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ABSTRACT Context-oriented Programming (COP) first appeared in 2005 as a way to enable the dynamic adaptation of software
systems to specific situations in their surrounding environment. Multiple COP languages have since been proposed, and used
in numerous adaptive systems areas, enabling dynamic swapping and composition of adaptive behavior at run-time. However,
until recently, all approaches relied on the offline pre-definition of adaptive behavior, limiting the adaptations to only those
foreseen at design time. Auto-COP recently emerged as an approach to shift adaptation definition to run-time, if and when the
need for adaptations to new contexts arises, by utilizing reinforcement learning techniques. In this paper, we use Auto-COP
as a starting point to discuss the research path to achieve a completely dynamic adaptive system. We discuss the potential
benefits of such an automated AI-based approach, present several application domain categories where dynamic adaptation
definition would enable adaptivity breakthroughs, and discuss open challenges in developing such a fully automated approach.
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1. Introduction
Context-oriented Programming (COP) (Appeltauer et al. 2009;
Salvaneschi et al. 2012) is a programming language technique
designed to enable dynamic adaptations of software systems to
their surrounding execution environment. COP has been envis-
aged to "bring a similar degree of dynamicity to the notion of be-
havioral variations that object-oriented programming brought
to ad-hoc polymorphism" where one of its essential features is
"dynamic representation of layers and their scoped activation
and deactivation in arbitrary places of the code" (Hirschfeld et
al. 2008).

Since its appearance in 2005 the work on COP has focused in
proposing new programming languages and language-level ab-
stractions for the definition of modular adaptations with a clean
separation of concerns. The proposed abstractions differ across
COP languages, but generally consist of a way to represent the
information gathered from the environment (i.e., contexts), the
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specialized behavior to exhibit in a particular context (i.e., be-
havioral variations), and the means to activate (i.e., incorporate
behavioral variations with the running system) and deactivate
(i.e., withdraw behavioral variations from the system) contexts.

COP has been positioned as a suitable paradigm for complex
self-adaptive systems (Cardozo & Dusparic 2020a; Cardozo
& Mens 2022) and has been applied in the domains of pedes-
trian navigation systems, home automation (González et al.
2011), and autonomic storage (Ghezzi et al. 2010). Recent
work has explored COP extensions to enable the specification
and management of interactions between multiple remote enti-
ties (Fandiño de la Hoz et al. 2019), and to dynamically manage
interactions (e.g., conflicts or composition) between multiple
context-triggered adaptations (Cardozo et al. 2017; Cardozo &
Dusparic 2020b).

However, while the behavior of COP-based systems is effec-
tively adapted at run-time, these adaptations are not taken from
the surrounding execution environment, but rather are prede-
fined by developers of COP systems (Cardozo & Clarke 2015).
As a consequence, despite the original vision, COP-based sys-
tem are not yet fully dynamic or adaptive to their context, but
constrained to adapt to the situations foreseen at design time.

In parallel to recent developments in COP, advancements in
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a range of Artificial Intelligence (AI), and in particular Machine
Learning (ML) techniques, have given rise to increasing utiliza-
tion of ML techniques in programming language development
and software engineering, for example, source code genera-
tion, bug fixing, and program synthesis (Watson et al. 2020).
Reinforcement Learning (RL), as one of such ML techniques,
enables the adaptation of a system at run time, based on the
information gathered from the environment (i.e., the reward
obtained for achieving the system’s goal). Similar to the case
of COP, in RL the adaptations are restricted to the predefined
set of actions of the learning agent. Moreover, the definition
of such adaptations lack modularity and hinders the system’s
maintenance and evolution.

To counter the aforementioned problems, and to reuse the
adaptation models from both COP and ML, the Auto-COP (Car-
dozo & Dusparic 2021) framework has been recently proposed,
which uses ML to detect, learn, and incorporate adaptations (i.e.,
contexts and their associated behavioral variations) into the sys-
tem at run-time. Auto-COP represents the first proposal/proof
of concept for the possibility to achieve full dynamic behavior
through the use of AI techniques.

In this paper, we position a research path to achieve fully
dynamic adaptations as envisioned by COP, using the Auto-
COP framework as a starting point to achieve such goal. Auto-
COP aims to achieve full run-time adaptivity, by using RL op-
tions (Stolle & Precup 2002) to monitor the system surrounding
environment, continuously extracting the current system state
from a set of sensed or monitored variables, and by lifting such
state as possible execution contexts. Similarly, Auto-COP as-
sociates sequences of actions arising at run-time to a particular
state and lifts them as the behavioral variation associated with
the detected context. With these two components extracted at
run-time, we are able to effectively adapt the system behavior
without any prior knowledge of specific situations.

