
Journal of Object Technology | RESEARCH ARTICLE

The Language of SysML v2 under the Magnifying Glass
Nico Jansen∗, Jerome Pfeiffer†, Bernhard Rumpe∗, David Schmalzing∗, and Andreas Wortmann†

∗RWTH Aachen University, Germany
†University of Stuttgart, Germany

ABSTRACT The Systems Modeling Language (SysML) is defined as an extension of UML that reuses, forfeits, and adjusts
selected parts of UML to facilitate the modeling of complex systems. While it has been used in a variety of domains to
successfully design, analyze, develop, construct, and maintain such systems, its expressiveness is limited by its foundations in
UML. SysML v2 will succeed its predecessor without being backward-compatible. It, thus, is designed from scratch as a textual
language with model-based systems engineering in mind, giving the consortium working on its standardization the freedom
to employ state-of-the-art language engineering guidelines, methods, and tools to improve the language. We examine how
much SysML v2 adheres to language engineering guidelines and best practices by collecting such practices, identifying those
relevant to SysML v2, and applying them to the language. Overall, we find that SysML v2 fulfills many guidelines regarding its
functional suitability and usability but might pose challenges regarding its maintainability and portability.

KEYWORDS Model-based Systems Engineering, SysML, Language Engineering

1. Introduction
Systems engineering (Blanchard et al. 1990; Kossiakoff et al.
2011) is the ever-growing challenge of designing and devel-
oping complex systems, considering sociotechnical needs, an
ever-growing body of technologies, evolving tools, and a di-
verse workforce. Systems engineering consist of various activ-
ities (Buede & Miller 2016), from gathering requirements to
system design and development to test, evolution, and mainte-
nance. A major hindrance in systems engineering is the abun-
dance of natural language documents describing different as-
pects of the systems under development. These can hardly
be processed automatically, their ambiguity raises confusion
and misunderstandings, and their translation into actionable
artifacts is tedious and error-prone. Model-based systems en-
gineering (Wymore 2018) aims to address these challenges by
leveraging models with various roles to abstract from concrete
realizations. Yet, models in systems engineering often are less
precise, informal, descriptions that are not based on formally

JOT reference format:
Nico Jansen, Jerome Pfeiffer, Bernhard Rumpe, David Schmalzing, and
Andreas Wortmann. The Language of SysML v2 under the Magnifying
Glass. Journal of Object Technology. Vol. 21, No. 3, 2022. Licensed under
Attribution - NonCommercial - No Derivatives 4.0 International (CC
BY-NC-ND 4.0) http://dx.doi.org/10.5381/jot.2022.21.3.a11

defined modeling languages (i.e., sketches). While sketching
is a valuable technique to foster thinking and communicating
about designs (Bucchiarone et al. 2021; JSD+20 2020), translat-
ing sketches into (executable) artifacts rarely is possible due to
their incomplete nature. The efficient use of models, e.g., for au-
tomated analyses, code generation, continuous integration, and
deployment, demands well-designed modeling languages that
not only foster understanding but also support their automated
processing. A prominent example of a modeling language for
developing cyber-physical systems is the Systems Modeling
Language (SysML), a family of different languages to support
systems engineering. Engineers already use SysML to develop
large-scale systems in various domains (Bone & Cloutier 2010),
including automotive, avionics, and medicine.

SysML v2 is being developed as the next-generation systems
modeling language, intended to improve the precision, expres-
siveness, interoperability, consistency, and integration of the
language concepts relative to SysML v1 (Group 2017). Lan-
guage engineering is challenging as it demands understanding
the subject of interest and carefully crafting abstract representa-
tions thereof, creating implementations capturing the language’s
syntax and semantics, integrating these properly, and providing
appropriate tool support. To guide language engineers in de-
veloping modeling and domain-specific languages (DSLs), the

An AITO publication

http://dx.doi.org/10.5381/jot.2022.21.3.a11

modeling and language engineering community has proposed
a substantial corpus of best practices (Czech et al. 2018). We
apply the proposed guidelines to the reference implementation
of SysML v2 in Xtext (Bettini 2016). Due to the standardization
of SysML v2 being driven by a large consortium of academic
and industrial partners, we cannot expect large changes to the
language anymore. Moreover, the reference implementation is
already being used to develop tooling for SysML v2, such as its
model API, Jupyter notebooks, and editors. Our investigations
serve to highlight potential improvements to SysML v2 and
to investigate the applicability of the guidelines raised by the
software language engineering (SLE) community to one of the
largest industrial SLE efforts to date.

The contribution of this paper, thus, is an analysis of the
current status of the SysML v2 reference implementation with
respect to proposed guidelines and best practices for SLE. We
discuss the SysML v2 in the form of its most up-to-date “2022-
01”1 release and its compliance to these. While first releasing a
textual syntax only, the developers of the SysML v2 have since
released a graphical syntax as well. However, we here discuss
the SysML v2 considering the textual syntax only, which had
the opportunity to mature due to its earlier release. Due to its
size, we cannot provide the SysML v2 grammar but instead
refer to the latest official release candidate. Also, we will not
compare SysML v1 and v2 in this paper. While being a rel-
evant investigation, our contribution focuses on the language
engineering aspect of SysML v2.

In the remainder, Section 2 gives background on modeling
languages, SysML, and language design guidelines. Section 3
discusses the application of the language design guidelines to
SysML v2 in detail before Section 4 recapitulates our findings
and Section 5 suggests improvements. Section 6 then discusses
the methodology of our analysis of SysML v2, and Section 7
considers related work. Finally, Section 8 concludes.

2. Background

2.1. Modeling Languages
To make models machine-processable, these must adhere to
systematic descriptions–modeling languages. A (modeling) lan-
guage is defined by a set of sentences (models) it comprises,
it can be defined through (GR11 2011) (1) an abstract syn-
tax, which structures its sentences; (2) a concrete syntax, which
defines the appearance of its sentences; (3) a well-understood se-
mantic domain, which enables giving meaning (Harel & Rumpe
2004) to its syntax; and (4) a semantic mapping from its ab-
stract syntax to the semantic domain, which assigns meaning to
models.

Modeling language implementations often use grammars
(Bettini 2016; HRW18 2018), metamodels (Steinberg et al.
2008; Degueule et al. 2015), or projectional editing (Campagne
2014) to define the syntax, as well as model-to-model (Jouault
et al. 2006; HRRW17 2017) or model-to-text (Forsythe 2013;
Bettini 2016) transformations to realize their semantics. Most
mechanisms used for defining abstract syntaxes are context-free,
i.e., they cannot express contextual properties (e.g., the name of
1 Available from https://github.com/Systems-Modeling/SysML-v2-Release/

ibd [Block] Rover [rover]

controller

: ControlUnit

left :

Motor

frontSensor

: ObstacleSensor

inputChannel

: MessageSubscriber

right :

Motor

cmd : ~BooleanPort

cmd : ~BooleanPort

leftMotorCommand

: BooleanPort

rightMotorCommand

: BooleanPort

dist : ~Distance

val : Distance

m : ~Message

m : Message

Figure 1 Overview of a rover robot in SysML v1

a model element is unique in its scope). Consequently, many lan-
guage implementations feature additional well-formedness rules
(e.g., OCL, Java, or similar) to further constrain the language’s
models. Sometimes, this is called “static semantics” (CBCR15
2015).

2.2. SysML v1
The SysML v1 is a graphical, general-purpose modeling lan-
guage family based on UML (OMG 2011) that comprises nine
sub-languages. But where UML targets the engineering of
software systems, SysML aims to facilitate the engineering of
cyber-physical systems through specification, analysis, design,
validation, and verification. To this end, SysML adopts six of
UML’s diagrams, introduces changes to these, and introduces
the block definition diagram, internal block diagram, and para-
metrics diagram. Block definition diagrams correspond largely
to class diagrams with ports and are used to define data types
as well as to define component types. Internal block diagrams
describe the configuration of block definitions. Parametrics
describe constraints between SysML elements. Overall, the
pillars of SysML are (1) Structure: block definition diagrams,
internal block diagrams; (2) Behavior: sequence diagrams, state
machine diagrams, activity diagrams; (3) Requirements: require-
ments diagrams; and (4) Parametrics: parametric diagrams.

SysML has been applied to the engineering of a variety
of complex systems, including buildings (Cawasji & Baras
2018), cars (Andrianarison & Piques 2010), the thirty meter
telescope (Herzig et al. 2017), satellites (Hayden & Jeffries
2012), and many more, despite lacking formal semantics (in
the sense of “meaning” (Harel & Rumpe 2004; Hamilton &
Hackler 2007; Lima et al. 2013). Lacking a formal specification
of the meaning of SysML elements prevents exchanging its
models between different companies and tool vendors, which
need to fill the semantic gaps themselves and, thus, hide the
meaning of language elements in their (most often) proprietary
and vendor-locked tool implementations. Moreover, this often
produces specific realizations of semantics that can be incom-
patible with another, similar to the different interpretations of
UML as manifested in its variants (such as fUML (OMG 2021),
txtUML (Dévai et al. 2014), or UML/P (Rum16 2016)). This
can lead to confusion and misunderstandings to erroneous anal-
ysis and processing of models. Moreover, modeling languages
with formal semantics (e.g., based on CSP (Hoare 1978), the π
calculus (Sangiorgi & Walker 2003), or the FOCUS theory (Broy
& Stølen 2001)) support richer analyses and semantics-aware
development methods (KRW20 2020; BKRW19 2019).

