
Journal of Object Technology | RESEARCH ARTICLE

First-Class Concepts: Reified Architectural Knowledge
Beyond Dominant Decompositions

Toni Mattis, Tom Beckmann, Patrick Rein, and Robert Hirschfeld
Software Architecture Group, Hasso Plattner Institute, University of Potsdam, Germany

ABSTRACT Ideally, programs are partitioned into independently maintainable and understandable modules. As a system grows,
its architecture gradually loses the capability to accommodate new concepts in a modular way. While refactoring is expensive
and not always possible, and the programming language might lack dedicated primary language constructs to express certain
cross-cutting concerns, programmers are still able to explain and delineate convoluted concepts through secondary means:
code comments, use of whitespace and arrangement of code, documentation, or communicating tacit knowledge.
Secondary constructs are easy to change and provide high flexibility in communicating cross-cutting concerns and other
concepts among programmers. However, such secondary constructs usually have no reified representation that can be explored
and manipulated as first-class entities through the programming environment.
In this exploratory work, we discuss novel ways to express a wide range of concepts, including cross-cutting concerns, patterns,
and lifecycle artifacts independently of the dominant decomposition imposed by an existing architecture. We propose the
representation of concepts as first-class objects inside the programming environment that retain the capability to change as
easily as code comments. We explore new tools that allow programmers to view, navigate, and change programs based on
conceptual perspectives. In a small case study, we demonstrate how such views can be created and how the programming
experience changes from draining programmers’ attention by stretching it across multiple modules toward focusing it on
cohesively presented concepts. Our designs are geared toward facilitating multiple secondary perspectives on a system to
co-exist in symbiosis with the original architecture, hence making it easier to explore, understand, and explain complex contexts
and narratives that are hard or impossible to express using primary modularity constructs.

KEYWORDS software engineering, modularity, exploratory programming, program comprehension, remodularization, architecture recovery

1. Introduction

Expressive programming languages offer constructs to partition
systems into modules. In popular languages, these constructs
include functions, methods, classes, modules, packages, names-
paces, etc. We will generically refer to them as modularity
constructs and their instances (e.g. a concrete class) as

JOT reference format:
Toni Mattis, Tom Beckmann, Patrick Rein, and Robert Hirschfeld.
First-Class Concepts: Reified Architectural Knowledge Beyond Dominant
Decompositions. Journal of Object Technology. Vol. 21, No. 2, 2022.
Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2022.21.2.a6

meta-objects.1

Most constructs are syntactic, some are given by the envi-
ronment. For example, the file system serves as modularity
construct in Python by providing module and package bound-
aries, while Smalltalk meta-objects exist at run-time and do not
rely on syntax to delimit classes and methods.

Roles of modules Modules serve different purposes. To sup-
port program comprehension, they provide means of abstraction
and facilitate chunking – a cognitive process that makes it easier
to reason about large domains by grouping related information.

1 In light of recent developments in projectional editing, we extend the definition
of meta-objects to cover all reified executable elements of a system, including
expressions, lexical tokens, and even sub-tokens.

An AITO publication

http://dx.doi.org/10.5381/jot.2022.21.2.a6


To help with maintenance, modules encapsulate responsibilities
and design decisions, such that revisiting individual decisions
and changing a single responsibility rarely cascades into cross-
module changes. Testability is improved by the capability to
exercise and verify parts in isolation. Compilation units facili-
tate incremental and parallel builds. Deployment modules can
help install and run different parts of a system on different host
systems (e.g., services) or share components between multiple
systems (e.g., libraries).

Ideally, each module corresponds to a single concept from
the real-world domain or from its technical or architectural im-
plementation. However, not all concepts relevant to understand
a system can be demarcated by modules, which leads to impedi-
ments to program comprehension and maintenance later in the
software evolution.

Limits of the dominant decomposition As of now, most mod-
ularity constructs enforce a dominant decomposition of the
system because they are persisted in syntax or as a particular
arrangement of files, directories, or run-time objects. Cross-
cutting concerns (e.g. logging, authorization, handling I/O er-
rors, etc.) cause the scattering of some concepts across multiple
modules and, consequentially, multiple concepts get entangled
within a single module (Mens 2001; Tarr et al. 1999). For ex-
ample, a user profile of an application can be represented by
a User class, however, several distant places in the application
might check whether the currently authenticated user is allowed
to perform an action or see some data. Hence, no single module
implements the authorization concept. Any programmer try-
ing to understand and change authorization needs to attend to
multiple distant code locations, causing both mental strain and
increasing the chance for errors.

A similar case can be made for design patterns (Mens et al.
2001), where different roles in the pattern are played by several
objects, but there is rarely any modularity construct that coher-
ently identifies and names the parts of a pattern. For example,
the observer design pattern requires subjects to implement a
subscription mechanism and observers to implement a notifica-
tion protocol. While this decoupling is intentional, the observer
concept itself has no modular representation and needs to be
recognized by, e.g., naming conventions.

Advanced modularity constructs like aspects (Kiczales et al.
1997), layers (Hirschfeld et al. 2008), roles (Herrmann 2003),
or traits (Schärli et al. 2003) alleviate some of these concerns
but have not found widespread adoption. Even if they did, they
would require significant re-engineering to show any benefits
in legacy systems. For example, a cross-cutting concern like
logging could be implemented as aspect that inserts the required
method calls in all affected code locations. In this example, how-
ever, programmers would give up one dominant decomposition
in favor of another, and now the readability of the refactored
code might be impacted once programmers need to consider the
logging aspect and base code without any logging statements
simultaneously.

During program comprehension activities, programmers
need to understand concepts not represented through language
constructs by locating the relevant program parts, usually with

little tool support other than search, following references, and
keeping multiple editors open at the same time. These chal-
lenges are known as the concept assignment problem (Big-
gerstaff et al. 1993), have been approached using activities like
software reconnaissance (Wilde & Scully 1995) and architecture
recovery (Garcia et al. 2013; Lungu et al. 2014), and motivated
the creation of numerous tools that attempt to recover concep-
tual knowledge beyond the dominant decomposition. Without a
way to represent this knowledge within the program itself, such
activities constitute one-shot efforts that have to be repeated
when their results become outdated.

Primary and secondary modularity constructs The modular-
ity constructs discussed above are behaviorally significant: they
affect how the program behaves or represents its state. Changing
module boundaries without impacting behavior, an important
activity during refactoring, requires rewiring program parts to
reproduce the old behavior within the new module structure.
This can be expensive in legacy systems which have accumu-
lated design decisions that are difficult to revert, and does not
always lead to more maintainable decompositions in the pres-
ence of cross-cutting concerns.

In analogy to the dichotomy between primary and secondary
notation from the cognitive dimensions of notations (Blackwell
& Green 2003), we call them primary modularity constructs
and distinguish them from secondary modularity constructs
that only help perception and tooling, but never influence the
program’s run-time behavior.

Up to date, there are only a few examples of such sec-
ondary constructs in a narrower sense, for example categories
in Smalltalk, comments for documentation generators (e.g.
Javadoc) that form a small hypertext-like language to docu-
ment code, or the #region pragma in C# that allows the editor
to collapse code blocks regardless of their primary structure. In
contrast to a refactoring, changing secondary constructs does
not require cascading changes to the program and offers oppor-
tunities to document different architectural perspectives.

In a broader sense, if syntax is disregarded, several other
mechanisms help with modularity: free-form comments, addi-
tional line breaks to induce a sense of grouping by introducing
distance, or the order of methods in a class (e.g. putting core
responsibilities first and cross-cutting concerns last). The granu-
larity of these structuring elements is still dominated by primary
module constructs, e.g., the order of methods within a class
remains linear and relatively stable no matter how many empty
lines separate logical groups of methods, and it is challenging to
express a comment that refers to multiple elements in different
code files without duplication or (hypertext) links. Notebooks
(e.g. Jupyter) invert primary and secondary constructs, allowing
the executable program parts to exist in between headings, text,
and figures, but only in a linear document-like form.

