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ABSTRACT Memory safety checking seeks to protect programs from a wide spectrum of software problems related to memory
access and management, such as using unallocated or uninitialized buffers. Despite decades of research, it remains an active
and fruitful research topic, as issues of scalability and adoption continue to present open challenges. A popular approach to
overcome these obstacles is to rely on type checking. Types are arguably one of the most scalable techniques to reason about
a program’s structural properties. They also offer a convenient tool to impose restrictions on source code, either to prohibit
undesirable behaviors or to facilitate other analyses.
Within the plethora of type systems that have been proposed to combat memory bugs, one recurrent trend is to leverage
uniqueness and/or immutability to limit the impact of mutation, to support local reasoning. Unfortunately, bringing these
properties to existing languages is often met with a deterring engineering effort. Unlike many other features and mechanisms,
these are difficult to encode within a host language via simple syntactic extensions or clever meta-programming. Instead, they
require a deeper understanding of the program’s semantics, which can only be obtained through preliminary analysis.
This paper presents results in our effort to address this difficulty. We introduce Fuel, a compiler framework designed to guarantee
uniqueness and immutability properties in arbitrary programs with explicit memory management. Fuel is centered around a
source and platform agnostic low-level intermediate representation, equipped with a capability-based type system, which can
be targeted by compilers for higher level languages. It is able to guarantee freedom from invalid dereference and duplicate
deallocations, and offers partial support to detect memory leaks. It also advocates for the use of dynamic checks to recover
static type assumptions in places where static reasoning is either impractical or impossible. We present Fuel informally through
a short series of examples and formalize a subset of its intermediate language.
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1. Introduction
Memory bugs (Szekeres et al. 2014) have plagued software
development since Fortran proposed sharing data structures
with the COMMON block. Not even high-level programming
languages are immune to the curse, as memory initialization
and cleanup remain pervasive issues (Kabir et al. 2020) in these
as well. One successful approach to detect and/or prevent these
bugs is type-checking. Types are one of the most scalable
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tools to formally reason about the structural properties of a
program. Not only do they provide an elegant way to classify
data, allowing developers to segregate values using names or
structural properties, they can also uphold some aspects of a
software specification. By attaching a type to each expression,
one can discover nonsensical operations, such as subtracting
a number from a function. This process allows compilers to
reject ill-formed inputs, greatly improving the correctness and
maintainability of software systems (Hanenberg et al. 2014).

Traditional type checking, however, struggles to handle sit-
uations in which the variables may represent mutable states.
In response, recent years have witnessed a significant inter-
est in flow-sensitive type systems as a countermeasure. Those
combine type checking with data-flow analysis techniques to
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describe properties that depend on a program’s execution flow.
They are particularly well-suited to express memory safety prop-
erties, therefore strengthening the static guarantees compilers
can establish on a program’s correctness.

Unfortunately, defining and implementing such type sys-
tems is often met with a surprisingly painful effort. Novel
language features regularly emerge in “featherweight” formal
calculi (e.g., (Racordon & Buchs 2020)), before they are reified
under various forms in actual programming languages. Often-
times, one can “encode” new features within an existing host
language, using clever meta-programming (Ballantyne et al.
2020; Ichikawa & Chiba 2017), at a relatively low engineering
cost. This technique is not limited to syntactic extensions. Static
semantics too can be expanded into the host’s type system (Imai
et al. 2020). However, this approach fails when extensions are
orthogonal to the existing concepts. In particular, flow-sensitive
type systems aim to enforce additional program-wise restric-
tions to support general assumptions about safety guarantees.
These restrictions use information that is often absent from a
traditional type system. In other words, they require a more
intimate understanding of the program’s semantics.

One solution is to integrate these aspects with the host lan-
guage at a deeper level, within its compiler. Compilers are
usually implemented as so-called “toolchains” of specialized
components. Each link of the chain consumes a specific input
and generates a specific output, eventually leading to an exe-
cutable program. This decomposition does not only contribute
to more maintainable software architectures, it also provides a
great opportunity to insert auxiliary analyzers. Conceptually,
one simply has to “plug” their extension at the appropriate spot
within the toolchain, and work on the intermediate representa-
tion (IR) that is exchanged between two components.

The advantages are manifold. IRs offer a refined descrip-
tion of the program’s semantics and are often much smaller
than surface languages by eliminating syntactic sugar and “low-
ering” some high-level abstractions. This property has been
exploited by numerous tools, such as Java Pathfinder (Visser
& Mehlitz 2005) and PhASAR (Schubert et al. 2019), which
detect defects in Java and C++, respectively. Furthermore, IRs
support some form of language-agnosticism. For instance, the
LLVM compiler infrastructure (Lattner & Adve 2004) achieves
relative language independence by the means of a universal
RISC-like instruction set, called LLVM IR, specialized for pro-
gram optimizations. This dramatically reduces the engineering
effort, removing the need to re-implement common program op-
timizations and code generation for a specific CPU target when
developing a new language front-end: a compiler can simply
target LLVM IR to benefit from LLVM’s implementation of
optimizations and code generation.

IRs suitable to reason about flow-sensitive type systems are
currently lacking. LLVM IR loses relevant information with
respect to aliasing properties. For instance, inferring the life-
time of a pointer might be challenging, whereas the source
language can provide valuable insights to determine its scope
(with annotations, for example). Further, high-level constructs
may translate to sophisticated patterns that become difficult
to identify at a lower level, due for instance to type erasure,

reliance on a runtime library, or intricate control flow. More
specialized IRs, such as Java bytecode (Lindholm et al. 2014),
may address some of these shortcomings, but at the cost of opin-
ionated memory models which might fail to accurately capture
certain semantics. For example, the Java bytecode does not
support explicit memory management.

Finally, although more academic IRs come closer, such as
Boogie (Barnett et al. 2005), Why (Filliâtre & Paskevich 2013)
and Viper (Müller et al. 2017), they lean toward full functional
correctness rather than more conservative safety properties. In
other words, they offer stronger guarantees at the expense of
complex specifications that are difficult to synthesize. These
observations suggest the need for a new framework to soften the
implementation burden of type-based memory safety checking.
This endeavor prompts the following research questions:

RQ1 What is the appropriate expressiveness to reason about
mutable memory states?

Over the years, numerous type disciplines and language
mechanisms have been proposed to enforce memory safety
properties, based on various principles (e.g. capabili-
ties (Smith et al. 2000; Naden et al. 2012), ownership
types (Clarke et al. 2013), effects (Nielson & Nielson
1999), etc.). Unsurprisingly, all come with their own set of
strengths and weaknesses, turning the identification of a
common denominator into a challenge.

RQ2 What is the appropriate level of abstraction for a memory
safety checking framework?

This question relates to the above-mentioned issue with
LLVM IR, and its inability to exploit insights from the
surface language with respect to aliasing properties. A
framework directed at a flow-sensitive analysis should sit
at an abstraction level that is high enough to retain relevant
structural information, but low enough to keep the analysis
as simple and as generalizable as possible.

RQ3 Where should a memory safety checking framework be
plugged into a compiler toolchain?

This third question follows naturally from the first one,
as the framework’s abstraction level correlates with its
depth in the toolchain. While compilers are expected to
preserve the semantics of the program they translate, its
representation typically diverges from that of the original
source code the further it moves along the chain. It is
therefore tempting to stay as close as possible from the
first stages. Nonetheless, jumping in at a later stage will
contribute to language-agnosticism.

This paper reports results in our ongoing effort to answer
these questions. Our objective is to lay down the foundation
for a reusable, language-agnostic tool to express and check
properties pertaining to memory safety. Drawing inspiration
from LLVM, we present Fuel, a compiler framework centered
around a low-level programming language that relies on type
capabilities to keep track of mutable states and describe alias-
ing relationships. Fuel supports intra-procedural reasoning,
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using annotations to thread typing assumptions across function
boundaries, and leverages dynamic checks to recover static as-
sumptions in places where static reasoning is impractical or
impossible.

In section 2, we present some background on memory safety
checking with a particular focus on type-based approaches. We
then introduce our framework informally in section 4 by trans-
lating a handful of small C and Rust programs. In section 5, we
formalize a subset of its IR, for which we describe the dynamic
and static semantics, and we end in section 6 with a brief dis-
cussion on open challenges. This paper is accompanied by an
artifact, a library and standalone compiler for Fuel programs,
whose implementation is distributed as open-source software
on GitHub: https://github.com/kyouko-taiga/fuel.

2. Background and related work
The term “memory safety” can bear different meanings, de-
pending on the context in which it is being used. This paper
is interested in properties aimed at ensuring that access to a
machine’s memory do not cause crashes or undefined behaviors.
In the vast realm of errors that can violate such properties, we
specifically focus on the following categories:

Invalid dereference errors These occur when a program at-
tempts to read a value at a location that is no longer allo-
cated (a.k.a. use-after-free) or that does not exist (e.g., null
dereference).

Invalid deallocation errors These occur when a program at-
tempts to deallocate memory that was already freed, or
memory that does not reside in the heap and must not be
freed manually (e.g., stack-allocated and static memory).

Memory leaks These occur when a program does not deallo-
cate memory that is no longer needed or accessible.

While it is sometimes believed that only unsafe low-level lan-
guages (e.g., C/C++) suffer from these types of errors, we stress
that they also impact safer systems. For instance, null derefer-
ences and memory leaks are quite common in Java or Python.1

There exists a large body of work dedicated to analysis tech-
niques and language mechanisms for memory safety. This
section introduces some background on the topics most closely
related to Fuel’s principle and objectives, and briefly reviews
related literature.

2.1. Static program analysis
Static analysis encompasses an array of techniques designed
to discover and/or enforce specific properties without actually
executing a program.

2.1.1. Pointer analysis The above-mentioned memory er-
rors relate to the use of pointers or references, made pervasive
not only in the context of low-level system programming, but
also with the success of Smalltalk-inspired object-oriented lan-
guages, where every object is represented by a reference to a

1 Although both languages provide means to “catch” null dereference at runtime,
doing so is usually discouraged (Bloch 2008).

container holding its internal representation. As a response,
pointer analysis (Smaragdakis & Balatsouras 2015) (sometimes
called “points-to analysis”) has emerged as a common coun-
termeasure. The technique consists of determining the set of
values to which a pointer may refer (a.k.a. its points-to set), in
order to check for some invariant before it is used.

