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ABSTRACT With the growing popularity of machine learning algorithms, dramatic advances have been made for code
completion, and specifically method-call completion. These advances were also possible thanks to the availability of large code
repositories to learn from and to the well-defined boundaries of the method-call completion problem. This is, however, not
the case for design completion, where model repositories are scarce and the space of possibilities for design completion is
theoretically infinite. We propose in this paper an approach that learns numeric representations of domain concepts and their
relations from code repositories in order to recommend classes for UML class diagrams.
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1. Introduction
The Model-Driven Engineering (MDE) paradigm is changing
the way we create software. Models are becoming first-class
citizens that are exploited to automatically generate various
software artifacts, such as code (Loniewski et al. 2010) and test
cases (Gutiérrez et al. 2015). Creating domain models such as
UML class diagrams remains a complex task that requires a
large spectrum of knowledge and expertise, i.e., modeling envi-
ronments, languages, and more importantly domain knowledge.
Offering assistance for such a task is important to alleviate the
burden of software designers, especially novice ones.

Design completion is a good way to offer such an assistance.
However, unlike for method-call completion, design completion
is more complex for mainly two reasons. Firstly, this activity
must rely on various data sources from which domain knowl-
edge can be inferred. Although a significant number of data
sources are available at the code level thanks to open source
initiatives, such sources are scarce at the design level (Rocco
et al. 2021). The second reason lies in the space of comple-
tion possibilities. Unlike for method-call completion, the set of
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possibilities is infinite as any concept is a potential element for
completion. Indeed, the completion for method calls consists
in predicting the next method to call from a finite set of possi-
bilities, in general. The boundaries of this set are defined by
the context of the completion site, the typing system, the code
already written and the linked libraries.

To circumvent the constraints of the availability of data
sources and the infinite space of possibilities, we propose, in this
paper, an approach for UML Class diagram completion based
on the hypotheses: (1) the huge mass of code available in open
repositories contains elements that cover a large part of domain
concepts, and (2) such domain concepts can be abstracted from
the code.

Our approach uses a document embedding algorithm to learn
domain concepts and their relationships from identifiers used
in diagrams reverse engineered from the code. Then these
concepts are recommended to the designers according to the
similarities between the design context at a given stage and
the relationships between the learned concepts. In the use case
scenario we consider, a potential designer starts by defining
some classes and their relations in a partial diagram. Then, our
recommending tool suggests other domain concepts that can be
potentially related to the already defined classes. When one or
more concepts are accepted by the designer and added to the
diagram, the recommendation process is repeated until the dia-
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gram is considered complete. Our goal is therefore, to produce
an assistant for completing the design itself and not just to help
represent domain concepts in UML notations. We implemented
our approach and evaluated its performance by learning comple-
tion models from 14,000 Java projects and testing them on 30
projects. Our results show that we are able to suggest relevant
concepts in an iterative process of diagram construction, with an
average relevance higher than 90% with as few as 5 suggestions
at each iteration. Among other findings, the results reveal that
learning from diagram fragments is more efficient than from
whole diagrams. Additionally, using sophisticated ranking with
TF-IDF improves the quality of the suggestions as it avoids
favoring frequent general terms.

The remainder of this paper is organised as follows. Section 2
provides a motivating example and some background about text
embedding techniques. Section 3 describes the training and
completion phases of the proposed approach. The evaluation
setup is explained in Section 4 including the addressed research
questions, the implementation information, the data set, and
the evaluation procedure. The evaluation results are presented
in Section 5. Section 6 discusses the related work. Finally,
Section 7 provides concluding remarks and outlines the future
work.

2. Motivation and Background

2.1. Motivating example
To illustrate the difference between method-call and design com-
pletion, let us start by considering the following Java method,
which returns the size of a file.

1 // ...
2 public long size() throws IOException {
3 if (!file.isFile()) {
4 throw new FileNotFoundException(
5 file.toString());
6 }
7 return file.? // prediction
8 }

Listing 1 Example of code context for suggestion.

After typing file. in line 7, a basic comple-
tion system could exploit a static analysis system (im-
ports, language typing, etc.) to suggest a list of
around 50 methods that can be invoked from this
calling site (e.g., canRead(), delete(), getName(),
getPath(), isFile(), length(), toString, etc.). This
list can be refined and ranked, for example, by exploiting the
similarity of the method sequence size() (line 2), isFile()
(line 3), toString() (line 5) and file.? (line 7) with se-
quences involving the methods found by static analysis in large
repositories of source code (Weyssow et al. 2020). This may
give a higher ranking to method length(), which is the right
option.

