
Journal of Object Technology | RESEARCH ARTICLE

Modeling Capabilities of Digital Twin Platforms -
Old Wine in New Bottles?

Jérôme Pfeiffer∗, Daniel Lehner†, Andreas Wortmann∗, and Manuel Wimmer†

∗Institute for Control Engineering of Machine Tools and Manufacturing Units, University of Stuttgart, Germany
†CDL-MINT, Institute for Business Informatics - Software Engineering, Johannes Kepler University Linz, Austria

ABSTRACT Digital twins are seen as core technologies to tackle the growing complexity of cyber-physical systems to better
understand, monitor, and optimize their behavior. Digital twin platforms aim to facilitate the systematic engineering of digital
twins by providing dedicated languages and corresponding tools to describe their abilities. However, with the emergence of
these languages for digital twins, the question arises what the nature of these languages is and how they differentiate from
existing modeling languages already used in the area of cyber-physical systems. To shed more light on this new modeling
area, we study in this paper the modeling capabilities of three industrial digital twin platforms and frame them in existing and
well-known modeling concepts provided by UML. In particular, we (i) extract the conceptual metamodels of three industrial
digital twin platforms, (ii) compare them with common object-oriented modeling concepts of UML, (iii) and provide first insight
about the portability of models between the platforms by performing an experiment. In particular, we use UML class diagrams
as an anchor for relating the modeling concepts of digital twin platforms and as pivot for digital twin platform portability. Our
investigation summarizes current modeling capabilities of digital twin platforms to provide a better understanding of their shared
concepts to developers using such platforms. It also shows that these modeling capabilities often rely on well-known modeling
concepts, but also add some new aspects. The performed experiment additionally gives first insights into the portability of
different digital twin platform metamodels. To sum up, this work can be see as a starting point for uncovering the nature of
digital twin modeling and providing a digital twin language family enabling developers to select appropriate modeling features for
describing different aspects of digital twins without having to reinventing the wheel.

KEYWORDS Digital Twins, Language Comparison, Structural Modeling

1. Introduction
Digital twins (DTs) as a digital representation of cyber-physical
systems (CPSs) are a core technology of Industry 4.0/5.0 and
increasingly deployed in a multitude of domains, e.g., manufac-
turing (Tao, Cheng, et al. 2018; Tao et al. 2019), avionics (Kraft
2016; Mandolla et al. 2019), building information and energy
management (Lu et al. 2019; Jain et al. 2019; Francisco et
al. 2020), automotive (Biesinger & Weyrich 2019) or health

JOT reference format:
Jérôme Pfeiffer, Daniel Lehner, Andreas Wortmann, and Manuel Wimmer.
Modeling Capabilities of Digital Twin Platforms - : Old Wine in New Bottles?.
Journal of Object Technology. Vol. 21, No. 3, 2022. Licensed under
Attribution - NonCommercial - No Derivatives 4.0 International (CC
BY-NC-ND 4.0) http://dx.doi.org/10.5381/jot.2022.21.3.a10

care (Bruynseels et al. 2018; Laaki et al. 2019; Jimenez et al.
2020). This increasing demand for DTs calls for more efficient
development methods (Tao, Zhang, et al. 2018; Rasheed et al.
2020). DTs comprise models, traces, (aggregated) data, and
services to represent, monitor, control, or optimize the observed
CPS (Kirchhof et al. 2020; Bibow et al. 2020).

DT platforms aim to facilitate the development of DTs by
providing tooling for their definition and operations with strong
integration into the services of the platform provider. As de-
veloping DTs requires close collaboration between software
experts and CPS experts, model-driven software development is
often employed to overcome the gap between the problem (or
business) domain and the software solution (France & Rumpe
2007; Brambilla et al. 2017). Thus, DT platforms increasingly

An AITO publication

http://dx.doi.org/10.5381/jot.2022.21.3.a10

provide modeling capabilities for their development.
However, there is currently no common understanding of

which modeling techniques the different DT platforms are capa-
ble of. As a consequence, it is unclear whether they provide new
modeling concepts for DTs, or provide existing concepts (i.e.,
old wine) wrapped in new textual syntaxes (i.e., in new bottles).
Hence, in this paper, we first investigate the metamodels used by
platforms and afterwards compare them with existing modeling
techniques to investigate to which extent these metamodels offer
new concepts. More specifically, we investigate the following
research questions:

RQ1 What are the conceptual metamodels used by existing DT
platforms?

RQ2 How do they relate to existing modeling concepts and
standards?

RQ3 How can existing modeling concepts be leveraged to
enable portability of models between these platforms?

To answer these research questions, we select representative
DT platforms to investigate. DT platforms originate often from
former IoT platforms. Microsoft Azure was a pioneer in this
area with the IoT Hub1 and provides a DT adaption of it with
Azure DTs2. Besides Microsoft Azure, Amazon Web Service
features a DT service with IoT TwinMaker3. In contrast to
the Azure service with its DT Definition Language (DTDL)4,
they do not provide a metamodel of the language. As a third
platform, we consider an open-source initiative by the Eclipse
Foundation5,6,7. With their DT suite consisting of Hono, Vorto,
and Ditto they offer dedicated modeling languages for defining
models of DTs. While there exist other DT platforms from other
vendors, e.g., Oracle8, Siemens9, ScaleOut10, or IBM11, we
limit the study of DT platforms for this paper to three platforms
covering different approaches for their language definition and
leave the investigation of additional platforms as future work
as our aim is not completeness, but shedding some light in this
new modeling area.

To this end, we extract the conceptual metamodel for each
of the considered platforms from existing documentation and
available artifacts. The correctness of the extraction result is
validated by (i) instantiating each metamodel using a common
case, and (ii) peer-reviewing the metamodels and the case im-
plementation among each author of this paper.
1 https://azure.microsoft.com/en-us/services/iot-hub/
2 https://docs.microsoft.com/en-us/azure/digital-twins/overview
3 https://docs.aws.amazon.com/iot-twinmaker/latest/guide/what-is-twinmaker

.html
4 https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v2/

dtdlv2.md
5 https://projects.eclipse.org/projects/iot.ditto
6 https://www.eclipse.org/hono/
7 https://www.eclipse.org/vorto/
8 https://docs.oracle.com/en/cloud/paas/iot-cloud/iotgs/oracle-iot-digital-twin

-implementation.html
9 https://siemens.mindsphere.io/content/dam/cloudcraze-mindsphere-assets/

03-catalog-section/05-solution-packages/solution-packages/digitalize-and
-transform/Siemens-MindSphere-Digitalize-and-Transform-sb-72224-A8
.pdf

10 https://www.scaleoutsoftware.com/products/digital-twin-builder/
11 https://digitaltwinexchange.ibm.com/

Since domain-specific languages, such as the considered DT
platform languages, often derive concepts from general-purpose
modeling languages, we align the platforms’ metamodels with
common well-known object-oriented modeling concepts and
compare them in detail with the Unified Modeling Language
(UML) standard, and in particular, with UML class diagrams
(CD).

By bridging the identified gaps between UML and the meta-
models offered by DT platforms, we develop a UML CD ex-
tension which can act as pivot for transforming DT models
from one platform-specific metamodel to another. We demon-
strate the feasibility of this idea by an experiment considering
the transformation from the metamodel offered by the Azure
platform to the metamodel of the AWS platform.

Summarized, to answer the stated research questions we
present the following three contributions:

1. A structured discussion and comparison of the underlying
modeling concepts of three selected DT platforms. To
achieve this, we extract conceptual metamodels from the
modeling capabilities offered by the platforms.

2. An estimation of the degree to which the metamodels pro-
vided by the respective platforms present novel concepts as
well as a characterization of these languages based on their
modeling concerns. For this, we align the extracted meta-
models with existing, standardized modeling concepts.

3. An assessment of the compatibility of the identified con-
cepts between different metamodels, using an UML exten-
sion as pivot for bridging the gap between standardized
modeling concepts of UML and the metamodels provided
by DT platforms.

In the following, Sec. 2 introduces preliminaries and discusses
related work. Then Sec. 3 presents the conceptual metamod-
els of the languages provided by the considered DT platforms.
Sec. 4 compares the metamodels with existing modeling con-
cepts. Sec. 5 demonstrates the use of our findings to extend
UML with DT modeling capabilities to act as a pivot for ex-
changing DT models. Finally, Sec. 6 concludes this paper with
an outlook on future perspectives.

2. Background
This section introduces the term digital twin, describes each of
the digital twin platforms we consider, and debates related work
that is relevant to the topics investigated by this paper.