After three decades of research, pointer analysis is now gen-
erally well understood and has been adopted by a wide range of
industry-ready applications (e.g. Clang Static Analyzer (Clang
Project 2021) or Cppcheck (Marjamäki 2021)). Nonetheless,
open challenges remain with respect to scalability, dynamic fea-
tures (as popularized by modern scripting languages), and the
increasing popularity of modular compilation (Thakur 2020).
Both aspects press on an important weakness of pointer analysis,
namely that it typically expects visibility on the whole program
statically.

2.1.2. Type systems A difficult problem pointer analysis
has to overcome stems from the number of different situations
it has to consider. In particular, low-level languages impose
little to no constraint on how a program may manipulate mem-
ory. This opens the gates to a realm of wild features, such
as pointer arithmetics or value reinterpretation (e.g., C++’s
reinterpret_cast) that are difficult to analyze. One way to
tackle this problem is to restrict these features’ applicability to
cases that are simpler to examine, typically through the means
of a type system.

Classic type systems understand types as invariant assump-
tions on the nature of an expression, including program vari-
ables. In other words, if a variable is found to have type τ at
some location, then it is assumed that it should have type τ ev-
erywhere else. This convenient presupposition is inherited from
functional programming languages, where program variables
are mere placeholders for immutable values.

For example, consider a simple expression let y = f(x) in
g(y, y). A classic type system will deduce that f has type

τ1 → τ2, that y has type τ2, and that g has type τ2, τ2 → τ3.
Hence, if that expression is well-typed, then so is the same
expression where f(x) is substituted for y (i.e., g(f(x), f(x))),
thanks to referential transparency. Unfortunately, this reasoning
fails in the presence of references to mutable state, as f could
be a function that mutates the state referred by x.

This issue is particularly stringent in imperative languages,
where computation is described through sequences of operations
that interact with a mutable state, generally represented by the
machine’s memory. While variables can still be understood
as value placeholders, they are no longer merely substituted.
Instead, they denote memory containers from which one may
read or to which one may write a value. Thus, declaring that
a variable has type τ usually specifies that the values that it
stores have type τ—a distinction often dismissed, in spite of its
significance.

In Java, for instance, a method f with a type τ1 → τ2 can
be called with either a literal value of type τ1 or a variable
whose values have type τ1. This simplification has an obvious
practical justification, as the alternative would compel develop-
ers to provide an additional method to accept containers (i.e.,
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variables) holding values of type τ1, or to use an explicit op-
eration to dereference a variable. But it also has far-reaching
consequences. Since the container’s type is confounded with
that of the contained value, the type system becomes unable
to distinguish between them. It follows that it can only ignore
the fact that a variable may not hold any value before it is used
in an operation. A pedantic type checker could preserve the
distinction and require explicit checks every time one expects
to read a value from a container (Dietl et al. 2011). A less
cumbersome approach is to run some form of dataflow analysis
to determine whether a container can be safely used whenever
it appears in an expression (Liu et al. 2020; Nieto et al. 2020;
Kabir et al. 2020).

More advanced type systems recognize that type assump-
tions are actually not necessarily invariant, but may depend on
the program’s “flow”. In other words, they accept that variables
may have different types throughout the execution of the pro-
gram, according to the operations in which they are involved,
effectively expressing the container’s state. A comprehensive
review of such systems is beyond the scope of this paper. In-
stead, we settle for a brief description of the approaches most
closely related to our work.

Substructural type systems Type-based formalisms are usu-
ally formalized in the form of a deductive system based on
inference rules. The deduction process exploits three structural
properties (exchange, contraction and weakening (Reynolds
1998b)) to determine well-typedness. Substructural type sys-
tems are formalisms in which one or several of these properties
do not hold. They provide an elegant way to encode the vari-
ance of typing assumptions within the meta-theory, altering the
classical way to apprehend type checking and inference.

Substructural type systems are suitable to reason about elab-
orate properties of memory, such as aliasing relationships and
memory safety. Linear (Wadler 1990) and affine (Tov & Pucella
2011) types, in particular, have received the most attention and
even found their way into mainstream programming languages,
such as Rust and C++. Linear types require that typing assump-
tions be used exactly once, by waving contraction and weaken-
ing. This effectively imposes an outright ban on aliasing and
can be leveraged to guarantee freedom from memory leaks. In
contrast, affine types preserve weakening and thus only require
that typing assumptions be used at most once. Such a relaxation
is justified by the ubiquity of garbage collection mechanisms in
modern programming languages.

Capability-based systems Originally proposed as a general-
ization of reference annotations (J. Boyland et al. 2001), type
capability-based approaches encompass techniques that extend
types with context-sensitive properties. A capability is a to-
ken describing the set of operations that can be performed on
a specific program variable, such as reading its contents, and
that flows in and out of a function. In other words, capabilities
enable additional information to be transferred between a caller
and a callee.

One advantage of this technique over substructural type-
systems is that it dissociates pointer values, which can be copied
freely, from the permission to use them (Smith et al. 2000).

Hence, it supports the encoding of mutable self-referential data
structures (e.g., graphs), albeit through relatively sophisticated
constructs (Walker & Morrisett 2000; Maeda et al. 2011).

Capabilities generally aim at formalizing two properties:
uniqueness and immutability. The former tightly couples
capability-based approaches with substructural type systems,
while the latter strives to tame unintended mutations. While
these properties lead to a quite restrictive typing discipline, sev-
eral mechanisms have been proposed to relax them, notably
including borrowing (Naden et al. 2012), nesting (J. T. Boy-
land 2010), and adoption/focus (Fähndrich & DeLine 2002).
Capabilities are of particular interest in the context of con-
current programming, often to guarantee data race freedom.
Successful realizations include Pony (Clebsch et al. 2015) and
Encore (Brandauer et al. 2015).

Rather than asking for capabilities to perform certain opera-
tions, a function may simply advertise the kind of side effects
in a type-and-effect system (Rytz et al. 2013). Effects can ex-
press the same kind of safety guarantees as type capabilities,
but in a more declarative fashion. In fact, both approaches are
equivalent (Gordon 2020).

Ownership types Ownership types (Clarke et al. 2013) pro-
pose to uphold the encapsulation principle to limit the visibility
of object mutations and prevent “spooky actions at a distance”.
The essence of this approach is to partition the memory into
topologically nested regions whose ownership is attributed to
a particular object. Intuitively, a region corresponds to the
container holding the object’s internal representation, while its
owner is a reference to that container. From there, various re-
strictions can be applied to the access to a region’s contents.
Ownership types are deeply intertwined with object-oriented
programming. Hence, most restriction policies are based on the
idea that regions are associated with methods, attributing them
privileged access to the object’s internal representation.

Unlike the other approaches we reviewed so far, ownership
types are traditionally flow-insensitive and rely on access restric-
tions to enable local reasoning. Therefore, although they can be
leveraged to speed-up static analysis, they are not as well-suited
to address the kind of memory errors that we have listed.

2.2. Dynamic program analysis
Another common technique to detect and/or fend memory bugs
is to instrument the program with runtime guards to detect im-
proper uses. There exist two main implementation strategies:
dynamic binary instrumentation (DBI) (Buck & Hollingsworth
2000) and compile time instrumentation (CTI) (Stepanov &
Serebryany 2015). The former consists of interpreting native
code while inserting probes and other analysis routines to mon-
itor the application. DBI does not even require access to the
program’s source, and is therefore completely agnostic of the
input language. However, it comes at the price of a significant
overhead in both time and space, restricting its use for debug-
ging and profiling purposes. One successful application of this
approach is Valgrind (Nethercote & Seward 2007) a powerful
memory analyzer able to detect various errors including buffer
overflows, leaks and uses of free or uninitialized memory.
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In contrast, CTI sacrifices flexibility for better performance.
Some language agnosticism can be achieved nonetheless, by
relying on compiler IRs rather than actual language sources.
For instance, AddressSanitizer (Serebryany et al. 2012) instru-
ments LLVM IR (Lattner & Adve 2004) to support multiple
languages, including C/C++, Swift and Rust, while running only
two times slower than the uninstrumented program (in compari-
son, Valgrind is 20 times slower). Another approach consists of
disassembling native code to feed it back to a CTI tool (Lyu et
al. 2014). Other frameworks use code instrumentation to fix or
remove memory errors automatically for the sake of software
resilience (e.g., (Berger & Zorn 2006; Nguyen & Rinard 2007;
Long et al. 2014)).

While Fuel is a static tool, it relates to dynamic approaches
through its use of runtime checks, guarding portions of code for
which static analysis is either impractical or impossible. In fact,
static analysis can be understood as a way to optimize runtime
checks away wherever conservative assumptions are affordable.
This observation has already been noted in the past (Chalupa et
al. 2020; Midi et al. 2017; Huang & Morrisett 2013).

2.3. Hardware based approaches
More recently, the CHERI project (Watson et al. 2019) has pro-
posed to enforce memory safety guarantees directly in hardware,
through the use of specialized instruction sets and CPUs. The
approach relies on so-called architectural capabilities, which
describe how pointers can be used and to what specific area of
memory they provide access. These capabilities are encoded
as metadata directly attached to memory addresses, stored in
specialized hardware registers and manipulated by capability-
aware CPU instructions. A set of hardware enforced rules for
capability use guarantee that they cannot be tampered with and
that all memory accesses that pass through them are safe. Any
attempts to illegally access memory protected by capabilities are
caught by the CPU instructions and raise hardware interrupts.

The CHERI model is formally verified (Armstrong et al.
2019) and has already been implemented in several CPU designs.
The framework has also been tested with multiple case studies,
notably to guarantee memory safety properties in C/C++ (Chis-
nall et al. 2015; Memarian et al. 2019).

Just like DBI, an important difference between CHERI and
Fuel is that the former is that the former is entirely runtime-
based: illegal accesses to memory are caught solely during
programs’ execution, raising hardware interrupts. In contrast,
Fuel leverages runtime checks to feed additional properties to
a purely static analysis. Hence, illegal accesses are caught at
compile-time.

2.4. Programming languages
The principles underlying the type systems we have discussed
above have made their way into multiple fully-fledged program-
ming languages, providing precious insights for the design of a
language-agnostic IR. We briefly review two of them.

Mezzo Our work owes a lot to the Mezzo programming lan-
guage (Balabonski et al. 2016). Mezzo is a variant of OCaml
that uses type capabilities to enforce restrictions on aliasing.