Problem statement and research opportunity Our working
hypothesis is that primary modularity constructs can be hard to
change to re-modularize existing systems and the dominant de-
composition subordinates potentially equally relevant concepts,
which impedes program comprehension. In contrast, existing
secondary constructs contain little machine-readable informa-

2 Mattis, Beckmann, Rein, Hirschfeld



Code Editor: Logic

Code Editor: UI
1

Code Editor: Logic

Code Editor: UI

4secondary 
notation in code

reified concepts
“behind” codeobserver

r0

r0 r0
Observer

Log >> notify

UI >> notify

Locations

(add…)

2

3

Figure 1 An example showing a delocalized implementation of the observer design pattern used to connect a program’s UI to
its business logic. Left: In traditional programming environments, comments and naming conventions (1) can identify coherent
parts of the pattern, while textual search can help connect them. Right: We propose to augment programs with a reified concept
model. In such a design, program parts can be directly selected and tagged as "Observer" by programmers instead (2). Extent and
participating program parts (3) of the concept are immediately discoverable and navigable (4), in this example through context
menus. This work explores how the underlying model can be designed and automated, and what improvements to the program-
ming experience are rendered possible by first-class concepts.

tion and mostly express concepts by means of natural language,
but are easy to change and subject to fewer constraints.

If the preferred modularization cannot be achieved by refac-
toring, programmers can document non-modular concepts
through secondary means, but forfeit tool support.

To bridge this gap, we explore the design space of first-class
secondary modularity constructs that allow a wide range of
concepts to be expressed in a program without re-organizing the
underlying primary module composition.

To this end, we take the concept assignment problem literally
and discuss how multiple representations of first-class concepts,
ranging from simple tags to statistical distributions, can be
directly assigned to parts of a program.

First-class concepts create new tooling capabilities that offer
the chance to view, navigate, and change programs from mul-
tiple, equally valid perspectives rather than only the dominant
decomposition available through conventional IDEs. Due to
their reified nature, programming environments have opportuni-
ties to support and automate concept location and assignment
using machine learning.

First-class concepts allow programmers to view and edit pro-
grams as if they were modularized in the way that best fits
their task, without actually refactoring the underlying system.

We implement some parts of the design space in Squeak/S-
malltalk and run a small case study to demonstrate practical
implementation considerations as well as insights on the pro-
gramming experience provided by a preliminary implementation
fist-class concepts.

In summary, we envision first-class concepts and tools based
on them to help program comprehension and maintenance in
several ways: First, authors of the program do not need to

decide whether to refactor or to document concepts informally,
but can directly link participating code locations and name them.
Second, readers of the source code can understand, navigate, and
eventually change legacy programs as if they were expressed
more modularly from the beginning. Third, tool developers have
access to a reified representation of architectural knowledge
alongside existing meta-programming facilities and can use it to
enhance their own tools or provide recommendations by means
of statistical methods or machine learning.

2. Representing Concepts
To allow programmers to work with first-class concepts as if they
were actual units of modularity, our programming environment
first needs a representation of concepts. In this section, we
first define their general properties and the scope of which
knowledge they are supposed to represent. We then design
two different ways to model concepts and their relationship to
code, a discrete approach and a probabilistic one, both with
different trade-offs, but compatible with each other.

2.1. Requirements
We are proposing secondary modularity constructs to represent
concepts in a way that is more formal than comments, but less
constrained with respect to their association with the underlying
code as language extensions. In particular, we aim at preserving
the following useful properties from both worlds, which we
subsequently combine to our first-class concept model:

Independence of the dominant decomposition A concept can
be connected to multiple code artifacts, meta-objects, or ex-
pressions regardless of their location in the package tree, file,
or enclosing meta-object. Refactorings should cause concepts
to move together with the moved code. This property ensures
the capability to represent cross-cutting concerns or concepts

First-class Concepts 3



hidden in interacting program parts (e.g. design patterns). It is
present to some degree in advanced modularity constructs like
aspects, which gain independence from existing modules by
declaratively specifying their scope using pointcut languages,
or teams (Herrmann 2003), where roles within a coherently
expressed concept can bind to distant elements in the underly-
ing program. In terms of secondary constructs, Commentary
(Hirschfeld et al. 2018) allows to comment code across module
boundaries.

Non-exclusiveness In contrast to hierarchical decompositions
or categories, any part of the program should be able to play a
role in as many concepts as needed. This property allows tech-
nical and domain concepts to overlap, e.g., a method can both
implement a domain concept and play a role in a design pattern.
Many advanced primary constructs including aspects, layers,
traits, and teams allow the same method, field, or class to play
a role in different explicitly modelled concepts. Commentary
(Hirschfeld et al. 2018) and the concerns in ConcernMapper (Ro-
billard & Weigand-Warr 2005) are secondary (IDE-integrated)
constructs with the ability to refer to possibly intersecting sets
of program elements.

Non-executability A concept should not interfere with compi-
lation and run-time behavior, much like a comment or non-code
cells in notebooks. This property ensures flexibility when com-
pared to primary language constructs that contain behavior or
declarative properties themselves and eliminate the costs associ-
ated with refactoring.

Reification In contrast to comments, the content of a con-
cept should allow tools to automatically process them. Persis-
tence and serialization are beyond the scope of this paper, so
for our discussion we assume they exist as meta-objects with
an interface that can be used by tools2. This sets first-class
concepts apart from informal secondary constructs based on
comments and makes them programmatically accessible to pro-
gramming environments and their tool developers the same way
files, classes, methods, etc. already are.

2.2. Type of Origin
The need to designate a part of the program as belonging to a
concept can originate internally or externally:

Internal concepts are used to engineer the program itself. In
the scope of this work, we consider three major sub-types: (1.)
Domain concepts, e.g. a controllable character in a game, or
a rectangle in a graphical editor; (2.) Technical concepts, e.g.
a file handle, database transaction, or thread; and (3.) Archi-
tectural concepts, e.g. a pattern, invariant, or relevant design
decision.

External concepts originate from the program’s lifecycle, e.g.
issues, which programmers sometimes link to code by stating
the issue number in a comment. Other elements of the soft-
ware lifecycle include relations to tests, dependencies, or build
artifacts.
2 For the purpose of this paper, imagine them being stored in a Smalltalk image

without ever taking a "serialized" form.

AST

Code

Observer 
Concept

U
I 
C

o
n
ce

p
t

λ

call

UI Concept

O
b

se
rv

e
r 

C
o

n
ce

p
t

Method

call

Tag

Figure 2 A concept tag can be attached to any meta-object,
including expressions within one module’s AST. In this ex-
ample, a constructor method of a UI creates a button which
has an associated closure responding to a click. The closure
uses the notification mechanism known from the observer pat-
tern, which can be tagged accordingly. Button-specific logic is
tagged with the UI concept.

Most existing modularity constructs cover only internal con-
cepts, leaving external concepts encoded in build configuration,
issue trackers, and other systems outside the programming envi-
ronment. In our design space, we try to cover both in a unifying
way.

2.3. Tag-Like Concepts
In their simplest manifestation, a concept behaves like a tag
(label) attached to one or more meta-objects or expressions as
illustrated in Figure 2. Tagging code serves as mechanism to
indicate the extent of a concept without resorting to informal
means like comments.

This tag carries an identity and a (potentially ambiguous)
descriptive name. For example, the parts of a design pattern can
be tagged with the pattern name. This allows bidirectional iden-
tification of the concept: Displaying an "observer pattern" label
near the code that invokes a notification mechanism signifies
that this particular code is involved in said pattern, and the label
allows programmers to navigate to all the observers that might
subscribe to this notification. Meta-objects can carry multiple
tags.

Smalltalk method categories already allow to group methods
(e.g. a specific protocol implementing pattern interactions) into
a named category, but they lack identity, making it difficult to
distinguish different instances of the same pattern. Methods
can only belong to one category, so overlaps between technical
concepts (the pattern) and domain terms are inexpressible. The
Smalltalk message send self flag: #symbol can be used to

4 Mattis, Beckmann, Rein, Hirschfeld



tag a method with a symbol. Tooling is able to display a flag
icon next to such methods.

Closure property As tags become (secondary) meta-objects
themselves, they can apply to other tags, thus creating hierar-
chies of tags. A situation in which a pattern exists in multiple
instantiations throughout the program would be hard to navigate
if the tags used for all instances looked the same. By creating
different concepts for each instance, and tagging both of them
with the more general pattern concept, the meta-object graph
can be queried for both the instances of a pattern and the partici-
pants in each pattern. A generalization to ontologies is possible,
but out of scope for this work.