2.1. Digital Twins
Digital twins (DTs) are software systems comprising data, mod-
els, and services to interact with a cyber-physical system for
a specific purpose (Kirchhof et al. 2020; Bibow et al. 2020;
Kritzinger et al. 2018). As such, they serve to better under-
stand, monitor and optimize the behavior of their counterpart.
They are "twins" in the sense that changes to the counterpart
are automatically reflected in the DT and changes in the DT are
automatically reflected in the counterpart. To this end, DTs need

2 Pfeiffer et al.

https://azure.microsoft.com/en-us/services/iot-hub/
https://docs.microsoft.com/en-us/azure/digital-twins/overview
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/what-is-twinmaker.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/what-is-twinmaker.html
https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v2/dtdlv2.md
https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v2/dtdlv2.md
https://projects.eclipse.org/projects/iot.ditto
https://www.eclipse.org/hono/
https://www.eclipse.org/vorto/
https://docs.oracle.com/en/cloud/paas/iot-cloud/iotgs/oracle-iot-digital-twin-implementation.html
https://docs.oracle.com/en/cloud/paas/iot-cloud/iotgs/oracle-iot-digital-twin-implementation.html
https://siemens.mindsphere.io/content/dam/cloudcraze-mindsphere-assets/03-catalog-section/05-solution-packages/solution-packages/digitalize-and-transform/Siemens-MindSphere-Digitalize-and-Transform-sb-72224-A8.pdf
https://siemens.mindsphere.io/content/dam/cloudcraze-mindsphere-assets/03-catalog-section/05-solution-packages/solution-packages/digitalize-and-transform/Siemens-MindSphere-Digitalize-and-Transform-sb-72224-A8.pdf
https://siemens.mindsphere.io/content/dam/cloudcraze-mindsphere-assets/03-catalog-section/05-solution-packages/solution-packages/digitalize-and-transform/Siemens-MindSphere-Digitalize-and-Transform-sb-72224-A8.pdf
https://siemens.mindsphere.io/content/dam/cloudcraze-mindsphere-assets/03-catalog-section/05-solution-packages/solution-packages/digitalize-and-transform/Siemens-MindSphere-Digitalize-and-Transform-sb-72224-A8.pdf
https://www.scaleoutsoftware.com/products/digital-twin-builder/
https://digitaltwinexchange.ibm.com/

to yield a representation of their counterpart, as well as a con-
nection to it that supports communicating changes between both
systems (Eramo et al. 2022). Through this, DTs enable a variety
of value-adding services, such as detailed design-space explo-
ration, real-time monitoring, predictive maintenance, process
optimization, and more (Tao et al. 2019; Xu et al. 2021).

Digital shadows (Brauner et al. 2022; Bibow et al. 2020;
Kritzinger et al. 2018) are tailored data structures that represent
a specific system for a specific purpose. They are shadows in
following the changes of the represented system under a specific
illumination. Hence, they neither need to be complete nor can
they change the represented system directly.

2.2. Digital Twin Platforms

To support developers in creating DTs and shadows, big vendors
already provide tooling support (Qi et al. 2021), for different
aspects of a DT. A combination of several tools from one sup-
plier is often referred to as a DT platform (Lehner et al. 2022).
In the following, the DT platforms examined in this paper are
described in more detail.

Microsoft Azure supports modeling in form of JSON files
corresponding to the Digital Twin Definition Language (DTDL).
DTDL models are created using the Azure Digital Twins (ADT)
service, which offers a graphical model editor, and a webservice
for reating, reading, adapting, and deleting DTs of a certain sys-
tem. Based on JSON DT definitions, devices can be connected
to the Azure platform using the Azure IoTHub and several tools
provided by the platform (e.g., a time series insights service
to store temporal data and the Azure machine learning service
supports training and applying machine learning models on
observed data) can make use of this interaction with the devices.

Eclipse offers Vorto as a dedicated textual modeling tool
that also serves as a repository and marketplace for created
models in the Vortolang modeling language. Based on these
models, a RESTful webservice can be set up using Eclipse
Ditto, and connect various devices using Eclipse Hono or the
Bosch IoTHub. All mentioned tools are provided as open-source
software on GitHub, together with extensive documentation and
docker-compose files for running these tools on a self-hosted
server. Additionally, the Ecore source code of the Vortolang
metamodel is provided on GitHub.

Amazon Web Service (AWS) provides an IoT service, called
IoT TwinMaker dedicated to building DTs. It enables users to
model their devices together with the data they exchange with
the DT. For this, IoT TwinMaker offers a RESTful webservice
and an API reference12 to send appropriate models to. Addition-
ally, the IoT TwinMaker has a service scene composer that can
be employed for creating 3D scenes of the physical space and
overlay data received from devices in the scene. Furthermore,
the IoT TwinMaker provides plug-ins for building dashboards
for end-users. For connecting devices through the edge, AWS
provides the Greengrass13 service, which provides connectors
and connectivity services for edge devices.

12 https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/
Welcome.html

13 https://aws.amazon.com/de/greengrass/

2.3. Related Work
In the context of this paper, there is already literature that
summarizes relevant modeling concepts for domains that DTs
usually build on, such as the Internet of Things (Wortmann
et al. 2020; Petrasch & Hentschke 2016), cyber-physical sys-
tems (Derler et al. 2012; Broman et al. 2012), or specific do-
mains such as building automation (Tang et al. 2019). For the
area of DTs, there is already existing work that aims to con-
ceptualize DTs (Yue et al. 2021; Becker et al. 2021), or reuse
existing modeling languages such as UML (Munoz et al. 2021;
Azangoo et al. 2020) or AutomationML (Lehner et al. 2021;
Schroeder et al. 2016) to implement these concepts. However,
to implement DTs, different tools are required. Existing tools
and platforms have already been examined in the literature (Qi
et al. 2021; Lehner et al. 2021). However, there is still little
knowledge about the modeling capabilities of these tools and
platforms, as well as their alignment with theoretical concepts
often discussed in the context of DTs or related domains. Also,
the use of existing modeling concepts as pivot language for
these DT platform languages is not yet investigated.

In this work, we aim to bridge this gap between the im-
plementation of DTs and their model-based representation, by
investigating the modeling capabilities of existing DT platforms,
especially in the context of existing modeling standards, and
to which extent these modeling capabilities overlap, e.g., to
provide solutions which enable portability between different DT
platforms and other future developments.

3. Uncovering DT Platform Metamodels
To enable a structured comparison of the DT languages provided
by the selected platforms, we derive the underlying conceptual
metamodels consisting of classes, attributes, and relationships.
The concrete syntaxes of the considered DT languages are real-
ized and described in different ways. DTDL provides a JSON-
based modeling syntax, whereas Vortolang offers a metamodel
based on the Eclipse Modeling Framework (EMF) for defining
its language, and the AWS IoT TwinMaker is API-based and re-
quires REST calls to this API in an appropriate format. To over-
come these heterogeneous language realizations, we extracted
their abstract syntaxes to conceptual metamodels. Therefore,
we (i) focus on the description of the type level of the DT rather
than its instance level, and (ii) simplify namings and modeling
concepts to enable a common conceptual view across the chosen
platforms. We employed the descriptions and examples given
by the platform vendors to extract essential concepts and used
peer-reviewing among the authors of this paper to check our
results. We implemented the derived metamodels using EMF,
i.e., Ecore as metamodeling language. The results together with
examples for models of these metamodels are published on
GitHub14.

3.1. Microsoft Azure Digital Twin Definition Language
The Digital Twin Definition Language (DTDL) is developed by
Microsoft Azure and used by its DT platform (i.e., the Azure
Digital Twins Service, which is connected to physical assets via

14 https://github.com/derlehner/dt_language_comparison

Modeling Capabilities of Digital Twin Platforms 3

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/Welcome.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/Welcome.html
https://aws.amazon.com/de/greengrass/
https://github.com/derlehner/dt_language_comparison

Interface

Property

String name [1]

SemanticType quantity [0..1]

Unit unit [0..1]

Boolean isWritable [0..1]

Relationship

String name [1]

Int minOccur [0..1]

Int maxOccur [0..1]

Boolean isWritable [0..1]

1 target

Telemetry

String name [1]

SemanticType quantity [1]

Unit unit [0..1]

Command

String name [1]

CommandPayload req [0..*]

CommandPayload resp [0..*]

InterfaceContent

DTElement

String displayName [0..1]

String description [0..1]

String comment [0..1]

DTMI

String scheme [1]

String path [1]

Int version [1]

Component

String name [1]

0..2 extends

1 schema

0..300

properties

* contents

1 id

Schema

Object Array EnumMapInterfaceSchema Geospacial Schema

1 1

PrimitiveSchema

Figure 1 Conceptual metamodel of DTDL in UML CD notation.

the Azure IoT-Hub). We derived the DTDL metamodel (DTDL-
MM) shown in Figure 1 from the documentation of DTDL v2,
provided on GitHub15.

In this metamodel, the main element is called Interface,
representing the type of a physical asset. This interface has
a name, and a list of contents. It can also extend up to two
other interfaces, up to an inheritance depth of 10 (the documen-
tation however does not explain these limitations). The con-
tents of the interface is a list of Properties, Telemetries,
Relationships, Components, and Commands.