Now consider the completion of the class diagram shown in
Fig. 1. Suppose that only the classes in black are defined by the
designer, namely, Car Model and Car. Unlike for the example
of call completion, any concept can potentially be suggested,

e.g., Company, Person, House, or Stadium. In the absence of
any form of knowledge, the existing context with two classes
does not allow to define a finite set of suggestions from which
the designer can choose.

The knowledge that helps reducing the infinite set of possi-
bilities to a limited number of suggestions can be provided, for
example, as a specification from which can be inferred concepts
related semantically to those already defined by the designer
(Saini et al. 2020). Having complete specifications is not al-
ways possible. As an alternative, semantic relations can also
be abstracted from an existing repository of models and reused
for model completion (Weyssow et al. 2021). However model
repositories are scarce and do not provide a data volume at the
level of those expected for efficient machine learning algorithms.
For example, with a small model set, the likelihood to abstract
a strong relation between the context Car Model - Car and
the concept Engine is low.

We conjecture, in this paper, that code repositories can be
good surrogate sources to model repositories for abstracting
accurate semantic relations between concepts. For example,
the likelihood to find a strong relation between Car Model -
Car and Engine is higher considering the thousands of code
projects that can be used.

2.2. Background
To explore the idea of abstracting high-level concepts and their
relations from code repositories, for model completion, we
exploit the document embedding technique. In the remainder of
this section we briefly introduce this technique.

Embedding is one of the different techniques that exist to
represent complex information. Each concept (word, diagram,
etc.) is represented by a vector of numbers. The embeddings
can be exploited in different ways. They can be used to train
another model that requires numerical data, empowering it to
learn on complex data. The embedding can also be visualized
to give the user an insight on the information it contains, such
as clusters. One can also calculate the similarity between each
pair of vectors, e.g., using cosine similarity. This can be used
by other algorithms, e.g., to find the closest concept to another
concept.

Figure 2-left illustrates the concept of embedding for words
(notice that the dimension of the embedding is in practice
much larger). Word2Vec (Mikolov, Chen, et al. 2013; Mikolov,
Sutskever, et al. 2013) is the most well-known algorithm to
embed words. It is built on a neural architecture (Bengio et
al. 2006) that learns an internal, numerical representation for
each word in the considered vocabulary. In the continuous
bag-of-words (CBOW) architecture, the model learns to predict
the word at each position in a text, based on the words in a
given window. Each word in the window is mapped to its in-
ternal representation, which are then averaged or concatenated
to predict the target word. The resulting numerical represen-
tations of the words (e.g., the embedding) contains semantic
information about them. For example, Figure 2-right shows an
example of semantic relationships that can be preserved in the
representation.

While Word2Vec provides interesting results for isolated
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Figure 1 An excerpt of the Car class diagram. In the context of completion, black classes are already defined by the designer, and
gray classes are those that should be suggested.

concepts, it is unable to characterise entire documents. Para-
graph vectors (Le & Mikolov 2014) have been introduced for
that purpose. When the neural architecture learns to predict
a word based on close words, it is now allowed to build an
additional vector for each paragraph. This paragraph vector
embeds the semantic context of the whole paragraph and helps
to use that context to better predict individual words. Interest-
ingly, paragraph vectors can then be used as an embedding of
the paragraphs themselves to represent them and to understand
their relationship. The same can be done for entire documents,
resulting in document vectors (Doc2Vec). This numerical rep-
resentation can be used for example to find documents that are
similar to a new one.

As this work focuses on diagrams that contain complex in-
formation (e.g., structure), document embedding seems to be
appropriate to represent those. Thus the analogy between a
document and a diagram is made.

3. Approach
The proposed approach for design completion has two phases:
learning and completion. The learning phase consists in abstract-
ing domain concepts and their relations from a code dataset
using the document embedding technique. The abstracted con-
cepts are then used in the second phase to assist the designer
during modeling activities.