Parametrized tags A different way to deal with multiple in-
stances of a concept is parametrization, in which tags with the
same name can be distinguished by additional parameters. For
example, some open-source projects have a community pro-
cess that discusses numbered "proposals" like PEPs (Python
Enhancement Proposals) or RFCs. Code implementing such
proposals can benefit from being tagged with the proposal num-
ber, thus making it part of the architecture while referencing
the community consensus in a way that is explorable by con-
tributors directly from their programming environment. Similar
constructs work for issue or ticket numbers.

2.4. Distributional and Statistical Concepts
While a tag-like concept discretely refers to a set of meta-objects
or expressions, we propose that concepts can also refer to either
code locations or code features with a degree of uncertainty (see
Figure 3). These types of concepts are not mutually exclusive, a
concept should be able to both attach discretely to locations and
still be able to carry statistical and generalizable data.

{

}

AST

s

v s

na

O
b

se
rv

e
r

V
is

it
o

r

Code

Figure 3 Two simple distributional concepts. In this case,
identifiers are associated with two different design patterns,
with the observer pattern having higher weight on “subscribe”
and “notify” and the visitor pattern putting weight the “visit”
and “accept” terminology. These natural language terms are
still ambiguous but the combined presence of multiple corre-
lated identifiers at once helps distinguish individual concepts.

Connection to natural language Most concepts show a dis-
tinct vocabulary in their choice of names. When tagging, e.g.,
the different methods involved in a large visitor pattern, it be-
comes apparent that the concept involves names like "accept"
and "visit". This linguistic distribution can become part of the

concept. This allows inference from new code, detection of
inconsistent naming within a concept (e.g. using "logon" for a
concept previously named "login") or ambiguous naming be-
tween concepts (e.g. using "client" to designate both a technical
concept in a server-client setting and a domain concept in a cus-
tomer relationship management system). Linguistic concepts
can be inferred in both fully automated (Linstead et al. 2007)
and programmer-supported ways (Saeidi et al. 2015) using
topic modeling and have found their ways into programming
environments already (Mattis 2017; Gethers et al. 2011).

Evolutionary concepts Besides linguistic features, concepts
should ideally align with code evolution. Even if we are deal-
ing with a cross-cutting concern and changes involve multiple
primary meta-objects, the change should cover very few dis-
tinct concepts. If that is not the case, this could hint at either
a missing concept and thus lead to a recommendation by the
development environment, or misaligned changes, which could
be used as feedback to motivate programmers to commit more
fine-grained or more coherent changes in a version control sys-
tem. If higher-resolution data is available, e.g., which code is
read at the same time, we expect even better support in concept
inference.

Concept expertise Some programmers tend to specialize in
specific concepts. If concepts accumulated data about who
reads, edits, and maintains program parts associated with them,
programmers could seek out information in complex teams more
effectively. Besides automatic data collection, programmers
could be able to set themselves as contact persons for individual
concepts. When teams change composition or workload over
time, these expertise properties can be early warning signs for
knowledge loss or bottlenecks.

Cross-system and global concepts The use of statistical
properties opens up the opportunity to transfer data from one
project to another, or train statistical models across a large set
of projects. Global concepts identified across many projects can
quickly be recommended to programmers working on another
program and help bootstrapping the concept assignment process.
Topic modeling has been shown (Linstead et al. 2007) to re-
veal relevant concepts, such as logging, parallelization, file path
handling, database connection management, or event listener
architectures, and the re-occurrence of their vocabulary in new
projects indicates this concept is present again. Distributional
concepts lend themselves to materialize such an a priori concept
in the code base until programmers pin down individual con-
stituents by confirming the suggested concept, thus effectively
converting the probability into a discrete tag.

2.5. Lifecycle Concepts
To accommodate externally originating concepts, their reifica-
tions could be accessible by lifecycle tools, such as test runners,
version control, continuous integration and delivery infrastruc-
ture, or deployment and monitoring tools. These tools would
be able to consolidate data they generate at concept-level and
express their output in terms of concepts (see Figure 4).

As an example, a particular artifact in which a meta-object
ends up in the build cycle can be attached as concept. Especially

First-class Concepts 5



{

}

ASTCode

Issue #42

Fixes
Build #13

Change Failed

Figure 4 Lifecycle artifacts can be expressed using their
own tag-like modularity constructs, in this example, a build
failure and a fixed issue are (automatically) attached to the
involved code. The concepts might be represented by a URL
pointing to the issue tracker and CI infrastructure, where
the programming environment can retrieve additional status
information.

{

}

{

}

Primary Modules Concept View

O
b

se
rv

e
r 

T
ag

s

Logic Class UI Class Observer Concept

Logic

UI

Figure 5 A concept expressed through tagged code can be
rendered as single on-demand module with additional meta
data explaining how the constituents relate to each other. In
this example, the previously cross-cutting observer pattern
is shown as on-demand module, helping programmers read
and change all places that manage or handle subscription and
notifications instead of sequentially or simultaneously open
all source files.

utility code that might be included in multiple artifacts can be
easily identified this way and both developers and operators of
the resulting system now share a common understanding of the
deployment concepts. Concept labels could also mark the build
configuration or feature set each meta-object is included in, the
relevance to certain subsystems, releases, customers, or whether
a piece of code is part of a time-critical bottleneck or potentially
deployed many times for scalability reasons.

3. Programs through the Lens of Concepts
First-class concepts enable multiple stakeholders to understand
the system from their perspective, create opportunities to aug-
ment existing tools, and motivate novel tools to interact with
them.

3.1. Automating Concept Allocation
Reified concepts allow different degrees of automation to help
programmers designate and re-arrange concepts, as well as
editing a program in such a way that it conforms to its concept

structure.
Automation of secondary modularity constructs carries a

lower risk to break the program than tools that manipulate pri-
mary modules (e.g. automated refactorings) and, as such, can
more readily benefit from statistical methods. Although the
degree of automation and support is a spectrum between manual
and intervention-free automatic assignment, the following levels
are of interest as they fit existing interactions in programming
environments:

Manual basic tool support should allow manual concept as-
signment at meta-object level, either by tagging a selection of
code with a concept (e.g. through selecting code with the cursor
and selecting a concept from the context menu) or by adding a
meta-object to a currently edited concept (e.g through a specific
concept editor).

Reactive recommendations When opting to assign any meta-
object to a concept or vice versa, the programming environment
might use a recommender system to rank the most relevant
concepts or meta-objects, or suggest to add a new one if no
good match exists.

Proactive recommendations The programming environment
might actively propose concepts while programmers work with
code, programmers need to accept or reject such recommenda-
tions.

Partial inference of latent concepts Based on existing con-
cepts and programmers’ behavior in accepting and rejecting
recommendations, they system might latently infer concepts
for all remaining parts of the source code. Programmers must
actively override the inferred concepts (which in turn can cause
other inferred concepts to be retracted or re-computed to match
the new constraint).

Full inference No intervention is needed. This requires unsu-
pervised machine learning and could be used to automatically
analyze a yet un-tagged code base for the first time, then transi-
tion into one of the more interactive automation modes. Existing
code-bases can be used to pre-train such models and discover
common concepts in a novel code base.

Machine learning component Most workflows involving a
recommender system - reactive or proactive - benefit from a
statistical model that has not only access to the programmers’
concept input but also other information available from the
program. Especially code locations that share similar vocab-
ulary, structure, edit history, navigation history, authors, test
coverage, or run-time data might be part of the full extent of a
concept. Such a model would need to run in an on-line mode,
i.e., consume incremental updates and output incremental up-
dates. Figure 6 illustrates a system incorporating user editing,
concept representation, and statistical model interaction.

3.2. Co-maintaining Concepts and Architecture
Once the system is covered by either manually placed concepts
or automatically inferred (latent) concepts, the programming en-
vironment is able to assist with programming tasks themselves.
Three examples are given below:

6 Mattis, Beckmann, Rein, Hirschfeld



{

}

b

a c

db

Concept

Inferred Tags

a   b   c   d

Model User Tags

1

2

3

4

5

P
ro

je
ct

 D
at

a

Figure 6 Semi-supervised concept allocation through ma-
chine learning: User assignment (1) updates the reified con-
cept model (2). User-assigned tags are passed to a statistical
model as constraints (3), while project data (e.g. call graph,
navigation, and edit history) are available to infer likely partic-
ipants in the same concept (4), which can be passed to users
as recommendations (5).

