
Journal of Object Technology | RESEARCH ARTICLE

Threaded Code Generation with a Meta-Tracing JIT
Compiler

Yusuke Izawa∗, Hidehiko Masuhara∗, Carl Friedrich Bolz-Tereick†, and Youyou Cong∗
∗Tokyo Institute of Technology, Japan

†Heinrich-Heine-Universität Düsseldorf, Germany

ABSTRACT Language implementation frameworks, e.g., RPython and Truffle/Graal, are practical tools for creating efficient
virtual machines, including a well-functioning just-in-time (JIT) compiler. It is demanding to support multitier JIT compilation in
such a framework for language developers. This paper presents an idea to generate threaded code by reusing an existing
meta-tracing JIT compiler, as well as an interpreter design for it. Our approach does not largely modify RPython itself but
constructs an effective interpreter definition to enable threaded code generation in RPython. We expect our system to be
extended to support multilevel JIT compilation in the RPython framework. We measured the potential performance of our
threaded code generation by simulating its behavior in PyPy. We confirmed that our approach reduced code sizes by 80 % and
compilation times by 60 % compared to PyPy’s JIT compiler on average, and ran about 7 % faster than the interpreter-only
execution.

KEYWORDS JIT compiler, meta-tracing JIT compiler, RPython, threaded code

1. Introduction
Language implementation frameworks, such as RPython (Bolz
et al. 2009) and Truffle/Graal (Würthinger et al. 2012), help lan-
guage developers in building a full-fledged virtual machine with
a smaller amount of implementation effort. Those language im-
plementation frameworks have a mechanism that takes an inter-
preter definition of a language and yields a virtual machine (VM)
with advanced features, including a quality just-in-time (JIT)
compiler. The effectiveness and usefulness of language imple-
mentation frameworks are demonstrated by efficient implemen-
tations of many programming language implementations includ-
ing PyPy (Bolz et al. 2009), GraalPython (Oracle Labs. 2018),
Topaz (Gaynor et al. 2013), TruffleRuby (Oracle Lab. 2013),
RSqueak (Felgentreff et al. 2016), and TruffleSqueak (Niephaus
et al. 2019). Not only those implementations are realized by
writing interpreters, many of them exhibit better performance

JOT reference format:
Yusuke Izawa, Hidehiko Masuhara, Carl Friedrich Bolz-Tereick, and Youyou
Cong. Threaded Code Generation with a Meta-Tracing JIT Compiler.
Journal of Object Technology. Vol. 21, No. 2, 2022. Licensed under
Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2022.21.2.a1

than their interpreter-based counterparts (e.g., CPython and
CRuby).

It is challenging for language implementation frameworks
to support multitier JIT compilation. Multitier JIT compila-
tion is a technique that compiles different parts of programs
at different optimization levels to balance between compila-
tion overheads and the efficiency of compiled code1. Naïvely,
multitier compilation requires a compiler for each optimization
level. It is also possible to construct one compiler that can yield
code at different optimization levels, but implementing such
a compiler would require more effort of language developers.
Since language implementation frameworks need to generate
such a compiler from interpreter definitions, it is more challeng-
ing to support multitier compilation with the same interpreter
definition.

In this paper, we propose a technique that generates threaded
code by reusing an existing meta-tracing JIT compiler, namely
RPython. Threaded code generation is a compilation technique
that simply converts each operation of a source program into

1 For example, the Jalapeño Java VM has a baseline and an optimizing compiler
with three optimization levels (Alpern et al. 1999). In addition, The four tire
JIT in the JavaScript engine in Webkit (?) has four different optimization
levels.

An AITO publication

http://dx.doi.org/10.5381/jot.2022.21.2.a1


a call to a respective handler function. Some multitier VMs
use threaded code generation as the baseline compiler since its
compilation speed is extremely fast. Our idea is to use existing
RPython’s engine (i.e., the meta-tracing compilation machinery)
for threaded code generation so that it will serve as the base-
line JIT compiler for RPython-based language implementations.
We expect that our threaded code generation should be placed
between an interpreter execution and a tracing JIT execution
since it is just baseline compilation. Given that context, the
threaded code compilation should reduce a compilation code
size to compile it fast. Although this paper focuses on threaded
code generation, we hope that our approach would be able to be
extended to compilation at different optimization levels in the
future.

The proposal of the paper is positioned as an application
of our meta-hybrid JIT compiler framework project (Izawa &
Masuhara 2020) to a production-level language implementa-
tion framework, namely the RPython-backend for PyPy (Rigo
& Pedroni 2006) in the context of threaded code generation.
In contrast to our original proposal (Izawa & Masuhara 2020)
that is based on a simple experimental language implementa-
tion framework, this paper realizes threaded code generation
on a production level language implementation framework by
mostly reusing the existing implementation that does not con-
sider threaded code generation or other levels of optimization
at all. In other words, this approach doesn’t need to modify the
RPython’s compilation engine too much, but we realize it just
by preparing a specific interpreter definition and implement a
new trace compilation engine that share almost all the code base
(details are explained in Section 3).

In this paper, we make the following contributions:

– an idea to build a method-based threaded code generator
on top of RPython,

– an implementation design to realize a method-based
threaded code generation with a meta-tracing JIT compiler,
and

– measuring the potential performance of the generated
threaded code through preliminary experiments in PyPy.