3.1. Learning Phase
The learning phase is shown in Figure 3. The first step is to
reverse engineer the class diagrams from Java projects T1 . As
we are interested in high-level concepts, we limit the reverse
engineering to the classes and their relations. To limit the size of

the derived diagrams, we consider one diagram per main pack-
age. So a Java project may result in many diagrams according
to the packages it contains. This decision is also motivated by
the fact that classes within the same package tend to implement
semantically-related concepts. This helps reducing the noise
that can result from very large diagrams containing hundreds of
classes. We provide, in Section 4, more information on the data
set used in our experimentation.

The second step of the learning phase is to encode the ex-
tracted diagrams into documents T2 . As we use the document
embedding technique, i.e., define vector representations of doc-
uments, the choice of this mapping is important. Identifiers
within the same document increase the probability of semantic
proximity between them. In this respect, we explore two as-
sumptions: (1) a diagram as a document and (2) a basic related
fragment as a document.

In the first case, all the identifiers that appear in a diagram
are included in the corresponding document. Consider that the
diagram in Fig. 1 is part of the learning dataset. Car Model,
Car, GearBox, Body, etc. are all part of the same document.
This assumption, call it global, represents the idea that being
part of the same diagram, i.e., package, is an indication of a
semantic relation with the other elements of the diagram.

For our second assumption, call it local, we consider basic
related fragments in a diagram as documents. As our diagram
is a graph, a fragment of interest is two nodes related by a link,
i.e., two related classes, or three for association classes. For the
diagram in Fig. 1, we will have separate documents for Car and
Engine, Car and Brake, Brake and Wheel, etc. The rationale
behind this assumption is that explicitly-related concepts have
strong semantic relations.

For the local assumption, we use the relation direction to
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Figure 2 Two-dimensional representation of an embedding of words. The left graph depicts how similar words are represented by
vectors closer to each other. The right graph shows that the relation between words is consistently encoded in the position of the
vectors.

Figure 3 Illustration of the process used to train a Doc2Vec model using Java code.

define the order in which the identifiers in a fragment are added
to the document. For the global encoding, we first identify the
classes without incoming relations (roots) as starting points.
Then, we use a deep-first traversal of the diagram to add the
identifiers. For a node in the diagram, i.e., a class, the sub-
nodes, i.e., related classes, do not have a specific order. Then,
when traversing these related classes, a random order is chosen.
Although different orders may affect differently the learned
representations, we do believe the large amount of code we
use for the training limits the order effect. Moreover, for both
assumptions, this encoding process simulates somehow the way
a diagram is created step by step by a designer.

After encoding the diagrams into documents, the next step
is to pre-process the documents, i.e., to clean the identifiers in
order to harmonise the vocabulary between documents T3 . As
illustrated in Table 1, for each identifier included in a document,
we successively apply three operations: (1) tokenization to split
the identifiers into single words, (2) lemmatization to map the
inflected forms of a word to a single root form called lemma,
and (3) stop words removal to delete common words that have
little lexical meaning such as the, to, by, etc.

The cleaned documents are fed into the Doc2Vec learning
algorithm to generate a descriptive vector for each document
in order to predict the closest document for a given document
based on these vectors T4 .

3.2. Completion Phase

The completion process is shown in Figure 4. When a designer
has defined a partial diagram, this is converted into one or more

documents C1 and preprocessed in the same way as in the

learning phase C2 , i.e., tokenization, lemmatization, and stop
words removal. Then, the resulting documents are given as
input to the learned Doc2Vec model to infer the most similar

documents C3 . Documents with a similarity higher than a
predefined threshold determine the set from which the concepts
to suggest should be extracted.

Extracting suggestions from the similar documents is done

in two steps C4 . Firstly, similar documents may contain a long
list of terms. Presenting such a long list to the designer is not
useful if the terms are not ranked by their estimated relevance.
In our approach, we use two methods to rank the terms in the
similar documents. The first technique relies on the frequency.
The more a term appears in the similar documents, the higher its
relevance is. The rationale behind this option is that the strength
of the relation between the defined model fragment and a given
term depends on the frequency with which both elements are
associated in the learning corpus. The drawback however is
that generic terms used in many domains tend to be suggested
systematically on top of the lists because of their frequency.