Figure 1 illustrates the structural pillar of SysML with an ex-
cerpt of an internal block diagram (ibd) describing the architec-

https://github.com/Systems-Modeling/SysML-v2-Release/

ture of an autonomous rover (DMW17 2017) that receives inputs
from two sensor blocks (frontSensor and inputChannel),
decides upon the next action in its controller block, and
actuates two parallel blocks of type Motor accordingly. The
architecture exchanges messages between blocks using connec-
tors between their typed and directed ports. Its blocks may be
composed of further blocks.

2.3. SysML v2
SysML v2 is the successor of SysML and currently in defini-
tion. It is defined as a textual modeling language2 that refines
and harmonizes the concepts of its predecessor and improves
its syntax. SysML v2 also forsakes the distinction into differ-
ent model (diagram) types, defines an API for its models to
ease exchanging these, and comes with a pilot implementation
comprising an Xtext (Bettini 2016) grammar. The new syntax,
moreover, features variation, snapshots, quantities and units,
complex statements and expressions, and a library of types and
functions to operate on.

SysML v2 is defined as a language extension of KernelML3,
a new modeling language foundation part of the SysML v2
standardization, which defines essential concepts that could be
reused for creating SysML variants or other similar languages.
These concepts include packages, classifiers, associations, con-
nectors, expressions, and similar foundations.

Figure 2 illustrates the textual syntax of SysML v2 on the
rover robot of Figure 1. It features a central package that con-
tains various type definitions of parts, ports, and interfaces. The
part definition of the Rover (ll. 19 f.) instantiates various parts
and connects these accordingly.

2.4. Language Design Guidelines
Starting with a recent systematic mapping study (Czech et al.
2018) and selected publications (Selic 2009) on guidelines for
SLE (Karsai et al. 2009; Zaytsev 2014; de Kinderen 2017; Pe-
trausch et al. 2016), we applied forward and backward snow-
balling to identify further sources of SLE guidelines. From
the publications, we extracted all guidelines and removed those
that are hardly falsifiable (“care for quality” (Kolovos et al.
2006)), relate to the SLE process in a way such that they can-
not be checked post-hoc (“Effective process for DSML defi-
nition” (Kahlaoui et al. 2008)), cannot be applied to SysML
v2 (“Use colors” (Kelly & Tolvanen 2008)), or relate to tool-
ing for the modeling language (“Filter details from notational
elements” (Kelly & Tolvanen 2008)).

The remaining guidelines are presented in the following and
cover different areas of ISO 25010 (ISO/IEC 2010) (cf. Figure 3)
for software product quality. Software languages succumb to
the same quality and maintenance issues as other software sys-
tems, raising the importance of complying with high standards
in development and evolution. Following this classification
scheme, we analyze the current version of SysML v2. Since the
guidelines are sometimes underspecified and miss preciseness,

2 A graphical notation to complement the textual notatoin is in progress – see
”Intro to the SysML v2 Language-Graphical Notation.pdf”

3 See “Kernel Modeling Language (KerML)”, Version 1.0, Release 2022-01.

package 'EXE 2017 Rover' {

import ScalarValues::*;

// type definitions

part def Motor { ... }

part def ControllerUnit { ... }

part def ObstacleSensor { ... }

part def MessageSubscriber { ... }

port def BooleanPort {

out signal : Boolean;

} // additional port definitions

interface def MotorCommand {

end src : BooleanPort;

end tgt : BooleanPort;

} // additional interface definitions

part def Rover {

// instantiation of parts

part left : Motor;

part right : Motor;

part frontSensor : ObstacleSensor;

part inputChannel : MessageSubscriber;

part controller : ControllerUnit;

}

part rover : Rover {

interface : MotorCommand connect

src => controller::leftMotorCommand to

tgt => left::cmd;

// additional interface usages

}

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Figure 2 Excerpt of the rover robot of Figure 1 in SysML v2

we use our expertise in the domain to interpret them and eval-
uate SysML’s compliance. In the following, we organize the
guidelines found in literature according to the taxonomy of ISO
25010 qualities as illustrated in Figure 3 into guidelines regard-
ing functional suitability, usability, maintainability, portability,
and compatibility.

2.4.1. Functional Suitability Functional Suitability de-
scribes the ability of a software system to offer necessary or
beneficial functionalities that support end-users in performing
their tasks. For modeling languages, this includes the capabil-
ity to completely and correctly create models with respect to a
particular domain.

G1: Balance generality and specificity (Karsai et al. 2009;
Völter 2009; Wile 2004). Modeling languages should support
abstracting from implementation details. At the same time,
they must offer expressive modeling techniques. While these
requirements often contradict each other, finding an appropriate
equilibrium is crucial.

G2: Always start with a semantics model (Selic 2009). The
purpose of modeling language is to express something with
suitable abstraction, i.e., to carry meaning. This meaning, the
language’s semantics (Harel & Rumpe 2004) need to be estab-
lished before any syntax is defined. If the syntax is defined first,
its element might not be suitable to carry the semantics prop-
erly and it raises the danger of yielding a ’modeling language’
without meaning (cf. UML, SysML).

https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/Intro%20to%20the%20SysML%20v2%20Language-Graphical%20Notation.pdf
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/1-Kernel_Modeling_Language.pdf

System/Software Product Quality

Functional

Suitability

Functional

completeness

(G-3)

Functional

correctness

(G-2, G-4)

Functional

appropriateness

(G-1)

Performance

Efficiency

Time-behavior

Resource

utilization

Capacity

Compatibility

Co-existence

Interoperability

(G-5)

Usability

Appropriateness

recognizability

(G-13, G-15)

Learnability

(G-14, G-16, G-18)

Operability

(G-7, G-9, G-19)

User error protection

(G-11, G-17)

User interface aesthetics

(G-10, G20)

Accessibility

(G-6, G-8, G-12)

Reliability

Maturity

Availability

Fault Tolerance

Recoverability

Security

Confidentiality

Integrity

Non-repudiation

Accountability

Authenticity

Maintain-

ability

Modularity

(G-25, G26)

Reusability

(G-22)

Analysability

Modifiability

(G-21, G23, G-24, G-27)

Testability

Portability

Adaptibility

(G-28, G-29, G-30)

Installability

Replaceability

Figure 3 The software product quality model defined in ISO/IEC 25010 comprises eight quality characteristics.

G3: Defined scope and purpose (Jannaber et al. 2017). When
developing a DSL, the language designer has to decide on how
specific and whether or not to develop it for a particular domain.
To define the scope of the language, its purpose has to be eval-
uated, e.g., in respect to future modeling projects. Without a
defined scope and purpose, a DSL is either overly general or
too complex and specific for the targeted modeling subject.

G4: The modeling language is specified by a language meta-
model (Jannaber et al. 2017). Specifying the modeling lan-
guage in a language metamodel includes defining the abstract
syntax, concrete syntax, well-formedness rules, and semantics
in a metamodeling language. This language metamodel fa-
cilitates easy understanding of the scope and elements of the
language and provides a standardized way for further changes
and adaptions. Consequently, missing metamodels impedes the
development, use, extension, and reuse of DSLs.

2.4.2. Compatibility Compatibility describes the ability of
a software system to be adapted or ported to another application
area. This is an essential aspect for software languages as they
can be integrated, composed, or adapted to other languages.

G5: Provide integrability (Kolovos et al. 2006; Kelly & Tolva-
nen 2008). Sophisticated software systems integrate well with
other applications. This is also essential for modern modeling
languages to be embedded in tools or composed/coordinated
with other languages. Thus, they provide genuine added value
across different application domains.

2.4.3. Usability Usability is the capacity of a modeling lan-
guage to provide the conditions for its intended users to perform
tasks safely, effectively, and efficiently in a satisfactory fashion.

G6: Adopt existing domain notations (Karsai et al. 2009;
Kelly & Tolvanen 2008; Völter 2009; Wile 2004; Mernik
et al. 2005; Frank 2013). To provide a suitable language,
the concrete syntax should adhere to concepts known by the
modelers. Generally, these originate from associated domains,

providing an intuitive understanding of notations and reducing
the entry barrier.

G7: Avoid redundancy (Karsai et al. 2009; Kolovos et al.
2006; Salehi et al. 2016). The concrete syntax of a language
defines valid sentences for modeling. To increase the compre-
hensibility of models, it is useful to establish a unique mapping
between the syntactic elements and the underlying concepts to
be represented. For this reason, redundant syntactic constructs
should be avoided.

G8: Viewpoint orientation (Kahlaoui et al. 2008; Kelly &
Tolvanen 2008; Völter 2009). Views enable to examine models
with respect to specific concerns or to specify valid or invalid,
as well as dependent or alternate designs. Through view support
in modeling languages, modelers can examine portions of an
area of interest, potentially mitigating the comprehension effort
of large-scale models.

G9: Make elements distinguishable (Karsai et al. 2009; Kelly
& Tolvanen 2008; Kelly & Pohjonen 2009). Software lan-
guages offer a variety of different modeling techniques. For
the convenience of modelers, the provided syntactic elements
should be sufficiently distinct from each other. This reduces
confusion and thus increases productivity.

G10: Consistent style everywhere (Karsai et al. 2009; Kelly
& Tolvanen 2008). There are different styles for representing
concepts syntactically. To make a language more accessible,
the style should be chosen consistently (e.g., same notation
of names or types everywhere). While there is overlap on the
distinguishability of elements, this guideline is no contradiction
to G9, as it relates to the general look and feel of a language.