Capabilities flow in and out of a function to describe what kind
of operation the execution context (or thread) is allowed to per-
form. The language distinguishes between linear capabilities,
representing uniquely owned memory objects, and non-linear
ones, representing immutable values. It also advocates for a dy-
namic mechanism to deal with situations where static capability
checking would impose too severe constraints.

In Mezzo, objects can adopt a cell, capturing a strong capa-
bility. A reverse operation abandons an adopted cell, producing
a strong capability. This mechanism fits nicely into the tradi-
tional encapsulation principle. Objects can carry their own set
of related capabilities, while hiding them from the environment.

Rust Rust (Klabnik & Nichols 2018) is aimed at verifying
strong memory safety properties by the means of a typing dis-
cipline based on uniqueness and ownership. The language as-
sociates each pointer with a memory region (Tofte et al. 2004),
delimiting its lifetime. The type system then ensures that a
pointer can never be stored at a location whose lifetime ex-
ceeds that of its region, and uses uniqueness to guarantee data
race freedom. Unlike Mezzo, Rust merges the possession of a
pointer’s value with the capability to dereference it. This results
in an arguably more traditional, albeit quite restrictive type sys-
tem, at the cost of an elaborate region model. Fortunately, the
language goes to great lengths to infer region annotations and
alleviate the syntactic overhead.

2.5. The three-phase compiler architecture
A well-established engineering technique for taming the com-
plexity of large software systems is to split them into simpler, in-
dependent, and ideally interchangeable modules. Modern com-
pilers follow this formula and are implemented as “toolchains”
of small programs.2 While interchangeability is a difficult prop-
erty to achieve at every step, the whole process can be decom-
posed into three relatively independent phases, as depicted in
Figure 1.

2.5.1. Front-end The roles of the front-end are twofold:
extract and verify the semantics of a program’s source. The
latter is often provided in the form of human-readable text
which has to be tokenized and parsed to create a more abstract
representation, called an abstract syntax tree (AST). We refer to
this task as the syntactic analysis.

Once syntactic analysis has been completed, various passes
of semantic analysis can be carried out on the AST, to detect
ill-formed programs, which is notably where type-checking
occurs. Compilation may not progress past this point when the
program contains errors from which it cannot recover. Instead,
the front-end issues an error report, prompting the user to fix
the problems encountered.

2.5.2. Optimization and code generation The optimizer
consumes semantically sensible programs and rewrites them in
such ways that they should run faster on a machine. This phase
typically involves the use of specialized IRs, such as control
flow graphs (CFGs) (Alpern et al. 1988) and value dependence

2 By “program” we mean “loosely coupled components”, not necessarily indi-
vidual executable entities.
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front-end optimizer back-end

input
(e.g., C source)

output
(e.g., x86 asm)

compiler (e.g., Clang)

compile
errors

Figure 1 The “three-phase” compiler architecture.

graphs (VDGs) (Weise et al. 1994), which may be more suitable
than trees to analyze the program’s possible behaviors.

The back-end finally generates code for the target machine.
Just as parsing is highly dependent on the source language, code
generation is highly dependent on the target. Thus, the back-end
may additionally perform some further target-specific optimiza-
tions that require knowledge about the target’s language and/or
hardware (e.g., support for specialized SIMD instructions). It
follows that the optimizer is often more tightly coupled with the
back-end than it is with the front-end.

Rather than rephrasing the input into some other language,
one may directly “execute” the semantic representation pro-
duced by the back-end. A compiler operating this way is com-
monly referred to as an interpreter. The boundary between
compilation and interpretation is somewhat blurry, as one may
argue that a CPU is merely an interpreter for machine code.
Nonetheless, the general understanding is that an interpreter is
itself a program running another program on top of an existing
system.

LLVM Loosening coupling between components not only im-
proves maintainability, but also reusability. If a compiler can be
split into three independent phases, then it is tempting to design
these phases as reusable components in different toolchains.
One influential product of this observation is LLVM (Lattner
& Adve 2004). Originally designed as a common framework
to perform program optimizations, LLVM has blossomed into
a popular middleware in numerous compilers, including Clang
(C/C++ and Objective-C), GHC (Haskell) and rustc (Rust). The
framework can be seen as the end of a compiler toolchain. It
comprises a highly customizable code optimizer and features
code generators for various hardware architectures. Its biggest
strength is that it is centered around a single IR, called LLVM,
that provides a common, front-end agnostic language to conduct
static program analysis, apply code optimizations, and generate
machine code. This enables compiler developers to unlock a
huge collection of tools at the comparatively low engineering
cost of translating source code into LLVM IR.

LLVM IR does not feature any control flow structure beyond
basic instruction blocks. Loops and conditional statements are
expressed by the means of conditional jumps and phi instruc-
tions, at the risk of obfuscating some of the original structural
properties of a program. Nonetheless, the language features

a collection of attribute annotations to specify properties and
declare restrictions on pointers. While those are typically not
verified by the LLVM architecture itself, they can be leveraged
by static analysis tools and code generators.

3. The Fuel framework
Fuel is a compiler framework designed to check memory safety
properties on programs with explicit memory management. It
is centered around a low-level programming language, Fuel IR.
The latter is equipped with a capability-based type system that
guarantees freedom from invalid dereference and invalid deallo-
cation errors, and has limited support for leak detection. Hence,
static analysis is carried out by simply type checking programs.
The entire framework is provided as a library, intended to be
integrated within an existing compiler toolchain. It also accepts
Fuel IR programs in a human-readable textual form. The current
implementation also features a code generator based on LLVM
that produces machine code, allowing the entire framework to
be used as a standalone compiler.

Figure 2 depicts the envisioned integration of Fuel into an
existing compiler. The front-end phase of a compiler (see Fig-
ure 1) typically performs four main activities during semantic
analysis: name resolution, which links identifiers to their decla-
ration, type inference, which (semi-)automatically detects the
type of the program’s expressions, type checking, which veri-
fies that the type of each expression—determined by inference
or otherwise—is correct, and finally dataflow analysis, which
relates to flow-sensitive checks. Remark that these activities
cannot always be performed in a straight sequence. In particular,
name resolution may require hints from type inference to dis-
tinguish between overloaded symbols. Nonetheless, the overall
process converges as semantic ambiguities are eliminated from
the AST, which generally occurs before dataflow analysis.

This observation is not surprising. Dataflow analysis re-
quires definite knowledge about the program’s control flow,
which may depend on information that can only be derived once
name resolution and static method dispatch have been settled.
Concurrently, this means that a compiler front-end should hold
an IR sufficiently rich to run some forms of memory safety
analysis at this point, which is exactly where Fuel is intended to
be plugged.

At the end of the (flow-insensitive) type checking analysis,
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Figure 2 Overview of the envisioned integration of Fuel into a compiler toolchain.

the front-end has two choices. The first is to proceed forward
with its current IR to the optimizer phase. The second is to
branch off the regular compilation path and translate the pro-
gram into Fuel IR to perform memory safety checking. In the
absence of error, Fuel then forwards an instrumented version
of the program to a code generator to terminate the compila-
tion process. Thanks to the combination of static and dynamic
checks performed by the framework, the binaries generated at
the end of this pipeline are always guaranteed to be free from
any memory related errors. Static type checking verifies that
all accesses to memory are performed through the required ca-
pabilities, and dynamic checks are inserted in the binaries to
ensure that all the assumptions made during type checking hold
at runtime.

The integration of Fuel in a compiler’s pipeline requires
language engineers to implement two additional components.
One translates the front-end’s IR into Fuel IR, whereas the other
translates Fuel IR into a binary. Note that the latter requirement
is not coupled with the front-end nor the surface language, as
Fuel’s output can be sent directly to an optimizer.3

Dynamic instrumentation

Just as the other memory safety checking tools we discussed
in Section 2, Fuel is intended to statically determine whether
a program satisfies the properties it is capable of enforcing. In
other words, inputs for which Fuel does not produce any error
report should be considered safe. Therefore, the reader may
wonder about the purpose of code instrumentation.

Types generally offer a very coarse form of abstract inter-
pretation which struggles to describe certain patterns, such as
iterators and callbacks (Gordon 2020). Although different tech-
niques have been proposed to address this shortcoming statically,
we advocate for a simpler approach, at the cost of a runtime
overhead. Rather than forcing pointer capabilities to be tracked
across all possible statements, Fuel lets this information be lost
during compilation. In exchange, it requires that any access

3 Our implementation currently supports code generation via LLVM.

to such pointer be guarded by a dynamic check. These are
leveraged to recover assumptions on pointer capabilities.

During the program’s execution, dynamic assumptions are
checked using metadata managed by the language’s runtime,
which essentially describe runtime type information about al-
located memory. It is maintained in an ad-hoc data structure,
threaded through the program’s evaluation, but separate from
any object’s runtime representation. This allows the system to
easily erase runtime metadata from programs that can rely on
static guarantees alone, without the need for dynamic checks.

This technique is reminiscent of occurrence typing (Tobin-
Hochstadt & Felleisen 2008) (a.k.a. flow typing). Occurrence
typing is a feature that lets a type checker “deduce” the contex-
tual type of a variable based on the flow of the program. This
approach lets type checking “recover” information that might
have been lost statically, due to lacking or missing specification.
Consider the following example, written in TypeScript:

1 function foo(x: any) {
2 if (typeof(x) === "number") {
3 console.log(x + 1)
4 } else {
5 console.log(x − 1) // <- type error
6 }
7 }

The function foo accepts a single parameter of any type. At
line 2, it checks whether the type of that variable is number.
Hence, at line 3, TypeScript’s type checker is able to deduce
that x must have type number at that specific program point.
Consequently, it can guarantee statically that the addition x + 1
is type-safe. The same cannot be said at line 5, where knowledge
about the type of x is still too coarse to guarantee that subtracting
is type-safe, causing the type checker to raise an error.

4. Fuel IR
Fuel IR is a hierarchical, typed intermediate language designed
to express and check flow-sensitive type assumptions. On a
practical side, Fuel IR is heavily inspired by LLVM IR (Lat-
tner & Adve 2004). Although the language features a handful
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of hierarchical control structures, conditional statements and
anonymous scopes, it mostly resembles a RISC-like instruc-
tion set where most operations serve to describe memory traffic.
From a more theoretical side, it borrows from the theory underly-
ing alias types (Smith et al. 2000) and the Mezzo programming
language (Balabonski et al. 2016). Fuel IR uses capabilities
to keep track of ownership and permissions and offers runtime
checks on type assumptions as an escape hatch.

This section introduces the core concepts underlying Fuel IR
informally, through a series of examples. We use C and Rust as
surface languages to illustrate how common memory operations
translate into the IR.