To cope with this limitation, we explore an alternative
ranking technique, namely TF-IDF. TF-IDF (short for term
frequency-inverse document frequency) is a measure that aims
to mitigate the term frequency with the specificity of the term to
a limited number of documents (Schütze et al. 2008). In other
words, the frequency of a term is multiplied by a factor that
decreases when the number of documents in which the term
appears increases.

In the second suggestion step, we can directly present the
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Preprocessing technique Class name

None RotatedByModifier

Tokenization Rotated By Modifier

Tokenization + lemmatization Rotate By Modifier

Tokenization + lemmatization + stop words removal Rotate Modifier

Table 1 Effect of the successive preprocessing operations on a class-name example.

Figure 4 Illustration of the process used to suggest concepts for diagram completion.

ranked list of terms to the designer. In addition to this option,
we also consider suggesting concept names created from the
ranked terms. To this end, we select the terms with relevance
scores (frequency or TF-IDF) higher than a given threshold.
Then, from the documents where these terms were extracted, we
retrieve the identifiers containing the different forms of the terms.
Each identifier is assigned a relevance score corresponding to
the sum of the scores of frequent terms composing it.

In the final step of the completion process the designer selects

the appropriate concepts and edits the diagram C5 . This starts
a new completion cycle.

4. Evaluation Setup
In the proposed approach, we had to make many decisions such
as the encoding of diagrams into documents or the ranking of
the suggestions to present to the designer. In this section, we
evaluate the decision alternatives.

4.1. Evaluation Procedure and Metrics
4.2. Research Questions
Our evaluation aims to answer the following research questions.

– RQ1: What is the quality of the suggestions produced
by our approach? To answer this question, we consider
both options of encoding the diagrams presented in Section
3.1.

– RQ2: What is the effect of the completion context, i.e.,
the partial diagram already defined by the designer, on
the relevance of the suggestions? For this question, we
evaluate two aspects: (1) the ability of our approach to

suggest relevant neighbouring classes, i.e., missing classes
that should be connected to the already defined partial
diagram, vs any missing class of that diagram, and (2) the
evolution of the suggestion relevance with the size of the
context, i.e., the number of classes already defined by the
designer.

– RQ3: Does using term frequency or TF-IDF produce
a better ranking of suggestions?

4.3. Implementation and Hyperparameters

To implement our approach, we used the GENSIM library1 with
a Doc2Vec algorithm based on Paragraph Vector - Distributed
Bag of Words (PV-DBOW). We used a grid search to define
the best hyperparameters to use. Accordingly, the vectors to
represent the documents are set to 400 dimensions. This vector
size is the best trade-off we found between a better representa-
tion of the documents with a high number of dimensions and
a reasonable size of the learned representations. For whole
diagram encoding, we set the window in which the terms are
considered as close to 20. For fragment encoding, a size of
20 was enough to have all the terms included within a unique
window. We set to 3 the minimum occurrences of a term in
the training data set to be considered. The model was trained
over 30 iterations and uses hierarchical softmax to speed up the
training process (Morin & Bengio 2005).

4.4. Dataset
To conduct our evaluation, we used an existing repository, the
GitHub Java Corpus (Allamanis & Sutton 2013). This repos-

1 https://radimrehurek.com/gensim/
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Figure 5 Evaluation procedure for a single diagram.

itory contains 14,000 projects totalling about 2,000,000 java
files. From this corpus, we extracted 30 projects to test our
completion approach. To have a consistent selection criterion,
we took the 30 top-ranked projects according to Allamanis and
Sutton (Allamanis & Sutton 2013). From these 30 projects, we
manually defined 30 class diagrams representing the domain
concepts used in the projects. The remaining projects were used
to train the Doc2Vec models. From the training projects, the
class diagrams are extracted. The diagrams are then mapped
to documents and preprocessed according to the strategies de-
scribed in Section 3.1.

After training the Doc2Vec model with the GitHub Java Cor-
pus, we use the evaluation procedure summarized in Figure 5.
Each of the diagrams, obtained from the 30 test projects, is split
into two parts, one simulating the partial model defined by the
designer (the completion context) and one representing the miss-
ing part containing the concepts that should be suggested by our
completion approach. The context part is chosen randomly, but
it should define a connected graph to simulate the progressive
construction of a class diagram by a designer. Its size depends
on the research question, a fixed random size for questions re-
lated to the number of suggestions, and a variable size from 2 to
22 classes for the question dealing with the context size effects.
As for the training diagrams, the context parts of the test dia-
grams are converted to documents and preprocessed. Then the
obtained documents are given to the learned Doc2Vec model to
find similar diagrams from which the suggestions are extracted.