Code Editor: GitUI

UI

Observer

Logic

Recommended

r0

Figure 7 Sketch of a code editor using proactive recommen-
dations by displaying a lightbulb next to code that signals an
opportunity to attach a concept (top) and reactive recommen-
dations (bottom) by displaying a ranked list of meaningful
concepts in a context menu invoked on user-selected code.

Naming Distributional concepts can detect when an identifier
is misplaced, suggest alternative names that match the con-
cept, or suggest locations concerned with the concept this name
should belong to.

Linting The mismatch between primary and secondary modu-
larity constructs is an indicator for technical debt. While reified
concepts reduce the "interest rate" of technical debt by enabling
cross-module and cross-artifact units of modularity, a wide gap
between both architectures helps to prioritizing refactorings.

Versioning Commits (and their commit messages) in version
control systems benefit from including a coherent change, even
if that change itself is scattered over multiple modules. The
programming environment might help programmers join or
split their change sets according to the underlying concepts.

Systems specifically designed for similar recommendation
tasks already exist, e.g. MEntoR (Lozano et al. 2017) can
detect missing characteristics in source code entities and Nat-
uralize (Allamanis et al. 2014) can propose meaningful names
following coding conventions. This opens up further opportuni-
ties to either feed additional information encoded in first-class
concepts (e.g. concept names) into such models, or use the
model output to, e.g., name a concept, thus providing imple-
mentations for the grey "Model" box in Figure 6.

3.3. Composable Perspectives
Concepts, by being independent of the dominant decomposition,
provide the basis for re-arranging code in a way that coherently
displays the elements of the concept. Instead of programmers
having to open multiple editors, potentially even duplicating
some editors to scroll to different positions, an individual con-
cept could be "opened" and interacted with as if it were ex-
pressed as single unit in primary modularity constructs. The
view would need to clarify "module breaks" and communicate
the origin of each piece of code.

Concepts as presentation of scattered code As of now, meta-
objects have order in their primary hierarchy (e.g. methods in a
class) but not in concepts when following a tag-like approach.
If we extend our notion of concepts to include a particular
arrangement of primary meta-objects, e.g. an overall order,
"opening" a single concept could resemble a Notebook, with
individual cells displaying different slices from the underlying
program as illustrated in Figure 5. If a cross-cutting concern
is tagged, its perspective provides an overview over its usage
throughout the system. When performing changes to a cross-
cutting concern, programmers can then verify that the changes
are implemented correctly in all occurrences without switching
through various places in the code.

Editing in perspectives Editing in a conceptual perspective
is more ambiguous, as any code removed from its primary
construct is deleted, but removing code from its conceptual
view must disambiguate between just removing the link between
meta-object and concept, or deleting both. Adding code to a
conceptual perspective can be done both by pulling in (non-
tagged) meta-objects or creating a new meta-object within the
view. For the latter, there needs to be a mechanism to re-attach

First-class Concepts 7



{

}

{

}

Code in same ConceptDependent Concepts

Figure 8 Concept-level navigation allows rapid naviga-
tion/preview of (scattered) code within the same concept or
dependent concepts, thus forming a navigable graph beyond
the dominant decomposition.

the newly added construct to the primary hierarchy (e.g. using
a recommender that finds the conceptually most coherent place
in the program tree), but this is not always necessary. If the new
code is just an example invocation, it might as well exist within
the concept only as part of its documentation.

Comments Composable perspectives should not be limited to
functional code. Representing comments as meta-objects and
including it in an (ordered, Notebook-style) view on a concept
might help with documentation. Any comment would need a
place in the primary hierarchy, thus being automatically updated
when edited in either the primary hierarchy or the conceptual
view. Similar ideas have been explored in the context of Literate
Programming (Childs & Sametinger 1996), where techniques
of object-oriented programming are applied to documentation
to facilitate its reuse.

3.4. Spatial Arrangements

With no hierarchical constraints, concepts can generalize to two-
dimensional arrangements of parts of a system. Composable
perspectives could thus break from the linearity of code files
or notebooks, and instead embed their structure in a canvas
(similar to Code Bubbles (Bragdon et al. 2010)), potentially
linking multiple concepts in a map. Zooming, panning, and
searching facilitates exploration of larger systems and concept
interactions.

Maintaining spatial arrangements Distributional concepts al-
low embedding algorithms from data science to cluster meta-
objects based on their concepts, and concepts based on their
vocabularies or co-evolution. Such an embedding does not need
maintenance, but would update itself based on changes in the
primary program structure and evolution.

Expressing concept interconnectedness Spatial views can
use two-dimensional space to display adjacent concepts, e.g.
code that belongs to another layer or a cross-cutting concern, in
proximity. Instead of navigating to other concepts via an extra
view or via hypertext, each meta-object could display indicators
of other concepts it belongs to, and provide interactions to
"open" this concept adjacent to the current concept as illustrated
in Figure 8.

{

}

Prototype {

}

++

Existing Modules
Recommendation

Figure 9 Concepts can help move exploratorily prototyped
code into conceptually sound locations within the existing
architecture.

3.5. Prototyping
When exploring solutions to a problem, a common approach is
to rapidly prototype various ideas and gain a better understand-
ing of the problem as one develops a solution. Often, the source
code produced in this manner may not fit well into the primary
hierarchy or could even have been written entirely in a REPL
or (Smalltalk-style) workspace. Eventually, programmers may
choose to discard it and rewrite the solution from scratch to fit
the existing architecture.

If the existing architecture is enriched with first-class con-
cepts, the concepts associated with the new code can be inferred
statistically. This way, the programming environment can help
integrate prototypical code more easily, or derive new architec-
tural components.

Integration into pre-existing architecture We envision that
the system should be able to propose an integration of new
prototypical code into the existing architecture. Distributional
concepts would provide the necessary heuristics: New code
should be placed at locations already concerned with the newly
prototyped concepts like shown in Figure 9.

Inferring the primary structure Automatic code formatters
and pretty printers alleviate programmers from having to think
about secondary notation of formatting, allowing them to exclu-
sively enter syntactically valid notation for the structures they
want to use and have the formatter provide an embedding in the
project’s source that is adequate. Similar to this, we envision
that a first-class concept-driven system should allow program-
mers to enter code in arbitrary contexts as they think of it and
alleviate the burden of organizing the code.

Rather than impeding creativity by forcing programmers
to first locate an adequate place to position their code, such a
system empowers them to start typing and introduce structure
as soon as both the system and maybe also the programmers
themselves understand the structures they are trying out better.

4. Case Study
We demonstrate a program change in a prototypical concept-
aware programming system based on some of the mechanisms
outlined above.

The purpose of this study is to answer two exploratory ques-
tions:

8 Mattis, Beckmann, Rein, Hirschfeld



1. How can a simple tag-like concept model be implemented
given the constraints of an existing programming environ-
ment?

2. Which changes in programming experience and
architecture-related thinking can programmers observe
while having first-class concepts at their disposal?

To this end, we first implement the concept model and two
tools for managing the assignment of concepts to program parts
and browsing individual concepts in Smalltalk. Subsequently,
we report on our own experience using these tools to add a
feature to a version control system for Smalltalk.

Tools presented in this section do not yet look like those
proposed above because a full implementation and evaluation of
the user interface is not yet part of this study. Nevertheless, the
tools presented here allow a small set of interactions with the
concept model through combining basic UI concepts already
present in our environment.

4.1. Concept-aware Smalltalk
To explore concepts as first-class citizens of our programming
system, we opt for the live programming environment (Rein
et al. 2018) Squeak/Smalltalk. In such an environment, meta-
objects are reified (e.g. as class objects and their method objects)
and the same meta-objects that are edited by programmers exist
at run-time. This is of great benefit to tool construction as there
is no distinction between edit-time and run-time objects and
representations and we do not need to construct a serialization
format to represent concepts in source code.