G11: Define language rules (Kelly & Tolvanen 2008). Models
are often subject to various rules derived from the domain, the
language itself, or some usage conventions. They may be strict
by informing about missing elements or incorrect usage and
even support conventions and default values. Language rules or
well-formedness rules enable to detect errors early and prevent

invalid or unwanted models.

G12: First things first - the language (Kelly & Tolvanen
2008). Modeling tools consist of several components, including
the modeling language in question, code generators, support-
ing processes, and tools. However, while code generators and
language tools are mostly invisible to modelers, the modeling
language is the means by which they develop systems. Changes
to a modeling language may have major impacts on modelers
and their creations. Thus, the modeling language should be
crafted with care early on the avoid late changes.

G13: Derive concepts from expected output (Kelly & Tolva-
nen 2008). While being complex and mostly providing general
solutions, software languages are often well-structured and uti-
lize well-thought concepts. Through abstraction, the target code
can be the source of modeling concepts. While reusing concepts
from the target domain promises an increase in productivity and
quality, this should be done with care as it is easy to convolute
already established concepts.

G14: Multiple level of abstractions (Frank 2013). Modeling
languages may address various concerns, such as the behavior of
its system or its structure. A modeling language should provide
concepts to distinguish these concerns clearly. Overloading
models with different concerns may compromise understanding
and prevent an appropriate interpretation.

G15: Clear language to target mapping (Frank 2013). A
mapping from a modeling language to the target domain, also
called semantic mapping, provides the modeling language with
meaning. Without a clear meaning, the modeling language does
not have a purpose, is susceptible to ambiguous interpretations,
and does not allow for formal analysis.

G16: Give the user flexibility in how to formulate a model
(Walter & Masuch 2011). Many roads lead to Rome. Con-
sequently, different modelers might use dramatically different
approaches to reach the same or similar modeling goals (cf. flat-
tened vs. hierarchical states in UML Statecharts). Yet, guiding
the way how to express concepts is part of the motivation of
modeling languages. Thus, when designing such languages,
weighing the freedom of expression vs. the guidance supported
by restrictions in syntax and semantics is essential.

G17: DSL’s support for error prevention and model check-
ing (Kahraman & Bilgen 2015). Model-checking and error
prevention play an important part in producing reliable pro-
grams. Often this can be improved because the inspection of all
relevant parts of a model for errors and completeness are either
missing or incomplete. Consequently, when designing a DSL,
providing model checking and error prevention measurements
help modelers to design solutions to their problems.

G18: Comprehensibility and Learnability (Kahraman & Bil-
gen 2015). For a DSL to be comprehensible, language elements
have to be understandable, e.g., by reading their description or
doing a tutorial. With this, it is easier to learn the DSL and
to develop programs with it. Overly complex DSLs without
documentation are hard to understand and have a steep learning

curve that drives users away.

G19: The language provides mechanisms for compactness
of the representation of the program (Kahraman & Bilgen
2015). Where models tend to get large and complex, mech-
anisms for compactness in the representation of language el-
ements can mitigate this effect. Therefore, it is essential to
introduce concepts for compactness in your DSL. Compactness
increases the development speed of modelers through shortcuts
and also the usability by smaller and more accessible models.

G20: Provide a graphical notation (Jannaber et al. 2017).
A graphical notation for a DSL increases its usability and com-
prehensibility. The definition of the notation represents the
last building block of the language definition. Each language
element needs to be assigned to a graphical notation.

2.4.4. Maintainability Maintainability characterizes the ef-
fort required to make specified (planned) modifications to a
modeling language through its lifecycle.

G21: Reuse and compose existing language definitions (Kar-
sai et al. 2009; Völter 2009; Mernik et al. 2005; Kelly &
Pohjonen 2009). Modeling languages often reuse existing con-
cepts of other languages. To reduce the implementation and
maintenance effort, it makes sense to reuse existing language
definitions on the technical level as well (BEH+20 2020). Com-
posing multiple fragments is a powerful technique to develop
new languages sustainably.

G22: Support reusability of language constructs (Karsai et
al. 2009; Kelly & Tolvanen 2008; Kelly & Pohjonen 2009).
Typically, languages support common notations to provide con-
sistency. To avoid redundant definitions, identical constructs
should be reused (Combemale et al. 2018). This increases the
maintainability of the language and facilitates its evolution.

G23: Design for language evolution (Völter 2009; Kelly &
Pohjonen 2009; Livengood 2012; Vierhauser et al. 2015).
As languages will inevitably evolve, they should be designed
accordingly. This includes the modularization of their concepts.
Considering evolution in language design allows modifying ded-
icated aspects of a language only, rather than causing profound
changes.

G24: Reuse type systems (Karsai et al. 2009; Mernik et
al. 2005). Type systems formalize and enforce data structure
rules to avoid type errors of unsupported operations. The de-
sign of a well-thought type system must consider complex cor-
relations such as type conventions, generic types, and poly-
morphism (BEH+20 2020). Employing and extending well-
thought type systems improves comprehensibility and avoids
errors through misunderstanding and implementation errors.

G25: Interface concept (Karsai et al. 2009). Interfaces be-
tween parts facilitate modular system development and sepa-
ration of concerns by providing means for information hiding,
thus enabling developers to exchange parts without affecting
other elements of the system. Providing a concept for interfaces
eases development and supports modularization.

G26: Modularize and layer the language (Selic 2009). Where
modeling languages aim to describe complex systems, these
often demand for multiple viewpoints on the system (such as
structure, behavior, or requirements in SysML). Properly modu-
larizing and layering the language can support using different
syntaxes for the different viewpoints and decoupled evolution
of language parts relating to these viewpoints (HMSNRW16
2016). To avoid fragmentation, all language parts should be
based on (layers of) shared concepts.

G27: Modifiability (Kahraman & Bilgen 2015). Modifiability
describes the amount of effort required to extend or alter the
functionality of a DSL. The DSL should be designed such that
modifying the DSL does not degrade its existing functionality.
Modifiability is important to incorporate future requirements
which minimal effort. If a DSL is not intended for modifiability,
the process of incorporating changes is hard and expensive,
so language designers may tend to re-development instead of
reusing and adapting the existing DSL.

2.4.5. Portability Portability is the capability of ability to
transfer a modeling language into different contexts and appli-
cation environments.

G28: Support variability on language level (Kelly & Po-
hjonen 2009). Sophisticated modeling languages should be
designed for extension, harnessing advanced mechanisms of the
language workbench they are developed with. Variability for
languages (Butting et al. 2018) is an essential part of sustain-
able modeling, allowing domain-specific solutions for particular
application areas.

G29: Provide for language extensibility (Selic 2009). Soft-
ware languages are software too (CFJ+16 2016) and, hence,
often subject to evolution beyond the conceptions leading to
its first release(s). This especially holds where languages are
relatively generic and will be specialized by future users, such
as the UML with MechatronicUML (Burmester et al. 2004) or
UML/P (Rum16 2016). Without language suitable extension
mechanisms (cf. (HRW18 2018)), users will ultimately abandon
such a language and create their own variants from scratch.

G30: Allow for incorporating foreign language fragments in
models (Selic 2009). Often, languages do not require compre-
hensive extensions but cannot support a few specific concepts
required by the modelers. Instead of reinventing the complete
language, providing suitable extension points to embed frag-
ments of other languages (e.g., SQL into Java or Statecharts
into SysML block diagrams) can ease reusing the language
and its tooling (BRW16a 2016). Similar to G30, lacking such
extensibility will drive users away.

3. Analysis of SysML v2

Functional Suitability

G1: Balance generality and specificity (Karsai et al. 2009;
Völter 2009; Wile 2004). Although it is always challenging,

finding the correct level of abstraction is particularly hard for
SysML v2 as it is an interdisciplinary modeling language. Do-
main experts require different views on a subject with distinct
granularity. Therefore, SysML v2 provides different levels of
abstraction in various ways. First, it is distinguished between
definition and usage of an entity, allowing a more abstract view
on definitions, which is detailed for the particular usage. Fur-
thermore, SysML v2 supports decomposing model elements
making it possible to always provide the correct level of gran-
ularity. Thus, while still in the responsibility of the modeler,
SysML v2 facilitates balancing generality and specificity.

G2: Always start with a semantics model (Selic 2009). There
are different conceptions about the semantics of a modeling
language in the literature. Often, it is described as the behavior
or well-formedness of a modeling language, where it should
be its “meaning” (Harel & Rumpe 2004), usually given by
mapping the languages’ constructs to a well-known semantic
domain (Cengarle et al. 2009) (e.g., Petri-nets for UML activity
diagrams). For SysML v2, a definition of semantics in the sense
of meaning is not available.

G3: Defined scope and purpose (Jannaber et al. 2017). Sim-
ilar to UML or its predecessor, SysML v2 is a very general
language. Hence, it is designed to support various application
domains. However, its purpose is to facilitate model-based
systems engineering and to support its specific methods and
practices.

G4: The modeling language is specified by a language meta-
model (Jannaber et al. 2017). The language metamodel of
SysML v2 is incomplete. In its current state, the reference
implementation contains an Xtext grammar4 that defines the
abstract and concrete syntax of the SysML v2. However, there
are, besides referential integrity conditions, no well-formedness
rules. An implementation for semantics is also missing.

Compatibility

G5: Provide integrability (Kolovos et al. 2006; Kelly & Tolva-
nen 2008). As the underlying language workbench Xtext (Bet-
tini 2016) supports language integration to a certain extent, the
integrability of the language is generally possible. Furthermore,
there is a standardized API5 for SysML v2 models, allowing
further processing in external tools. Thus, SysML v2 supports
this guideline on the meta and model level. Integrability in the
sense of coordination among the SysML v2 languages and with
other languages can be principally supported through the API
of SysML v2 models.