To evaluate the results by comparing the suggestions to the
missing parts, we use two metrics: the average precision@k
and the average relevance@k. These two metrics correspond to
two use-case scenarios of the completion. In the first scenario,
the designer defines a diagram and asks for potential additional
concepts to include. In that case, the precision@k ∈ [0, 1]
measures the proportion of k suggestions that are present in
the missing part. For the second scenario, the designer starts
by defining her diagram with very few classes (two in this
experiment), then the completion system recommends one or
more classes to add. If the list of suggestions contains a missing
class, then this is integrated into the diagram. The designer can
modify the diagram and trigger a new round of completion. In
this case, the relevance@k equals 1 if the k suggestions include
at least one missing class, 0 otherwise.

In our evaluation, we experimented with k between 1 and

10. In the results, precision (respectively relevance) refers
to the average precision@k (respectively relevance@k) of the
tested diagrams. Moreover, as the majority of class names
contain a single term after removing the stop words, we decided
to use the highly-ranked terms as suggestions. A suggestion
is then considered relevant if the suggested term equals or is
included in a missing class name. In addition to precision@k
and relevance@k, we also report on the average rank (rank) of
the first relevant concept in the suggestion list.

Note that in our evaluation, we do not use real designers to
assess if the suggestions are correct or not. We alternatively use
the missing parts of the diagrams to simulate what the designers
could have added to the partial diagrams to complete them.

5. Results

5.1. Diagram Encoding Options (RQ1)
Figure 6 shows the variation of the performance of our approach
w.r.t. the number of suggestions given to the designer for both
encoding options (fragment vs diagram) of the training data. As
the reader can see in Figure 6a, the average precision is better
for the fragment-based encoding regardless of the number of
suggestions. Starting from 5 suggestions, on average more than
half of the suggested concepts are relevant (precision > 0.5).
The superiority of fragment-based encoding is also observed
for the average relevance as shown in Figure 6b. In average, a
relevant concept is present in more than 80% if the completion
tests with only 3 suggestions. This average increases to 90% or
more with 5 suggestion or more. The better performance of the
fragment-based encoding is also confirmed by the average rank,
rank = 2.2 as opposed to rank = 2.8 for the whole-diagram
encoding option.

To answer RQ1, based on our sample of completion
tests, we can state that using fragment-based encoding of
diagrams into documents allows generating relevant con-
cept suggestions in a majority of cases. This is particu-
larly striking in a setting where the designer seeks for one
suggestion at a time in an iterative diagram construction
process (relevance metric).

For the rest of the study we will consider only the fragment-
based encoding.
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(a) Accuracy of the suggestions. (b) Relevance of the suggestions.

Figure 6 Quality of the suggested concepts comparing two methods of encoding diagrams.

5.2. Effect of the Context Size (RQ2)

We study the effect of the completion context from two perspec-
tives. Firstly, we want to assess whether starting from a partial
diagram (context), our approach is able to suggest relevant con-
cepts explicitly related to ones in the context, or any concepts
pertinent to the whole targeted diagram. The second studied
aspect is the effect of the context size, i.e., the size of the partial
diagram given as completion context, on the relevance of the
suggestions.

Figures 7a and 7b show respectively the average precision
and the average relevance when we consider as correct sugges-
tions (1) only the concepts matching missing classes directly
related to those in the partial diagram, and (2) concepts matching
any missing class. For the average precision, the neighbouring
classes represent the larger part of the correct suggestions, 80%
for the first 2 suggestions and more or less 60% for 3-to-10 sug-
gestions. From the average relevance perspective, for a striking
majority of completion cases, our approach suggests at least one
correct neighbouring class, i.e., the area bounded by the neigh-
bouring classes curve spans over almost all the area bounded by
the all missing class curve.

In the second analysis, we look at the average precision
and relevance (@10) when we vary the size of the completion
context from 2 classes to 22. As shown in Figure 8, both metrics
are stable regardless of the size of the partial diagram already
defined by the designer.