The rest of this paper is organized as follows. Section 2
shows the background. Section 3 explains the idea of realizing
a method-based baseline JIT compiler on top of RPython. In
Section 4, through preliminary benchmark experiments, we
discuss how well our threaded code generation performs in
practice, and what kind of programs it should be applied to.
Section 5 presents the related work and Section 6 concludes this
paper.

2. Background
This section briefly gives an overview of a language imple-
mentation framework, and the meta-tracing JIT compiler in
PyPy/RPython as well as threaded code.

2.1. Language Implementation Framework
A language implementation framework is a tool that generates a
high-performance VM from an interpreter definition. In a tra-
ditional development way, programming language developers

1 jitdriver = JitDriver(reds=[’self’],
2 greens =[’pc’, ’bytecode ’])
3

4 def interp(self):
5 pc = 0
6 while True:
7 jitdriver.jit_merge_point(
8 self=self ,pc=pc,
9 bytecode=bytecode)

10 opcode = bytecode[pc]
11 pc += 1
12 if opcode == ADD:
13 ...
14 elif opcode == JUMP:
15 t = ord(bytecode[pc])
16 pc += 1
17 if t < pc:
18 jitdriver.can_enter_jit(
19 self=self ,pc=t,
20 bytecode=bytecode)
21 pc = t
22 ...

Listing 1 A simple example of a bytecode interpreter written
in RPython

have to implement VM components, such as an interpreter, JIT
compiler, memory management model, etc., from scratch for
each language. However, by using a language implementation
framework developers need to write only an interpreter by us-
ing a language implementation framework when they build a
language.

There are two state-of-the-art frameworks called RPython
and Truffle/Graal. RPython (Rigo & Pedroni 2006) is a part of
the PyPy project; PyPy is generated from the RPython frame-
work. On the other hand, Truffle/Graal (Würthinger et al. 2012)
is a part of GraalVM project that is being developed by Ora-
cle Lab. They are successful in generating high-performance
language implementations for Python (?Oracle Labs. 2018),
PHP (Fijałkowski et al. 2014), Ruby (Gaynor et al. 2013; Oracle
Lab. 2013), R (Oracle Lab. 2015), and so on.

RPython and Truffle/Graal require different interpreter defi-
nition styles; a bytecode interpreter and an abstract-syntax-tree
(AST) interpreter, respectively. In addition, to enable JIT compi-
lation and other optimizations, framework users have to follow
the implementation manners that are provided by the frame-
works. For example, at least, RPython users have to write hint
functions at a right place (details are shown in Section 2.2),
and Truffle/Graal users should define AST nodes by inheriting
Node class which provides Truffle/Graal and override execute
method inside their defined AST nodes.

2.2. PyPy/RPython and Meta-tracing JIT Compiler
PyPy is an implementation of Python language, based on the
RPython (Rigo & Pedroni 2006) compiler. It has a high-
performance tracing JIT compiler, which is not directly imple-
mented but generated by the RPython compiler. The RPython
compiler accepts a bytecode interpreter written in RPython. A
meta-tracing JIT compiler (Bolz et al. 2009) keeps track of the
execution of a user-defined interpreter and compiles a hot loop
of a target language.

Listing 1 is an example definition that a language developer
needs to write in RPython. Note that a language developer needs

2 Izawa et al.



Figure 1 An overview of how threaded code works.

to define jitdriver for telling the necessary information to
RPython’s meta-tracing JIT compiler. There are also special
functions, namely jit_merge_point and can_enter_jit.
jit_merge_point and can_enter_jit should be placed at
the beginnings of a bytecode dispatch loop and where back-edge
instruction occurs (e.g., the end of JUMP definition in Listing 1),
respectively.

2.3. Threaded Code

Threaded code (Bell 1973; Hong 1992) is a technique to im-
prove the performance of a bytecode interpreter. The interpreter
separately defines handler functions for all bytecode instruc-
tions as shown on the right-hand side in Figure 1. A program is
a sequence of call instructions to handlers as shown on the left-
hand side. Executing a threaded code-based program reduces
the number of indirect branching that significantly pose a perfor-
mance penalty at runtime because of branch mispredictions (Ertl
& Gregg 2003).

3. The Compilation Tactic of RPython’s Base-
line JIT

In this section, we present how to realize method-based base-
line JIT strategy on top of RPython without implementing a
compilation engine from scratch.

The objective of introducing threaded code is for less start-
up and compilation time in the RPython2. In general, a tracing
JIT compiler automatically inlines function calls and applies
several optimizations to a trace. The longer the trace you get
and the better native code you want to generate, the longer the
compilation time. In contrast, threaded code generation only
leaves the call instruction to a subroutine, so tracing doesn’t
consume much time. We also apply only simple optimizations
such as constant-folding and removing duplicated operations to
the obtained trace from the threaded code generator, so we can
reduce the compilation time than a normal tracing mode.

2 An alternative approach to improve warm-up performance is to improve the
dispatching mechanism of an interpreter, for example, by using threaded
jumps. It would not be easy to realize such approaches in RPython as it
currently assumes more straightforwardly written interpreters.

3.1. The Compilation Principle
Our threaded code generation is achieved by carefully control-
ling the RPython’s meta-tracing compiler and reconstructing
a control flow from the resulted trace. We realize it just by
preparing a model of a specific interpreter definition (called
method-traversal interpreter) and a new trace compilation mech-
anism (called trace-stitching). Below, we explain our approach
by comparing our approach against a typical JIT compilation
process in RPython.