A relationship specifies a connection that an interface can
have with another interface (i.e., the target). Each relationship
specifies the min and max multiplicity (i.e., the number of de-
vices conforming to the target interface that a device from the
given interface can be connected to for the given relationship).
Relationships can also be extended with further properties, al-
though the maximum number of properties contained by a rela-
tionship is 300. The writable property of a relationship specifies
whether it can be changed during runtime.

Besides relationships, there are also components to indicate
connections between different interfaces. In contrast to relation-
ships, these components define that a certain interface is a fixed
part of another interface, meaning that this information cannot
be changed during runtime, and a device conforming to the com-
ponent cannot exist without a device conforming to the outer
interface. Besides the target interface (i.e., schema) of this con-
nection, there is no further information specified. However, one
limitation of components is that they comprise only Commands,
Properties, and Telemetries. Thus, a Component cannot have
outgoing component or relationship references. Also, there is
no option to specify the multiplicity of a Component, meaning
that a Component represents exactly one connection between
the source and target Interface (based on the implementation of

15 https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v2/
dtdlv2.md

the component by Azure).
Telemetries represent continuous data streams emitted by

devices, whereas properties define variables whose values do
not change frequently. Both telemetries and properties contain
a schema, unit, and quantity. The quantity references a seman-
tic type, which is a predefined enumeration offered by DTDL,
listing several quantities (e.g., temperature, humidity, angle,
acceleration). Based on the chosen type, a unit can be selected.
Therefore, DTDL offers a list of units, such as degree Celsius
or degree Fahrenheit for temperature, and meter per second
squared or centimeter per second squared for acceleration. The
chosen type restricts the units that can be selected for certain
properties of telemetry. The schema of a property or teleme-
try defines the structure of the data represented by property or
telemetry. This can be a primitive schema (e.g., boolean or
double), an object (i.e., a list of coupled properties), a list (i.e., a
collection of multiple values that all conform to the same type),
map (i.e., a key-value combination, where each key and each
value must conform to the same type, respectively), enum (i.e.,
a list of customizable literals, whereas each literal contains a
name and an optional description), interface schema (i.e., a ref-
erence to a schema described by the encompassing Interface), or
a geospatial schema (a set of predefined property structures (i.e.,
objects) offered by DTDL for describing positions of geometric
shapes, e.g., point, line string, or polygon). To improve under-
standability, the implementation details of schema subclasses
are omitted from Figure 1. In addition, properties also define
whether they are writable (changeable during system runtime).

Commands allow interactions with the device during
runtime. Therefore, each command can specify several
CommandPayloads that are either sent as a request to the device
or emitted by the device as a response to an operation call.

Interfaces, properties, relationships, commands, and teleme-
tries all contain an optional displayName (textual identifier of
the element used for display in a user interface), comment, and
description, and a mandatory id referencing a DTMI object. A

4 Pfeiffer et al.

https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v2/dtdlv2.md
https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v2/dtdlv2.md

DTMI object consists of a scheme that is implemented by the
element (i.e., the value "dtdl" defines that the element conforms
to the DTDL language), a path providing a unique identifier
for this specific element, and a version indicating the version
number of the current element. All elements except interfaces
also allow the specification of a name, which is used to refer to
this element within software code.

3.2. Eclipse Vortolang
Vortolang is the language used by Eclipse Vorto to manage and
share so-called DT representations of physical assets within the
platform provided by Eclipse (comprising Eclipse Vorto, Ditto,
and Hono). In Figure 2, we provide a conceptual Vortolang
metamodel (from now on referred to as VL-MM) based on
the Ecore files published by Eclipse on Github (Eclipse 2020),
the respective Xtext grammar16, and the documentation of this
Xtext grammar17.

InformationModel

FunctionBlock Model

Entity entities [0..*]

Enum enums [0..*]

FunctionBlock

FunctionBlockProperty

String name [1]

String description [0..1]

Boolean multiplicity [0..1]

Boolean isMandatory [0..1]

*

0..1 type

0..1 extended
FunctionBlock

Model

String name [1]

String version [1]

String description [0..1]

String displayName [0..1]

String namespace [1..1]

String category [0..1]

VortoLangVersion lang [1]

ModelReference

String version [0..1]

String importedNamespace [0..1]

0..1
superType

0..1

* references

Event

String name [1]

Operation

String name [1]

String description [0..1]

Boolean breakable [0..1]

Boolean extension [0..1]

Boolean isMandatory [0..1]

Param params [0..*]

ReturnType returnType[0..1]

Property

String name [1]

String description [0..1]

Boolean isMultiValued [0..1]

Boolean extension [0..1]

Boolean isWritable [0..1]

Boolean isReadable [0..1]

Boolean isEventable [0..1]

Boolean isMandatory [0..1]

Unit measurementUnit [0..1]

PropertyType type [1]

ConstraintRule constraintRule [0..*]

* status * fault * configuration* *

*

Figure 2 Conceptual metamodel of Vortolang in UML CD
notation, based on (Eclipse 2020).

InformationModels are the main element. They allow
to aggregate several FunctionBlocks into bigger compo-
nents, annotating them with a name, description, and the in-
formation whether its presence is mandatory, and whether
there can be multiple instances of this FunctionBlock refer-
enced. These FunctionBlocks are either contained by the
FunctionBlockProperties of the information model, or

16 https://github.com/eclipse/vorto/tree/development/core-bundles/language
17 https://github.com/eclipse/vorto/blob/development/docs/vortolang-1.0.md

imported (via the extendsFunctionBlock attribute) and ex-
tended with additional properties or events.

FunctionBlocks are reusable implementation parts, that
summarize Operation, Event, configuration, fault, and
status information required for a certain functionality offered
by an InformationModel. Faults, configurations, and status are
a list of Properties. One difference between the status and
configuration properties of a FunctionBlock is that by default,
status properties are read-only and configuration properties are
read- and writable.

Each property has a type, that can be chosen from a pre-
defined enum of primitive property types (e.g., bool or int), a
dictionary, a so-called list, or an entity created as part of the
encompassing FunctionBlockModel. This type can be further
specified by adding a measurement unit (it can reference a literal
of a custom-defined enum) to the property. The constraintRule
of a property defines restrictions on the allowed values of that
property. Additionally, properties can have a name, description,
and can be defined as mandatory, multiple (several instantiations
are possible), writable (changeable during runtime), readable
(accessible during runtime), and eventable (mapping to an event
with the same name).

An event describes data that is omitted by the physical asset
described by the FunctionBlock, and contains a name as well as
a list of properties. One of these properties must be a timestamp
with the predefined primitive property type dateTime as type
(this restriction is not modeled in the metamodel provided by
Eclipse, but implemented as an informal rule in the Vorto editor,
and described in the GitHub documentation).

An operation describes interaction possibilities offered
by the described asset. Each operation has a name, and
a description, and defines whether it is breakable, an
extension, or mandatory. Additionally, an operation can
have a returnType and a list of params.

A FunctionBlockModel adds metadata to a FunctionBlock,
and also specifies a list of entities and enums that can be used by
the referenced FunctionBlock. Additionally, a FunctionBlock-
Model can have a superType FunctionBlockModel.

Common attributes of the FunctionBlockModels and In-
formationModels described above are a reference to the
vortolangVersion that they were created with, a textual
description of the modeled element, a displayName to be
used as a representation in user interfaces, and a category that
groups several FunctionBlockModels and InformationModels.
Additionally, they have a name and namespace that together
uniquely identifies them. Based on this unique identifier, dif-
ferent versionNumbers of an element can be specified, and
finally, an InformationModel can import a FunctionBlockModel
based on its namespace, name, and version.

3.3. AWS IoT TwinMaker

The IoT TwinMaker is provided by Amazon’s cloud platform
Amazon Web Services. It enables users to model devices, equip-
ment, and data sent from the physical to the digital space. We
extracted the metamodel from the official user guide provided by

Modeling Capabilities of Digital Twin Platforms 5

https://github.com/eclipse/vorto/tree/development/core-bundles/language
https://github.com/eclipse/vorto/blob/development/docs/vortolang-1.0.md

PropertyDefinition

String name [1]
Booelan isExternalId [0..1]
Boolean isStoredExternally [0..1]
Boolean isTimeSeries [0..1]
Boolean isRequiredInEntity [0..1]
DataValue defaultValue [0..1]
Map<String, String> configuration

ComponentType

String name [1]
String id [1]
Boolean isSingleton [0..1]
Map<String, String> tags

Function

DataConnector implementedBy [0..1]
Scope scope [0..1]

[0..10]

extendsFrom

DataType

String type [1]
String unitOfMeasure [0..1]
DataValue allowedValues[0..50]

*

*

1

0..1

*

requiredProperties

nestedType

0..1 target

Relationship

String relationshipType [0..1]

0..1

Figure 3 Conceptual metamodel of the AWS IoT TwinMaker
in UML CD notation.