In the rest of this paper we first recap the main features of
Auto-COP, then propose potential novel applications that could
be enabled by using full run-time adaptation in COP. Finally,
we present challenges and research questions associated with
the development of a fully automated and dynamic approach,
in the context of further development of Auto-COP, as well as
wider use of ML to increase run-time adaptivity of self-adaptive
systems.

2. Auto-COP
Auto-COP (Cardozo & Dusparic 2021) is a new framework

proposed to tackle the problem of adapting software systems to
the dynamic situations of its surrounding environment. As the
surrounding system environment changes, the system’s require-
ments and observed behavior should change as well. Therefore,
we must be able to incorporate unannounced changes to un-
known situations. To do so, we identify four characteristics the
system should exhibit:

(C1) Must interact with users or have autonomous agents to take
decisions about the actions to take for different run-time
situations

(C2) Must have a defined goal, and the means to monitor the
system actually moves towards such a goal

(C3) Must have a finite set of states

(C4) Must have a finite set of actions

If these four characteristics are satisfied by a software sys-
tem, then we can use Auto-COP to generate and automate adap-
tive behavior for specific run-time situations dynamically. The
Auto-COP framework is defined by the process and components
depicted in Figure 1.

As an example of the type of systems targeted with Auto-
COP, let us take a warehouse delivery system. In our example,
a delivery robot moves warehouse goods from their storage
location (expressed as a two dimensional grid) to the desig-
nated drop-off point in the warehouse. Expressed using our
proposed requirements we see that: (Characteristic (C2)) the
goal of the robot is to transport goods to the designated location,
(Characteristic (C3)) the system state is captured by the grid
representing the warehouse, the state of the robot (i.e., wether
is currently moving an object), and (Characteristic (C4)) the
set of actions that the robot executes includes moving in the
direction of any of the four cardinal points, picking up an object
and dropping-off and object. Finally, Characteristic (C1) is
present in the system, as the warehouse robot can be controlled
by human operators or as an autonomous agent.

The Auto-COP process begins by first monitoring relevant
variables of the system’s surrounding execution environment
to capture specific system states (possible from Characteris-
tic (C2)). These states are sensed information from the envi-
ronment or monitored system variables that are captured dy-
namically. In Figure 1, as part of the same monitoring process,
together with every state, the system adaptation engine continu-
ously monitors the traces of executed actions, captured by the
System primitive actions component in Figure 1 (possible from
Requirements (C3) and (C4)). The captured states and actions
in the process are shown as the environment component in the
rightmost part of Figure 1, using a generic set of captured state -
action pairs. Note that the captured state can refer to a single
sensed variable or to a combination of variables, as required
to decide on the actions to take to satisfy the system goal. For
example, in the warehouse system, the state can be represented
by the current position of the robot and whether its carrying
an object or not. The actions correspond to the specific robot
movements that the robot can take from the given state (e.g.,
move north).

The second step in the process, depicted as the Adaptation
Engine in Figure 1 is to extract contexts and behavioral varia-
tions from the captured execution traces. To do so, Auto-COP
implements a technique based on RL options (Stolle & Precup
2002). RL options, unlike basic RL which learns a single action
to execute in each state, focuses on observing sequences of
actions that often repeat in the same order during the execution;
those learnt sequences are called options and are executed in-
stead of individual actions when a state in which they’re suitable
for execution is observed. For example, one such sequence in
Figure 1 is {Action1, Action2, Action3} executed starting from
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Figure 1 Adaptation generation process using Auto-COP

State1. To learn these sequences, Auto-COP considers all possi-
ble options (action sequences) observed in execution traces, and
measures the progress of each of them towards reaching the sys-
tem goal (possible from Characteristic (C2)), using RL rewards.
For example, in our warehouse system, if taking an action from
a state takes the robot closer to the goal (of delivering and ob-
ject), then it obtains a large reward. If the action does not take
the robot closer to the goal, then the reward would be zero, or
negative. For RL options, the reward achieved by the option un-
der consideration, is the sum of individual action rewards within
the sequence. Each action sequence is then mapped to a particu-
lar state, the starting state of the action sequence. In Auto-COP,
this state is extracted as a particular context object. Then, the
option with the largest reward is used as the action sequence to
extract into the behavioral variation associated with the context.
For further details of the process, and the algorithm listing, we
refer the reader to Cardozo & Dusparic (2021). Note that Auto-
COP is agnostic to the source of actions, i.e., it behaves it same
regardless whether the action source is a user interacting with
the system (e.g., executing an action UserAction4 in Figure 1),
an autonomous agent, or a sequence of predefined actions for
specific situations (possible from Characteristic (C1)).