When RPython compiles a base-program executed by an
interpreter, it

starts compiling at the beginning of a loop, which is dynami-
cally detected;

for each operation in the base program, follows into the re-
spective handler body in the interpreter, which effec-
tively eliminates “interpretation” (i.e., code dispatching
and operand manipulation) by the interpreter;

at a function call in the base program, follows into the body
of the callee function, which effectively achieves function
inlining;

at a conditional expression in the base program, follows
only one of the branch with emitting a guard operation for
other branches; and

at a conditional branch in the handler (including selection
of an arithmetic operation based on operands’ runtime
types), traces only one of the branch to achieve effective
type-specialization;

finishes compiling at the end of the loop.

Our threaded code generation operates the RPython compiler
so that it

starts compiling at the beginning of a method/function in the
base-program3;

for each operation in the base-program, follows the code
dispatching part of the interpreter, but does not trace into
the handler body but emits a call instruction to the respec-
tive handler;

at a function call in the base-program, emits a call instruc-
tion and continues tracing of the operations after the func-
tional call;

at a conditional expression in the base-program, follows
all branches;

at a conditional branch in the handler — this will not hap-
pen since the compiler does not trace the inside of handlers;
and

finishes compiling at the end of the method/function.
3 Whether the system uses threaded code generation or not is an open issue

that we will consider in the future. For the time being, we merely assume
that the threaded code generator is invoked for a particular base-program
method/function.

Threaded Code Generation with a Meta-Tracing JIT Compiler 3



Figure 2 A sketch of how RPython method-based baseline JIT compiler works. From the target function in the left-hand side, it
generates the trace tree shown in the right-hand side.

RETJUMP

ca
ll

1

2

3

4

5

A

B

C

D F

E

Figure 3 Tracing the entire of a function with method-
traversal interpreter.

To drive the RPython compiler like that, our proposal consists
of the following three techniques:

The method-traversal interpreter technique. We write an in-
terpreter to let the tracing mechanism of RPython traverse
all execution paths in a base-program method/function. We
achieve this behavior by merely defining the interpreter
in a specific way, but not modifying the existing RPython
infrastructure.

The hinting technique. We let the RPython compiler not trace
inside of handlers and the callee of a function/method call
in a base-program. This is also achieved by placing existing
RPython annotations into the interpreter definition.

The trace stitching technique. We reconstruct the original
control flow of a base-program function/method from a
recorded trace. Since the method-traversal interpreter tech-
nique will yield a straight-line trace that covers all the
execution paths, this technique will split the trace into ba-
sic blocks and then connect them together by using branch
and jump instructions. This is achieved by adding a post-
processing module into the RPython tracer.

Figure 2 shows a high-level example of RPython baseline JIT
compiler. The left-hand side of Figure 2 represents the control

1 @dont_look_inside
2 def tla_ADD(self , pc):
3 x, y = self.pop(), self.pop()
4 self.push(y.add(x))
5 return pc
6

7 @dont_look_inside
8 def tla_CONST_INT(self , pc):
9 arg = ord(self.bytecode[pc])

10 self.push(W_IntObject(int(arg)))
11 return pc + 1
12

13 driver = JitDriver(reds=[’self’],
14 greens =[’pc’,’bytecode ’,’traverse_stack ’])
15

16 class Frame:
17 def interp(self , pc, traverse_stack):
18 while True:
19 driver.jit_merge_point(
20 bytecode=self.bytecode ,pc=pc ,self=self ,
21 traverse_stack=traverse_stack)
22 opcode = ord(self.bytecode[pc])
23 pc += 1
24 if opcode == ADD:
25 pc = self.tla_ADD(pc)
26 elif opcode == JUMP:
27 ...
28 elif opcode == RET:
29 ...
30 elif opcode == JUMP_IF:
31 ...

Listing 2 Skeleton of method-traversal interpreter and
subroutines decorated with dont_look_inside.

flow of a target function. B – C – E is a conditional branch, D is
a back-edge instruction, and F is a return. The compiler finally
generates a trace tree 4, which covers a function body as shown
in the right-hand side of Figure 2. In contrast to trace-based
compilation, it keeps the original control flow, we can see that
the bodies of subroutines are not inlined but call instructions to
them are left.

To produce such a trace tree, the tracer of RPython baseline
JIT has to sew and stitch generated traces. We call this behavior
trace tailoring. Technically speaking, the compiler traces a
special instrumented interpreter namely method-traversal in-
terpreter. Since the obtained trace from the method-traversal
interpreter ignores the original control flow, we have to restore
4 Each trace has a linear control flow, but they are compiled as a bridge.

4 Izawa et al.



1 DUP ,
2 CONST_INT , 1,
3 GT ,
4 JUMP_IF , 10,
5 CONST_INT , 1
6 SUB ,
7 JUMP , 0
8 CALL , 23,
9 EXIT ,

Listing 3 An example
bytecode with the control
flow shown in Figure 3.

1 while True:
2 if x > 1:
3 x −= 1
4 else:
5 x = call g(x)
6 return x

Listing 4 An example
program corresponding to
Listing 3.

1 if opcode == JUMP_IF:
2 target = ord(self.bytecode[pc])
3 e = self.pop()
4 if self._is_true(e):
5 if we_are_jitted ():
6 pc += 1
7 # save another direction
8 traverse_stack = t_push(
9 pc , traverse_stack)

10 else:
11 if t < pc:
12 driver.can_enter_jit(pc=target ,
13 bytecode=self.bytecode ,self=self ,
14 traverse_stack=traverse_stack)
15 pc = target
16 else:
17 if we_are_jitted ():
18 # save another direction
19 traverse_stack = t_push(target ,
20 traverse_stack)
21 pc += 1

Listing 5 Definition of JUMP_IF.

it. To rebuild the original control flow, in the next phase, the
baseline JIT compiler stitches the generated trace. We call this
technique trace stitching. In the next sections, we will explain
method-traversal interpreter and trace stitching, respectively.