4.1. Tracking initialization
Consider the program in Figure 3a. It declares two variables,
one Boolean and one integer, at lines 1 and 2 respectively. The
former is assigned to 1 (for true) and read to determine the
second’s value. The corresponding program in Fuel IR is shown
in Figure 3b.

Instructions of the form x = instruction declare local, tem-
porary registers. Like variables of static single assignment
(SSA) form (Cytron et al. 1991), these registers cannot be reas-
signed. Instead, they designate immutable values, valid for the
duration of their declaration scope. The two variables from the C
program are translated as explicit stack allocations. Each results
in the creation of a memory cell, whose address is assigned to a
register. Remark that the cell itself is given a name, using the
notation at name to capture and track memory assignment—we
will come back to the purpose of this feature later.

Reading from and writing to the program’s memory is carried
out explicitly in Fuel IR. The initialization of the variable b in
the C program is translated to an explicit store instruction, at line
3, which updates the contents of the memory cell located at the
address assigned to breg. Perhaps more curiously, the memory
cell is loaded immediately after, at line 4. This instruction
corresponds to the explicit access to the variable’s contents,
which is performed in the C program at line 5. The loaded value
is then used to evaluate the conditional statement’s guard before
a store instruction finally updates the contents of the cell located
at the address assigned to ireg.

1 bool b;
2 int i;
3 b = 1;
4

5 if (b) { i = 2; }
6 else { i = 4; }

(a) C implementation

breg = salloc Bool at m0
ireg = salloc I32 at m1
store true , breg
bval = load breg
if bval { store 2, ireg }

else { store 4, ireg }

(b) Equivalent code in Fuel IR

Figure 3 Program declaring and initializing local variables.

To illustrate how Fuel uses capabilities to check memory
safety, let us revisit the program from Figure 3 while considering
its typing semantics. Fuel prescribes that all register declarations
create a new type assumption, mapping the register to its type.
We refer to these assumptions as register capabilities, as they
describe the operations that are supported on the register’s value.

The stack allocation at line 1 produces such a capability. But
unlike C, Fuel does not map breg to Bool. Instead, it creates
a capability [breg: !m0]. The type !m0 designates a singleton
type (Aspinall 1994) whose unique inhabitant is the address of
a memory cell named m0.

The stack allocation also creates a cell capability for the
allocated cell. Here, the cell capability is denoted by [m0:
Junk<Bool>], capturing the intuition that, although the cell was
declared so that it contains Boolean values, it currently contains
uninitialized garbage. The parameterization serves to further
specify the cell’s layout. The cell contains nonsensical data, but
has the size of a Boolean value nonetheless.

At line 3, the store instruction consumes [m0: Junk<Bool>]
to produce a new capability [m0: Bool], effectively resulting
in a strong update (Smith et al. 2000) denoting the cell’s state
transition, going from uninitialized to initialized. The load
instruction at line 4 yields the capability [bval: Bool], which is
used at line 5 to type check the conditional guard.

Consider now an altered version of the C program, where b’s
assignment at line 3 would be delayed until after the conditional
statement (e.g., at line 7). Such a program would expose unde-
fined behavior by using the value of an uninitialized Boolean,
but would be statically rejected in Fuel. Indeed, in the absence
of the store instruction at line 3, the capability for the cell m1
would remain unchanged. Hence, the load instruction at line 4
would be ill-typed.

4.2. Tracking aliases
Representing memory locations at the type system’s level pro-
vides a straightforward mechanism to keep track of aliases.
Consider the program in Figure 4a. Two variables are declared,
the second of which is a pointer. The address of the former is
assigned to the latter at line 3. Notice that foo’s value is not ini-
tialized until line 4, meaning that after the assignment at line 3,
bar points to uninitialized memory. Line 8 finally dereferences
bar, increments its value and assigns the result to foo.

1 float foo;
2 float∗ bar;
3 bar = &foo;
4 foo = 13.37f;
5

6

7

8 foo = 1.0f + ∗bar;

(a) C implementation

foo = salloc F32 at m0
bar = salloc ∃a.!a at m1
store foo , bar
store 13.37f, foo
t0 = load bar
t1 = load t0
t2 = call add , 1.0f, t1
store t2 , foo

(b) Equivalent code in Fuel IR

Figure 4 Program dereferencing a pointer.

The equivalent program in Fuel IR, depicted in Figure 4b,
relies on slightly more involved concepts. In particular, the
second stack allocation uses an existential type (Pierce 2002,
Chapter 24) ∃a.!a to represent the pointer type float∗ from the
C program. Intuitively, an existential type captures the idea that
some specific details about the actual type are hidden. In this
case, the specific cell a whose address will be stored is unknown
at the time of the register declaration, and must therefore be
existentially quantified.
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Remark that the address alone does not specify the kind of
values to which it refers. In other words, ∃a.!a is not as precise
as float∗. That is because a stack allocation of the form x =
salloc τ at m uses the type argument only to specify the layout
of the values stored in m. Since the layout of an address does not
depend on the values stored at this address, any address type
will do. Besides, recall that type safety is flow-sensitive in Fuel.
Hence, it makes sense that the declaration type of a cell is not
sufficient to determine whether all subsequent uses of this cell’s
value are safe. A similar observation can be made between τ
and Junk<τ>.

As in our first example, both stack allocations result in the
creation of two capabilities. The second pair maps m1 into Junk<
∃a.!a>. This capability is consumed at line 3 to strongly update
m1, resulting in [m1: !m0]. Two load instructions translate the
expression ∗bar from the C program. The first, at line 5, loads
the contents of the cell m1 into the register t0, that is the address
of m0. That results in a capability [t0: !m0], revealing that t0
has an address type. The second, at line 6, loads the contents
of the cell m0, the actual floating point number, into the register
t1. That results in a capability [t1: F32]. The remainder of
the program is straightforward. The call instruction applies the
function add, whose result is eventually stored into m0.

The C program from Figure 4a would exhibit undefined be-
havior if foo’s initial assignment was omitted. Remark, however,
that the issue would not be caused by the assignment at line 3.
Taking the address of an uninitialized variable is not inherently
wrong. Instead, the problem would occur at line 8, when bar is
dereferenced, which is translated by two load instructions, at
lines 5 and 6 of the Fuel version. Similarly as in our previous
example, the latter would not type check, as it would attempt to
dereference a junk value.

4.3. Crossing function boundaries
Intra-procedural approaches have the advantage to support mod-
ular analyses, where portions of the codes can be ignored or
simply abstracted away (e.g., when the actual source code is
unavailable). In exchange, they require function signatures to
serve as complete interfaces, describing how data flows in and
out. Reference semantics further complicate this requirement
because of possible side effects. If a function modifies the
contents of a cell referred by one of its arguments, then one
cannot rely on its codomain alone to determine the result of its
application.

Consider, for instance, the following function header in C:
int libfoo_f(int∗). This function may simply consult the value
pointed by its argument, causing no side effect, but it may also
modify this value or even free the pointer. The inability to reason
locally about its behavior is the cause of most memory safety
challenges. To address this issue, Fuel allows capabilities to
occur in domains and/or codomains. In other words, a function’s
signature does not only describe the type of its parameters, but
also captures pre- and post-conditions about its caller’s typing
environment.

An example is shown in Figure 5. The function has no
implementation, which suggests that it is defined externally,
perhaps in a different module compiled separately. As a result,

1 int libfoo_f(int∗)
2

3

4 int main() {
5 int i;
6 i = 42;
7

8 i = libfoo_f (&i);
9

10 return i;
11 }

(a) C implementation

func libfoo_f(_0):
∀a.!a+[a: I32]

−> I32+[a: I32]
func main(): () −> I32 {

i = salloc I32 at m0
store 42, i
v = call libfoo_f , i
store v, i
u = load i
return u

}

(b) Equivalent code in Fuel IR

Figure 5 Program using an external function.

we cannot analyze its behavior to deduce its possible side effects
and can only rely on its signature. The Fuel representation
expresses such a signature with a universal type (Pierce 2002,
Chapter 23), quantifying a over all possible memory cells. This
polymorphism is necessary to abstract over the actual name
of the cell with which the function will be called (Tofte et al.
2004). Intuitively, it indicates that the function is defined for all
possible memory locations. The domain is defined as a bundle,
wrapping a type together with a capability. The notation !a
+[a: I32] reads as “the singleton type !a and the assumption
that the cell named a contains an integer value”. The codomain
is defined similarly, signaling that the function preserves the
capability. We will elaborate on this mechanism later.

The function call at line 7 demands that the call site satisfies
the assumptions the signature makes about its typing environ-
ment. Specifically, it must hold a capability [a: I32], where a
is the name of the cell passed as an argument. The requirement
holds after [m0: I32] is produced by the store instruction at line
6, without which the program would be ill-typed.

4.4. Exploiting uniqueness and borrowing
We said earlier that the function libfoo_f from Figure 5b pre-
served the capability [a: I32]. At a finer level of detail, the
capability is actually consumed from the function’s domain, and
a new one is produced with its codomain. In other words, it is
treated as a linear resource (Wadler 1990), meaning that one’s
ability to interact with the contents of a cell is restricted to the
scope of a single function at a time. When libfoo_f is applied,
its caller loses the capability to dereference or use load/store
instructions, until the function gives it back. One can exploit
this mechanism to fight against dangling references. Deallocat-
ing a memory cell requires its associated type capability to be
consumed. Therefore, the function libfoo_f is guaranteed not
to deallocate its argument, as doing otherwise would prevent it
from returning the associated capability. Similarly, it could not
cause the capability to escape silently by packaging it into an
existential bundle type. Another consequence is that the same
address cannot be provided to two different arguments, unless
they share the same singleton type. For instance, consider the
following function signature:

1 func libfoo_g(x, y):
2 ∀a,b.(!a, !b)+[a: I32 , b: I32] −> Void
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One cannot instantiate the variables a and b with the same mem-
ory cell c to call libfoo_g if there is no way to duplicate [c: I32].
The reader may remark that this constraint only manifests be-
cause the domain features type capabilities. Indeed, if one
is willing to drop the capability [b: I32] from the second pa-
rameter, then b could be instantiated with the same value as a.
However, the function would lose the ability to infer statically
whether dereferencing its second argument is safe. The intuition
is that copying pointer values does not cause problems, while
using them requires more attention.