To answer RQ2, we can state that our approach suggests
mostly concepts that are directly related to the completion
context, but also other relevant concepts that are not directly
related to the latter. Additionally, the average precision
and relevance of the suggestions are independent from the
completion context size.

5.3. Ranking the Suggestions (RQ3)
For a given completion context, when the learned model gives
the most similar documents, one has to decide what ranking
metric to select terms to extract to form the suggestions. To
this end, we compare the frequency of terms in the similar
documents with TF-IDF to rank the terms when varying the
number of suggestions.

Figures 9a and 9b show respectively the average precision
and the average relevance when raking the terms with the fre-
quency and with TF-IDF. For both metrics, TF-IDF allows se-
lecting more relevant terms especially for the top-ranked sugges-
tions. Moreover, the average rank of the first relevant suggestion
is 1.6 for TF-IDF ranking whereas it is 2 for the frequency-based
ranking. We conjecture that these results are due to the fact that
domain-specific terms are favored by TF-IDF over general terms
that appear in many projects.

To answer RQ3, we can state that using TF-IDF to select
the terms from the Doc2Vec model output is more effective
than relying on term frequencies.

5.4. Threats to Validity and Discussion
Although our evaluation showed promising results, several
threats can limit its validity. The first threat concerns the class
diagrams we used to test our completion approach. These di-
agrams where defined based on our comprehension of the se-
lected projects. For the training data, the class diagrams were
reverse engineered using a custom tool that parses the java code
and extracts classes, inheritance relations and basic associations.
Association extraction is based on attribute types. It does not
consider the multiplicities nor the refinement into associations
vs aggregations or compositions. We acknowledge that this
simple reverse-engineering method may have an impact on the
training results. We are currently exploring the use of more
powerful tools such as MoDisco (Bruneliere et al. 2010). An-
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(a) Precision for neighbouring vs all missing classes. (b) Relevance for neighbouring vs all missing classes.

Figure 7 Evaluation of the suggestions quality comparing both objective of suggestion.

Figure 8 Suggestions quality with a varying context size.

other threat is related to the use of a single term to suggest
a concept, e.g., ”Session", rather than a group of terms, e.g.,
”Remote Session". In our evaluation, we consider that ”Session"
is relevant if this term is included in one of the missing-class
names, e.g., ”RemoteSession". This threat has a limited impact
on the results for many reasons. First, the majority of classes
involved in the evaluation have names with a single term after
removing the stop words. Additionally, as discussed in RQ3,
using TF-IDF gives more weight to terms that are specific as
opposed to general terms that can appear in many names such
as ”Abstract", ”Basic", ”Default", etc. Using the term exact
match when evaluating the relevance of the suggestions is an-
other threat. Indeed, if the term ”Teacher" is suggested and
none of the missing classes contain this term, then it is tagged
as non-relevant, even if there is a class ”Lecturer" in the sug-
gestions. The exact match tends to under-estimate the quality
of the suggestions. In the future, we plan to use semantic simi-

larity measures as alternatives to exact match. This also helps
mitigating the single-term threat discussed above.

For the approach itself, for the global assumption, we used
a depth-first strategy to encode the diagrams, with a random
traversal of the sub-nodes. A different encoding may have led
to different performance for the global assumption. As future
work, we can explore other encoding strategies and study their
effects. Finally, some concepts derived from the code can be
related to the implementation, and may not be relevant to the
design level. This is evidenced by the relatively low accuracy in
Figure 6a. However, Figure 6b shows that within a limited set
of suggestion, there is always at least a concept relevant to the
design level.

6. Related work
Using completion for UML class diagram has been studied
by different research teams in the last decade. This work can
be classified into two families, structure/well-formedness com-
pletion and content completion. For the first family, an early
work on model completion was proposed by Sen et al. (Sen
et al. 2010). They used the metamodel specification to guide
the modeling activity through the editor. Later different ap-
proaches used the same idea by suggesting editing operations
for partially-defined model fragments (e.g., (Steimann & Ulke
2013) and (Kuschke et al. 2013)). The second family targeted
the recommendation of model elements starting from an exist-
ing model fragment. An interesting work in that direction is
the one by Elkamel et al. (Elkamel et al. 2016). In this work,
a set of classes is extracted from existing models and clustered
using a similarity metric. When a user defines a new class, their
tool compares this class to those existing in the repository and
suggest similar classes. Although very interesting, this work has
two limitations. First, the limited coverage of the available class
diagrams, as pointed out in Section 2.2, lower the likelihood to
suggest relevant classes. More importantly, the completion ap-
proach does not suggest new concepts, but just concepts similar
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(a) Average precision for frequency vs TF-IDF. (b) Average relevance for frequency vs TF-IDF.