Amazon18. The user guide does not give an explicit metamodel
but rather an API description for REST requests in the JSON
format. Thus, the metamodel that we present in the following
is derived from and represents this API description of the AWS
IoT TwinMaker. Figure 3 shows the extracted metamodel for
AWS IoT TwinMaker.

The top most concept of the metamodel of IoT TwinMaker
(referred to as TM-MM in this paper) is ComponentType.
ComponentTypes define the context and structure of data. They
have a name and a boolean flag to indicate whether they are sin-
gletons. Furthermore, they can be enriched with tags. Tags add
meta-information, e.g., a version number, to ComponentTypes.

Furthermore, ComponentTypes can reference many
PropertyDefinitions that have a name, a boolean field that
indicates whether the property’s id originates from an external
data store, a boolean field isStoredExternally that indicates
whether the property is stored externally, a boolean field
isTimeSeries that specifies whether the property contains
time-series data, and a boolean field isRequiredInEntity
that specifies whether the property is required when the
corresponding ComponentType is instantiated. Moreover,
a PropertyDefinition can define a defaultValue. The
class DataValue has one attribute for each boolean, double,
expression, integer, list, long, maps, and string values. Other
types of values are not supported. A configuration is a
mapping that specifies configuration information in a map from
String to String. This is used to specify the information that
one read from and write to an external source.

A PropertyDefinition contains a DataType that spec-
ifies the data type of the property. It comprises an array of
allowedValues, the name of the type, nested types, e.g., to
specify a list of double values as a type list and nested type
double, a unitOfMeasure, and a optionally a relationship, that

18 https://docs.aws.amazon.com/iot-twinmaker/latest/guide/what-is-twinmaker
.html

can define relations to other ComponentTypes via their id.
Besides, a ComponentType can reference multiple func-

tions. They specify a DataConnector via an attribute
implementedBy that provides a reference to the implemen-
tation, i.e., the id of a lambda function in AWS, that re-
alizes the function. RequiredProperties defines a list
of PropertyDefinitions that describe required properties
for the function to work. To reuse existing definitions, a
ComponentType can extend up to 10 other ComponentTypes
to reuse their PropertyDefinitions and Functions.

3.4. Answering RQ1: What are the conceptual metamod-
els used by existing DT platforms?

Extracting the metamodels offered by the chosen DT platforms
from documentation shows that often, similar modeling con-
cepts are used, although the implementation details might differ,
and some concepts may not be available in all metamodels (e.g.,
TM-MM does not allow the composition of elements). The
extraction process was also complicated by the missing descrip-
tion of some language properties (e.g., faults or mandatory op-
erations in VL-MM). Additionally, some interesting modeling
restrictions are found (e.g., different upper bounds for maximum
number of inherited super-classes, inheritance depth, or compo-
sition depth), which are unfortunately not further discussed in
the documentation of the individual platforms.

Still, the extracted metamodels show some interesting as-
pects. All metamodels provide some elements to represent a
class of physical assets (i.e., Interface in DTDL-MM, Function-
block in VL-MM, and ComponentType in TM-MM).

DTDL-MM and VL-MM even allow the versioning of indi-
vidual model elements. By this, different model elements with
different versions can be combined into one single model. Each
model element must therefore be referenced via a unique name
and its version number.

Besides such modeling elements, DTDL also offers prede-
fined enumerations for specifying physical quantities such as
Temperature or Acceleration, and units for these quantities, such
as degrees Celsius or kilometers per hour.

4. Analysing DT Platform Metamodels
After individually presenting the conceptual metamodels of
three representative DT platforms, we now aim to analyze and
compare them to existing standardized modeling techniques. In
a nutshell, all of the presented metamodels enable the design of
structural aspects of DTs and their data. To classify the concepts
of the metamodels, the following first aligns the platform meta-
models’ concepts with well-known concepts of object-oriented
modeling on a high level of abstraction. Subsequently, we com-
pare them in more detail with the UML CD language which is a
standardized structural modeling language.

4.1. Alignment of Platform Metamodels with Concepts
of Object-Orientated Modeling

For orientation purposes and a more detailed comparison in
the next subsection, we give a course-grained alignment for the
concepts found in the metamodels provided by the DT platforms

6 Pfeiffer et al.

https://docs.aws.amazon.com/iot-twinmaker/latest/guide/what-is-twinmaker.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/what-is-twinmaker.html

OOM
Concepts

DTDL
Metamodel

Vortolang
Metamodel

TwinMaker
Metamodel

Class Interface FunctionBlock Component
Type

Property Property Property Property
Definition
isTime-
Series=false

Temporal
Property

Telemetry Event Property
Definition
isTime-
Series=true

Association Relationship - Property
Definition.
DataType.
relationship

Method Command Operation Function

Composition Component FunctionBlock
Property

-

Table 1 Comparison of concepts of object-oriented modelling
with metamodels provided by DT platform.

with concepts of Object-Oriented Modeling (OOM) (Booch et
al. 2005)–see Table 1 for an overview. Most of the concepts
found in the DT platform metamodels can be related to common
concepts of OOM. The basic concepts of OOM are classes and
objects, i.e., instances of these classes. A comparable concept
to class is available in all of the three platform metamodels.
In the DTDL-MM, it is called interface, in the VL-MM it is
called FunctionBlock and in the derived TM-MM it is called
ComponentType.

Classes can have properties to represent the underlying object
structures. This is also true for the metamodels of the DT
platforms. The DT platform metamodels differentiate between
time-series properties and non-time-series properties. With
TemporalProperty, such a concept is also available in extended
versions of the OOM concepts (Gómez et al. 2018). Although
the term event used by Vortolang can be misleading here, it
means the same as the concept in the other platforms describing
data emitted by a device over time.

Associations enable connections between different classes
in OOM. This concept is also supported by the metamodels of
DTDL and Twinmaker, but not by VL-MM. If the target of an
association is contained by its source, a Composition is used
instead of an association in OOM. This composition is not yet
supported by the IoT TwinMaker metamodel. In DTDL-MM,
it is supported if the target class does not have any outgoing
associations or compositions. In VL-MM, it is supported by
referencing a FunctionBlock (Class in UML CD) from an In-
formationModel using a FunctionBlockProperty. However, this
is also only possible on one level, as the target FunctionBlock
cannot contain any further FunctionBlocks.

Methods, which provide an outside interface to the func-

Shared Concepts

DTDL Vortolang TwinMaker UML CD

name name name name

description description description description

comment - - comment

DTMI.content vortolang - container.
umlVersion

DTMI.
namespace

namespace - namespace

displayName displayName - -

DTMI.version version - -

DTMI.
identifier

- - -

Table 2 Comparison of shared concepts provided by DT
platforms with the metamodel of UML CD.

tionality of a class in OOM, are supported by all metamodels
provided by the examined DT platforms.

4.2. Comparison of DT Platform Metamodels with UML
Class Diagrams

In the following, we investigate in detail how the concepts com-
prised in the platform metamodels compare to a standardized
modeling language for OOM concepts. More precisely, we
use UML CD (Cook et al. 2017) as representative for standard-
ized modeling languages for describing structural aspects of
software systems. We chose UML CD as it is a unification of
OOM languages that are widely used in industry and allows for
extensions (Hutchinson et al. 2011). The following comparison
is structured using the concepts of OOM (cf. Table 1).

4.2.1. Shared Concepts Some modeling concepts are used
by most of the individual modeling elements, which are col-
lected in Table 2. First, these elements have a name and a
description in all three examined metamodels as well as in UML
CD. In DTDL-MM and VL-MM, elements also reference the
used language version, which can be mapped to the umlVer-
sion attribute of the model tag containing elements in UML, a
namespace, which is mapped to the UML CD namespace of an
element, and a version number of the element, which cannot
be mapped to UML CD. One limitation here is that the version
number is limited to classes in VL-MM. One attribute that is
supported by DTDL-MM and UML CD is the comment. One
attribute supported by both DTDL-MM and VL-MM, but not
by UML CD is the displayName, which offers an additional,
human-readable representation of the name, e.g., for presenta-
tion in a dashboard.

4.2.2. Class As we already recognized, the concept of class
is available in all of the platforms’ metamodels. Table 3 shows a

Modeling Capabilities of Digital Twin Platforms 7

Class

DTDL Vortolang TwinMaker UML CD

extends superType extendsFrom Generalization

- enum - enum

- category tag tagged value

- - isSingleton -

- entity - nestedClassifier

Table 3 Comparison of class concepts provided by DT plat-
forms with the metamodel of UML CD.

detailed comparison of how the concept of classes is realized in
the metamodels provided by the different DT platforms and how
these concepts align with the ones provided by the metamodel
of UML CD. Because class diagrams realize object-oriented
concepts, classes are represented there, too. Also representable
in class diagrams and provided by all considered metamodels
of DT platforms are extensions from other existing classes.
However, this extension is restricted in different ways across
the metamodels, e.g., TM-MM allows extending from up to ten
other ComponentTypes, whereas VL-MM is limited to single
inheritance. Representing enums and entities as part of classes
is supported by VL-MM and also by UML CD. Supported
by metamodels of DT platforms and provided by UML CD,
too, are concepts to categorize models via tags, for instance,
sensors, actuators, etc.. However, there is a difference between
its realization in Vortolang and TwinMaker. In Vortolang the
category is one String describing the category, whereas in the
metamodel provided by TwinMaker it is a map, that maps keys
of tags to possible values, e.g., a key would be "sensor" and the
value would be the type of sensor. In UML there are tagged
values to do so. Tagged Values are additional properties (and
their values) that can be set for any UML element. One concept
not supported by UML CD is marking a class as a singleton,
i.e., to be instantiated only once in a system.