3.2. Method-traversal Interpreter
We propose method-traversal interpreter, a specially instru-

mented interpreter for the baseline JIT compiler. It works as
an abstract interpreter because it follows complete control flow
graph by exploring both sides of a conditional branch.

The skeleton of method-traversal interpreter is shown in
Listing 2. All handlers that are shown at the top of the listing,
are decorated by dont_look_inside hint which tells the tracer
not to trace the function body. Furthermore, specific areas
are written in the then block of we_are_jitted. This hint
function returns True after entering tracing. Therefore, the
resulting trace has only call instructions to subroutines.

Figure 3 shows how method-traversal interpreter traverses
a function body with respect to the bytecode denotes in List-
ing 3 and 4. In Figure 3, the gray-colored dotted line means a
generated trace with the method-traversal interpreter. Normally,
a tracing JIT only follows an executed side of the conditional
branch. In contrast, the baseline JIT tracer follows the both
sides. To enable it, method-traversal interpreter manages a spe-
cial stack data structure called traverse_stack. It only stores
program counters, so it is marked as green and finally removed
from the resulting trace.

1 @dont_look_inside
2 def cut_here(self , pc):
3 "A pseudo function for trace stitching"
4 return pc
5

6 if opcode == JUMP:
7 t = ord(self.bytecode[pc])
8 if we_are_jitted ():
9 if t_is_empty(traverse_stack):

10 pc = t
11 else:
12 pc, traverse_stack = traverse_stack.t_pop()
13 # call pseudo function
14 pc = cut_here(pc)
15 else:
16 if t < pc:
17 jitdriver.can_enter_jit(
18 bytecode=self.bytecode ,pc=t,self=self ,
19 traverse_stack=traverse_stack)
20 pc = t

Listing 6 Definition of JUMP.

1 if opcode == RET:
2 if we_are_jitted ():
3 if t_is_empty(traverse_stack):
4 return self.tla_RET(pc)
5 else:
6 pc, traverse_stack = traverse_stack.t_pop()
7 else:
8 return self.tla_RET(pc)

Listing 7 Definition of RET.

We explain the behavior of method-traversal interpreter with
respect to the examples. The differences from a normal trac-
ing JIT compiler are: (1) conditional branch, (2) back-edge
instruction, (3) function call, and (4) function return.

3.2.1. Conditional branch. Our baseline JIT tracer follows
both sides of a conditional branch; firstly, tracing then branch,
and tracing else branch next.

When tracing a conditional branch 1 in Figure 3, it saves
the program counter in another direction of a conditional branch
to the traverse_stack. Listing 5 shows the handler for the
JUMP_IF. You can see that traverse_stack saves another
directions in lines 8 and 19.

3.2.2. Back-edge instruction. Upon a back-edge instruc-
tion, the baseline JIT tracer jumps to one of the remaining
branches. RPython’s original tracer follows a back-edge in-
struction and finishes tracing when it reaches the beginning of
tracing. We modify such a behavior not to finish tracing until
the tracer reaches the end of a target method and visits its all
paths.

When tracing a back-edge instruction at 2 , it does not fol-
low the jump target. Instead, at 3 , it pops a program counter
from traverse_stack and goes to the other branch which is
an unfollowed branch of a previous conditional jump (E in the
Figure 2).

Seeing the implementation of JUMP in Listing 6, before
jumping to somewhere, it checks whether traverse_stack
is empty or not. If empty, the baseline tracer normally exe-
cutes JUMP. Otherwise, it restores the saved program counter

Threaded Code Generation with a Meta-Tracing JIT Compiler 5



RETJUMP

ca
ll

A

B

C

D F

E

4

ca
ll5

RETJUMP

ca
ll

A

B

C

D F

E

2

RETJUMP

ca
ll

A

B

C

D F

E

3

RETJUMP

ca
ll

A

B

C

D F

E

11

Figure 4 The working flow of trace stitching.

1 [p0]
2 i1 = call_i(ConstClass(tla_DUP , p0))
3 i2 = call_i(ConstClass(tla_CONST_INT , p0 , 1))
4 i3 = call_i(ConstClass(tla_GT , p0, 2))
5 i4 = call_i(ConstClass(_is_true , p0, 4))
6 guard_true(i4) [p0]
7 i5 = call_i(ConstClass(tla_CONST_INT , p0 , 7))
8 i6 = call_i(ConstClass(tla_SUB , p0))
9 i7 = call_i(ConstClass(cut_here , 8))

10 i8 = call_i(ConstClass(tla_CALL , p0, 10))
11 i9 = call_i(ConstClass(tla_RET , p0, i8))
12 leave_portal_frame (0)
13 finish(i9)

Listing 8 The temporarily generated trace from a method-
traversal interpreter.

from traverse_stack and goes to that place. To tell the place
of a back-edge instruction, we have to call a pseudo function
cut_here. It is used in trace-stitching to restore the original
control flow.

3.2.3. Function call. To reduce the compilation code size,
our baseline JIT compiler does not inline a function call.

When tracing CALL instruction at 4 , it does not follow the
destination of CALL but emits only a call instruction since sub-
routines are decorated with dont_look_inside.