The final step in the process, the Adaptation generator com-
ponent part of the Adaptation Engine in Figure 1, is to extract
the options with the highest reward at a given state as full be-
havioral adaptations. The effect of this process is that as the
system executes further, when a particular state extracted as a
context is sensed, we can now proceed with the activation of the
context, making its associated behavioral variations available in
the system. In consequence, this will trigger the execution of
the generated adaptation (i.e., the action sequence defined by
the RL option). Once the state is no longer sensed, the context
is deactivated and the base behavior is restored. In our example,
the behavior of the system could adapt the warehouse robot to
autonomously take an object from its storage location to the de-
livery point, without requiring any user intervention, or decision

making from an autonomous agent.
In such a way, Auto-COP-based systems can adapt to a

changing environment without requiring the upfront definition
of adaptations and their associated situations, nor requiring
user interventions in order to introduce new adaptive behavior.
Adaptations are learned at run-time, but unlike pure ML-based
systems, it enables run-time adaptation while retaining the mod-
ularity aspects offered by COP.

3. Application Scenarios for Generated Adap-
tations

Based on the aforementioned requiremetns and use-cases ex-
plored for Auto-COP, we propose different application domains
in which run-time adaptivity requirements match the proposed
capabilities of Auto-COP, and therefore could benefit from
using Auto-COP to automate their behavior to unknown envi-
ronment conditions.

Self-healing systems
Self-healing systems (Ghosh et al. 2007) are able to au-
tonomously detect faults in their execution and recover from
them. These approaches use diagnosis analysis (e.g., root cause
analysis) to identify the cause of errors, and to determine the
execution points (usually specific states in which failures can
occur (C3)) in which a sequence of recovery actions (C4), nor-
mally pre-defined by developers, can be initiated to ensure
error-free continuation of the running system (C2). The be-
havior of self-healing systems is a good complement to our
proposed approach. Generated adaptations can be seen as se-
quences of recovery actions and root causes of the failure can be
extracted as contexts. Using Auto-COP, self-healing systems
can become context-aware and able to autonomously perform
recovery actions to disruptive behavior not foreseen at design
time. Adaptations, i.e., sequences of recovery actions, can be
learned from corrective behavior observations at run time (e.g.,
those executed by a user or administrator (C1)). This would
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result in fully dynamic and smart self-healing software systems,
increasing the tolerance/resiliency of complex software systems
to unanticipated run-time disruptions. Such behavior, would be
beneficial, for example, to add corrective behavior to reactive
and distributed systems.

Lively systems
Lively systems are those that do not stop their execution in
face of errors, modifications, or updates (e.g., the Squeak/S-
malltalk system (Ingalls et al. 1997), Lively Kernel (Ingalls
et al. 2008)). The objective of such systems is to be highly
adaptable (C2); therefore all system entities can be modified,
reused, and composed, even for purposes not intended originally
(C1). Modifications in lively systems follow the idea behind
Auto-COP in which the changes are unknown beforehand, and
the complete system execution must adapt to the new conditions.
As such, using Auto-COP, the system state in which changes
take place can be extracted as contexts (C3), and the sequence
of changes as the associated behavioral variations (C4). In this
way, we can automate the required changes for any system en-
tity. Moreover, with the automation of changes, we can revert
changes according to the system state autonomously, offering
even more flexibility and possible compositions between the
system entities.

Autonomous service composition
In service composition, interaction between service compo-
nents is prescribed by dedicated models or predefined hook-
functions ((C4) and (C3)). However, with the advent of IoT
systems where different service consumers and providers are
available in the environment, and they can appear and disap-
pear unannounced (Ariza et al. 2021), building such models is
not straightforward. Previously unknown service components
should be able to interact spontaneously with each other if their
input and output interfaces correspond (Cardozo 2016) (C2).
Interaction between components could be managed online by
a user, but could also emerge from components in the environ-
ment querying their interfaces (C1). Once a match is found
the corresponding link between the components is established.
Such dynamic environments are another application area for
Auto-COP. In this case, we could extract the available service
components currently available in the environment and their
interfaces as the context, and adapt the composition mechanism
as the sequence of actions required to link the components. This
can result in a fully automated emergence of services in a highly
dynamic and unknown environment.

4. Open Challenges in Automating Adaptations
While Auto-COP makes a substantial step towards generating
adaptations dynamically and removing the need for their explicit
manual definition, multiple open research issues need to be
addressed before fully automated adaptations can be achieved.
We discuss three main challenges here.