4.2.3. Property All metamodels offered by DT platforms
provide the concept of properties. Table 4 shows a detailed
comparison between the metamodels provided by the DT plat-
forms and by UML CD. Supported by all platform metamodels,
and also by UML CD, properties have a type and constrain the
allowed values assignable to a property (by explicitly defining
a constraintRule in VL-MM or by enumerating allowed values
in DTDL-MM, TM-MM, and UML CD metamodel). How-
ever, the different platforms provide different capabilities of
modeling the type of a property (cf. Sec. 3). Both VL-MM
and TM-MM allow enabling and disabling the multiplicity of
properties, and VL-MM additionally allows to mark properties
as mandatory. Both of these aspects are supported by UML CD,
and in addition, it offers a wider range of expressibility by spec-
ifying lower and upper bounds for multiplicities. Both VL-MM
and DTDL-MM allow marking properties as read-only, which

Property

DTDL Vortolang TwinMaker UML CD

Schema type DataType.type type

- multiplicity=
true

- upper>1

- multiplicity=
false

- upper=1

- isMandatory isRequired
InEntity

lower > 0

isWritable isReadable/
isWritable

- readOnly

- extension - redefined
Property

- - defaultValue defaultValue

enum constraintRule DataType.
allowedValues

enum

unit measurement
Unit

unitOfMeasure -

- - isExternalId -

- - isStored
Externally

-

- - configuration taggedValue

quantity - - -

Table 4 Comparison of property concepts provided by DT
platforms with the metamodel of UML CD.

is also supported by UML CD. Concepts provided by only one
platform and supported by UML CD, are assigning a default
value or further configurations to properties (both supported
by TM-MM), and the redefinition or extension of properties
(supported by VL-MM).

Available in VL-MM and TM-MM, but not supported by
UML CD, is the option to define the measurement unit of prop-
erties. In addition, TM-MM can mark properties as external or
externally stored, which is unsupported by UML CD. Exclusive
to DTDL-MM, and not represented in UML CD, are physical
quantities that further describe the values of properties.

4.2.4. TemporalProperty Not represented in UML CD, but
available in all metamodels provided by the DT platforms are
temporal properties that define time-series data omitted by a
class. DTDL and Vortolang provide own concepts for this,
whereas in TwinMaker it is a flag in a PropertyDefinition. In VL-
MM, this concept can reference multiple properties, whereas
each specifies further information (cf. Table 5). In DTDL-MM,
however, this concept exists separately from properties, and
thus, defines units, quantities, and schemas.

8 Pfeiffer et al.

TemporalProperty

DTDL Vortolang TwinMaker

- properties -

unit - measurementUnit

quantity - -

Schema - type

Table 5 Comparison of temporal property concepts provided
by DT Platforms. Temporal properties are not supported by
UML class diagrams.

4.2.5. Method Methods are supported by all platform meta-
models and by UML CD. Table 6 shows a detailed comparison.

Similar to Parameters in UML CD, TM-MM offers required-
Properties for a method. In DTDL-MM and TM-MM, this can
be further distinguished between input and output parameters.
This differentiation is also supported for UML CD Parameters.

The extension of methods is supported by VL-MM and also
by UML CD. A platform exclusive feature of IoT TwinMaker
is the reference to the implementation of the method by the
attribute implementedBy. Exclusive to VL-MM and not sup-
ported by UML CD is the definition of mandatory, although it
is unclear what this means semantically, and marking methods
as breakable (potentially throwing errors).

Method

DTDL Vortolang TwinMaker UML CD

response returnType
required
properties

Parameter.
direction=return

request params Parameter
.direction=in

- extension - redefined
Operation

- - implementedBy method

- isMandatory - -

- breakable - -

Table 6 Comparison of method concepts provided by DT
platforms with the metamodel of UML class diagrams.

4.2.6. Association The concept of associations is available
in all considered metamodels, except VL-MM. Table 7 shows
a detailed comparison of this concept. In all metamodels sup-
porting Associations, they have a target element. The defini-
tion of an upper bound of the multiplicity that is supported by
DTDL-MM is also available in UML CD. Setting associations
as writable are supported by DTDL-MM and also provided by

Association

DTDL TwinMaker UML CD

maxMultiplicity - memberEnd.upper

minMultiplicity - memberEnd.lower

target target OwnedEnd

isWritable - OwnedEnd.
isReadOnly

properties - -

- relationshipType* -

* for instance, can be used to represent composite associations

Table 7 Comparison of association concepts provided by
DT platforms with UML class diagrams. Vortolang is not
displayed as it does not support associations.

the property on the association end in UML CD. Not supported
by UML CD are properties on associations. In TM-MM, a
relationship has a relationshipType, which is a String attribute
that can be used to classify the relationship. This can be, e.g.,
used to describe that a certain relationship represents a compo-
sition. However, relationshipTypes cannot be directly mapped
to compositions in UML CD, as (i) a relationshipType can also
have any arbitrary other value, which could not be mapped to
compositions, and (ii) a semantical interpretation of such a com-
position is difficult, as a relationshipType can also have any
other value. Thus, additional support has to be developed in the
surrounding framework to provide the intended semantics.

4.2.7. Composition Composition is supported by DTDL-
MM and VL-MM, and also represented in UML CD (cf. Ta-
ble 8). VL-MM can characterize composed elements as manda-
tory and define whether there can be multiple instances linked
or not. Both are supported by UML CD, too.

Composition

DTDL Vortolang UML CD

schema type OwnedEnd

- isMandatory lower>0

- multiple upper>1

Table 8 Comparison of composition concepts provided by DT
platforms with UML class diagrams. IoT TwinMaker is left
out as it does not support composition.

Modeling Capabilities of Digital Twin Platforms 9

4.3. Answering RQ2: How do metamodels offered by DT
platforms relate to existing modeling concepts and
standards?

To answer this question, we compared the metamodels provided
by three DT platforms with existing modeling concepts. A
high-level comparison of modeling elements shows that most
modeling elements found in the metamodels provided by DT
platforms can be related to existing OOM capabilities. The
only addition is the modeling of time-series properties, which in
OOM is only available via extensions. A detailed comparison of
DT platform metamodels with the related concepts of the UML
CD shows that many of the platforms’ concepts are covered
by UML CD. However, some of the concepts also available in
UML CD underlie restrictions in the metamodels provided by
the platforms. For instance, the number of how many classes
can be extended is different in each platform. Furthermore,
types of properties are limited to common types found in pro-
gramming, i.e., String, Integer, List, Map, etc.. A feature that
can be explained with the IoT background of the platforms is the
capability of the definition of measurement units for properties.
A platform-exclusive concept to DTDL is the type definition
that can define a semantic type. With this, quantities (Bur-
gueño et al. 2019), i.e., observable and measureable properties,
e.g., distances, and dimensions, e.g., length, and units, e.g.,
metre, mile, etc., can be formulated and applied to properties.
The fact that two of the platforms are being integrated into a
cloud environment explains that they provide concepts for cross-
referencing artifacts available in other services of the platform.
There are also similar features in terms of their semantics in the
platforms but realized differently in the respective metamodels.
For instance, constraining the values assignable to properties, is
expressable via an expression over the property value, whereas
in IoT TwinMaker it is an array of allowed values, that can con-
tain up to 50 values. In UML CD and DTDL, this is supported
by defining allowed values as an enum that is used as property
type, or by using the Object Constraint Language (OCL) in
UML CD.

5. Towards Using UML CD as Pivot Model for
Ensuring Portability

Based on the analysis of the DT platform metamodels, we pro-
pose an extension to the UML CD, named DTUML, that enables
us to use UML CD as the pivot language for platform portabil-
ity. The intention of this pivot language is to inject and extract
proprietary models used by DT platforms to reduce the transfor-
mation effort for transforming between the individual platforms
as it was done for other domains (e.g., see (Kappel et al. 2006))
to reduce the required transformations to 2 · n, where n is the
number of proprietary modeling languages. We demonstrate
this platform portability based on the DTUML pivot model by
transforming a DT example from the literature from DTDL-MM
to TM-MM. With this experiment, we aim to gain first insights
into using UML CD as pivot for porting such models between
DT platforms. We chose UML CD as our pivot language for
this experiment, because besides the benefits mentioned above,
this approach also enables us to integrate existing DT platforms

with the technological space that was already built for UML by
the scientific community, e.g., for model verification (Gogolla
et al. 2007) to name just one prominent example.