Usability

G6: Adopt existing domain notations (Karsai et al. 2009;
Kelly & Tolvanen 2008; Völter 2009; Wile 2004; Mernik
et al. 2005; Frank 2013). As SysML v2 acts across domains,
by design, its notation must serve all disciplines appropriately.

4 https://github.com/Systems-Modeling/SysML-v2-Pilot-Implementation/
blob/master/org.omg.sysml.xtext/src/org/omg/sysml/xtext/SysML.xtext

5 https://github.com/Systems-Modeling/SysML-v2-API-Services

https://github.com/Systems-Modeling/SysML-v2-Pilot-Implementation/blob/master/org.omg.sysml.xtext/src/org/omg/sysml/xtext/SysML.xtext
https://github.com/Systems-Modeling/SysML-v2-Pilot-Implementation/blob/master/org.omg.sysml.xtext/src/org/omg/sysml/xtext/SysML.xtext
https://github.com/Systems-Modeling/SysML-v2-API-Services

01

02

03

04

interface : MotorCommand connect

controller::leftMotorCommand to left::cmd;

connect controller::leftMotorCommand to left::cmd;

// G-7: Three equivalent connector alternatives

interface : MotorCommand connect

src => controller::leftMotorCommand to

tgt => left::cmd;

05

06

07

Figure 4 Redundant connector alternatives in SysML v2

However, since it largely adapts and extends existing modeling
techniques (especially structure and behavior), it can be argued
that this guideline is respected. Furthermore, SysML v2 can also
be seen as a textual enhancement of the graphical v1, translating
and improving existing notation textually. Thus, while alter-
ing graphical elements into primarily textual ones, SysML v2
adopts the main concepts such as blocks (i.e., part defs), parts,
packages, ports, activities, states, transitions, etc.

G7: Avoid redundancy (Karsai et al. 2009; Kolovos et al.
2006; Salehi et al. 2016). SysML v2 introduces lots of abbrevi-
ations on model level (e.g.,:> as a short form for specialization
on type level and subsets on instance level at the same time).
While those abbreviations arguably increase the productivity of
more experienced modelers, it poses a barrier for novice users.
Furthermore, there are multiple syntactical notations for the
same language concepts. Figure 4 presents three notations for
linking two ports of different parts. The first alternative (ll. 2-4)
provides all information about an instance of the connection,
while the second snippet (ll.5-6) omits the endpoints. The last
example (l. 7) does not give any information on the connection
type, thus resulting in an instance of a generally provided con-
nection definition. While these alternatives syntactically offer
different levels of detail, they nevertheless result in the same
connection for the specified ports.

G8: Viewpoint orientation (Kahlaoui et al. 2008; Kelly &
Tolvanen 2008; Völter 2009). The definition of SysML v2
comes with a mechanism for specifying custom views and view-
points. A viewpoint characterizes portions of an area of interest.
A view may adhere to several viewpoints to extract and render
relevant model information. Consequently, SysML v2 enables
the partial examination of a system and thus satisfies G8.

G9: Make elements distinquishable (Karsai et al. 2009; Kelly
& Tolvanen 2008; Kelly & Pohjonen 2009). While not strictly
differenced into four pillars as in the first version, the SysML v2
cleanly distinguishes elements by providing different kinds of
modeling techniques (e.g., for structure, behavior, etc.). Addi-
tionally, SysML v2 follows a rigorous concept of determining
definitions and usage, resulting in clearly distinguishable ab-
straction levels (see Figure 5).

G10: Consistent style everywhere (Karsai et al. 2009; Kelly
& Tolvanen 2008). Although different concepts are suitably
syntactically differentiated, SysML v2 also emphasizes a consis-
tent notation of similar concepts. This is apparent, for example,
in a uniform notation of types and instances (see Figure 5) or

// G-9 : Distinguish type definition and instance

// G-10: Consistent definition of and using types

part def Car {

part eng : Engine;

item fuel : Fuel;

attribute status : CarStatus;

}

part def Engine;

item def Fuel;

attribute def CarStatus {

gearSetting : Integer;

//...

}

01

02

03

04

05

06

07

08

09

10

11

12

13

Figure 5 SysML v2 clearly distinguishes type definitions and
their instantiation. This style is consistent across the modeling
elements, e.g., parts, attributes, and items.

// G-11: Missing language rules

package Robot {

import Rover::*;

part def Bot {

part left : Motor;

part right : Motor;

part controller : ControllerUnit;

}

part bot : Bot {

// connects a part to a port

interface : MotorCommand connect

controller to left:cmd;

}

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Figure 6 A SysML v2 model showing questionable interface
usage where a part is connected to a port.

common keywords concerning the extensibility of elements.

G11: Define language rules (Kelly & Tolvanen 2008). In
the current version of SysML v2, there are almost no well-
formedness rules. What constitutes a well-defined model is,
therefore, completely open or guesswork. For instance, the com-
patibility of types is not checked or not required, as presented
in Figure 6 for the connection of a part to a port (l. 14). However,
well-formedness rules are not completely missing, so it is recog-
nized when type definitions are not discoverable during usage.
An extended set of well-formedness rules would nevertheless
provide more clarity and make the set of valid models known.

G12: First things first - the language (Kelly & Tolvanen
2008). The main focus in the development of SysML v2 was
apparently on developing the concrete syntax of the model-
ing language. Code generators and frameworks based on the
language are not implemented yet.

G13: Derive concepts from expected output (Kelly & Tolva-
nen 2008). Besides their meaning, the purpose of SysML v2
models is also unclear. They are only of limited use for specifica-
tion due to their ambiguity in interpretation. Moreover, they do
not support formal analysis or comprehensive well-formedness
rules. Thus, no concepts can be derived from the expected
output of SysML v2 models, as there is no expected output.

// G-19: Detailed and short form of a binding

port def waterTankPort {

out item waterSupply;

}

bind waterTankPort::waterSupply = pump:pumpOut;

part pump : CoolingWaterPump {

out item pumpOut : Water;

}

01

02

03

04

05

06

07

08

09

10

port def waterTankPort {

out item waterSupply;

}

part pump : CoolingWaterPump {

out item pumpOut : Water

= waterTankPort::waterSupply;

}

01

02

03

04

05

06

07

Figure 7 Two SysML models showing the definition of a
binding connection (top, l. 6) and its shorthand version that
combines the binding and feature definition (bottom, ll. 5-6).

G14: Multiple levels of abstraction (Frank 2013). SysML v2
supports modeling various concerns at different levels of ab-
straction. Even for elements of behavior modeling, such as
actions or statecharts, a distinction is made between definition
and usage. Whether to model everything in the same model or
to separate multiple levels of abstractions is the decision of the
modeler.

G15: Clear language to target mapping (Frank 2013). Al-
though the SysML v2 operates in the broader spectrum of sys-
tems modeling, there is no clear mapping from the language to
the domain of systems engineering. Whether elements represent
software or hardware, or what blocks represent in a system is
ambiguous at best. These ambiguities in mapping and mean-
ing hamper formal analysis or a common understanding of
SysML v2 models.

G16: Give the user flexibility in how to formulate a model
(Walter & Masuch 2011). Being a very general language,
SysML v2, similar to UML and SysML v1, gives the model-
ers complete freedom in formulating models. Once its well-
formedness rules are fully developed, this might be restricted.

G17: DSL’s support for error prevention and model check-
ing (Kahraman & Bilgen 2015). The current implementation
of SysML v2 provides a SysMLValidator Xtend class that ref-
erential integrity checks, e.g., whether the item usage is typed
by an item definition. Besides that, the implementation does not
provide any context condition that performs model checking to
prevent errors.

G18: Comprehensibility and Learnability (Kahraman &
Bilgen 2015). Because SysML v2 has such a wide portfolio of
modeling elements and use cases, its documentation has to be
similarly comprehensive. The currently available documenta-
tion contains a textual definition of each language element and
a collection of slides with examples and brief explanations for
selected portions. However, the examples miss preciseness and
are often too small. Consequently, the basic concept behind

vehicle : Vehicle

tank :

FuelTank

eng :

EnginefuelTankPort engineFuelPort

:FuelInterface

Figure 8 Graphical SysML v2 notation of a part vehicle
and its features tank and eng that are connected via the inter-
face FuelInterface

an element is understandable, but it is hard to apply to a more
sophisticated model.

G19: The language provides mechanisms for compactness
of the representation of the program (Kahraman & Bilgen
2015). The SysML v2 implementation enables to model com-
plex and comprehensive systems. Thus, the models can get
complex and comprehensive, too. To mitigate this, SysML v2
provides shorthand notations for, e.g., item flow, binding defi-
nitions, state succession, redefinition of parts, and more. This
increases development speed and accessibility. Figure 7 shows
at the top the definition of a binding between waterSupply
and pumpOut (top, l. 6) and the item flow definition (top, l. 9)
separately, and shows the shorthand notation, where both are
defined in one statement (bottom, ll. 5-6).

G20: Provide a graphical notation (Jannaber et al. 2017).
The SysML v2 provides a graphical notation for most elements
of the systems layer of its four-layer language architecture. Ele-
ments that do not have a graphical representation are constraints,
requirements, analysis cases, verification cases, variation, depen-
dencies, allocation, metadata, element import filtering. Because
these modeling elements are usually defined textually only, we
do not consider them missing here. Figure 8 shows the graphical
notation of a part vehicle.