Fully Automated Adaptation Engine
Using AI to generate adaptations in general, and specifically us-
ing RL in the case of Auto-COP, if not fully automated, comes

with the risk of removing the need for manual specifications
of adaptations only for it to be replaced by the need for man-
ual specifications of AI processes generating those automated
adaptations. Currently, in Auto-COP, this process is only semi-
automated –that is, only parts of the RL process are generic to
all Auto-COP applications, while parts have to be tailored to
each particular implementation, by an experienced RL devel-
oper. Each RL process relies on specifying four main constructs:
states, actions, rewards, and learning hyperparameters (e.g.,
learning rate). In Auto-COP, states and actions are extracted
from the execution traces of the underlying adaptive system (as
illustrated in Figure 1) and can therefore be generated automat-
ically. However, unless the underlying adaptive system also
uses RL to learn the original adaptations, rewards (based on
the goals of underlying adaptive system), and hyperparameters
(based on the characteristics of the environment in which system
operates) these would need to be specified manually. To auto-
mate this process, we propose that COP-style languages need
to be enriched with abstractions that enable declarative-style
specifications of systems’ high level goals. Details about the RL
process, such as parameter selection or sensor discovery, should
be, not only separated from the application code, but ideally
also hidden away from the developer. This will enable devel-
opment of COP systems without requiring developers to have
knowledge of particular ML techniques. Additionally, the sys-
tem should be capable of integrating new sensors, data sources,
atomic actions and goals at run-time. Some of the early work
in this area enables dynamically generating state space repre-
sentations (Guériau et al. 2019), and learning reward functions
rather than specifying them (Edwards & Isbell Jr. 2019). This
needs to be adapted and integrated with Auto-COP to achieve
full automation.

Providing Behavior Guarantees
One of the main open challenges in adaptive systems that utilize
ML is the difficulty of providing behavioral guarantees, not
just in terms of convergence to optimality, but more crucially
guaranteeing that the system will not significantly deviate from
the expected safe behavior. This challenge is present in any pro-
gramming language utilizing ML-generated code, as it requires
testing and verification of yet unwritten code. Research on
theoretical guarantees of ML implementations is in its infancy,
with examples addressing e.g., SMT solvers for verifying deep
neural networks (Katz et al. 2017), and formal verification of
RL (Fulton & Platzer 2018)). Significant research is needed in
this area addressing a wider variety of ML techniques to ensure
consistency of ML-generated adaptations.

However, additional issues in providing behavior guarantees
using Auto-COP-based systems arises from the use of RL op-
tions (i.e., fixed sequences of actions) to encapsulate adaptations.
Once learned, such sequences are designed to be executed fully
and uninterrupted. In more complex systems, where multiple
adaptations are executed simultaneously affecting different parts
of the system, the potential for a conflict during the execution
of action sequences increases. Currently, in self-adaptive sys-
tems with manual adaptations, checks for such conflicts are
performed at design-time; in Auto-COP, conflicts would need
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to be detected and resolved automatically at run-time after adap-
tations are generated (such as Cardozo & Dusparic (2020b)),
adding an additional layer of complexity to the learning process.

Impact on Development and Maintenance Cost

While learning adaptations instead of pre-specifying them can
reduce development complexity and effort, as well as increase
the run-time adaptability of the system, the use of ML to gener-
ate adaptations could increase long-term software maintenance
cost (Sculley et al. 2014). These issues arise from the tight cou-
pling of ML code and external data sources, and feedback loops
from the environment; changes in the external world might
make models behave unexpectedly and require continuous run-
time monitoring. ML development is prone to a number of
identified anti-patterns, such as excessive glue code and entan-
gled handling of multiple data streams, that adaptive systems
developers would need to be aware of and avoid. Similarly to
the challenge of fully automating adaptations, we propose that
COP languages need to be enriched to specifically cater for ML
constructs, to retain the modularity of the underlying adaptive
system, not just to enable Auto-COP integration, but to tackle
increasing proliferation of use of ML in all aspects of adaptive
system development.

5. Conclusion

Context-oriented Programming (COP) has proved effective in
enabling run-time adaptation of software systems to their sur-
rounding execution environment in a modular way. However,
the adaptation of software systems using COP techniques is
not fully dynamic, as the system is only able to adapt to those
situations previously foreseen by the system developers at de-
sign time. In parallel, Reinforcement Learning (RL) techniques
enable systems to autonomously learn specific actions, or se-
quences of actions to optimize the system behavior from a given
state. However, these techniques lack modularity, hindering the
maintainability and evolution of RL-based systems.

To achieve true run-time adaptation, automatic generation
of adaptations is required. In this paper, we use a recent pro-
posal to achieve such adaptation, named Auto-COP, to present
a discussion into the chatachteristics of the underlying systems’
kind suitable for automated adaptation generation. We further
present three promising application scenarios that would benefit
from fully automated adaptation, and discussed the main open
research challenges. These challenges constitute the roadmap
and research agenda to foster both COP and RL, for dynamic
and autonomous adaptations in general, as well as the further
development of Auto-COP.
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