5.1. Extending UML CD to DTUML
The gap between UML CD and the metamodels of the exam-
ined DT platforms can be closed by extending UML using a
profile. By applying this profile to an existing UML CD, the
model can be extended to what we call in this paper a DTUML
model, which contains all information that is available in the
metamodels provided by DT platforms. This created profile
consists of different kinds of stereotypes for the different UML
CD elements. There are generic stereotypes comprising element
attributes that are available in all three examined platforms.
Then, we have more specific stereotypes containing the exten-
sions required by two of the three platforms, which extend the
generic stereotypes. These stereotypes are again extended by
platform-specific stereotypes, which are only available in one
specific platform. As an example, the stereotypes that extend
the Property element of UML are visualized in Figure 4.

Overall, the following stereotypes are required for the differ-
ent UML CD elements:

– All Elements are extended by a description on VL-MM
and DTDL-MM, and an additional displayName, identifier,
and version in DTDL-MM.

– Besides these extensions that apply to all elements, Classes
are extended by a displayName, description, namespace,
and version in both TM-MM and DTDL-MM. Additionally,
DTDL-MM allows an identifier, VL-MM allows a category,
and TM-MM allows the isSingleton and tag information to
be modeled. Although tag and category are semantically
equivalent, their different syntax requires two dedicated
stereotypes here.

– For Properties, isTimeSeries and unit can be added to
UML CD for all platforms. IsFault and constraintRule are
only valid for the VL-MM, quantity is only valid for DTDL-
MM, and isExternalId, isStoredLocally, and allowedValues
is only valid for TM-MM. Additionally, DTDL requires
the unit to be restricted to a specific value based on the
semantic type chosen via the quantity attribute. Also, the
quantity attribute must be chosen from the list of semantic
types available in DTDL (cf. Section Sec. 3.1).

– An Association requires only one extension (relationship-
Type), which is only valid for TM-MM.

– Operations require two extensions for VL-MM, namely
isBreakable and isMandatory.

5.2. Demonstrating DT Platform Portability using DTUML
To analyze the portability of models used by the individual
DT platforms using DTUML, we perform an experiment trans-
forming an existing DT case we created in previous work from
DTDL-MM to TM-MM, using DTUML as pivot.

5.2.1. Demonstration Case We use the DT exemplar of a
smart room (Govindasamy et al. 2021)to demonstrate portability
between DTDL-MM and TM-MM. In this example, the air

10 Pfeiffer et al.

«Stereotype»
DTProperty

«Metaclass»

Property

Profile DTUML

Boolean isTimeSeries

String unit

String type

«Stereotype»
TM_Property

Boolean isExternalId

Boolean isStoredLocally

List<String> allowedValues

String quantity

«Stereotype»
VL_Property

Boolean isFault

String constraintRule

Class type

Int lower

Int upper

Boolean readOnly

Property redefinedProperty

Value defaultValue

«Stereotype»
DTDL_Property

Figure 4 UML profile excerpt for DT platforms. Full profile
available on Github21.

quality of rooms is measured and optimized using different
evolution scenarios of the overall system. We use the evolution
case 2 described from the encompassing GitHub repository19,
which describes rooms within a building. To measure air quality
in these rooms, the building also contains mobile robots that can
be moved between rooms. Each robot contains a controller with
a temperature and CO2 sensor and an alarm that is activated
once the measured temperature or CO2 values are too high.
If such violations are detected, the ventilation system of the
respective room can also be activated to improve air quality.

In the DTDL model of this exemplar, Buildings, Robots,
Rooms, VentilationSystems, Controllers, Alarms, Temperature-
Sensors, and CO2Sensors are modeled as interfaces. The Ven-
tilationSystem, TemperatureSensor, and CO2Sensor also have
a displayName, which provides a more human-understandable
notation (i.e. Ventilation System, Temperature Sensor, CO2
Sensor) instead of the name attribute that corresponds to the
code representation of the class (i.e., VentilationSystem, Tem-
peratureSensor, CO2Sensor). The aqLevel of Room, the value
of temperature and CO2 sensors, and the information whether
an alarm is active, are modeled as telemetries, as they represent
time-series data omitted by a device. The quantity of the value
property of the temperature sensor is set to temperature, and
the unit to degree fahrenheit. For the CO2 sensor, no quantity
and unit can be set, as the CO2 quantity is not included in the
enumeration offered by DTDL. The type of a sensor is modeled
as non-writable property. Additionally, for each model element,
the namespace is set to at.jku.se.airquality, the identifier is set
equally to the element name, and the version number is set to 1.
We also investigated an extended version of this case, including
methods and inheritance, and a second case that involves a Lego
Mindstorms Car (Munoz et al. 2021). The data for these cases
is provided on Github21.

19 https://github.com/derlehner/IndoorAirQuality_DigitalTwin_Exemplar/tree/
main/digital_twin/models

5.2.2. Required Transformations To enable the transfor-
mation of a model from DTDL-MM to TM-MM, the following
transformations are implemented using the Atlas Transforma-
tion Language (ATL)20, and provided on GitHub21.

The DTDL2UML transformation translates an existing
DTDL model into UML CD, leveraging the DTDL-specific
stereotypes described in Sec. 5.1. A direct mapping without
any constraint is possible, as all elements in DTDL can be
represented in the DTUML model.

The UML2TM transformation translates a DTUML model
into a TM model by leveraging appropriate stereotypes of the
DTUML profile. If a stereotype is not set on a specific element,
it is transformed with default values for elements that are not
available natively in UML CD. More specifically, this means
that by default, (i) for classes, the isSingleton attribute is false,
and the tag attribute is null, and (ii) for properties, the isTime-
Series, isExternalId and isStoredLocally attributes are false, and
the allowedValues attribute is null. For the relationshipType at-
tribute added via the TM_Association stereotype, by default, the
value is set to Association if the isComposition attribute of the
source association is false, and to Composition if this attribute
value is true. However, if the relationshipType attribute is set
in the DTUML model, this differentiation between composite
and non-composite associations is ignored. Additionally, sim-
ilarly to the UML2DTDL transformation, (i) abstract classes,
non-abstract classes, and interfaces all have to be mapped to
Interfaces in TM-MM, and (ii) all additional information from
the class diagram that cannot be mapped to TM-MM is omitted
during the transformation.

5.3. Results
In our experiment, the initial DTDL model is automatically
transformed to DTUML using the DTDL2UML transformation.
In the DTUML model, all information from the DTDL model
is preserved. However, when creating the TM-MM model, only
the unit and isTimeSeries information for properties can be
preserved from the extensions that are made to the UML CD
metamodel. Other information, such as display names, version
numbers, or quantities, cannot be represented in TM-MM, thus
must be omitted when applying the UML2TM transformation.
Also, namespaces, which are available natively in UML CD, but
not in the TM-MM, must be omitted. On the other side, the fol-
lowing information is added to the DTUML model created from
the initial DTDL model. Additionally, the Building is annotated
as singleton, meaning that a model can only be created for one
specific building. For the CO2 sensor, the unit is set to ppm (as
the TM-MM only requires a String here, setting a value here
is possible, in contrast to the DTDL-MM). The isExternalId,
isStoredLocally attributes are not set for any property, meaning
that they will be set to false during the transformation. The
allowedValues, isImplementedBy, and tag attributes are also not
set, meaning that they are empty in the created TM-MM model.
The annotated UML CD is also represented in Figure 5. This
model can be transformed using the UML2TM transformation
to create the air quality representation in TM-MM.

20 https://www.eclipse.org/atl/
21 https://github.com/derlehner/dt_language_comparison

Modeling Capabilities of Digital Twin Platforms 11

https://github.com/derlehner/IndoorAirQuality_DigitalTwin_Exemplar/tree/main/digital_twin/models
https://github.com/derlehner/IndoorAirQuality_DigitalTwin_Exemplar/tree/main/digital_twin/models
https://www.eclipse.org/atl/
https://github.com/derlehner/dt_language_comparison

«TMClass»

{isSingleton=true}

Building

«DTDLClass»

{displayName = „Temperature Sensor“}

TemperatureSensor

Room

Robot

Controller

Alarm

«DTDLClass»

{displayName = „Ventilation System“}

VentilationSystem

Int aqLevel «DTProperty» {

isTimeSeries=true }

String type

String value «DTProperty» {

isTimeSeries=true

unit = „degreeFahrenheit“},

«DTDLProperty»{

quantity = „Temperature“}

Boolean isActive

«DTDLClass»

{displayName = „ CO2 Sensor“}

CO2Sensor

String type

String value «DTProperty» {

isTimeSeries=true

unit = „ppm“ }

*

1

*

*

1

*

*

*

Figure 5 DTUML model for the air quality case (stereotypes added for DTDL and TM).