This ubiquitous model of an executable object graph can be
extended to carry conceptual data as Tag objects. Instead of
modifying the meta-object hierarchy of the environment directly,
we propose a less invasive implementation maintaining separate
data structures holding an index mapping program parts to tags
and vice versa which we call concept store.

Edit-oriented concept representation Since concepts should
follow approximately the granularity of code comments, we
require expression-level or token-level resolution.

While larger meta-objects like classes and methods persist
during the program’s life time, finer-grained meta-objects like
AST nodes transiently exist for compilation or syntax high-
lighting purposes and are frequently re-generated when needed.
Since program editing is still text-based on the lowest level, we
chose to associate concepts either with ranges of text within a
method or with an entire meta-object (method or class).

A text range requires certain maintenance when editing code,
as its extent might move, expand, or contract between versions.
There are two implementation strategies to track concept labels
across code edits: A diff-based approach comparing the new
code to the old version and computing the target location of the
concept labels; and a keystroke-based approach instrumenting
the editor itself and tracking the location of the tagged character
range on a fine-grained level. We decided to re-use existing
facilities in the text editor to track code locations through fine-
grained edits: Code editors support text attributes that can style
parts of the text or provide interactivity (e.g. click actions) on

them. Their position is continuously managed by the editor itself
the same way it manages the position of glyphs or words. This
allows us to retrieve concept tags from the concept store upon
loading a piece of source code, convert them into text attributes,
and read them back once programmers save and compile the
edited code. This makes for intuitive behavior, as newly inserted
text before or after the concept tag does not get included, but
typing new code inside a tagged range includes this code into
the concept (analogously to typing into formatted text in rich
text editors). Tagging code can be achieved via a context menu
and just adds a new text attribute for the selected text.

Any downstream recommender that operates on AST nodes
rather than text would only consider leaf nodes that intersect
with the programmer’s tagged ranges as belonging to the con-
cept. Especially in longer identifiers or strings, the capability to
assign sub-strings or sub-identifiers to concepts offers opportu-
nities to explain the code base at a much finer granularity than
code comments and helps with statistical inference of concepts
at sub-string or sub-identifier level.

Concept-aware Code Editors Text editors allowing source
code interaction have been extended to support concept assign-
ment in its context menu, similar to Figure 7. To improve access
to concepts, a bag-of-words heuristic is used to rank concepts
by their vocabulary overlap with the selection. Two menu items
are reserved for the most recently assigned concept, and the
creation of a new concept. If the selection overlaps with an
already assigned concept, this concept is present in the context
menu as well and marked as active - clicking it removes the
concept assignment. Syntax highlighting can be changed to con-
cept highlighting, a mode where code tagged with a concept is
typeset in the respective concept’s color. Clicking any identifier
in this mode opens the concept editor, from which navigation to
other program parts of the same concept is possible. Highlight-
ing concepts through color, however, made it hard to distinguish
concepts with similar colors and overlapping concept.

Concept Editor To manage concepts through the UI, an editor
which follows the multi-panel structure typical for Smalltalk
allows concept management. A preliminary version has been
implemented for this study, which is capable to list meta-objects
associated with each concept, recommendations to quickly add
meta-objects from the editor, and a list of methods that use (call
into) the concept. For a screenshot, see Figure 10.

Concept Browser The browser is the standard code editor in
Smalltalk and allows navigation by selecting class categories,
classes, method categories, and methods in that order. Our
variant limits the visibility of items when a browser is "scoped
to a concept", e.g., when clicking browse concept. This allows
faster navigation within a single concept. We plan to explore
other filtering strategies like fading out unrelated meta-objects,
putting them at the end of each list, or allowing to select concept
unions and intersections. For a screenshot, see Figure 11.

4.2. Changing a Program
Study subjects As an example, we aim to resolve an
open issue in a version control system in Squeak/Smalltalk:

First-class Concepts 9



Figure 10 Screenshot of a simple concept editor viewing
available concepts (1), items tagged with the selected concept
(2), items most similar to the concept (3), and relevant users
or clients of the concept (4).

Figure 11 Screenshot of a Smalltalk browser scoped to a
single concept. The browser allows to navigate categories (1),
classes (2), methods (3) and their source code (4) while only
items tagged with or containing the selected "Merge" concept
are visible.

Squot (Reschke et al. 2018)3, the Squeak Object Tracker, and
Squit, its Git backend. This project is well suited for a concept-
oriented approach as it consists of several abstraction layers
linking Smalltalk meta-objects to native Git structures and op-
erations, but several concerns cut across architectural layers
and abstractions use a different vocabulary than Git (to support
multiple version control backends).

Using the tools outlined above, we attempt to add a new
feature. As of now, merge conflicts cannot be resolved by
opening an editor and manually creating the merged version.

Switching to the concept perspective To add this enhance-
ment, we need to locate the merge concept. This is challenging
as it cross-cuts several architectural layers, including the UI (for
providing means to invoke the new merge mode and displaying
the editor), the generic version control abstraction of Squot, and
the specific implementation in Squit/Git.

We have previously annotated code relevant to merge func-
tionality. Figure 10 shows the concept editor in the state where
we manually added a few meta-objects and can now add ad-
ditional merging functionality based on the recommended list
below. A limitation of vocabulary-based recommenders be-
comes apparent as it recommends merge sort on arrays. At the
same time, the list of items that use the merge concept on the
right quickly suggests unit tests that allow us to understand the
concept by studying the test examples.

Browsing the concept opens the scoped concept browser
shown in Figure 11 and allows to focus on implementing the
feature. By doing so, we need to add a few more methods to
the concept which are currently unreachable in the filtered view.
Escaping into a non-filtered browser is as easy as clicking the
browse button.

4.3. Key Insights

Constructing short-cuts over selecting relevant slices The
most salient observation while changing a cross-cutting concern
was that modifying the program through a conceptual filter is a
good way to grow a concept and discover its actual extent after
starting with a few "seed items". With each new requirement im-
plemented using this workflow, programmers refine the concept
model, thus providing more and more short-cuts to understand
scattered concerns. We conclude that, while traditional cross-
cutting edits require programmers to ignore irrelevant parts or
constantly search for relevant parts (selective workflow), our
concept-oriented workflow motivates a constructive approach
where items of interest are added to the currently edited concep-
tual view, starting with an empty set.

Discovering tests By having an overview over methods and
classes which use (but do not constitute) a concept, it becomes
relatively easy to locate relevant unit tests. Alternatively, we
could have added the relevant tests directly to the concept. When
confronted with the choice whether test code is a user or a part
of the concept, programmers need to make sure they decide
consistently for all tests.

3 https://github.com/hpi-swa/Squot

10 Mattis, Beckmann, Rein, Hirschfeld

https://github.com/hpi-swa/Squot


Ambiguity of natural language Our simple word-based rec-
ommender is effective at suggesting ways to extend a concept,
but suffers from ambiguities as the confusion between a merge
in Git and a merge in the merge-sort algorithm illustrate. Hence,
we suggest to use a language modeling approach that considers
the semantic meaning of each word, or a statistical approach that
considers past interactions, changes, and project structure. The
latter would have identified merge sort as completely unrelated
part that never shared any edits, authors, or distribution units
(packages) with Squot.

Limitations of the Prototype As of now, we cannot share
and version-control our concept model and have neither used
more expressive tags nor distributional concepts. To collectively
maintain a concept model, a way to commit, diff, and merge
concept assignments is needed that should be as easy as version-
controlling code comments.

Furthermore, we found that the elements of the primary de-
composition still dominate navigation and concept management
as it is easier to recommend and tag whole meta-objects rather
than specific expressions or arguments inside methods, fields
of classes, and other program items that tend to grow and lose
cohesion as software evolves.

This finding appears to disagree with our hypothesis that
fine-grained source code annotation is needed, but might as
well be rooted in the program we were editing: We did neither
encounter exceptionally large methods where concepts were
entangled in a way that impedes program understanding, nor
were we unable to discern which part of a method contributes
to the concept we were interested in. Concepts as a way to slice
the dominant decomposition were still useful, and sub-method
granularity can be useful once long methods occur, which is
rare in a Smalltalk project.

5. Discussion and Outlook

5.1. Integration into Programming Environments
Limited applicability to traditional IDEs Our designs rely on
the existence of programing environments that go far beyond
traditional text editing and diff-/patch-based versioning and
assume the ground truth representation of the system is the
graph of fine-grained meta-objects rather than a set of text files.