3.2.4. Function return.

When tracing RET at 5 , first, the baseline tracer checks
whether traverse_stack is empty or not. If not empty, it
restores a saved program counter and continues to trace. Other-
wise, it executes RET instruction. The implementation is shown
in Listing 7, and the behavior is almost same to JUMP.

We finally get the following trace as shown in Listing 8. Note
that it is still linear, so we will cut and stitch the generated trace
to restore the original control flow.

3.3. Trace Stitching
The obtained trace by tracing method-traversal interpreter is a
linear execution path, since the tracer is led to track all paths by
the interpreter. For correct execution, we propose trace stitching,
which is a technique to reconstruct the original control flow.

Figure 4 shows how trace stitching works, and 1 – 5
indicate its working flow.

1 : the tailor cuts where cut_here indicates to handle
each branch as a separate trace. In Figure 4, the tailor cuts
the node B in Figure 4 that cut_here points to;

2 : the tailor restores the conditional branch by compiling
the trace E – F as a bridge. When compiling as a bridge,
the tailor emits a label L and rewrites the definition of an
original guard failure that is placed at B;

3 : the tailor restores JUMP instruction at the bottom of D.
After that,

4 : it copies variables and instructions that are not in the
scope of the branch B – E – F for run-time correctness.
Finally,

5 : the tailor folds or removes constants or unused vari-
ables/instructions, respectively.

As a result, we get the trace tree as shown in the rightest side
of Figure 4. Inside the RPython, the trace tree is represented
as two traces shown in Listing 9. There is no linear trace, but
one trace and bridge are connected with a guard failure. If
guard_true(i4) is failed, the control goes to the Bridge 1 and
executes it.

4. Performance of Simulated Threaded Code
Generation

In this section, we experimentally evaluate the potential per-
formance of our threaded code generation by simulating the
behavior with PyPy. We here compare the threaded code perfor-
mance against the interpreter performance, although we are also
interested in that against the best possible threaded code per-
formance. It would be an interesting future work to implement
and compare different threaded code generations in real-world
languages like Python.

In Section 3, we described the idea of threaded code genera-
tion that enables a baseline compilation with a meta-tracing JIT
compiler. The question arises whether the technique is effective

6 Izawa et al.



0.8

1.0

1.2

1.4

0 20 40 60 80

0.8

1.0

1.2

1.4

Speed-up ratio of our STCG

#Iteration

Re
la

te
d 

sp
ee

d 
to

 in
te

rp
. e

xe
cu

tio
n

0

50

100

150

200 binarytrees
chaos
cryptopyaes
fannkuch
fib
float
go
jsondumpv2

0 20 40 60 80
0

50

100

150

200 meteorcontest
nbody
nqueens
pidigits
raytrace
richards
spectralnorm
tak
telco

Speed-up ratio of PyPy's tracing JIT 

#Iteration

Re
la

te
d 

sp
ee

d 
to

 in
te

rp
. e

xe
cu

tio
n

Figure 5 Speed-up ratio of STCG (left-hand side) and PyPy’s tracing JIT compiler (right-hand side) related to the interpreter.
They are executed on PyPy’s original micro benchmark suite plus our original ones. X-axis and Y-axis mean every iteration and
speed-up ratio standardized to interp. execution, respectively. Dots are plotted every five iterations.

1 # Loop 1, token number is 13458300
2 [p0]
3 i1 = call_i(ConstClass(tla_DUP , p0))
4 i2 = call_i(ConstClass(tla_CONST_INT , p0 , 1))
5 i3 = call_i(ConstClass(tla_GT , p0 , 2))
6 i4 = call_i(ConstClass(_is_true , p0, 4))
7 guard_true(i4) [p0] # pointing to Bridge 1
8 i5 = call_i(ConstClass(tla_CONST_INT , p0 , 7))
9 i6 = call_i(ConstClass(tla_SUB , p0))

10 # targeting to its own top
11 jump(p0, descr=TargetToken (13458300))
12

13 # Bridge 1, token number is 1345340
14 [p0]
15 i8 = call_i(ConstClass(tla_CALL , p0, 10))
16 i9 = call_i(ConstClass(tla_RET , p0, i8))
17 leave_portal_frame (0)
18 finish(i9)

Listing 9 Tailored traces. One linear trace is converted into
one trace and one bridge, and they are connected with a guard
failure.

at runtime or not. To answer the question, we measured JIT
compilation time and code size of traces of PyPy’s tracing JIT
compiler and our simulated threaded code generation (SMTG),
respectively. In addition, we compared the potential perfor-
mance of the two following executions: PyPy 3.7 with SMTG
and interpreter-only execution.

4.1. Simulated Threaded Code Generation (STCG) in
PyPy

To measure the potential performance of our threaded code
generation, we need to reproduce its behavior on PyPy. The
brief ideas of the simulated threaded code generation (STCG)
are;

Idea 1. All subroutines are not inlined, but call instructions to
subroutines are left.

Idea 2. Tracing all paths of a target program area at once.

Idea 1 can be easily reproduced by adding
dont_look_inside to the PyPy interpreter manually.
The problem is how to reproduce idea 2. The current PyPy
doesn’t have such a function, but it has a guard failure. A
guard failure is a runtime check to ensure the correctness of the
generated trace. When the number of failing a guard surpasses
a threshold, a tracing JIT starts to trace the destination of a
guard and connects the original trace and the generated trace
from a guard. Then, if we run programs with enough time,
all runtime paths are eventually traced by a guard failure.
Therefore, we can reproduce the behavior of idea 2 by running
the benchmarks for a long time.