In summary, these results indicate that for the air quality
case, (i) as expceted, there is no adaptation effort to create the
DTUML model from the initial DTDL model, (ii) 20 elements
of the initial DTDL model cannot be represented in the TM
model without additional workarounds, and (iii) 2 elements of
the TM model have to be specified in the DTUML model, as
they are not available in the DTDL model at all. The annotated
DTUML model is shown in Figure 5.

5.4. Answering RQ3: How can existing modeling con-
cepts be leveraged to enable portability of models
between these platforms?

In the above experiment, we show that UML CD models seem
promising to be used as pivot when transforming models from
DTDL-MM to TM-MM, if the DTUML profile is used to enable
platform modeling capabilities that are not natively supported in
UML CD. However, (i) information that is available in DTDL-
MM, but not in TM-MM (unique identifiers, display names,
version numbers, namespaces, quantities) is lost in the transfor-
mation process, (ii) information that is available in TM-MM, but
not in DTDL-MM (measurement unit for CO2, and values for
the isSingleton, isExternalId, isStoredLocally, allowedValues,
and tag attributes), can be added in the pivot DTUML model.
The information that is lost in (ii) could be added to the TM-MM
via the tag attribute of ComponentTypes, and the configuration
attribute of PropertyDefinitions. However, this mapping was
not scope of the performed experiment.

6. Conclusion
The answers to our research questions provided in the previous
sections indicate that modeling capabilities of the examined
DT platforms mostly rely on well-known OOM techniques, but
they also extend these general-purpose concepts with domain-
specific features such as quantities, units, flexible instantiation,
etc. In addition, the languages also contain additional con-
straints which may result from performance considerations in
the runtime environments such as constraints for the inheritance
relationships and properties. However, when looking into exist-
ing contributions on required modeling capabilities to represent

DTs or digital shadows, such as the Asset Administration Shell
or the digital shadow conceptual model by (Becker et al. 2021),
there are also additional aspects which are currently not covered
by the languages offered by the platforms, and thus, require
dedicated development based on the provided frameworks. Fur-
thermore, there are a multitude of extensions for UML CD for
CPS such as for uncertainty, quantities, MARTE, etc. It seems
these aspects are often missing in the DT platforms. At the
same time, UML CD themselves offer several modeling fea-
tures which are not provided by the platforms such as abstract
classes, uniqueness and ordered constraints for properties, or
dedicated inheritance features such as re-definitions. Finally,
the evaluation of the DT languages also reveal that based on the
life-cycle phase, different concrete syntaxes may be employed.
We have seen a wide spectrum of JSON, Xtext/EMF, and API
related modeling in the different platforms. For communication
and analysis purposes, UML CD may be an option here due to
the well-known concrete syntax, but the general application of
UML CD for this particular field requires further investigations
in addition to the first experiment performed in this work.

A threat to validity is that we only considered the DT plat-
forms of Amazon, Microsoft, and Eclipse. We selected these
platforms based on our existing research and experience. How-
ever, we plan to look into other DT platforms in the future.
Furthermore, we decided to choose UML CD, a general purpose
modeling language, as pivot although the languages provided by
the platforms are domain-specific. Together with the UML pro-
files this could be leveraged to develop a platform-independent
domain-specific DT language in the future. Besides, we con-
sider the following additional research lines. First, we plan to
provide a model-based description of platforms, as proposed
by (Thomas et al. 2008; Chehade et al. 2010) for embedded
systems platforms. Second, we aim towards a language family
for describing DTs including platform specifics (Butting et al.
2020) as well as code generation options. Finally, the evaluation
of languages by other platforms is considered interesting for
further uncovering the nature of DT modeling. This knowledge
can be used to align DT modeling with modeling capabilities in
similar domains, e.g., IoT (Kirchhof et al. 2022).

12 Pfeiffer et al.

Acknowledgments

This work has been supported by the Austrian Federal Ministry
for Digital and Economic Affairs and the National Foundation
for Research, Technology and Development (CDG) as well
as the German Federal Ministry of Economic Affairs and Cli-
mate Action (BMWK, Bundesministerium für Wirtschaft und
Klimaschutz) under grant no. 19S21002L.

References

Azangoo, M., Taherkordi, A., & Blech, J. O. (2020). Digital
twins for manufacturing using UML and behavioral specifi-
cations. In 25th IEEE International Conference on Emerg-
ing Technologies and Factory Automation (ETFA) (pp. 1035–
1038).

Becker, F., Bibow, P., Dalibor, M., Gannouni, A., Hahn, V.,
Hopmann, C., . . . Wortmann, A. (2021). A conceptual
model for digital shadows in industry and its application. In
International Conference on Conceptual Modeling (ER) (pp.
271–281). Springer.

Bibow, P., Dalibor, M., Hopmann, C., Mainz, B., Rumpe, B.,
Schmalzing, D., . . . Wortmann, A. (2020). Model-driven
development of a digital twin for injection molding. In In-
ternational Conference on Advanced Information Systems
Engineering (pp. 85–100).

Biesinger, F., & Weyrich, M. (2019). The facets of digital twins
in production and the automotive industry. In 23rd Interna-
tional Conference on Mechatronics Technology (ICMT) (pp.
1–6).

Booch, G., Rumbaugh, J. E., & Jacobson, I. (2005). The Unified
Modeling Language user guide (Vol. 2). Addison-Wesley.

Brambilla, M., Cabot, J., & Wimmer, M. (2017). Model-driven
software engineering in practice. Morgan & Claypool.

Brauner, P., Dalibor, M., Jarke, M., Kunze, I., Koren, I., Lake-
meyer, G., . . . Ziefle, M. (2022). A Computer Science
Perspective on Digital Transformation in Production. ACM
Trans. Internet Things, 3(2), 15:1–15:32.

Broman, D., Lee, E. A., Tripakis, S., & Törngren, M. (2012).
Viewpoints, formalisms, languages, and tools for cyber-
physical systems. In 6th International Workshop on Multi-
Paradigm Modeling (pp. 49–54).

Bruynseels, K., Santoni de Sio, F., & Van den Hoven, J. (2018).
Digital twins in health care: ethical implications of an emerg-
ing engineering paradigm. Frontiers in genetics, 31.

Burgueño, L., Mayerhofer, T., Wimmer, M., & Vallecillo, A.
(2019). Specifying quantities in software models. Information
and Software Technology, 113, 82-97.

Butting, A., Pfeiffer, J., Rumpe, B., & Wortmann, A. (2020). A
compositional framework for systematic modeling language
reuse. In 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems (MODELS) (pp.
35–46).

Chehade, W. E. H., Radermacher, A., Gérard, S., & Terrier, F.
(2010). Detailed Real-Time Software Platform Modeling. In
Asia Pacific Software Engineering Conference (APSEC) (pp.
108–117).

Cook, S., Bock, C., Rivett, P., Rutt, T., Seidewitz, E., Selic, B.,
& Tolbert, D. (2017). Unified Modeling Language (UML)
Version 2.5.1 (Standard). Object Management Group (OMG).
Retrieved from https://www.omg.org/spec/UML/2.5.1

Derler, P., Lee, E. A., & Sangiovanni Vincentelli, A. (2012).
Modeling Cyber–Physical Systems. Proceedings of the IEEE,
100(1), 13-28.

Eclipse. (2020). Ecore files representing the Vor-
tolang. https://github.com/eclipse/vorto/tree/development/
core-bundles/meta-model. (Accessed: 2022-02-28)

Eramo, R., Bordeleau, F., Combemale, B., Brand, M. v. d.,
Wimmer, M., & Wortmann, A. (2022). Conceptualizing
digital twins. IEEE Software, 39(2), 39-46.

France, R., & Rumpe, B. (2007). Model-driven development
of complex software: A research roadmap. In Future of
Software Engineering (FOSE’07) (pp. 37–54).

Francisco, A., Mohammadi, N., & Taylor, J. E. (2020). Smart
city digital twin–enabled energy management: Toward real-
time urban building energy benchmarking. Journal of Man-
agement in Engineering, 36(2), 04019045.

Gogolla, M., Büttner, F., & Richters, M. (2007). USE: A
UML-based specification environment for validating UML
and OCL. Science of Computer Programming, 69(1), 27-34.

Gómez, A., Cabot, J., & Wimmer, M. (2018). TemporalEMF:
A temporal metamodeling framework. In International Con-
ference on Conceptual Modeling (ER) (pp. 365–381).

Govindasamy, H. S., Jayaraman, R., Taspinar, B., Lehner, D., &
Wimmer, M. (2021). Air quality management: an exemplar
for model-driven digital twin engineering. In ACM/IEEE
International Conference on Model Driven Engineering Lan-
guages and Systems Companion (MODELS-C) (pp. 229–
232).

Hutchinson, J., Rouncefield, M., & Whittle, J. (2011). Model-
driven engineering practices in industry. In 33rd International
Conference on Software Engineering (ICSE) (pp. 633–642).