The use of capabilities to enforce resources linearity can
be used to express the mechanism of mutable borrowing in
languages with affine or linear type systems, like Rust or Pony.
Figure 6 shows an example. The Rust function swap borrows two
mutable references, to mutate their contents. In Fuel, the full
capabilities for the arguments are consumed and then returned
by the function, effectively transferring user and mutation rights
back to the caller.

1 fn swap <’a>(
2 x: &’a mut i32 ,
3 y: &’a mut i32
4 ) −> () {
5 let z = ∗x;
6 ∗x = ∗y;
7 ∗y = z;
8 }

(a) Rust implementation

func swap(x, y):
∀a,b.(!a, !b)
+[a: I32 , b: I32]
−> [a: I32 , b: I32] {
z = load x
store y, x
store z, y

}

(b) Equivalent code in Fuel IR

Figure 6 Function borrowing its arguments to mutate them.

Of course, exchanging capabilities can be done at any depth
in nested calls. Put differently, a caller is free to transfer a
capability to a callee regardless of the way it came into its pos-
session. Hence, the Rust-like borrowing showcased in Figure 6
is allowed in nested and recursive calls. Lifetime constraints are
encoded by the return type annotation of a function.

Not all capabilities need to be linear. As noted in previous
work (Crary et al. 1999), linear capabilities are only necessary
to perform operations that require uniqueness. Indeed, even
in a concurrent setting, unrestricted read accesses to shared
memory are safe, as long as all parties agree not to perform any
mutating operation. Fuel leverages this observation to support
safe, non-linear cell capabilities through borrowing (Naden
et al. 2012). Capabilities qualified by the @brw modifier are
non-linear. They can be used to read a cell’s contents and can
be duplicated at will. In exchange, a few restrictions apply.
First, they do not grant permission to perform any mutation,
nor to deallocate a cell. Second, they can only be obtained
by weakening a linear capability at function boundaries. This
mechanism naturally delineates the duration of the loan, which
necessarily expires when the function returns. Finally, just as
all non-linear capabilities, they cannot be packaged into an
existential bundle type (e.g. ∃a.!a+[a: τ]). This third constraint
guarantees that borrowed capabilities cannot escape the stack.

Figure 7 shows an example of borrowed capabilities. The
two parameters are declared as bundled types, each wrapping
a singleton type with an associated capability. Since the ca-

1 func equals(x, y):
2 ∀a, b.(!a, !b)+[@brw(a: I32), @brw(b: I32)]
3 −> Bool {
4 xv = load x // uses [m0: I32] borrowed as
5 // [@brw(a: I32)]
6 yv = load y // uses [m0: I32] borrowed as
7 // [@brw(b: I32)]
8 rv = call eq , xv , yv
9 return rv

10 }
11

12 func main(): () −> I32 {
13 i = salloc I32 at m0 // => [m0: Junk <I32 >]
14 store 42, i // => [m0: I32]
15 b = call equals , i, i // lends [m0: I32]
16 // temporarily
17 return 0
18 }

Figure 7 Program using borrowed capabilities.

pabilities are qualified by @brw, the variables a and b can be
instantiated with the same memory cell. Line 15 is therefore
legal. The linear capability [m0: I32] is temporarily weakened
as a non-linear capability [@brw(m0: I32)], which can be dupli-
cated for each argument. The function equals does not need
to return any capability. The call site automatically reinstates
the linear capability, based on the assumption that the loan ex-
pires when the function returns. Within the function, the typing
environment holds two different borrowed capabilities, one for
each argument, supporting both load instructions at lines 4 and
6. Furthermore, they effectively allow the creation of a “may-
alias” relation: both arguments may refer to the same memory
cell. Soundness is preserved nonetheless because mutation is
forbidden.

4.5. Exploiting runtime checks
One weakness of the type system we have presented so far is
that it does not allow a function to conditionally consume or
produce linear capabilities. Imagine a function free_one(x, y)
that would accept two pointers and free one of them and leave
the other intact, depending on some condition. Such a function
would necessarily have to consume two linear capabilities, or
it would not be able to free either of them, de facto precluding
borrowing. A defensive strategy would be to assume both argu-
ments x and y are freed. Unfortunately, that would introduce a
memory leak, as the call site would definitely lose the ability to
deallocate the memory pointed by the pointer left intact.

We address both limitations with dynamic checks to test for
specific type capabilities at runtime. In addition to borrowed
capabilities, capabilities qualified by the @dyn modifier (for dy-
namic) are also treated non-linearly. Unlike the former, these
can be used to perform mutating operations, provided their use is
guarded by a runtime check that verifies whether the associated
cell can be safely dereferenced.

Figure 8 showcases the use of dynamic capabilities. The
function free_one(x, y) is signed so that it accepts two dynamic
capabilities. Hence, within the function, the environment holds
two different dynamic capabilities for each argument, just as in
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1 func free_one(x, y):
2 ∀a, b.(!a, !b)+[a: @dyn(I32), b: @dyn(I32)]
3 −> Void
4 func main(): () −> I32 {
5 i = halloc I32 at m0 // => [m0: Junk <I32 >]
6 j = halloc I32 at m1 // => [m1: Junk <I32 >]
7 store 42, i // => [m0: I32]
8 store 24, j // => [m1: I32]
9 _ = call free_one , i, j // trades

10 // [m0: I32 , m1: I32]
11 // for [@dyn(m0:I32),
12 // @dyn(m1:I32)]
13 assuming i: i32 { free i } // recover [m0: I32]
14 // to free m0
15 assuming j: i32 { free j } // recover [m1: I32]
16 // to free m1
17 return 0
18 }

Figure 8 Program using dynamic capabilities.

the example shown in Figure 7. However, neither of them can
be used directly, even for read accesses. Instead, they must be
guarded by dynamic checks similar to that of line 13. The state-
ment tests whether [@dyn(a: I32)] can be traded for a regular
capability [a: I32], in which case free is executed, consuming
[a: I32] to delete the associated memory cell. Meanwhile, the
call site permanently weakens the capability [m0: I32] produced
by the store instruction at line 7 to create [@dyn(m0: i32)]. This
capability is no longer linear. Hence, it can be copied once for
each of free_one’s arguments.

One important restriction must be guaranteed to preserve the
soundness of this mechanism. Specifically, a dynamic capability
cannot be traded for a regular one if another capability already
exists for the same memory cell, with a different symbol. In
other words, dynamic capabilities do not allow mutable may-
alias relations, as those may compromise the alias tracking
mechanism.

4.6. Capability erasure
Capabilities only exist at compile time: they represent the re-
sources that the type checker uses to reason about memory. It
follows that a code generator can simply erase all information
pertaining to static capabilities once type checking has been
completed. The picture is slightly more complex for dynamic
capabilities, because assuming statements require the runtime to
record sufficient information to test their existence during the
program’s evaluation.

Once again, we can draw an analogy with occurrence typing.
Types only exist at compile type: they represent information
that the type checker knows about the nature of a specific ex-
pression, and they are typically erased during code generation.
Nonetheless, an operator like TypeScript’s typeof requires the
runtime to record sufficient information to test the type of a
particular value during the program’s evaluation.

A solution to keep track of the necessary information to
check dynamic capabilities is to store additional metadata in the
representation of all pointers. For instance, one could allocate
extra memory for every pointer in the program to store its type

and keep track of its uniqueness. This technique is typically used
by binary instrumentation tools such as Valgrind or CHERI.

Another solution is to store additional metadata in an ad-hoc
data structure managed by the runtime and instrument the binary
so that memory operations (e.g., load) appropriately update the
data structure. This approach allows erasure during code gener-
ations for pointers that are known to be never associated with a
dynamic capability. Hence, no runtime overhead will incur for
programs that can be type-checked without any assuming, such
as the one shown in Figure 6b.

5. Formal definition
This section describes Fuel IR formally. We first introduce some
of the notations we use, before we delve into the language’s
syntax and semantics.

5.1. Notations
Let f : A → B be a function, dom( f ) and codom( f ) denote its
domain and codomain, respectively. If f is a partial function,
then dom( f ) is the subset A′ ⊆ A for which f is defined. We
write f = [⊥]A→B to represent a partial function f : A → B
with dom( f ) = ∅. We write f = [a 7→ b]A→B to represent a
partial function f such that f (a) = b with dom( f ) = {a}. We
write f = [a 7→ f ′(a) | p(a)]A→B for a partial function from
A to B such that ∀a ∈ {a ∈ A | p(a)}, f (a) = f ′(a). For
example, [i 7→ −i | i < 0]Z→Z denotes a function that maps
each negative integer number to its absolute value. We omit the
subscript A → B when domains and codomains are obvious
from the context.

We write f ⌈a for a partial function that is not defined for a but
is identical to f everywhere else. More formally, if f ′ = f ⌈a
then dom( f ′) = dom( f ) \ a and ∀a′ ∈ dom( f ′), f ′(a′) =
f (a′). We write f ≪ f ′ for a function that returns f ′(a) if a ∈
dom( f ′) or f (a) otherwise, and whose domain is dom( f ) ∪
dom( f ′). More formally, ∀a ∈ dom( f ) ∪ dom( f ′),

( f ≪ f ′)(a) =

{
f ′(a) if a ∈ dom( f ′)
f (a) otherwise

Let A be an enumerable set. We write A∗ for the set of
words over A, that is the set of sequences of elements of A.
Most often, we use an overbar to distinguish sequences from
other objects. Let w, w′ ∈ A∗ be two words, w · w′ denotes
their concatenation. For example, let w = xy and w′ = yz be
two words over {x, y, z}, then w · w′ = xyyz. We write ϵ for
the empty sequence, that is w · ϵ = w. We write wi for the letter
at the i-th position in w. For example, if w = xyz, then w1 = x
and w3 = z. Finally, we write wi... for the sub-sequence in w
that starts at its i-th position. For example, if w = xyz, then
w2... = yz.

Let f = f1 . . . fn be a sequence of (partial) functions A →
B. We write f (a) as a shorthand for f i(a), where f i is the
first occurrence in f where a ∈ dom( fi). For example, given a
sequence of functions g = [a0 7→ b0] · [a0 7→ b1] · [a1 7→ b1],
then g(a0) = b0 and g(a1) = b1. We also write f ⌈a for the
sequence of functions where a is removed from the domain
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of the first function in which it was defined. For example,
g⌈a0 = [⊥] · [a0 7→ b1] · [a1 7→ b1].