4.2. Setup
In this section, we explain the environment and how we per-
formed our preliminary experiments.

4.2.1. System We conducted the preliminary benchmark on
the following environment; CPU: Ryzen 9 5950X, Mem: 32GB
DDR4-3200MHz, OS: Ubuntu 20.04.3 LTS with a 64-bit Linux
kernel 5.11.0-34-generic.

4.2.2. Implementation We used the original PyPy 3.7 ver-
sioned 7.3.55, and our modified PyPy 3.7 with STCG6.

4.2.3. Programs for Experiments You can find all bench-
mark programs here7. We chose all benchmarks that can be
executed without any other libraries. Especially, fib and tak
are programs causing the path-divergence problem.

4.2.4. Methodology We conducted two experiments on
PyPy’s original micro benchmark suite plus our original ones;
5 https://downloads.python.org/pypy/pypy3.7-v7.3.5-linux64.tar.bz2
6 https://foss.heptapod.net/pypy/pypy/-/tree/branch/py3.7-hack-measure

-bytecode-dispatch
7 https://foss.heptapod.net/pypy/benchmarks/-/tree/topic/python3

_benchmarks/bitbucket-pr-5

Threaded Code Generation with a Meta-Tracing JIT Compiler 7

https://downloads.python.org/pypy/pypy3.7-v7.3.5-linux64.tar.bz2
https://foss.heptapod.net/pypy/pypy/-/tree/branch/py3.7-hack-measure-bytecode-dispatch
https://foss.heptapod.net/pypy/pypy/-/tree/branch/py3.7-hack-measure-bytecode-dispatch
https://foss.heptapod.net/pypy/benchmarks/-/tree/topic/python3_benchmarks/bitbucket-pr-5
https://foss.heptapod.net/pypy/benchmarks/-/tree/topic/python3_benchmarks/bitbucket-pr-5


Experiment 1. Measuring the overhead of tracing and compi-
lation in our STCG.

Experiment 2. Measuring the stable speeds of our STCG.

Experiment 1. To measure the overhead of tracing and compi-
lation, we used PyPy 3.7–7.3.5 with a tracing JIT and our STCG.
We measured their compilation time and the size of traces to
compile, and normalized them to PyPy with a tracing JIT. The
compilation time includes tracing. Note that the implementa-
tion of our full-fledged threaded code generation on PyPy is
ongoing, so we simulate the behavior (we describe how to do it
in Section 4.1). The results are shown in Figure 6.

Experiment 2. To compare a stable speed, we compared the
STCG on PyPy 3.7 with the interpreter-only execution. The
interpreter-only execution means that we turn off the JIT compi-
lation by passing --jit off when running scripts. We calculated
the averages and standard deviations of the STCG normalized
to the interpreter-only execution. The results are shown in Fig-
ure 7.

We set the max iteration count 100 from the results that plot
the related speed-up ratio in the STCG and PyPy’s tracing JIT
as shown in Figure 5. From those results in the STCG, we
can confirm that almost all programs except reach their stable
state after the 5th iteration. In addition, the PyPy’s tracing JIT
reaches its stable speed after the 30th iteration. Experiment
1 requires a number of operations and times for compilation,
and experiment 2 needs STCG’s stable speed; in this context,
we decide that the max iteration count 100 is enough to reach
the stable speed. Thus, in experiment 2, we exclude the first 5
iterations for calculating the average value of every program’s
stable speed.

4.3. Result of Experiment 1: The Overhead of Our STCG
The objective of this experiment is to potentially evaluate the
start-up time of our simulated threaded code generation. The
results are shown in Figure 6. On average, in the case of trace
sizes to compile, PyPy 3.7 with STCG is about 78 % smaller
than PyPy 3.7–7.3.5 with a tracing JIT, and 13 of 17 programs
are about 50 % smaller than PyPy’s tracing JIT. In addition,
in the case of compilation time, PyPy 3.7 with STCG is about
60 % shorter than PyPy 3.7–7.3.5 with a tracing JIT. 13 of
17 programs, that are same to the case of the size of traces to
compile, are 60 % shorter than PyPy’s tracing JIT. However,
PyPy 3.7 with STCG size of traces and compilation time on
nbody is almost the same as that of PyPy’s tracing JIT. This
program computes the N-body simulation with a matrix calcu-
lation. This calculation is implemented as a big for-loop, so
there is less effect on performing threaded code generation than
full-optimized tracing.

4.4. Result of Experiment 2: The Stable Speed
The results are summarized in Figure 7 (their values in every
iteration are shown in Figure 5). The results of PyPy 3.7 simu-
lated threaded code generation are normalized to the interpreter
only execution. On average, STCG is 7% faster than the inter-
preter only. PyPy 3.7 with STCG is over 4 % faster in 9 of the

17 benchmarks, and ± 3 % faster in 8 of the 17 benchmarks. In
particular, meteorcontest and nqueens are from about 27%
to 34 % faster than the interpreter.

4.5. Discussion
In experiment 1, there is a relation between the size of traces and
the compilation time. Our simulated threaded code generation
can reduce the size of traces and compilation time, so we can
use it for reducing the start-up time.