Maintainability

G21: Reuse and compose existing language definitions (Kar-
sai et al. 2009; Völter 2009; Mernik et al. 2005; Kelly &
Pohjonen 2009). SysML v2 is developed from scratch. Be-
sides being designed on top of the Kernel Modeling Language
(KerML) for basic language foundations (cf. Figure 9), it does
not feature any language re-use. Hence, although highly adapt-
ing concepts of particular languages, all language constituents
must be developed and implemented anew.

G22: Support reusability of language constructs (Karsai et
al. 2009; Kelly & Tolvanen 2008; Kelly & Pohjonen 2009).
SysML v2 is primarily developed as a big blob within a single
grammar4. This ultimately prevents reusability in the form of
modular sublanguages. Furthermore, there are multiple syntac-
tically related language constructs, which are implemented as
individual dedicated productions. This reduces maintainability
since changes have to be tracked for many different locations
instead of a single one.

G23: Design for language evolution (Völter 2009; Kelly &

Systems

Syntax

Kernel

Syntax

Core

Syntax

Root

Syntax

Systems and

Domain Model

Libraries

Kernel Model

Library

Core Semantics

metamodel

semantic

library

metamodel

semantic

library

semantic

specification aims at mappting the

core syntax to formal

logic

root syntax elements

without semantics

Systems Modeling Language (SysML)

Kernel Modeling Language (KerML)

Figure 9 The language architecutre of SysML and KerML1

Pohjonen 2009; Livengood 2012; Vierhauser et al. 2015).
Similar to the evaluation on G23, SysML v2 is not well suited
for extensibility and evolution due to its monolithic nature and
numerous duplications of production rules for the same syntax
constructs.

G24: Reuse type systems (Karsai et al. 2009; Mernik et al.
2005). SysML v2 is not based on any existing language but was
developed from scratch, which can be seen in the definition of
the language and the realization of the prototypical implemen-
tation. Rather, in SysML v2, a type can be created for most
model elements. Many of these so-called types lack that which
actually makes types, a system of clearly defined rules. Types
in SysML v2 instead represent a separation of definition and us-
age. While the SysML v2 supports the definition of inheritance
relationships, other advanced concepts such as generic types or
more rigorous type checks and support for type substitution are
missing. On the implementation side, the missing reuse of exist-
ing type systems is noticeable through the lack of implemented
type checks.

G25: Interface concept (Karsai et al. 2009). Blocks and
parts in SysML v2 provide ports and thus clearly defined inter-
faces. Besides that, SysML v2 supports structural inheritance
on blocks through which blocks can inherit ports. Therefore,
SysML v2 supports a basic interface concept, even if this is not
fully fleshed out due to missing semantics, as shown in Figure 6.

G26: Modularize and layer the language (Selic 2009).
SysML v2 builds on the novel KerML, as illustrated in Fig-
ure 9, featuring foundational concepts, such as identifiers, re-
lations, types, and similar. KerML consists of three languages
layered onto another to specify root language elements with-
out semantics, core elements that aim to be mapped to formal
logic, and the kernel syntax, which can be extended by libraries.
SysML v2 itself is neither modularized nor layered. Hence, a

// G-29: Three productions with duplicated
// code for the same concept of part usages
PartUsage returns SysML::PartUsage :
UsagePrefix? PartUsageKeyword Usage;

PartFlowUsage returns SysML::PartUsage :
UsagePrefix? 'ref'? PartUsageKeyword Usage;

PartRefUsage returns SysML::PartUsage :
UsagePrefix? ('ref' PartUsageKeyword |
isComposite ?= PartUsageKeyword) Usage;

01

02

03

04

05

06

07

08

09

10

11

Xtext

Figure 10 Excerpt of the SysML v2 grammar impeding vari-
ability on language level

decoupled evolution of, e.g., SysML v2 state machines is not
possible without further modularization efforts.

G27: Modifiability (Kahraman & Bilgen 2015). The guide-
line states that modifying the DSL does not degrade its func-
tionality. This corresponds to conservative extension (HKR21
2021). With this, when extending an existing language ele-
ment, its properties are preserved and thus not restricted. In
SysML v2, no mechanisms that ensure conservative extensions
are available.

Portability

G28: Support variability on language level (Kelly & Po-
hjonen 2009). Variant creation for SysML v2 is likely to be
cumbersome because it was developed in a single monolithic
grammar and has many duplications of productions. For in-
stance, Figure 10 presents three productions for part usages,
which mostly substitute each other. This makes it challenging
to infer problem-specific adaptations to the language. Although
the underlying language workbench Xtext offers some extension
mechanisms, these are only rarely used in the current implemen-
tation of the language.

G29: Provide for language extensibility (Selic 2009). Pro-
viding for language extensibility means providing mechanisms
(such as interfaces (BPR+20 2020), extension points (HRW18
2018), hook points, or similar) for the systematically planned
extension of the language and its elements. For SysML v2,
such mechanisms are not planned. Instead, the language and
its Xtext reference implementation can be reused opportunisti-
cally, e.g., by creating new languages extending SysML v2 and
adding/removing elements as desired.

// G-31: Action definition with embedded

// statements of a foreign language

action def CreateFile(in size : Integer) {

language “Java”

/* File f = new File(size);

* f.createNewFile();

*/

}

01

02

03

04

05

06

07

08

Figure 11 SysML v2 uses “opaque actions” to integrate mod-
els of other languages as comments.

G30: Allow for incorporating foreign language fragments
in models (Selic 2009). SysML v2 supports the notion of
“opaque actions”, which are action definitions that feature a
body of elements of another language in the form of multi-
line comments. Content in these comments is treated as plain
text and is unaccessible for, e.g., well-formedness checking.
Figure 11 illustrates this mechanism on a SysML v2 action
definition featuring Java code embedded in a comment. Note
that this excerpt is not well-formed as the File() constructor
(l. 5) does not accept integer arguments. This issue, however,
cannot be detected automatically at design time as SysML v2
cannot check the “embedded” Java parts.

4. Analysis Results
This section summarizes our findings on the language engi-
neering of SysML v2. To this end, Table 1 summarizes the
compliance of SysML v2 with the presented SLE guidelines.

Overall, we determined that SysML v2 fulfills eleven of
the applicable guidelines completely, seven other guidelines
at least partially, and 12 guidelines not at all. While most of
the guidelines regarding functional suitability and usability are
fulfilled or partially fulfilled, maintainability and portability
might require further considerations.

If SysML v2 achieves similar popularity and use than
SysML v1 or UML, researchers and practitioners will em-
ploy the language for largely different purposes and use cases.
We expect that this will lead to the proliferation of variants
as it did for the other languages, which produced variants
of UML, such as DiSpa (Bergert et al. 2007), Mechatron-
icUML (Burmester et al. 2004), UMM (Hofreiter et al. 2006),
and UML4IoT (Thramboulidis & Christoulakis 2016) or vari-
ants of SysML, such as SysML4Mechatronics (Li et al. 2019)
and SysML4Modelica (Reichwein et al. 2012). Thus, the porta-
bility and maintainability of the SysML v2 language are essen-
tial properties to adjust and evolve with changing requirements
from different domains. Currently, extending, tailoring, or re-
stricting SysML v2 to specific domains demands opportunistic
changes to the language and its tooling by language engineering
experts. Realizing SysML v2 as it will be standardized on the
foundations of established language workbenches (Erdweg et
al. 2013; HRW18 2018) could help to keep SysML v2 relevant
in the presence of the changing requirements on the language.

Other language guidelines are not fulfilled by SysML v2 due
to lacking semantics (as in “meaning” (Harel & Rumpe 2004);
neither behavior nor well-formedness). For instance, neither
starting with a semantics model (G2), nor deriving concepts
from the expected output (G13), or having a clear language to
target mapping (G15) are currently supported by SysML v2.
We are aware that there is ongoing work on the semantics and
wish for the work to succeed, as a SysML v2 without semantics
would again be a (textual) sketching tool only.

5. Proposed Improvements
Overall, we identified different aspects in the current release
of the SysML v2 implementation that can be improved. While
some guidelines yield a trade-off (e.g., avoiding redundancy

Table 1 Compliance (C.) of SysML v2 with applicable guide-
lines (= fulfilled, = partially fulfilled, = not fulfilled)

No. Guideline C.
Functional Suitability

G1 Balance generality and specificity (Karsai et al. 2009; Völ-
ter 2009; Wile 2004)

G2 Always start with a semantics model (Selic 2009)
G3 Defined scope and purpose (Jannaber et al. 2017)
G4 The modeling language is specified by a language meta-

model (Jannaber et al. 2017)

Compatibility

G5 Provide integrability (Kolovos et al. 2006; Kelly & Tolva-
nen 2008)

Usability

G6 Adopt existing domain notations (Karsai et al. 2009; Kelly
& Tolvanen 2008; Völter 2009; Wile 2004; Mernik et al.
2005; Frank 2013)

G7 Avoid redundancy (Karsai et al. 2009; Kolovos et al. 2006;
Salehi et al. 2016)

G8 Viewpoint orientation (Kahlaoui et al. 2008; Kelly & Tolva-
nen 2008; Völter 2009)

G9 Make elements distinguishable (Karsai et al. 2009; Kelly
& Tolvanen 2008; Kelly & Pohjonen 2009)

G10 Consistent style everywhere (Karsai et al. 2009; Kelly &
Tolvanen 2008)

G11 Define language rules (Kelly & Tolvanen 2008)
G12 First things first - the language (Kelly & Tolvanen 2008)
G13 Derive concept from expected output (Kelly & Tolvanen