5.2. Syntax
The language’s syntax appears in Figure 9. A program is a
sequence of function declarations, one of which is designated as
its entry point. We follow C’s convention and hold this function
to be named main. We assume that all registers are uniquely
named in the entire lexical scope of a function. Put differently,
we assume that an identifier x never appears twice on the left
side of a static assignment in a function’s body. We assume
that return statements never appear in nested scopes (e.g., in the
branch of a conditional statement). Although they are part of the
abstract syntax, statements of the form x = { s } only represent
the intermediate steps involved in the evaluation of a function’s
body in the operational semantics and do not appear in written
programs. Finally, note that the pack and unpack instructions
have no operational significance; they only serve to rearrange
the static typing context.

Remark that functions cannot be created locally (e.g., within
another function’s scope) and do not have closures. However,
their name is globally visible, providing support for reentrancy
and mutual recursion. Besides, function names can be ma-
nipulated as first-class values (i.e., stored in registers, passed
as arguments, etc.). Just like in C, this means that one can
emulate higher-order functions by associating a defunctional-
ized (Reynolds 1998a) function symbol with a data structure
storing the values in its closure. For the sake of syntactic regu-
larity, we assume that all functions have a universal type. Func-
tions that are not quantified by memory cells are simply written
∀ϵ.⟨τ → τ′, ϵ⟩.

Note that the formal syntax introduced in figure 9 slightly
differs from the concrete syntax of Fuel programs. Consider for
example the signature of function swap in figure 6b, written ∀ a
,b.(!a, !b)+[a: I32, b: I32] −> [a: I32, b: I32] in the IR’s
concrete syntax. This signature translates to ∀a, b.⟨!a, !b →
Unit, @own(a : I32), @own(b : I32) → @own(a : I32), @own(b :
I32)⟩ in our formal syntax.

5.3. Operational semantics
Despite sitting at a relatively low level, the language abstracts
away most details about memory representation. Both registers
and memory cells are arbitrary large blocks of memory, but fixed
in the sense that their size is determined statically. This size is
agnostic of the actual representation on a specific target machine.
Simple scalar values, such as booleans or addresses are assumed
to occupy a single cell (but not necessarily of the same size),
and data aggregates are as large as their member count. We
also assume that function objects occupy the same space if they
share the same type, regardless of their implementation.

Definition 5.1 (Values). A runtime value v is a constant, a cell
name, an aggregate of values or a function. More formally,

v ::= c | a | { v1, . . . , vn } | func x(y) { s }

We write V to denote the set of all values.

A program is evaluated in a runtime environment that keeps
track of a machine’s state defined by three components. The
first represents the machine’s memory and maps cell names to
runtime values. The second is a list of partial functions, each of
which maps local register names to runtime values. The third
relates to dynamic capability checks.

Definition 5.2 (Runtime Environment). Let T be the set of
types. A runtime environment is a triple R = ⟨m, r, γ⟩ where:

– m : A → V represents the machine’s memory,
– r ∈ (X → V)∗ associates local registers to their value,
– γ ∈ (X ∪ A → T)∗ associates local registers and cell

names to their type.

The most relevant pieces of the operational semantics appear
in Figure 10, which defines a small-step evaluation operator of
the form s,R⇝ s′,R′. All rules are relatively straightforward,
but we draw the reader’s attention to a few details. The nota-
tion R ⊢ e ⇓ v denotes the interpretation of an expression e
in an environment R. Such an interpretation does not involve
any “computation” and, consequently, has no side effect on the
machine’s state. Similarly, the notation R ⊢ e : τ denotes the
evaluation of an expression’s type τ, given a runtime environ-
ment. Note that we cannot determine a value’s type from its
raw representation alone, as the environment only maps sym-
bols (i.e., register and cell names) to their types. Nonetheless,
since the judgment operates on syntactic representations, we
can assume that the latter carry enough information.

⟨m, r, γ⟩ ⊢ c ⇓ c
r(x) = v

⟨m, r, γ⟩ ⊢ x ⇓ v

c ∈ dom(τ)

⟨m, r, γ⟩ ⊢ c : τ

γ(x) = τ

⟨m, r, γ⟩ ⊢ x : τ

For simplicity, we only formalize stack memory management
abstractly and do not model automatic deallocation in the oper-
ational semantics. All allocations result in the creation of a new,
unique cell name which is not removed from the environment’s
domain when the corresponding scope is exited (e.g., when a
function returns). This omission does not have any effect on
well-formed programs. Dangling references and attempts to
deallocate stack memory are ill-typed under our runtime se-
mantics. A cell’s initial value is obtained via a helper function
junk, which accepts a type and produces uninitialized data with
a compatible layout. For instance, junk(Bool) = junk⟨Bool⟩.
Finally, given a sequence of instructions s, we write s[a/a′] for
the sequence in which occurrences of a are substituted for a′.

5.4. Typing semantics
Flow-sensitive typing is carried out by running an abstract inter-
pretation of the program, which checks whether type capabilities
are used appropriately. This process is described with a judg-
ment of the form C ⊢ s ⊣ C ′, partially formalized in Figure
11. The judgment holds if the sequence of statements s is well-
formed in a typing context C, and its interpretation results in the
updated context C ′. It follows that a typing context can be seen
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x, y ∈ X (identifier); a ∈ A (cell name); i ∈ N (member offset)

func. decl. d ::= func x(y) : ∀a.⟨τ → τ′, κ → κ′⟩ { s }

type τ ::= Unit | Junk⟨τ⟩ | Bool | !a | { τ1 }

| ∃a.⟨τ, κ⟩ | ∀a.⟨τ → τ′, κ → κ′⟩

capability κ ::= @own(σ : τ) | @brw(a : τ) | @dyn(a : τ)

symbol σ ::= x | a

expression e ::= x | c

constant c ::= unit | junk⟨τ⟩ | true | false | nil⟨τ⟩

statement s ::= x = salloc τ at a | x = halloc τ at a | free x

| x = load y | store e, x | x = extract e, i | x = insert e, e′, i

| x = call y, e | return e | x = { s } | { s }

| if e { s } else { s′ } | unwrapping x { s } else { s′ }

| assuming x : τ { s } else { s′ }

| pack x with κ as ∃a.⟨τ, κ′⟩ | unpack x with a

Figure 9 Formal syntax

as the static counterpart of a runtime environment, representing
the abstract machine’s state.

Definition 5.3 (Typing Context). Let Q = {@own, @brw, @dyn}
denote the set of capability qualifiers and T be the set of types.
A typing context is a triple C = ⟨µ, ρ, α⟩ where:

– µ : A → Q × T keeps track of cell capabilities,
– ρ ∈ (X → Q × T)∗ keeps track of register capabilities,
– α ∈ P(A)∗ keeps track of managed cells.

Cells allocations and deallocations Memory cells are al-
located explicitly, either on the stack (Rule T-STACK-ALLOC) or
on the heap (Rule T-HEAP-ALLOC). In both cases, a new entry is
inserted in the cell capability table µ, resulting in a strong ca-
pability (marked by @own) mapping the new cell name to a junk
type. The register capability table is also updated to associate
the new register with the new cell. Finally, stack-allocations
update the current set of managed cells α1, indicating that the
freshly created capability must be reclaimed automatically at
the end of the current scope.

Rule T-FREE formalizes explicit deallocation of unmanaged
memory. It requires that the given target register be known to
contain a cell name, for which the typing environment holds
a strong capability. If both conditions are met, then the cell is
discarded from the domain of the capability table µ. Note that
the register’s value does not need to be modified. The forfeiture
of the capability is enough to guarantee that the cell cannot be
dereferenced.

Rule T-BLOCK describes the automatic deallocation of man-
aged memory. It removes all the cells bound to the current scope
from the capability table. A key detail is the check ensuring

that the current set of managed cells α1 is contained within the
table’s domain, prescribing that all stack allocated cells must
not be permanently consumed by any instruction (e.g. a free
statement) before the end of the scope.

The reader may wonder why we do not identify invalid deal-
locations with the Rule T-FREE using the set of managed cells
α to determine which cells cannot be deallocated. While that
approach would work for cells allocated in the same function
as the free instruction and likely result in more precise error re-
porting, it would not be applicable beyond function boundaries.
The problem is that we cannot determine where a particular cell
has been allocated when it has been passed as an argument, as α
only contains the name of the cells allocated within the function
being type-checked. Unfortunately, extending the framework
to support this distinction would complicate the type system
substantially.

Example 5.1 (Premature deallocation). Consider this snippet:

1 {
2 // µ = [⊥]
3 foo = salloc Bool at a
4 // µ = [a 7→ @own(Junk⟨Bool⟩)]
5 free foo
6 // µ = [⊥]
7 }
8 // a ̸∈ dom(µ)

The system fails to type-check the last line. The rule T-BLOCK

does not apply because the cell a is missing from the domain
of the capability table µ. Remark that the same code would
be well-typed if the stack allocation at line 3 was replaced by
heap allocation, as a would not have been added to the set of
managed cells.
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STACK-ALLOC
a′ fresh in m and s

m′ = m ≪ [a′ 7→ junk(τ)] r′ = r1 ≪ [x 7→ a′] · r2...
γ′ = γ1 ≪ [x 7→ !a, a 7→ Junk⟨τ⟩] · γ2...

x = salloc τ at a · s, ⟨m, r, γ⟩⇝ s[a/a′], ⟨m′, r′, γ′⟩

FREE
m′ = m⌈r(x) γ′ = γ⌈r(x)

free x · s, ⟨m, r, γ⟩⇝ s, ⟨m′, r, γ′⟩

LOAD
r′ = r1 ≪ [x 7→ m(r(y))] · r2...
γ′ = γ1 ≪ [x 7→ γ(r(y))] · γ2...

x = load y · s, ⟨m, r, γ⟩⇝ s, ⟨m, r′, γ′⟩

STORE
⟨m, r, γ⟩ ⊢ e ⇓ v m′ = m ≪ [r(x) 7→ v]
⟨m, r, γ⟩ ⊢ e : τ γ′ = γ ≪ [r(x) 7→ τ]

store e, x · s, ⟨m, r, γ⟩⇝ s, ⟨m′, r, γ′⟩

RETURN
⟨m, r, γ⟩ ⊢ e ⇓ v r′ = r2 ≪ [x 7→ v] · r3...
⟨m, r, γ⟩ ⊢ e : τ γ′ = γ2 ≪ [x 7→ τ] · γ3...