Traditional text-based IDEs and workflows require serializa-
tion of the concept model, e.g. as (likely much less readable)
code comments or separate files, while mixed environments
like Smalltalk can benefit from extensions to their meta-object
model down to method granularity until we are confronted with
limited text-based concept maintenance like described in our
case study. Serialized or comment-embedded conceptual data is
always prone to becoming outdated or inconsistent when any
environment unaware of its meaning modifies the program’s
source code.

Fine-grained reification One limiting factor is the granularity
of the object model that represents the full program and its acces-
sibility to tool developers. With fully reified live-programming
systems (Rein et al. 2018) like Smalltalk in combination with
modern projectional editors (Beckmann et al. 2020; Voelter et al.

2014), these designs are easier to implement than in traditional
IDEs. In such an ideal setting, the smallest expressions can have
identity, which allows them to be tagged, tracked through the
program evolution, and re-used in novel compositional views
and editors.

Object-based distributed version control like Squot (Reschke
et al. 2018) and continuous integration4 have been shown to
work seamlessly on meta-object graphs and integrate with real-
world toolchains based on Git and popular CI services like
TravisCI or GitHub Actions. Implementing our designs would
add additional objects at a finer granularity level.

Live programming environments have the ability to make
live examples part of the programming workflow (Rauch et al.
2019; Niephaus et al. 2020) and turn them into first-class entities
in code editors. This offers novel opportunities to include them
into modularity constructs (both primary and secondary) as a
form of interactive documentation.

5.2. Navigability and Learnability
Dominant decompositions are not inherently an impediment
to program comprehension and maintainability: They provide
stable landmarks and help programmers create a mental map
while working with the code. However, this mental map might
only be accurate for specific areas, so any tacit knowledge
acquired by navigating one part is less useful in previously
unseen areas (e.g. legacy components, different teams, different
companies/vendors), and fast high-level navigation can become
harder.

Mental map stability and concepts Even if concepts are scat-
tered and entangled, programmers might eventually remember
where to find them or which term to search for in familiar parts
of the dominant decomposition. On-demand navigation along
conceptual relations and composable views that coherently dis-
play code of one concept run the risk of losing these landmarks.
Further research might be needed to determine whether pro-
grammers might "get lost" when viewing the system from the
perspective of its secondary structure or miss the big picture,
and which techniques (e.g. breadcrumb navigation or showing
sufficient primary context) alleviate this problem. A similar
problem is frequently observed in the C# language that allows
physical code files to exist independently of their namespace
hierarchy (Lilienthal 2019).

In our case study, we focused on filtering existing code
browsers, thus maintaining the (sparse) primary structure. This
way, getting disoriented was less likely but we did not fully
leverage the concept space. Instead of getting used to concep-
tual navigation, the tools were perceived as means to learn the
dominant decomposition. In light of these observations, we plan
to study in how far this effect is desirable or impedes program
comprehension, and which interface designs present alternative
conceptual views in such a way that using the dominant decom-
position does not feel like a necessary fall-back but just another
complementary perspective.

High-level navigability and desire paths Petricek (Petricek
2021) draws parallels between cities and software architecture.
4 SmalltalkCI: https://github.com/hpi-swa/smalltalkCI (retrieved 2021-04-26)

First-class Concepts 11

https://github.com/hpi-swa/smalltalkCI


Even in an imperfectly engineered part of a system, such as a
city district or program module, its inhabitants (experts) can
navigate efficiently, but for visitors it is important that movement
between districts is easy, e.g. through public transit, and certain
landmarks are present to orient themselves.

Applying these insights to our problem, a dominant decom-
position would correspond to the historical road network and
might be locally familiar to experts. Concepts can be used
to construct alternative, but equally valid perspectives on our
software analogously to public transport maps that omit roads
and are geometrically simplified, yet provide useful guidance to
outsiders, potential contributors, or "inhabitants of a different
district", e.g., experts from another team.

Consequently, we expect concepts to be especially useful for
such outsiders as a form of documentation close to the code, as
well as a way to communicate aspects of the system at a higher
level analogously to describing routes by pointing at a public
transport map.

An analysis by Cataldo et al. (Cataldo et al. 2009) shows
that sets of modules which are highly connected with each other
(analogously to a neighborhood in a city) exhibit lower defect
rates, i.e., experts know their "code neighborhood" and can
change it more effectively compared to changes that depend on
the cooperation with other neighborhoods. Concepts might help
mapping such cross-neighborhood dependencies explicitly, thus
supporting coordination efforts across remote code locations
and making implicit "units of work" explicit. Supported by a
(machine-learning backed) recommender with access to version
history and code authorship, concepts could reconstruct the
real boundaries of such neighborhoods which tend to match the
social network of their maintainers, according to Conway’s law,
rather than the legacy architecture.

Apart from high-level navigability, the urban planning
metaphor lends itself to describe another mechanism which
we plan on exploring through first-class concepts:

Desire paths are trails left by people that took the path of
least resistance instead of designated infrastructure (e.g. walk-
ing diagonally over a lawn between two paved ways) (Kohlstedt
2016). Equating the dominant decomposition with pre-existing
infrastructure, programming environments should leave similar
footprints of paths taken frequently but never represented ex-
plicitly. Such navigational data could serve as additional input
to recommender systems or statistical models inferring concept
allocation and serve as novel input alongside already persisted
repository data.

From both perspectives, concepts provide both a way to
"map" existing and "pave" new infrastructure when the historic
pathways have become inefficient for the purpose of maintaining
and extending a system.

5.3. Path to fully integrated lifecycle
We proposed to link lifecycle artifacts like build information,
issues, or history to the affected code as a reified concept. This
gives rise to fully integrate these artifacts into the program’s
meta-object graph. For example, issues would be a (cross-
cutting) meta-object linked to code and tools could treat them
in the same fashion as, e.g., a class or method with respect to

version control, navigation, and even debugging. URLs can
provide simple means to refer to lifecycle artifacts from the
programming environment, while the issue tracker or continuous
integration platform would have access to the code annotated
with a specific artifact once the annotated version is committed.

Extrapolating from there, concepts could replace other cur-
rently syntactic mechanisms, such as access modifiers (pub-
lic/private) or, in a more controversial proposal, (static) types,
when they are only used for correctness checks but are not
behaviorally significant.

6. Related Work

Tagging code The idea that multiple meta-objects can be
sorted into (cross-cutting) concepts has been explored before:

ConcernMapper (Robillard & Weigand-Warr 2005) and
FEAT (Robillard & Murphy 2003) are Eclipse plug-ins that use
a reified concept model allowing to link concerns to Java meta-
objects. They demonstrate that IDE features, e.g. navigation
and code search, can benefit from knowing which "concern"
the code belongs to and coherently display search results or
rank them if they fit the currently edited/viewed concern. These
"concerns" are effectively the first implementation of tag-like
concepts at a high level of granularity and make the Eclipse
programming environment partially concept-aware.

Similarly, UseCasePy (Hirschfeld et al. 2011) makes use
cases a first-class entity that enables tracing requirements to
an implementation via code annotations, effectively “tagging”
meta-objects with their use case. In this way, programmers can
make use of specific views on the source code that are centered
around use cases. Further, the authors propose a semi-automatic
manner to recover use case annotations from legacy code bases
by using trace data from acceptance tests – an approach also
feasible for concept discovery. In contrast to ConcernMapper
and our first-class concepts, these annotations are part of the
source code.

Extensional vs. intensional While first-class concepts are
primarily extensional, i.e., their extent is defined by enumerating
all links between code and concepts, there are approaches that
define concepts intensionally by expressing its characteristics
in a query language. Meta-objects are included automatically if
they match the query and the formality allows verification:

The Archface language (Ubayashi et al. 2010) can model
the correspondence between architectural elements and their
implementation using language concepts from aspect-oriented
programming. Archface supports multiple concurrent and cross-
cutting views on the system, similar to those we suggest for a
concept-annotated system. Its exactness offers the capability
to automatically verify architecture at the expense of ease of
change.