Jain, P., Poon, J., Singh, J. P., Spanos, C., Sanders, S. R., &
Panda, S. K. (2019). A digital twin approach for fault diag-
nosis in distributed photovoltaic systems. IEEE Transactions
on Power Electronics, 35(1), 940–956.

Jimenez, J. I., Jahankhani, H., & Kendzierskyj, S. (2020).
Health care in the cyberspace: Medical cyber-physical system
and digital twin challenges. In Digital twin technologies and
smart cities (pp. 79–92). Springer.

Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T.,
Retschitzegger, W., . . . Wimmer, M. (2006). On models
and ontologies - a layered approach for model-based tool
integration. In Modellierung (pp. 11–27).

Kirchhof, J. C., Michael, J., Rumpe, B., Varga, S., & Wort-
mann, A. (2020). Model-driven digital twin construction:
synthesizing the integration of cyber-physical systems with
their information systems. In 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and
Systems (pp. 90–101).

Kirchhof, J. C., Rumpe, B., Schmalzing, D., & Wortmann,
A. (2022). MontiThings: Model-Driven Development and
Deployment of Reliable IoT Applications. Journal of Systems
and Software, 183, 111087.

Modeling Capabilities of Digital Twin Platforms 13

https://www.omg.org/spec/UML/2.5.1
https://github.com/eclipse/vorto/tree/development/core-bundles/meta-model
https://github.com/eclipse/vorto/tree/development/core-bundles/meta-model

Kraft, E. M. (2016). The air force digital thread/digital twin-life
cycle integration and use of computational and experimental
knowledge. In 54th AIAA Aerospace Sciences Meeting.

Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W.
(2018). Digital Twin in manufacturing: A categorical litera-
ture review and classification. IFAC-PapersOnLine, 51(11),
1016–1022.

Laaki, H., Miche, Y., & Tammi, K. (2019). Prototyping a digital
twin for real time remote control over mobile networks: Ap-
plication of remote surgery. IEEE Access, 7, 20325–20336.

Lehner, D., Pfeiffer, J., Tinsel, E.-F., Strljic, M. M., Sint, S.,
Vierhauser, M., . . . Wimmer, M. (2022). Digital Twin Plat-
forms: Requirements, Capabilities, and Future Prospects.
IEEE Software, 39(2), 53-61.

Lehner, D., Sint, S., Vierhauser, M., Narzt, W., & Wimmer, M.
(2021). AML4DT: a model-driven framework for developing
and maintaining Digital Twins with AutomationML. In 26th
IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA) (pp. 1–8).

Lu, Q., Xie, X., Heaton, J., Parlikad, A. K., & Schooling, J.
(2019). From BIM towards digital twin: strategy and future
development for smart asset management. In International
Workshop on Service Orientation in Holonic and Multi-Agent
Manufacturing (pp. 392–404).

Mandolla, C., Petruzzelli, A. M., Percoco, G., & Urbinati, A.
(2019). Building a digital twin for additive manufacturing
through the exploitation of blockchain: A case analysis of the
aircraft industry. Computers in Industry, 109, 134–152.

Munoz, P., Troya, J., & Vallecillo, A. (2021). Using UML
and OCL Models to Realize High-Level Digital Twins. In
ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems Companion (MODELS-C)
(pp. 212–220).

Petrasch, R., & Hentschke, R. (2016). Process modeling for
industry 4.0 applications: Towards an industry 4.0 process
modeling language and method. In 13th International Joint
Conference on Computer Science and Software Engineering
(JCSSE) (p. 1-5).

Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., . . . Nee,
A. (2021). Enabling technologies and tools for digital twin.
Journal of Manufacturing Systems, 58, 3–21.

Rasheed, A., San, O., & Kvamsdal, T. (2020). Digital twin:
Values, challenges and enablers from a modeling perspective.
IEEE Access, 8, 21980–22012.

Schroeder, G. N., Steinmetz, C., Pereira, C. E., & Espindola,
D. B. (2016). Digital twin data modeling with AutomationML
and a communication methodology for data exchange. IFAC-
PapersOnLine, 49(30), 12–17.

Tang, S., Shelden, D. R., Eastman, C. M., Pishdad-Bozorgi, P.,
& Gao, X. (2019). A review of building information modeling
(BIM) and the internet of things (IoT) devices integration:
Present status and future trends. Automation in Construction,
101, 127-139.

Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F.
(2018). Digital twin-driven product design, manufacturing
and service with big data. The International Journal of Ad-
vanced Manufacturing Technology, 94(9), 3563–3576.

Tao, F., Qi, Q., Wang, L., & Nee, A. (2019). Digital twins
and cyber–physical systems toward smart manufacturing and
industry 4.0: Correlation and comparison. Engineering, 5(4),
653–661.

Tao, F., Zhang, H., Liu, A., & Nee, A. Y. (2018). Digital twin in
industry: State-of-the-art. IEEE Transactions on Industrial
Informatics, 15(4), 2405–2415.

Thomas, F., Delatour, J., Terrier, F., & Gérard, S. (2008). To-
wards a Framework for Explicit Platform-Based Transfor-
mations. In 11th IEEE International Symposium on Object
and Component-Oriented Real-Time Distributed Computing
(ISORC) (p. 211-218).

Wortmann, A., Barais, O., Combemale, B., & Wimmer, M.
(2020). Modeling languages in Industry 4.0: an extended
systematic mapping study. Software and Systems Modeling,
19(1), 67–94.

Xu, Q., Ali, S., & Yue, T. (2021). Digital Twin-based Anomaly
Detection in Cyber-physical Systems. In 14th IEEE Confer-
ence on Software Testing, Verification and Validation (ICST)
(pp. 205–216).

Yue, T., Arcaini, P., & Ali, S. (2021). Understanding digital
twins for cyber-physical systems: A conceptual model. In
Leveraging applications of formal methods, verification and
validation: Tools and trends (pp. 54–71). Springer.

About the authors
Jérôme Pfeiffer is a research assistant at the Institute for Control
Engineering of Machine Tools and Manufacturing Units (ISW)
of the University of Stuttgart. His research interests include
Software Language Engineering techniques and applied Model-
Driven Engineering with a focus on digital twins and Industry
4.0. You can contact the author at jerome.pfeiffer@isw.uni-
stuttgart.de or visit https://www.isw.uni-stuttgart.de/en/institute/
team/Pfeiffer-00005/.

Daniel Lehner is a PhD candidate at the Department of Business
Informatics - Software Engineering, and also associated with
the Christian Doppler Laboratory for Model-Integrated Smart
Production (CDL-MINT), both at Johannes Kepler University
Linz. His research interests include applying Model-Driven
Engineering techniques and practices to Digital Twins. You
can contact the author at daniel.lehner@jku.at or visit https://
se.jku.at/daniel-lehner/.

Manuel Wimmer is Full Professor and Head of the Department
of Business Informatics – Software Engineering at Johannes
Kepler University Linz. His research interests include Software
Engineering, Model-Driven Engineering, and Cyber-Physical
Systems. You can contact the author at manuel.wimmer@jku.at
or visit https://www.se.jku.at/manuel-wimmer/.

Andreas Wortmann is a professor at the Institute for Control En-
gineering of Machine Tools and Manufacturing Units (ISW) of
the University of Stuttgart where he conducts research on model-
driven engineering, software language engineering, and systems
engineering with a focus on Industry 4.0 and digital twins.
You can contact the author at andreas.wortmann@isw.uni-
stuttgart.de or visit www.wortmann.ac.

14 Pfeiffer et al.

mailto:jerome.pfeiffer@isw.uni-stuttgart.de?subject=Your paper "Modeling Capabilities of Digital Twin Platforms - \ Old Wine in New Bottles?"
mailto:jerome.pfeiffer@isw.uni-stuttgart.de?subject=Your paper "Modeling Capabilities of Digital Twin Platforms - \ Old Wine in New Bottles?"
https://www.isw.uni-stuttgart.de/en/institute/team/Pfeiffer-00005/
https://www.isw.uni-stuttgart.de/en/institute/team/Pfeiffer-00005/
mailto:daniel.lehner@jku.at?subject=Your paper "Modeling Capabilities of Digital Twin Platforms - \ Old Wine in New Bottles?"
https://se.jku.at/daniel-lehner/
https://se.jku.at/daniel-lehner/
mailto:manuel.wimmer@jku.at?subject=Your paper "Modeling Capabilities of Digital Twin Platforms - \ Old Wine in New Bottles?"
https://www.se.jku.at/manuel-wimmer/
mailto:andreas.wortmann@isw.uni-stuttgart.de?subject=Your paper "Modeling Capabilities of Digital Twin Platforms - \ Old Wine in New Bottles?"
mailto:andreas.wortmann@isw.uni-stuttgart.de?subject=Your paper "Modeling Capabilities of Digital Twin Platforms - \ Old Wine in New Bottles?"
www.wortmann.ac