x = { return e } · s, ⟨m, r, γ⟩⇝ s, ⟨m, r′, γ′⟩

CALL
r(y) = func x′(y′) { s′ }

⟨m, r, γ⟩ ⊢ e ⇓ v r′ = [y′ 7→ v] · r
⟨m, r, γ⟩ ⊢ e : τ γ′ = [y′ 7→ τ] · γ

x = call y, e · s, ⟨m, r, γ⟩⇝ x = { s′ }, ⟨m, r′, γ′⟩

ASSUMING-TRUE
γ(x) = !a

∀σ ∈ dom(γ1), σ ̸= x =⇒ γ1(σ) ̸= !a γ(a) = τ

assuming x : τ { s } else { s′ } · s′′, ⟨m, r, γ⟩
⇝ { s } · s′′, ⟨m, r, γ⟩

Figure 10 Operational semantics (selected rules)

Loading and storing values As mentioned earlier, regular
values in Fuel can be copied at will, even memory cell names.
On the other hand, capabilities that grant the ability to perform
mutating operations must be treated linearly. Hence, to preserve
soundness, packaging a linear capability together with a value
has to result in a linear object. Linear objects cannot be copied.
Instead, they should be moved, invalidating the register or cell
previously holding them. We define a predicate lin to identify
types of linear objects (i.e., linear types), formally defined as
the minimal predicate satisfying the following rules:

lin(∃a.⟨τ, κ)⟩)
∃i, lin(τi)

lin({ τ1, . . . , τn })

Rule T-LOAD-COPY formalizes the static semantics of load
instructions on non-linear types. It requires a strong or borrowed
capability to access the cell referenced by the source register,
whose value gets copied into the target register. In contrast, Rule

T-LOAD-MOVE applies when the source value is linear. In this
case, a strong cell capability has to be consumed to invalidate
the cell’s value, by changing its type. Both rules additionally
check that the loaded cell does not have a junk type.

Example 5.2 (Loading a linear object). Consider a load instruc-
tion of the form x = load y, type-checked in a context such that
µ = [a 7→ @own(∃b.⟨!b, @own(b : Bool)⟩)] and ρ1 = [y 7→!a].
Rule T-LOAD-MOVE applies, because a’s type is linear. It updates
the capability table such that µ = [a 7→ @own(Junk⟨. . .⟩)], ef-
fectively invalidating a’s value. In other words, one can no
longer perform a load instruction on y.

The two rules for store instructions are defined simi-
larly: T-STORE-COPY applies for non-linear values whereas
T-STORE-MOVE applies on linear values, held in a temporary
register. In both instances, a strong cell capability is required to
update its type. The notation τ ∼ τ′ additionally ensures that τ
and τ′ have a compatible memory layout.

Function calls As Fuel relies purely on an intraprocedural
analysis, function calls play a central role in Fuel’s typing se-
mantics, formalized by Rules T-CALL-COPY. Let x = call y, e
be a call statement, the rule first ensures that y holds a function
object, by verifying that it has a function type ∀a.⟨τ → τ′, κ →
κ′⟩. Next, it checks that the type τe of the expression e matches
that of the function’s domain τ, prompting the instantiation of
the universal type. We define a partial function match for this
purpose. Given two types τe and τ, as well as a sequence of
capabilities κ, the function determines whether there exists a
substitution s mapping the universally quantified names a to
concrete names from the typing context so that τe matches τ
(i.e., τe describes the same layout as τ) and that all capabilities
κ can be derived from the context; for example:

[a0 7→ @own(Unit)], ϵ

⊢ match(!a0, !a, @brw(a : Unit)) = [a 7→ a0]

Provided a substitution exists, the next step consists of consum-
ing the capabilities required by the function from the typing
context. We define another partial function take for this purpose.
The function accepts three arguments, namely a sequence of
capabilities to consume κ, a capability table µ and a borrowed
capability table β. The latter serves to handle the creation of
borrowed capabilities. We formalize its semantics in Figure
12. Consuming a strong capability (Rule T-TAKE-STRONG) re-
moves it from the context, while consuming a borrowed or
dynamic capability (Rule T-TAKE-WEAK) leaves it unchanged.
Two rules further describe how strong capabilities are weakened.
T-TAKE-MAKE-DYN permanently trades a strong capability for a
dynamic one. Finally, T-TAKE-MAKE-BRW creates a borrowed
capability by inserting a new entry in β. Although the capability
is not removed from the context, notice that this prevents further
applications of T-TAKE-STRONG and T-TAKE-MAKE-DYN, hence
avoiding unsound borrows. The rule finally merges the cell
capabilities produced or returned by the function, and creates a
register capability for the return value.
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T-STACK-ALLOC
α′ = α1 ∪ {a} · α2...

µ′ = µ ≪ [a 7→ @own(Junk⟨τ⟩)]
ρ′ = ρ1 ≪ [x 7→ @own(!a)] · ρ2...

µ, ρ, α ⊢ x = salloc τ at a ⊣ µ′, ρ′, α′

T-HEAP-ALLOC
µ′ = µ ≪ [a 7→ @own(Junk⟨τ⟩)]
ρ′ = ρ1 ≪ [x 7→ @own(!a)] · ρ2...

µ, ρ, α ⊢ x = halloc τ at a ⊣ µ′, ρ′, α

T-BLOCK
µ, ρ, α ⊢ s ⊣ µ′, ρ′, α′ α′1 ⊆ dom(µ′)
µ′′ = µ′⌈α′1 ρ′′ = ρ′2... α′′ = α′2...

µ, ρ, α ⊢ { s } ⊣ µ′′, ρ′′, α′′

T-FREE
ρ(x) = @own(!a) µ(a) = @own(τ) µ′ = µ⌈a

µ, ρ, α ⊢ free x ⊣ µ′, ρ, α

T-LOAD-COPY
ρ(y) = @own(!a) µ(a) = q(τ)

q ̸= @dyn ¬lin(τ) τ ̸= Junk⟨τ′⟩
ρ′ = ρ1 ≪ [x 7→ @own(τ)] · ρ2...

µ, ρ, α ⊢ x = load y ⊣ µ, ρ′, α

T-LOAD-MOVE
ρ(y) = @own(!a) µ(a) = @own(τ)

lin(τ) µ′ = µ ≪ [a 7→ @own(Junk⟨τ⟩)]
ρ′ = ρ1 ≪ [x 7→ @own(τ)] · ρ2...

µ, ρ, α ⊢ x = load y ⊣ µ′, ρ′, α

T-STORE-COPY
ρ(x) = @own(!a) µ(a) = @own(τ)
µ, ρ ⊢ e : τ′ ¬lin(τ′) τ ∼ τ′

µ′ = µ ≪ [a 7→ @own(τ′)]

µ, ρ, α ⊢ store e, x ⊣ µ′, ρ, α

T-STORE-MOVE
ρ(x) = @own(!a) µ(a) = @own(τ) µ, ρ ⊢ y : τ′

lin(τ′) τ ∼ τ′ µ′ = µ ≪ [a 7→ @own(τ′)]
ρ′ = ρ1 ≪ [x 7→ @own(Junk⟨τ⟩)] · ρ2...

µ, ρ, α ⊢ store y, x ⊣ µ′, ρ′, α

T-CALL-COPY
ρ(y) = @own(∀a.⟨τ → τ′, κ → κ′⟩) µ, ρ ⊢ e : τe ¬lin(τe)

µ, ρ ⊢ match(τe, τ, κ) = s µ′ = take(κ[/s], µ, [⊥]) µ′′ = µ′ ≪ κ′[/s] ρ′ = ρ1 ≪ [x 7→ @own(τ′[/s])] · ρ2...

µ, ρ, α ⊢ x = call y, e ⊣ µ′′, ρ′, α

T-ASSUMING
ρ = @own(!a) µ(a) = q(τ) q ̸= @brw µ′ = µa ⊔ µb ρ′ = ρa ⊔ ρb
µ ≪ [a 7→ @own(τ)], ρ, α ⊢ { s } ⊣ µa, ρa, α µ⌈a, ρ, α ⊢ { s′ } ⊣ µb, ρb, α

µ, ρ, α ⊢ assuming x : τ { s } else { s′ } ⊣ µ′, ρ′, α

Figure 11 Statements’ typing semantics (selected rules): C ⊢ s ⊣ C ′

Example 5.3 (Consuming capabilities for a call). Let
take(µ, κ, [⊥]) = µ′, where µ = [a 7→ @own(τ), b 7→
@own(τ), c 7→ @dyn(τ)] be a capability table and κ = @own(a :
τ) · @brw(b : τ) · @dyn(c : τ) a sequence of capabilities to con-
sume. Rule T-TAKE-STRONG applies first, removing a from µ’s
domain. Rule T-TAKE-MAKE-BRW applies next, weakening b’s
capability by creating an entry in β. Rule T-TAKE-WEAK applies,
ascertaining that the context contains a dynamic capability for
c without modifying it. Finally, Rule T-TAKE-EMPTY applies on
an empty list of capabilities.

Notice that Rule T-CALL-COPY prescribes that the argument’s
type be non-linear. Just like in the case of a store instruction, a
register capability may be taken when τ is a linear type, pack-
aging a capability within an existential type. The sister rule
handles this situation similarly to Rule S-STORE-MOVE.

Capability assumptions tests Rule T-ASSUMING formal-
izes type-checking for capability assumption tests. It first re-
quires that the tested capability be at least mentioned in the typ-

ing context, with any qualifier but @brw. Recall that assumption
tests are meant to recover strong capabilities. Obviously, this
can never succeed if the capability is already statically known
to be weak. The whole point of the construction is to leverage
dynamic checks to recover static knowledge about the typing
context. Hence, it only makes sense that the static semantics
should explore both branches of the conditional. Nonetheless,
notice that each of them is interpreted in a different context.
The first branch is type-checked after updating a’s capability
to a strong one, while the second branch is type-checked after
removing a’s capability altogether. This effectively simulates
two possible situations: either a is indeed available in the envi-
ronment, or it is not.