The intentional view model (Mens et al. 2002; Mens & Kel-
lens 2005) allows programmers to create views on software
that go beyond module boundaries. Through their use of a
logic query language, multiple views can be verified for con-
sistency, and programmers have the opportunity to model their
knowledge about a concept in said language.

12 Mattis, Beckmann, Rein, Hirschfeld



We propose a different trade-off by not requiring program-
mers to abstractly define the properties of their concept, but
annotating concrete code passages that belong to a concept.
Hence, our extensional approach is driven by examples rather
than rules, while generalization and scaling are delegated to
statistical models and recommender systems.

Cross-cutting secondary constructs CodeTalk (Steinert et
al. 2010) reifies conversational comments at meta-object level
and provides comprehensive tooling to access and manipulate
them. Cross-cutting Commentary (Hirschfeld et al. 2018) solves
the problem that comments are often tied to individual code
locations and thus scatter when they explain a cross-cutting con-
cern. By designing meta-objects that tie together cross-cutting
comments and tools to interact with them, they support sys-
tem exploration from a "secondary" viewpoint. An integration
of Commentary with first-class concepts can be the basis for
powerful notebook-like views on the program similar to those
illustrated in Figure 5.

Code Bubbles (Bragdon et al. 2010) are a style of program-
ming environments that make use of spatial secondary nota-
tion to place and group related sections of code on a “canvas”
without imposing a strict dominant decomposition. Although
concepts are not explicitly reified, conceptual relatedness can
be expressed by proximity in two dimensions.

Conclusion
In this exploratory work, we illustrated first-class concepts as
a way to express multiple competing conceptual perspectives
on a system without the need to refactor the underlying module
structure. Analogously to how a public transit map of a city
serves different stakeholders than the historical road network,
we see conceptual perspectives as a way to make large software
systems more navigable for experts and non-experts alike by
representing how important parts are connected outside their
dominant decomposition.

We discussed requirements for the model that supports link-
ing concepts to code with varying degrees of granularity, ranging
from sub-expression level to large modularity constructs. We
extended the notion of concepts to include both discrete phe-
nomena (like patterns and cross-cutting concerns) as well as
implicit concepts associated with uncertainty that can be man-
aged with the help of statistical methods. These concepts can
originate internally from the desire to structure and explain the
system as well as from external lifecycle tools, thus offering
diverse domain-oriented and technical perspectives to view the
system.

Building on these ideas, we opened up the design space for
tools that operate on the conceptual architecture and provide
better ways to assist program comprehension, documentation,
maintenance, and exploratory programming in architecturally
convoluted systems. Our case study suggests that concept-aware
tooling can provide a more focused programming experience,
while simple recommender systems drastically accelerate con-
cept allocation. Maintaining the concept model while simulta-
neously changing the system is a surprisingly effective way at
discovering and persisting architectural connections in a way

that can make future changes to the same concept easier. While
our case study used only a small subset of the design space,
recent developments in machine learning, projectional editors,
and live programming environments render a more capable im-
plementation and their evaluation feasible.

We identified user interactions that benefit from recom-
mender systems where we see novel research opportunities
in the intersection of programming experience and ML. Of par-
ticular interest are ways to convert the continuous stream of user
input and navigation data into recommendations to co-maintain
first-class concepts and the underlying architecture, distributed
maintenance of an ML-assisted concept model among multiple
contributors, "explainable AI" that makes its reasoning about a
program’s structure accessible to programmers, and how such
systems interact with live programming environments where
run-time data is omnipresent and users expect immediate feed-
back while working on running programs.

Acknowledgments
This research has been supported by the Federal Ministry of Ed-
ucation and Research of Germany (BMBF) in the KI-LAB-ITSE
framework (project number 01IS19066) and the HPI Research
School for Service-Oriented Systems Engineering.

References
Allamanis, M., Barr, E. T., Bird, C., & Sutton, C. (2014, Novem-

ber). Learning natural coding conventions. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (pp. 281–293). New
York, NY, USA: Association for Computing Machinery. doi:
10.1145/2635868.2635883

Beckmann, T., Ramson, S., Rein, P., & Hirschfeld, R. (2020,
March). Visual design for a tree-oriented projectional ed-
itor. In Conference Companion of the 4th International
Conference on Art, Science, and Engineering of Program-
ming (pp. 113–119). New York, NY, USA: ACM. doi:
10.1145/3397537.3397560

Biggerstaff, T., Mitbander, B., & Webster, D. (1993, May). The
concept assignment problem in program understanding. In
[1993] Proceedings Working Conference on Reverse Engi-
neering (pp. 27–43). doi: 10.1109/WCRE.1993.287781

Blackwell, A., & Green, T. (2003). Notational systems–the
cognitive dimensions of notations framework.

Bragdon, A., Zeleznik, R., Reiss, S. P., Karumuri, S., Cheung,
W., Kaplan, J., . . . LaViola, J. J. (2010, April). Code bubbles:
A working set-based interface for code understanding and
maintenance. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (pp. 2503–2512). New
York, NY, USA: ACM. doi: 10.1145/1753326.1753706

Cataldo, M., Mockus, A., Roberts, J. A., & Herbsleb, J. D.
(2009, November). Software Dependencies, Work Depen-
dencies, and Their Impact on Failures. IEEE Transactions
on Software Engineering, 35(6), 864–878. doi: 10.1109/
TSE.2009.42

Childs, B., & Sametinger, J. (1996). Literate programming
and documentation reuse. In Proceedings of fourth ieee

First-class Concepts 13



international conference on software reuse (p. 205-214). doi:
10.1109/ICSR.1996.496128

Garcia, J., Ivkovic, I., & Medvidovic, N. (2013, November). A
comparative analysis of software architecture recovery tech-
niques. In 2013 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE) (pp. 486–496).
doi: 10.1109/ASE.2013.6693106

Gethers, M., Savage, T., Di Penta, M., Oliveto, R., Poshyvanyk,
D., & De Lucia, A. (2011). CodeTopics: Which Topic Am
I Coding Now? In Proceedings of the 33rd International
Conference on Software Engineering (pp. 1034–1036). New
York, NY, USA: ACM. doi: 10.1145/1985793.1985988

Herrmann, S. (2003). Object Teams: Improving Modularity
for Crosscutting Collaborations. In M. Aksit, M. Mezini,
& R. Unland (Eds.), Objects, Components, Architectures,
Services, and Applications for a Networked World (pp. 248–
264). Berlin, Heidelberg: Springer. doi: 10.1007/3-540
-36557-5_19

Hirschfeld, R., Costanza, P., & Nierstrasz, O. (2008). Context-
Oriented Programming. Journal of Object Technology,
March-April 2008, ETH Zurich, 7(3), 125–151. doi: 10.5381/
jot.2008.7.3.a4

Hirschfeld, R., Dürschmid, T., Rein, P., & Taeumel, M. (2018,
July). Cross-cutting Commentary: Narratives for Multi-party
Mechanisms and Concerns. In Proceedings of the 10th In-
ternational Workshop on Context-Oriented Programming:
Advanced Modularity for Run-time Composition (pp. 39–47).
New York, NY, USA: ACM. doi: 10.1145/3242921.3242927

Hirschfeld, R., Perscheid, M., & Haupt, M. (2011). Explicit
use-case representation in object-oriented programming lan-
guages. In Proceedings of the 7th symposium on dynamic
languages (p. 51–60). New York, NY, USA: ACM. Re-
trieved from https://doi.org/10.1145/2047849.2047856 doi:
10.1145/2047849.2047856

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.-M., & Irwin, J. (1997). Aspect-oriented pro-
gramming. In M. Akşit & S. Matsuoka (Eds.), ECOOP’97 —
Object-Oriented Programming (pp. 220–242). Berlin, Hei-
delberg: Springer. doi: 10.1007/BFb0053381

Kohlstedt, K. (2016). Least resistance: How desire paths
can lead to better design. https://99percentinvisible.org/
article/least-resistance-desire-paths-can-lead-better-design/
(Retrieved 2021-09-14).

Lilienthal, C. (2019). Sustainable Software Architecture: Ana-
lyze and Reduce Technical Debt. dpunkt.verlag.