2008)
G14 Multiple level of abstractions (Frank 2013)
G15 Clear language to target mapping (Frank 2013)
G16 Give the user flexibility in how to formulate a model (Wal-

ter & Masuch 2011)
G17 DSL’s support for error prevention and model checking

(Kahraman & Bilgen 2015)
G18 Comprehensibility and Learnability (Kahraman & Bilgen

2015)
G19 The language provides mechanisms for compactness of the

representation of the program (Kahraman & Bilgen 2015)
G20 Provide a graphical notation (Jannaber et al. 2017)

Maintainability

G21 Reuse and compose existing language definitions (Karsai
et al. 2009; Völter 2009; Mernik et al. 2005; Kelly & Po-
hjonen 2009)

G22 Support reusability of language constructs (Karsai et al.
2009; Kelly & Tolvanen 2008; Kelly & Pohjonen 2009)

G23 Design for language evolution (Völter 2009; Kelly & Po-
hjonen 2009; Livengood 2012; Vierhauser et al. 2015)

G24 Reuse type system (Karsai et al. 2009; Mernik et al. 2005)
G25 Interface concept (Karsai et al. 2009)
G26 Modularize and layer the language (Selic 2009)
G27 Modifiability (Kahraman & Bilgen 2015)

Portability

G28 Support variability on language level (Kelly & Pohjonen
2009)

G29 Provide for language extensibility (Selic 2009)
G30 Allow for incorporating foreign language fragments in

models (Selic 2009)

increases the learnability but mitigates the modelers’ productiv-
ity), there are others from which we can directly derive sound
suggestions for improvement.

One of the most striking aspects is the lack of semantics.
While G2 even suggests starting with the semantics model, the
SysML v2 specification should at least aim at providing it in the
long run. Without a formal description of the provided elements’
meaning, modelers cannot create sound models. In fact, mod-
els would be created with a subjective interpretation meaning,
resulting in inconsistencies among different users. While this
already poses a problem for ordinary modeling languages, it
would be fatal in the case of SysML v2 since the intended inter-
disciplinarity would be subverted by construction. Additionally,
semantics is required for more sophisticated applications such
as verification or code generation.

Well-formedness rules (G11) are a crucial part of language
definitions. They support modelers by automated validation of
constraints that context-free grammars cannot cover (HKR21
2021). The implementation of SysML v2 supports only a few
well-formedness rules. Especially sophisticated type checks and
constraints about which elements may (or should) be used in a
particular context still reveal significant gaps. As the SysML v2
has not been standardized yet, we expect that some missing
rules will be provided in future releases. Generally, however,
well-formedness of system models highly depends on their pur-
pose (communication, documentation, code generation, . . .) as
well as on their domain, e.g., due to certification challenges,
avionics usually has stricter well-formedness requirements than
Industry 4.0. Thus, we can expect modelers needing to tailor
the well-formedness rules of “their” SysML v2. As SysML v2
does not provide dedicated extension mechanisms for this, such
application-specific and domain-specific rules must be devel-
oped using the mechanisms of Xtext (Bettini 2016).

Furthermore, it is apparent that SysML v2 is only conceptu-
ally based on existing languages but not concerning its imple-
mentation (G21). There are numerous language components,
e.g., for expressions (Büttner & Gogolla 2011), types (BEH+20
2020) (G24), and statements (OMG 2017), that would be ex-
cellent foundations for SysML v2 instead of developing these
language parts from scratch. Additionally, as SysML v2 par-
tially reinterprets existing languages, there is a high potential for
reusing these as well (e.g., state machines (Yakindu Statechart
Tools n.d.)). Reusing existing modeling languages not only re-
duces the development time by building upon tried-and-tested
language modules but also can increase comprehension and
acceptance as modelers may recognize reused concepts.

Also, lack of modularization (G26) might pose challenges
in the future of SysML v2: Its current monolithic realization
hinders variability (G28) and extensibility (G29), which might
impede the overall portability of the language. Thus, we pro-
pose a more modular approach, e.g., by following the language
boundaries introduced by the four pillars of SysML (Hause
2006). Separating distinct language components fosters modifi-
ability and independent evolution of particular aspects. Further-
more, the overall learnability could be increased by exposing
novice modelers with selected/required language constituents
only (e.g., only structural modeling elements). To support

this notion, many frameworks, such as MetaEdit+ (Kelly et
al. 1996), MontiCore (HKR21 2021), MPS (Voelter & Pech
2012), Spoofax (Kats & Visser 2010), and Xtext (Bettini 2016),
support various language composition techniques. Compos-
ability has been studied extensively (Erdweg et al. 2013), thus
constituting a solid foundation for modularization.

For the integration of foreign language fragments into
SysML v2 models (G30), language engineering has produced
various means, such as weaving (Degueule et al. 2015) or em-
bedding (HRW18 2018) parts of a language into a host lan-
guage. These mechanisms combine the abstract syntax of both
languages such that well-formedness checking of the integrated
models becomes possible and, hence, errors can be identified
early and reliably.

6. Discussion
The presented findings are based on an analysis of state-of-the-
art language design guidelines available in the literature. Based
on multiple guidelines, we selected those relevant for SysML v2
and performed an evaluation of the language. The obtained in-
sights should help to improve the currently developing language
as well as potential variants.

Following a typical study design, our contribution is conse-
quently subject to threats to validity. According to (Wohlin et
al. 2012), we classify and analyze these threats as construct,
internal, external, and reliability validity. Construct validity is
based on the study’s design. External validity represents the
generalizability of a study, while internal threats influence the
inferred conclusions, i.e., its specificity. Reliability refers to the
trustworthiness and reproducibility of a study’s results.

A possible threat regarding construct validity arises from
the approach for retrieving the language design guidelines. To
obtain in-depth information about current best practices, we
started with another recent mapping study (Czech et al. 2018)
and extracted the set of guidelines by backward and forward
snowballing. The results were filtered and clustered with respect
to ISO 25010 (ISO/IEC 2010). While this procedure yields a
profound set of guidelines, some unrelated studies may cover
further best practices.

While the analysis results of our work are naturally specific
to SysML v2, the elaborated guidelines are generalizable to
a certain degree as they result from SLE requirements. How-
ever, we filtered the guidelines with respect to language design,
which affects the external validity. Thus, guidelines that refer
to the overall tooling or development process, such as provid-
ing an appropriate syntax highlighting or including stakeholder
groups during development, were not considered. Furthermore,
some guidelines are, per se, not falsifiable. For instance, while
most will agree that modeling languages should be designed for
longevity, usability, and productivity, these aspects are hardly
measurable. Thus, we excluded these practices as well.

Natural threats to internal validity are the conclusions drawn
for the particular guidelines. To reduce this effect, we thor-
oughly discussed all results among the authors. Similarly, this
also impacts the study’s reliability, as other readers might infer
slightly different conclusions. Finally, it is essential to mention

that SysML v2 is still under development. Thus, some of our
results could be resolved in future releases.

7. Related Work
While there has been comprehensive literature on language de-
sign guidelines and best practice, their application to specific
languages rarely is documented. For languages going through
consortium-based standardization, post-hoc analysis of their
design often is futile as one cannot expect to take the results
of such analysis into account. Another reason for this lack of
research might be that most languages and language variants
are used by (smaller) communities only, which have not been
considered by language engineers yet. Consequently, we neither
found applications of DSL guidelines to widely used languages,
such as AutomationML, UML, Simulink, or SysML v1, nor to
less popular modeling languages or DSLs. However, several
publications investigate the use of modeling languages, but we
are aware of none exploring their adherence to language guide-
lines. A notable exception is a discussion of the foundations of
UML (Cook 2012), which discusses challenges in its semantic
foundations. With SysML v2 being conceived independently of
UML, discussions of UML, however, are of limited relevance
for its design.

8. Conclusion
We have presented an analysis of the current state of the lan-
guage design of SysML v2. For this, we first gathered language
design guidelines from several publications. Then, we clustered
all considered guidelines into categories compliant with ISO-
25010, which categorizes software quality in various character-
istics. Applied to the SysML v2, we analyzed the compliance of
the guidelines and differentiated between fulfilled, not fulfilled,
or partly fulfilled in our results. We found that SysML v2, in
its current 2022-01 release, fulfills many guidelines regarding
functional suitability, compatibility, and usability. However,
maintainability and portability both need further improvement
and adjustment. At its current state, it is time-consuming to
tailor, extend or restrict SysML v2 to fulfill the requirements of
specific domains. Therefore, we suggest modularizing the lan-
guage for future releases. Also, the lack of a semantic mapping
hinders modelers from understanding the meaning of modeling
elements.

Acknowledgments
Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strat-
egy – EXC-2023 Internet of Production – 390621612

References
Andrianarison, E., & Piques, J.-D. (2010). SysML for embedded

automotive Systems: a practical approach. In ERTS2 2010,
Embedded Real Time Software & Systems.

Bergert, M., Diedrich, C., Kiefer, J., & Bar, T. (2007). Auto-
mated PLC software generation based on standardized digital

process information. In 2007 IEEE Conference on Emerg-
ing Technologies and Factory Automation (EFTA 2007) (pp.
352–359).

Bettini, L. (2016). Implementing Domain-Specific Languages
with Xtext and Xtend. Packt Publishing Ltd.

Blanchard, B. S., Fabrycky, W. J., & Fabrycky, W. J. (1990).
Systems Engineering and Analysis (Vol. 4). Prentice hall
Englewood Cliffs, NJ.

