conference on software testing, verification and validation
(p. 459-468). IEEE.

Queralt, A., Artale, A., Calvanese, D., & Teniente, E. (2012a).
OCL-Lite: Finite reasoning on UML/OCL conceptual
schemas. Data & Knowledge Engineering, 73, 1-22.

Queralt, A., Artale, A., Calvanese, D., & Teniente, E. (2012b).
Ocl-lite: Finite reasoning on UML/OCL conceptual schemas.
Data & Knowledge Engineering, 73, 1 - 22.

Queralt, A., & Teniente, E. (2006). Reasoning on uml class
diagrams with ocl constraints. In Conceptual modeling (pp.
497–512). Springer.

Semeráth, O., Nagy, A. S., & Varró, D. (2018). A graph solver
for the automated generation of consistent domain-specific
models. In Proceedings of the 40th international confer-
ence on software engineering (p. 969–980). Association for
Computing Machinery.

Shaikh, A., Clarisó, R., Wiil, U. K., & Memon, N. (2010).
Verification-driven slicing of uml/ocl models. In Pro-
ceedings of the ieee/acm international conference on au-
tomated software engineering (p. 185–194). New York,
NY, USA: Association for Computing Machinery. Re-
trieved from https://doi.org/10.1145/1858996
.1859038 doi: 10.1145/1858996.1859038

Soeken, M., Wille, R., & Drechsler, R. (2011, March). Verifying
dynamic aspects of uml models. In Design, automation test
in europe (p. 1-6). IEEE.

Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., & Drechsler,
R. (2010). Verifying UML/OCL models using boolean
satisfiability. In Design, automation test in europe (p. 1341-
1344). IEEE.

Sun, W., France, R. B., & Ray, I. (2013). Contract-aware
slicing of uml class models. In A. Moreira, B. Schätz, J. Gray,
A. Vallecillo, & P. Clarke (Eds.), Model-driven engineering
languages and systems (pp. 724–739). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Torlak, E., Chang, F. S.-H., & Jackson, D. (2008). Finding
minimal unsatisfiable cores of declarative specifications. In
International symposium on formal methods (p. 326-341).
Springer.

Torlak, E., & Jackson, D. (2007). Kodkod: a relational model
finder. In International conference on tools and algorithms
for the construction and analysis of systems (p. 632-647).
Springer.

Wille, R., Soeken, M., & Drechsler, R. (2012). Debugging of
inconsistent UML/OCL models. In Design, automation test
in europe (p. 1078-1083). IEEE.

Winkelmann, J., Taentzer, G., Ehrig, K., & Küster, J. M. (2008).

16 Hao Wu

https://doi.org/10.1145/1858996.1859038
https://doi.org/10.1145/1858996.1859038

Translation of restricted OCL constraints into graph con-
straints for generating meta model instances by graph gram-
mars. Electronic Notes in Theoretical Computer Science, 211,
159-170.

Wu, H. (2016). Generating metamodel instances satisfying
coverage criteria via SMT solving. In International confer-
ence on model-driven engineering and software development
(p. 40-51). IEEE.

Wu, H. (2017a). Finding achievable features and constraint con-
flicts for inconsistent metamodels. In European conference
on modelling foundations and applications (pp. 179–196).
Springer.

Wu, H. (2017b). Maxuse: A tool for finding achievable con-
straints and conflicts for inconsistent UML class diagrams.
In Integrated formal methods (pp. 348–356). Springer.

Wu, H. (2018). Step 0: An idea for automatic OCL benchmark
generation. In 17th international workshop on ocl and textual
modeling (pp. 356–364). Springer.

Wu, H. (2019). Synthesising call sequences from OCL op-
erational contracts. In Acm/sigapp symposium on applied
computing (p. 1871-1873).

Wu, H. (2022). QMaxUSE: A query-based verification tool
for UML class diagrams with OCL invariants. In 25th inter-
national conference on fundamental approaches to software
engineering. Munich, Germany: Springer.

Wu, H., & Farrell, M. (2021). A formal approach to find-
ing inconsistencies in a metamodel. Software and Systems
Modeling.

Wu, H., Monahan, R., & Power, J. F. (2013). Exploiting
attributed type graphs to generate metamodel instances using
an SMT solver. In International symposium on theoretical
aspects of software engineering (p. 175-182). IEEE.

Wu., H., & Timoney., J. (2020). Verifying OCL operational
contracts via SMT-based synthesising. In Proceedings of
the 8th international conference on model-driven engineer-
ing and software development - modelsward, (p. 249-259).
SciTePress. doi: 10.5220/0009340602490259

About the author
Hao Wu is an assistant professor in the Department of Com-
puter Science at Maynooth University. His current research
aims to create automated software and tools for solving chal-
lenging problems in software engineering. In particular, he has
strong interests in creating new verification tools and methods
for verifying different kinds of models used in Model Driven
Engineering.

A Query-based Approach for Verifying UML Class Diagrams with OCL Invariants 17