Moreover, programs with the path-divergence problem (fib
and tak) are at least 96 % smaller and 80 % faster in trace
size and compilation time, respectively. In general, when the
path-divergence problem occurs, retracing often happens, and
too many traces overlap each other and lead to high overhead in
run-time performance. However, the result shows that the STCG
traces and compiles only a primary hot function, so the trace
sizes and compilation time are much smaller and shorter than
a tracing JIT. Thus, we can say that a method-based threaded
code can reduce the trace size and compilation time.

From both experiments, we can infer that our method-based
threaded code generation will bring some benefits to a start-up
performance. To make the technique more effective, we should
select functions that have similar structure to meteorcontes
and nqueens as well as programs with the path-divergence
problem. In those programs, much part of one primary solver
function with complex conditional branches is executed inside
the main loop, but the other functions are not. In other words,
during solving conditions, instead of running a main single re-
gion over and over, some regions are sometimes run randomly.
This execution model potentially causes the path-divergence
problem. Thus, a method-based threaded code generation can
work effectively on such programs. To enhance the effective-
ness of our method-based threaded code generation with this
assumption, we need to select programs with complex condi-
tional branches inside a long iteration in addition to programs
which indeed cause the path-divergence problem.

Limitation of Threaded Code Generation. Threaded code gen-
eration is placed at the initial compilation tier, so the compilation
limits further optimizations. For example, since the compilation
does not inline an instruction handler but leaves a call instruction
to that. We notice that there are gaps between this baseline JIT
compilation and the tracing JIT that RPython provides. Thus,
this gap suggests that we need several optimizations between
the baseline and tracing JITs.

To allow further optimizations like allocation removal, we
are going to implement higher levels of baseline JIT compilation.
For instance, the tier-2 baseline JIT just inlines a stack manipula-
tion, but other operations are not. The tier-3 baseline JIT inlines
auxiliary methods but others are not inlined. We are able to
realize those levels at low cost by placing dont_look_inside
to each method header.

5. Related Work
The trade-off between compilation time and peak performance
has been actively discussed in the context of compiler imple-
mentation. For long-running applications such as server-side

8 Izawa et al.



bi
na

ry
tre

es

ch
ao

s

cr
yp

to
py

ae
s

fa
nn

ku
ch fib

flo
at go

jso
nd

um
pv

2

m
et

eo
rc

on
te

st

nb
od

y

nq
ue

en
s

pi
di

gi
ts

ra
yt

ra
ce

ric
ha

rd
s

sp
ec

tra
ln

or
m ta
k

te
lco

Program

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PyPy 3.7 w/ STCG's relative number of ops (Level 1)

ge
o_

m
ea

n

bi
na

ry
tre

es

ch
ao

s

cr
yp

to
py

ae
s

fa
nn

ku
ch fib

flo
at go

jso
nd

um
pv

2

m
et

eo
rc

on
te

st

nb
od

y

nq
ue

en
s

pi
di

gi
ts

ra
yt

ra
ce

ric
ha

rd
s

sp
ec

tra
ln

or
m ta
k

te
lco

Program

0.0

0.2

0.4

0.6

0.8

1.0

PyPy 3.7 w/ STCG's relative compilation time (Level 1)

ge
o_

m
ea

n

Figure 6 The results of the size of traces to compile and compilation time including tracing. In all results the Y-axis means PyPy
3.7 with our simulated threaded code generation (STCG)’s relative value to PyPy 3.7–7.3.5’s tracing JIT compiler. The X-axis
stands for the name of every program. The left-hand side shows the relative trace size, and the right-hand size is the relative compi-
lation time. Lower is better.

bi
na

ry
tre

es

ch
ao

s

cr
yp

to
py

ae
s

fa
nn

ku
ch fib

flo
at go

jso
nd

um
pv

2

m
et

eo
rc

on
te

st

nb
od

y

nq
ue

en
s

pi
di

gi
ts

ra
yt

ra
ce

ric
ha

rd
s

sp
ec

tra
ln

or
m ta
k

te
lco

Program

0.4

0.6

0.8

1.0

1.2

1.4

Sp
ee

d 
up

 ra
tio

 (s
ta

nd
ar

di
ze

d 
on

 a
n 

in
te

rp
. e

xe
cu

tio
n)

1.0
1.06

1.13
1.05 1.0

1.11
1.01

1.14
1.27

1.15

1.34

1.01 0.97 1.0 1.04 0.98 1.0

PyPy 3.7 w/ Simulated Threaded Code Generation (STCG)

ge
o_

m
ea

n

1.07

Figure 7 The results of a preliminary benchmark experiment. In all results the Y-axis means speed up ratio of the threaded code
generation comparing to the interpreter-only execution, and the X-axis stands for the name of every program. The error bars mean
standard deviations. Higher is better.

programs, we would accept a long compilation time. In con-
trast, for short-term applications such as GUI programs or batch
processing programs, we would require a better response time,
hence we usually apply a baseline JIT compiler at first.

The Java HotSpot™ VM has two JIT compilers: the server
compiler (Paleczny et al. 2001) and the client compiler (Kotz-
mann et al. 2008). The server compiler is a highly optimizing
compiler and is tuned to gain a faster peak-time performance
with lower compilation speed. On the other hand, the client
compiler is a JIT compiler designed for low start-up time and

small memory footprint.