Bone, M., & Cloutier, R. (2010). The Current State of
Model Based Systems Engineering: Results from the OMG™
SysML Request for Fnformation 2009. In Proceedings of the
8th Conference on Systems Engineering Research.

Broy, M., & Stølen, K. (2001). Specification and Development
of Interactive Systems: Focus on Streams, Interfaces, and
Refinement. Springer Verlag Heidelberg,.

Bucchiarone, A., Ciccozzi, F., Lambers, L., Pierantonio, A.,
Tichy, M., Tisi, M., . . . Zaytsev, V. (2021). What is the future
of modeling? IEEE software, 38(2), 119–127.

Buede, D. M., & Miller, W. D. (2016). The Engineering Design
of Systems: Models and Methods. John Wiley & Sons.

Burmester, S., Giese, H., & Tichy, M. (2004). Model-driven
development of reconfigurable mechatronic systems with
mechatronic UML. In Model Driven Architecture (pp. 47–
61). Springer.

Butting, A., Eikermann, R., Hölldobler, K., Jansen, N., Rumpe,
B., & Wortmann, A. (2020, October). A library of literals, ex-
pressions, types, and statements for compositional language
design. Special Issue dedicated to Martin Gogolla on his 65th
Birthday, Journal of Object Technology, 19, 3:1-16. (Special
Issue dedicated to Martin Gogolla on his 65th Birthday)

Butting, A., Eikermann, R., Kautz, O., Rumpe, B., & Wortmann,
A. (2018, January). Controlled and extensible variability of
concrete and abstract syntax with independent language fea-
tures. In Proceedings of the 12th International Workshop
on Variability Modelling of Software-Intensive Systems (VA-
MOS’18) (pp. 75–82). ACM.

Butting, A., Kautz, O., Rumpe, B., & Wortmann, A. (2019,
March). Continuously Analyzing Finite, Message-Driven,
Time-Synchronous Component & Connector Systems During
Architecture Evolution. Journal of Systems and Software, 149,
437–461. doi: https://doi.org/10.1016/j.jss.2018.12.016

Butting, A., Pfeiffer, J., Rumpe, B., & Wortmann, A. (2020,
October). A compositional framework for systematic model-
ing language reuse. In Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Lan-
guages and Systems (p. 35–46). ACM.

Butting, A., Rumpe, B., & Wortmann, A. (2016, October).
Embedding component behavior DSLs into the MontiArcAu-
tomaton ADL. In Globalization of Modeling Languages
Workshop (GEMOC’16) (Vol. 1731).

Büttner, F., & Gogolla, M. (2011). Modular Embedding of the
Object Constraint Language into a Programming Language.
In Brazilian Symposium on Formal Methods (pp. 124–139).

Campagne, F. (2014). The MPS language workbench: volume I
(Vol. 1). Fabien Campagne.

Cawasji, K. A., & Baras, J. S. (2018). SysML Executable
Model of an Energy-Efficient House and Trade-Off Analysis.

In 2018 IEEE International Systems Engineering Symposium
(ISSE) (pp. 1–8).

Cengarle, M. V., Grönniger, H., & Rumpe, B. (2009). Variabil-
ity within modeling language definitions. In Conference on
Model Driven Engineering Languages and Systems (MOD-
ELS’09) (pp. 670–684). Springer.

Clark, T., Brand, M. v. d., Combemale, B., & Rumpe, B. (2015).
Conceptual model of the globalization for domain-specific
languages. In Globalizing Domain-Specific Languages (pp.
7–20). Springer.

Combemale, B., France, R., Jézéquel, J.-M., Rumpe, B., Steel,
J., & Vojtisek, D. (2016). Engineering modeling languages:
Turning domain knowledge into tools. Chapman & Hall/CRC
Innovations in Software Engineering and Software Develop-
ment Series.

Combemale, B., Kienzle, J., Mussbacher, G., Barais, O., Bousse,
E., Cazzola, W., . . . Wortmann, A. (2018). Concern-oriented
language development (COLD): Fostering reuse in language
engineering. Computer Languages, Systems & Structures, 54,
139 - 155.

Cook, S. (2012). Looking back at UML. Software & Systems
Modeling, 11(4), 471–480.

Czech, G., Moser, M., & Pichler, J. (2018). Best Practices for
Domain-Specific Modeling. A Systematic Mapping Study. In
2018 44th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA) (p. 137-145). doi: 10
.1109/SEAA.2018.00031

Degueule, T., Combemale, B., Blouin, A., Barais, O., &
Jézéquel, J.-M. (2015). Melange: A Meta-language for
Modular and Reusable Development of DSLs. In 8th Interna-
tional Conference on Software Language Engineering (SLE).
Pittsburgh, United States.

Degueule, T., Mayerhofer, T., & Wortmann, A. (2017, Septem-
ber). Engineering a ROVER Language in GEMOC Studio &
MontiCore: A Comparison of Language Reuse Support. In
Proceedings of MODELS 2017. Workshop EXE.

de Kinderen, S. (2017). Using grounded theory for domain spe-
cific modelling language design. In IFIP Working Conference
on The Practice of Enterprise Modeling (pp. 34–48).

Dévai, G., Kovács, G. F., & An, Á. (2014). Textual, Executable,
Translatable UML. In OCL@ MoDELS (pp. 3–12).

Erdweg, S., Van Der Storm, T., Völter, M., Boersma, M.,
Bosman, R., Cook, W. R., . . . Loh, A. (2013). The state of
the art in language workbenches. In International Conference
on Software Language Engineering (pp. 197–217).

Forsythe, C. (2013). Instant FreeMarker Starter. Packt Publish-
ing Ltd.

Frank, U. (2013). Domain-Specific Modeling Languages: Re-
quirements Analysis and Design Guidelines. In Domain
engineering (pp. 133–157). Springer.

Grönniger, H., & Rumpe, B. (2011). Modeling language vari-
ability. In Workshop on modeling, development and verifica-
tion of adaptive systems (pp. 17–32). Springer.

Group, O. M. (2017). Systems Modeling Language (SysML®)
v2 Request For Proposal (RFP). Retrieved 2021-05-05, from
https://www.omg.org/cgi-bin/doc.cgi?ad/2017-12-2

Hamilton, M. H., & Hackler, W. R. (2007). 8.3.2 A Formal

Universal Systems Semantics for SysML. In INCOSE Inter-
national Symposium (Vol. 17, pp. 1333–1357).

Harel, D., & Rumpe, B. (2004, October). Meaningful model-
ing: What’s the semantics of ”semantics”? IEEE Computer,
37(10), 64–72.

Hause, M. (2006). The SysML Modelling Language. In
Fifteenth European Systems Engineering Conference (Vol. 9,
pp. 1–12).

Hayden, J. L., & Jeffries, A. (2012). On Using SysML, DoDAF
2.0 and UPDM to Model the Architecture for the NOAA’s
Joint Polar Satellite System (JPSS) Ground System (GS). In
12th International Conference on Space Operations.

Heim, R., Mir Seyed Nazari, P., Rumpe, B., & Wortmann, A.
(2016, July). Compositional Language Engineering using
Generated, Extensible, Static Type Safe Visitors. In Confer-
ence on Modelling Foundations and Applications (ECMFA)
(pp. 67–82). Springer.

Herzig, S. J., Karban, R., Trancho, G., Dekens, F., Jankevicius,
N., & Troy, M. (2017). Analyzing the Operational Behavior
of the Alignment and Phasing System of the Thirty Meter
Telescope using SysML. In Proceedings of the Conference
on Adaptive Optics for Extremely Large Telescopes 5.

Hoare, C. A. R. (1978). Communicating Sequential Processes.
Communications of the ACM, 21(8), 666–677.

Hofreiter, B., Huemer, C., Liegl, P., Schuster, R., & Zapletal, M.
(2006). UN/CEFACT’S modeling methodology (UMM): a
UML profile for B2B e-commerce. In International Confer-
ence on Conceptual Modeling (pp. 19–31).

Hölldobler, K., Kautz, O., & Rumpe, B. (2021). MontiCore
Language Workbench and Library Handbook: Edition 2021.
Shaker Verlag.

Hölldobler, K., Roth, A., Rumpe, B., & Wortmann, A. (2017,
October). Advances in Modeling Language Engineering. In
International Conference on Model and Data Engineering
(pp. 3–17). Springer.

Hölldobler, K., Rumpe, B., & Wortmann, A. (2018). Soft-
ware language engineering in the large: Towards composing
and deriving languages. Computer Languages, Systems &
Structures, 54, 386–405.

ISO/IEC. (2010). ISO/IEC 25010 system and software quality
models (Tech. Rep.). Madrid, Spain: International Standard-
ization Organization (ISO).

Jannaber, S., Riehle, D. M., Delfmann, P., Thomas, O., &
Becker, J. (2017). Designing a framework for the devel-
opment of domain-specific process modelling languages. In
International Conference on Design Science Research in In-
formation System and Technology (pp. 39–54).

Jolak, R., Savary-Leblanc, M., Dalibor, M., Wortmann, A.,
Hebig, R., Vincur, J., . . . Chaudron, M. R. V. (2020, Novem-
ber). Software engineering whispers : The effect of textual
vs. graphical software design descriptions on software de-
sign communication. Empirical software engineering, 25(6),
4427–4471.

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., & Valduriez,
P. (2006). ATL: a QVT-like Transformation Language. In
Companion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and applications

https://www.omg.org/cgi-bin/doc.cgi?ad/2017-12-2

(pp. 719–720).
Kahlaoui, A., Abran, A., & Lefebvre, E. (2008). DSML Success

Factors and their Assessment Criteria. Metrics News, 13(1),
43–51.