Linstead, E., Rigor, P., Bajracharya, S., Lopes, C., & Baldi,
P. (2007). Mining concepts from code with probabilis-
tic topic models. In Proceedings of the Twenty-second
IEEE/ACM International Conference on Automated Software
Engineering (pp. 461–464). Atlanta, GA, USA: ACM. doi:
10.1145/1321631.1321709

Lozano, Á., Kellens, A., Mens, K., & Arevalo, G. (2017, April).
MEntoR: Mining entities to rules.

Lungu, M., Lanza, M., & Nierstrasz, O. (2014, January). Evo-
lutionary and collaborative software architecture recovery
with Softwarenaut. Science of Computer Programming, 79,
204–223. doi: 10.1016/j.scico.2012.04.007

Mattis, T. (2017). Concept-aware Live Programming: Inte-
grating Topic Models for Program Comprehension into Live
Programming Environments. In Companion to the First In-
ternational Conference on the Art, Science and Engineering
of Programming (pp. 36:1–36:2). Brussels, Belgium: ACM.
doi: 10.1145/3079368.3079369

Mens, K. (2001). Multiple cross-cutting architectural views..
Mens, K., & Kellens, A. (2005). Towards a framework for

testing structural source-code regularities. In Proceedings
of the 21st ieee international conference on software mainte-
nance (p. 679–682). USA: IEEE Computer Society. Re-
trieved from https://doi.org/10.1109/ICSM.2005.93 doi:
10.1109/ICSM.2005.93

Mens, K., Mens, T., & Wermelinger, M. (2002). Maintaining
software through intentional source-code views. In Proceed-
ings of the 14th international conference on software engi-
neering and knowledge engineering (p. 289–296). New York,
NY, USA: ACM. Retrieved from https://doi.org/10.1145/
568760.568812 doi: 10.1145/568760.568812

Mens, K., Michiels, I., & Wuyts, R. (2001). Supporting software
development through declaratively codified programming
patterns. In Journal on expert systems with applications (pp.
236–243).

Niephaus, F., Rein, P., Edding, J., Hering, J., König, B., Opahle,
K., . . . Hirschfeld, R. (2020, November). Example-based live
programming for everyone: Building language-agnostic tools
for live programming with LSP and GraalVM. In Proceedings
of the 2020 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming
and Software (pp. 1–17). New York, NY, USA: ACM. doi:
10.1145/3426428.3426919

Petricek, T. (2021). Programming as architecture, design and
urban planning. In Onward! 2021 (to appear).

Rauch, D., Rein, P., Ramson, S., Lincke, J., & Hirschfeld, R.
(2019, February). Babylonian-style Programming. The Art,
Science, and Engineering of Programming, 3(3), 9:1-9:39.
doi: 10.22152/programming-journal.org/2019/3/9

Rein, P., Ramson, S., Lincke, J., Hirschfeld, R., & Pape, T.
(2018, July). Exploratory and live, programming and coding.
The Art, Science, and Engineering of Programming, 3(1),
1:1-1:33. doi: 10.22152/programming-journal.org/2019/3/1

Reschke, J., Taeumel, M., Pape, T., Niephaus, F., & Hirschfeld,
R. (2018). Towards version control in object-based systems.
Universitätsverlag Potsdam.

Robillard, M. P., & Murphy, G. (2003, May). FEAT a tool for
locating, describing, and analyzing concerns in source code.
In 25th International Conference on Software Engineering,
2003. Proceedings. (pp. 822–823). doi: 10.1109/ICSE.2003
.1201304

Robillard, M. P., & Weigand-Warr, F. (2005, October). Concern-
Mapper: Simple view-based separation of scattered concerns.
In Proceedings of the 2005 OOPSLA workshop on Eclipse
technology eXchange (pp. 65–69). New York, NY, USA:
ACM. doi: 10.1145/1117696.1117710

Saeidi, A. M., Hage, J., Khadka, R., & Jansen, S. (2015). IT-
MViz: Interactive topic modeling for source code analysis. In
Proceedings of the 2015 IEEE 23rd International Conference

14 Mattis, Beckmann, Rein, Hirschfeld

https://doi.org/10.1145/2047849.2047856
https://99percentinvisible.org/article/least-resistance-desire-paths-can-lead-better-design/
https://99percentinvisible.org/article/least-resistance-desire-paths-can-lead-better-design/
https://doi.org/10.1109/ICSM.2005.93
https://doi.org/10.1145/568760.568812
https://doi.org/10.1145/568760.568812


on Program Comprehension (pp. 295–298). Piscataway, NJ,
USA: IEEE Press.

Schärli, N., Ducasse, S., Nierstrasz, O., & Black, A. P. (2003).
Traits: Composable units of behaviour. In L. Cardelli
(Ed.), ECOOP 2003 – Object-Oriented Programming (pp.
248–274). Berlin, Heidelberg: Springer. doi: 10.1007/
978-3-540-45070-2_12

Steinert, B., Taeumel, M., Lincke, J., Pape, T., & Hirschfeld, R.
(2010, January). CodeTalk: Conversations about code. In
2010 Eighth International Conference on Creating, Connect-
ing and Collaborating through Computing (pp. 11–18). doi:
10.1109/C5.2010.11

Tarr, P., Ossher, H., Harrison, W., & Sutton, S. (1999). N degrees
of separation: multi-dimensional separation of concerns. In
Proceedings of the 1999 international conference on software
engineering (ieee cat. no.99cb37002) (p. 107-119).

Ubayashi, N., Nomura, J., & Tamai, T. (2010, May). Archface:
A contract place where architectural design and code meet
together. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1 (pp. 75–84).
New York, NY, USA: ACM. doi: 10.1145/1806799.1806815

Voelter, M., Siegmund, J., Berger, T., & Kolb, B. (2014). To-
wards user-friendly projectional editors. In B. Combemale,
D. J. Pearce, O. Barais, & J. J. Vinju (Eds.), Software lan-
guage engineering (pp. 41–61). Cham: Springer International
Publishing. doi: 10.1007/978-3-319-11245-9_3

Wilde, N., & Scully, M. C. (1995). Software reconnaissance:
Mapping program features to code. Journal of Software
Maintenance: Research and Practice, 7(1), 49–62. doi: 10
.1002/smr.4360070105

About the authors
Toni Mattis is a PhD student in the Software Architecture Group
of the Hasso Plattner Institute at the University of Potsdam. His
research interests are software modularity, machine learning for
live programming environments, and code repository mining.
You can contact him at toni.mattis@hpi.uni-potsdam.de.

Tom Beckmann is a PhD student in the Software Architecture
Group of the Hasso Plattner Institute at the University of Pots-
dam. His research interests include visual languages, projec-
tional editors, and live programming environments. You can
contact him at tom.beckmann@hpi.uni-potsdam.de.

Patrick Rein is a PhD student in the Software Architecture
Group of the Hasso Plattner Institute at the University of Pots-
dam. His research interests include live and exploratory pro-
gramming systems as well as personal information manage-
ment systems. You can contact him at patrick.rein@hpi.uni-
potsdam.de.

Robert Hirschfeld leads the Software Architecture Group at
the Hasso Plattner Institute at the University of Potsdam. His
research interests include dynamic programming languages,
development tools, and runtime environments to make live, ex-
ploratory programming more approachable. Hirschfeld received

a PhD in computer science from Technische Universität Ilmenau.
You can contact him at robert.hirschfeld@hpi.uni-potsdam.de
or visit https://hpi.de/swa.

First-class Concepts 15

mailto:toni.mattis@hpi.uni-potsdam.de?subject=Your paper "First-Class Concepts: Reified Architectural Knowledge Beyond Dominant Decompositions"
mailto:tom.beckmann@hpi.uni-potsdam.de?subject=Your paper "First-Class Concepts: Reified Architectural Knowledge Beyond Dominant Decompositions"
mailto:patrick.rein@hpi.uni-potsdam.de?subject=Your paper "First-Class Concepts: Reified Architectural Knowledge Beyond Dominant Decompositions"
mailto:patrick.rein@hpi.uni-potsdam.de?subject=Your paper "First-Class Concepts: Reified Architectural Knowledge Beyond Dominant Decompositions"
mailto:robert.hirschfeld@hpi.uni-potsdam.de?subject=Your paper "First-Class Concepts: Reified Architectural Knowledge Beyond Dominant Decompositions"
https://hpi.de/swa