Figure 9 Comparing the two ranking strategies for terms selection.

to one already introduced. The work that is more closely related
to ours is one by Burgueño et al. (Burgueño et al. 2021). In
this paper, they propose a general embedding-based approach
to suggest concepts in design models. There are two main dif-
ferences compared to our work. The first difference is related
to the sources from which the learning data is extracted. They
use general textual documents such as Wikipedia and Google
news. This may introduce noise in the learned models because
of the ambiguity of the general language. The second difference
comes from the embedding technique they use, word embed-
ding. Indeed, in our approach we use document embedding
which allows to exploit the similarity among the diagrams in
addition to one between terms. More recently, Weyssow et
al. (Weyssow et al. 2021), proposed an approach to suggest
concepts in metamodel activities. Their approach consists in
retraining an existing deep learning model RoBERTa on a lim-
ited set of metamodels. In an extensive evaluation, they found
that their approach is good at renaming existing concepts, but
has less compelling results for suggesting new concepts in an
iterative metamodel construction process. Finally, Di Rocco et
al. (Rocco et al. 2021) used graph neural networks to lean rec-
ommenders for model and metamodel completion. Like for our
work, they trained the model recommender with data extracted
from Java projects.

Our approach uses source code as training data to derive high-
level concepts to use for the completion. This school of thought
comes from the code completion community based on the idea
of code naturalness and its exploitation using advanced natural
language processing and machine learning techniques (Allama-
nis et al. 2018). The existing work targets many completion
objectives. For example Nguyen et al. (Nguyen et al. 2021)
propose an approach for the completion of API function calls
and code snippets suggestions. A similar embedding-based ap-
proach was proposed by Weyssow et al. (Weyssow et al. 2020)
for recommending function calls not specifically for API. An
interesting related work was proposed by Allamanis et al. (Al-

lamanis et al. 2015) to recommend class and method names
in the code. Although close to our problem, this work does
not suggest new concepts, but rather names to already defined
classes. UML class diagram is closely related to object oriented
code. Thus similar techniques may be used to work with both
of these data. In code completion, the closest thing that can be
related to concepts suggestion in class diagram is class names
suggestion.

7. Conclusion
The goal of the work described in this paper is to provide support
to designers when creating UML class diagrams. The rationale
behind our approach is to exploit existing software artefacts to
abstract high-level concepts that can be used as suggestions for
a given context in a modeling activity. However, because of
the limited number of publicly-available class diagrams, they
cannot be used as data from which completion models can be
learned. Alternatively, we use, in this work, the large amount
of available source code to reverse engineer class diagrams to
serve as training data.

The novel approach we propose exploits these data through
a document embedding algorithm to create a multidimensional
space that encodes both diagrams and enclosed concepts. The
resulting model allows suggesting new concepts that are se-
mantically related to those already-defined by the designer. We
evaluated our approach by learning from 14,000 Java projects
and testing on 30 diagrams. Our results show that we are able
to suggest relevant concepts in an iterative process of diagram
construction, with an average relevance higher than 90% with
as few as 5 suggestions. Among other findings, the results also
reveal that learning from diagram fragments is more efficient
than from whole diagrams. Additionally, using sophisticated
ranking with TF-IDF improves the quality of the suggestions as
it avoids favoring frequent general terms.

The good results obtained for class diagrams encourage us to
generalize the idea of code-based completion to other kinds of
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diagrams. Many diagrams can be reverse-engineered from the
code to create learning data. In addition to this future investiga-
tion, we plan to conduct other studies to address the limitations
of the proposed approach. More specifically, the data used in
this work can be completed by fine-grained data about attribute
and method parameter identifiers and types. Additionally, we
will explore transfer learning techniques to retrain code-based
models with limited sets of diagrams. We also envision clos-
ing the loop by actually generating diagram fragments based
on accepted concept suggestions. Finally, we plan to compare
our approach with code-completion tools that suggest domain
concepts such as GitHub Copilot2.
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