The contexts resulting from both branches are then joined.
This operation, denoted by the operator ⊔4, merges two capa-
bility tables, resolving conflicts by introducing dynamic capa-
bilities. More formally, t ⊔ t′ = t′′ if and only if:

4 We extend the operator to sequences of capability tables of equal lengths by
joining them pairwise, that is t ⊔ t′ = t1 ⊔ t′1, . . . , tn ⊔ t′n.
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T-TAKE-EMPTY

take(ϵ, µ, β) = µ

T-TAKE-STRONG
µ(a) = @own(τ)

a ̸∈ dom(β) µ′ = take(κ, µ⌈a, β)

take(@own(a : τ) · κ, µ, β) = µ′

T-TAKE-WEAK
(µ ≪ β)(a) = q(τ)

q ̸= @own µ′ = take(κ, µ, β)

take(q(a : τ) · κ, µ, β) = µ′

T-TAKE-MAKE-BRW
µ(a) = @own(τ) a ̸∈ dom(β)
µ′ = take(κ, β ≪ [a 7→ @brw(τ)])

take(@brw(a : τ) · κ, µ, β) = µ′

T-TAKE-MAKE-DYN
µ(a) = @own(τ) a ̸∈ dom(β)

µ′ = take(κ, µ ≪ [a 7→ @dyn(τ)], β)

take(@dyn(a : τ) · κ, µ, β) = µ′

Figure 12 Capability consumption in function calls

– ∀σ ∈ dom(t) ∩ dom(t′), t(σ) = q(τ) ∧ t′(σ) =
q′(τ′) =⇒ τ = τ′

– dom(t′′) = dom(t) ∪ dom(t′)
– ∀σ ∈ dom(t′′), t′′(σ) =

t(σ) if t(σ) = t′(σ)
@dyn(τ) if σ ̸∈ dom(t′) ∨ σ ̸∈ dom(t)
@dyn(τ) if {t(σ), t′(σ)} = {@own(τ), @dyn(τ)}

Remark that joining is not defined for tables that map
the same symbol to different types (e.g., @own(Bool) and
@own(Junk⟨Bool⟩)). This prevents the two branches of a con-
ditional statement from leaving the same register or memory
cell in different memory configurations. One way to lift this
limitation would be to equip the type system with a subtyping re-
lation to substitute mismatching types with their least supertype.
However, such an extension would also call for the addition of
a runtime subcasting mechanism.

Function declarations A program is well-formed if all
its function declarations are well-typed. Each declaration is
typed-checked in an isolated typing context, built solely from
the signatures of all globally visible symbols, thus including that
of the declaration itself. Therefore, just as call statements do not
assume anything about the function being called beyond their
signature, functions do not make any more assumptions about
their caller. Rule T-FUNC (see Figure 13) describes well-typed
function declarations formally. In a nutshell, the rule creates a
new typing context, type-checks the function’s statements and
confirms that its post-conditions are satisfied.

The cell capability table µ is created solely from the capa-
bilities taken by the function. For example, given a function
signature ∀a.⟨!a → Unit, @own(a : τ) → @own(a : τ)⟩ (i.e.,
a function accepting a pointer to a cell containing a value of

type τ), the table µ would be initialized as [a 7→ @own(Bool)].
The symbol F denotes a mapping from global identifiers to their
declarations, created at the start of the type-checking process
by gathering all global declarations. The register capability ρ is
created by prefixing F with a mapping associating the argument
y to the type of the function’s parameter. These two tables serve
to type-check the function’s statements, before the rule finally
looks at the function’s post-conditions. It checks that all stack-
allocated memory can be reclaimed (similar to how it is done
by Rule T-BLOCK), that all returned capabilities are available in
the context, and that the returned value has the expected type.
Note that the special identifier $r designates the return register.

T-FUNC
µ = {κi | 1 ≤ i ≤ |κ|} ρ = [y 7→ τ] · F

µ, ρ,∅ ⊢ s ⊣ µ′, ρ′, α′ α′ ⊆ dom(µ′)
{κ′i | 1 ≤ i ≤ |κ′|} ⊆ µ′ ρ′($r) = @own(τ′)

F ⊢ func x(y) : ∀a.⟨τ → τ′, κ → κ′⟩ { s }

Figure 13 Typing semantics of function declarations

A noteworthy property of this model is its ability to predict
heap memory leaks. Since one cannot access the contents of
a memory cell without a capability, any remaining strong ca-
pability at the end of a function scope that is not mentioned
in its signature denotes a leak. Indeed, since the call site does
not have access a callee’s typing context, it has no way to re-
cover the capabilities that are not returned, nor automatically
reclaimed. Similarly, linear objects that remain in the register
capability table also constitute leaks. While the register’s value
can be assumed to be deallocated, the memory cells referred
to by the packaged capabilities cannot. Furthermore, those are
known to be heap-allocated, otherwise the function would be ill-
typed. Unfortunately, dynamic capabilities may still introduce
untraceable leaks, precisely because they represent uncertainty
about the actual state of the runtime environment. Hence, their
presence may denote a false positive.

5.5. Soundness
Our static semantics guarantees that well-typed programs can
always progress to a valid configuration. A configuration is a
sequence of statements s paired with a runtime environment R.
It is valid if either of these two conditions holds:

– there is no more statement to evaluate (i.e., s = ϵ); or
– the program is not stuck (i.e., there exists a reduction rule

such that s,R⇝ s′,R′).

We first describe a relation between runtime environments
and typing contexts, which holds if the latter is a faithful descrip-
tion of the former. Intuitively, it prescribes that a capability that
appears in a typing context must be matched by a corresponding
entry in the environment. Notice the asymmetry: a symbol σ
being mapped onto a value v in R does not need to be matched
by a corresponding capability in C. However, all capabilities
featured in C must be verified in R. This allows typing contexts
to underspecify environments.
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Definition 5.4 (Environment Typing). Let R = ⟨m, r, γ⟩ be a
runtime environment and C = ⟨µ, ρ, α⟩ be a typing context. We
write R : C if and only if:

– ∀a ∈ dom(µ), µ(a) = q(τ) =⇒ m(a) : τ
– ∀x ∈ dom(ρ), ρ(x) = q(τ) =⇒ r(x) : τ

Our typing rules focus on maintaining an environment-typing
invariant. We express this idea formally with the following
soundness property; its proof is left for future work.

Theorem 5.1 (Soundness). Let C be a typing context and R
be a runtime environment such that R : C. If C ⊢ s ⊣ C ′ and
s,R⇝∗ s′,R′, then s′,R′ is a valid configuration.

6. Conclusion
We have presented Fuel, a compiler framework designed to
verify memory safety properties on programs using explicit
memory management. Drawing inspiration from LLVM, Fuel
features a low-level, typed intermediate language, called Fuel IR,
intended as a front-end agnostic target for any source language.
The language uses type capabilities to eliminate initialization
issues, null dereference, use-after-free, doubly freed memory
and inaccessible memory. All properties are verified statically
on programs transformed in Fuel IR, using a type-checking
analysis that leverages dynamic checks to recover static assump-
tions about the typing environment. We have introduced our
framework informally, through a short tutorial showcasing how
to translate common low-level idioms from C and Rust to Fuel
IR, and formalized a subset for which we have described the
operational and static semantics.

6.1. Current limitations
A handful of outstanding limitations prevent Fuel from being
used in a concrete setting in its current state. In particular, Fuel
IR’s lacks the following critical features:

Self-recursive data structures Our language is currently un-
able to represent self-recursive data structures, such as
linked-lists or trees. Two features are missing: a support
for recursive definitions and optional types (a.k.a., maybe
monads). The former is a simple extension of Fuel IR’s
type system, while the latter calls for minor amendments
to its operational semantics. Specifically, it requires the
addition of a conditional statement able to branch behavior
depending on the presence or absence of a value.

Arrays Arrays are another fundamental data structure that Fuel
IR is currently unable to represent. In particular, the lan-
guage lacks the ability to compute indices dynamically.
Unfortunately, such a feature would introduce uncertainty
as to determine which member of the tuple is involved in a
particular operation. One possible countermeasure would
be to leverage dynamic checks, updating the type of each
member after any mutating operation.

Another issue is to determine whether a computed index
actually falls within the array’s bounds. Dynamic solutions
typically instrument code with runtime checks (Duck &

Yap 2016), while static alternatives use symbolic execu-
tion (Rugina & Rinard 2005) or dependent types (Xi &
Pfenning 1998) to remove them.

Concurrency Fuel does not yet provide any support for concur-
rency. While extending the language with threads should
be possible, this feature suggests further questions about
the additional mechanisms that should come with it. Low-
level languages typically offer locks and synchronization
primitives, while their higher-level counterpart may rely
on more elaborate patterns, such as actors and promises.

6.2. Discussion and future work
Our long-term objective is to develop a scalable, off-the-shelf
framework to express and verify memory safety properties in
existing compiler toolchains. We identified three main research
questions related to this goal, which this work partially answers:

RQ1 What is the appropriate expressiveness to reason about
mutable memory states?

By dissociating the possession of a pointer value from the
capability to read or modify memory, Fuel’s type system is
more amenable than traditional substructural approaches.
We have presented a formal semantics for Fuel IR. The
proof is expected to follow from the traditional style of
Wright and Felleisen (Wright & Felleisen 1994).

The use of runtime assumptions in concert with static type
checking is our most significant contribution, which can
be understood as occurrence typing (Tobin-Hochstadt &
Felleisen 2008) for flow-sensitive memory properties. It
uncovers promising leads to support dynamic features that
are typically too impractical to check statically.

RQ2 What is the appropriate level of abstraction for a memory
safety checking framework?

We believe that starting from LLVM IR, adding explicit
scoping constructs (e.g., assuming), and supporting richer
functions APIs yields a suitable model to express univer-
sal memory operations while remaining non-opinionated
about high-level features, such as class-based polymor-
phism or closure implementations.

Scopes in particular provide an elegant way to delimit the
lifetime of an assumption and reason about the state of
the memory at a particular point in the program. In other
words, Fuel is more structured than LLVM IR.

RQ3 Where should a memory safety checking framework be
plugged into a compiler toolchain?

This question requires more future research. As we ob-
served in this paper, all information required to perform
memory safety checking is typically available within the
front-end phase, after semantic analysis has fixed the type
of each expression. Besides, structural information should
still be available at this stage, allowing scope information
to be translated into Fuel IR.

Nonetheless, it remains to more formally identify what
properties of a source language are strictly necessary to
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generate well-formed Fuel IR code and discover how com-
mon code patterns can be translated optimally. Another
issue is to determine whether Fuel IR code generation is
reasonably automatable. Only a thorough practical evalua-
tion can provide definite answers.

Other avenues for future work include the exploration of
Fuel’s applicability to other domains than memory safety check-
ing. One particularly exciting prospect is to leverage its type
system in the context of JIT compilation. By providing richer
foreign function interfaces, advertising their possible side ef-
fects, one can hope to leverage local reasoning to exploit more
optimization opportunities.
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