Kahraman, G., & Bilgen, S. (2015). A framework for qualita-
tive assessment of domain-specific languages. Software &
Systems Modeling, 14(4), 1505–1526.

Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M.,
& Völkel, S. (2009, October). Design Guidelines for Domain
Specific Languages. In Domain-Specific Modeling Workshop
(DSM’09) (pp. 7–13). Helsinki School of Economics.

Kats, L. C., & Visser, E. (2010). The Spoofax Language Work-
bench: Rules for Declarative Specification of Languages and
IDEs. In Proceedings of the ACM international conference
on Object oriented programming systems languages and ap-
plications (pp. 444–463).

Kautz, O., Rumpe, B., & Wortmann, A. (2020, April). Auto-
mated semantics-preserving parallel decomposition of finite
component and connector architectures. Automated Software
Engineering, 27, 119-151.

Kelly, S., Lyytinen, K., & Rossi, M. (1996). Metaedit+ A Fully
Configurable Multi-User and Multi-Tool CASE and CAME
Environment. In International Conference on Advanced In-
formation Systems Engineering (pp. 1–21).

Kelly, S., & Pohjonen, R. (2009). Worst Practices for Domain-
Specific Modeling. IEEE software, 26(4), 22–29.

Kelly, S., & Tolvanen, J.-P. (2008). Domain-Specific Modeling:
Enabling Full Code Generation. John Wiley & Sons.

Kolovos, D. S., Paige, R. F., Kelly, T., & Polack, F. A. (2006).
Requirements for Domain-Specific Languages. In Proc. of
ECOOP Workshop on Domain-Specific Program Develop-
ment (DSPD) (Vol. 2006).

Kossiakoff, A., Sweet, W. N., Seymour, S. J., & Biemer,
S. M. (2011). Systems Engineering Principles and Prac-
tice (Vol. 83). John Wiley & Sons.

Li, H., Zou, M., Weidmann, D., Cheaib, S. A., Mörtl, M., &
Vogel-Heuser, B. (2019). Model-based Systems Engineer-
ing Process for Supporting Variant Selection in the Early
Product Development Phase. In 2019 IEEE International
Conference on Industrial Engineering and Engineering Man-
agement (IEEM) (pp. 637–643).

Lima, L., Didier, A., & Cornélio, M. (2013). A formal semantics
for SysML activity diagrams. In Brazilian Symposium on
Formal Methods (pp. 179–194).

Livengood, S. (2012). Experiences in Domain-Specific Model-
ing for Interface Specification and Development. In Proceed-
ings of the 2nd International Master Class on Model-Driven
Engineering: Modeling Wizards (pp. 1–2).

Mernik, M., Heering, J., & Sloane, A. M. (2005). When
and How to Develop Domain-Specific Languages. ACM
computing surveys (CSUR), 37(4), 316–344.

OMG. (2011, August). OMG unified modeling language (OMG
UML), superstructure, version 2.4.1.

OMG. (2017, June). Action Language for Foundational UML
(ALF).

OMG. (2021). Semantics of a foundational subset for executable
UML models (fUML) - Version 1.5 (Tech. Rep.). Milford,

United States: Object Management Group (OMG).
Petrausch, V., Seifermann, S., & Müller, K. (2016). Guidelines

for accessible textual UML modeling notations. In Interna-
tional Conference on Computers Helping People with Special
Needs (pp. 67–74).

Reichwein, A., Paredis, C. J., Canedo, A., Witschel, P., Stelzig,
P. E., Votintseva, A., & Wasgint, R. (2012). Maintaining
consistency between system architecture and dynamic system
models with SysML4Modelica. In Proceedings of the 6th
International Workshop on Multi-Paradigm Modeling (pp.
43–48).

Rumpe, B. (2016). Modeling with UML: Language, Concepts,
Methods. Springer International.

Salehi, P., Hamou-Lhadj, A., Toeroe, M., & Khendek, F. (2016).
A UML-based Domain Specific Modeling Language for Ser-
vice Availability Management: Design and Experience. Com-
puter Standards & Interfaces, 44, 63–83.

Sangiorgi, D., & Walker, D. (2003). The pi-calculus: a Theory
of Mobile Processes. Cambridge university press.

Selic, B. (2009). The theory and practice of modeling language
design for model-based software engineering—a personal
perspective. In International Summer School on Generative
and Transformational Techniques in Software Engineering
(pp. 290–321).

Steinberg, D., Budinsky, F., Merks, E., & Paternostro, M. (2008).
EMF: Eclipse Modeling Framework. Pearson Education.

Thramboulidis, K., & Christoulakis, F. (2016). UML4IoT—A
UML-based approach to exploit IoT in cyber-physical manu-
facturing systems. Computers in Industry, 82, 259–272.

Vierhauser, M., Rabiser, R., Grünbacher, P., & Egyed, A. (2015).
Developing a DSL-Based Approach for Event-Based Mon-
itoring of Systems of Systems: Experiences and Lessons
Learned (E). In 2015 30th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE) (pp. 715–
725).

Voelter, M., & Pech, V. (2012). Language modularity with the
MPS language workbench. In 2012 34th International Con-
ference on Software Engineering (ICSE) (pp. 1449–1450).

Völter, M. (2009). Best Practices for DSLs and Model-Driven
Development. Journal of Object Technology, 8(6), 79–102.

Walter, R., & Masuch, M. (2011). How to integrate domain-
specific languages into the game development process. In
Proceedings of the 8th International Conference on Advances
in Computer Entertainment Technology (pp. 1–8).

Wile, D. (2004). Lessons Learned from Real DSL Experiments.
Science of Computer Programming, 51(3), 265-290.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell,
B., & Wesslén, A. (2012). Experimentation in Software
Engineering. Springer Science & Business Media.

Wymore, A. W. (2018). Model-Based Systems Engineering
(Vol. 3). CRC press.

Yakindu Statechart Tools. (n.d.). https://www.itemis.com/en/
yakindu/state-machine/. (Accessed: 2021-07-07)

Zaytsev, V. (2014). Grammar Maturity Model. In
ME@MODELS (pp. 42–51).

https://www.itemis.com/en/yakindu/state-machine/
https://www.itemis.com/en/yakindu/state-machine/

About the authors
Nico Jansen is a research assistant at the Department of Soft-
ware Engineering at RWTH Aachen University. His research
interests cover software language engineering, software ar-
chitectures, and model-based software and systems engineer-
ing. You can contact the author at jansen@se-rwth.de or visit
https://www.se-rwth.de/staff/jansen/.

Jérôme Pfeiffer is a research assistant at the Institute for Control
Engineering of Machine Tools and Manufacturing Units (ISW)
of the University of Stuttgart. His research interests include
software language engineering techniques and applied model-
driven engineering with a focus on digital twins and Industry
4.0. You can contact the author at jerome.pfeiffer@isw.uni-
stuttgart.de or visit https://www.isw.uni-stuttgart.de/en/institute/
team/Pfeiffer-00005/.

Bernhard Rumpe is a professor heading the Software Engineer-
ing department at the RWTH Aachen University, Germany. His
main interests are rigorous and practical software and system
development methods based on adequate modeling techniques.
This includes agile development methods as well as model-
engineering based on UML/SysML-like notations and domain-
specific languages. You can contact the author at rumpe@se-
rwth.de or visit https://www.se-rwth.de/staff/rumpe/.

David Schmalzing is a research assistant and Ph.D. candidate
at the Department of Software Engineering at RWTH Aachen
University. His research interests cover software architectures,
model-driven software development, and model-based systems
engineering. You can contact the author at schmalzing@se-
rwth.de or visit https://www.se-rwth.de/staff/schmalzing/.

Andreas Wortmann is a professor at the Institute for Control En-
gineering of Machine Tools and Manufacturing Units (ISW) of
the University of Stuttgart where he conducts research on model-
driven engineering, software language engineering, and systems
engineering with a focus on Industry 4.0 and digital twins.
You can contact the author at andreas.wortmann@isw.uni-
stuttgart.de or visit www.wortmann.ac.

mailto:jansen@se-rwth.de?subject=Your paper "The Language of SysML v2 under the Magnifying Glass"
https://www.se-rwth.de/staff/jansen/
mailto:jerome.pfeiffer@isw.uni-stuttgart.de?subject=Your paper "The Language of SysML v2 under the Magnifying Glass"
mailto:jerome.pfeiffer@isw.uni-stuttgart.de?subject=Your paper "The Language of SysML v2 under the Magnifying Glass"
https://www.isw.uni-stuttgart.de/en/institute/team/Pfeiffer-00005/
https://www.isw.uni-stuttgart.de/en/institute/team/Pfeiffer-00005/
mailto:rumpe@se-rwth.de?subject=Your paper "The Language of SysML v2 under the Magnifying Glass"
mailto:rumpe@se-rwth.de?subject=Your paper "The Language of SysML v2 under the Magnifying Glass"
https://www.se-rwth.de/staff/rumpe/
mailto:schmalzing@se-rwth.de?subject=Your paper "The Language of SysML v2 under the Magnifying Glass"
mailto:schmalzing@se-rwth.de?subject=Your paper "The Language of SysML v2 under the Magnifying Glass"
https://www.se-rwth.de/staff/schmalzing/
mailto:andreas.wortmann@isw.uni-stuttgart.de?subject=Your paper "The Language of SysML v2 under the Magnifying Glass"
mailto:andreas.wortmann@isw.uni-stuttgart.de?subject=Your paper "The Language of SysML v2 under the Magnifying Glass"
www.wortmann.ac