The Firefox baseline compiler (Vijayan 2013) is a warm-
up compiler used in the IonMonkey JavaScript JIT com-
piler (Mozilla 2016). Firefox’s baseline JIT is designed to work
as an intermediate layer between interpretation and highly opti-
mizing JIT compilation. Firefox used different JIT compilers,
JaegerMonkey and IonMonkey, depending on the situation, but
it had several issues. For example, the calling conventions of
the two compilers are different. Moreover, JaegerMonkey itself
has a too complex structure to easily extend. Firefox’s baseline

Threaded Code Generation with a Meta-Tracing JIT Compiler 9



JIT compiler is designed to solve these issues. Its baseline JIT
compiler is simpler than other compilers, but runs 10–100 times
faster than interpretation.

The Liftoff (Google 2018) is a baseline JIT compiler for
V8 and WebAssembly. V8 has an older JIT compiler called
TurboFan, but its compilation process is complicated, and it
consumes longer compilation time. Liftoff makes the code
quality secondary in order to achieve a faster start-up time,
which is the key difference from the TurboFan compiler.

The Safari’s JavaScript engine, JavaScriptCore, has 4-tier op-
timization levels in its VM (?). The engine consists of low-level
interpreter (tier-1), baseline JIT (tier-2), data-flow graph JIT
(DFG, tier-3), and forth-tier JIT (FTJ, tier-4) compilers. Execu-
tion firstly enters the interpreter-tier, and level-shifting between
every JIT compiler can be executed by on-stack replacement
(OSR) (?). In particular, the baseline JIT does not apply serious
optimizations but just eliminates the interpretation overhead.
Polymorphic inline caching (PIC) (?) is used in the baseline
JIT a classic optimization technique to remove dynamic method
dispatching, and profiling information gathered when PIC is
performed are passed to higher-level JIT compilers.

6. Conclusion and Future Work

6.1. Conclusion
In this paper, we proposed the idea of a method- and threaded-
code-based RPython’s baseline JIT compiler and how to imple-
ment them on top of RPython. The essential technique is trace
tailoring that consists of the method-traversal interpreter and
trace stitching. A method-traversal interpreter is an interpreter
design that tricks the trace to follow all paths of a target func-
tion. Trace stitching rebuilds a trace tree from a resulting trace
generated from a method-traversal interpreter, aiming to restore
the original control flow. In average, our experiments report
that threaded code can reduce the size of traces and compilation
time by about 80 % and 60 %, respectively. It can run 7 % faster
than the interpreter-only execution in the case of a stable speed.

6.2. Future Work
Multitier Adaptive Compilation. In the viewpoint of code qual-
ity and compilation time, our threaded code generation is placed
at an interpreter execution and tracing JIT compilation. We
would connect them and shift the compilation level depending
on a target program. For example, we start baseline JIT com-
pilation before applying tracing JIT compilation. Then, when
we find a program fragment that is suitable for tracing JIT com-
pilation, we use a tracing JIT compiler instead of a baseline
JIT compiler. In the future, we would realize such an adaptive
compilation strategy on RPython.

Implementing Threaded Code Generation on PyPy. Currently,
we designed a method-traversal interpreter for a tiny language
and created a compiler that could emit a trace tree that contains
only call instructions to subroutines. Our next task is to imple-
ment our idea on PyPy. By comparing with the original tracing
JIT in RPython and PyPy, we will see how much start-up time
and memory footprint can be reduced in practice. Finally, we

will verify the effectiveness of our baseline JIT on production-
level applications by using the PyPy that has a baseline, method
(that will be extended from baseline JIT), and tracing compi-
lation strategies. Given this context, we will implement it in
Python with the PyPy interpreter to run production-level bench-
marks.

Acknowledgments
We would like to thank the reviewers of the ICOOOLPS 2021
workshop for their valuable comments. This work was sup-
ported by JSPS KAKENHI grant number 18H03219, 21J10682,
and JST ACT-X grant number JPMJAX2003.

References
Alpern, B., Attanasio, C. R., Cocchi, A., Lieber, D., Smith, S.,

Ngo, T., . . . Mergen, M. (1999). Implementing jalapeño
in java. In Proceedings of the 14th acm sigplan conference
on object-oriented programming, systems, languages, and
applications (p. 314–324). New York, NY, USA: Association
for Computing Machinery. doi: 10.1145/320384.320418

Bell, J. R. (1973, June). Threaded code. Commun. ACM, 16(6),
370–372. doi: 10.1145/362248.362270

Bolz, C. F., Cuni, A., Fijalkowski, M., & Rigo, A. (2009). Trac-
ing the meta-level: Pypy’s tracing jit compiler. In Proceed-
ings of the 4th workshop on the implementation, compilation,
optimization of object-oriented languages and programming
systems (pp. 18–25). New York, NY, USA: ACM. doi:
10.1145/1565824.1565827

Ertl, M. A., & Gregg, D. (2003). The structure and perfor-
mance of efficient interpreters. Journal of Instruction-level
Parallelism, 5.

Felgentreff, T., Pape, T., Rein, P., & Hirschfeld, R. (2016).
How to build a high-performance vm for squeak/smalltalk in
your spare time: An experience report of using the rpython
toolchain. In Proceedings of the 11th edition of the interna-
tional workshop on smalltalk technologies (pp. 21:1–21:10).
New York, NY, USA: ACM. doi: 10.1145/2991041.2991062

Fijałkowski, M., Rigo, A., Lamy, R. G. R., Pawluś, S., Oruganti,
A., & Barrett, E. (2014). Hippyvm - an implementation of
the php language in rpython. Retrieved from http://hippyvm
.baroquesoftware.com/#performance

Gaynor, A., Felgentreff, T., Nutter, C., Phoenix, E., Ford, B., &
PyPy development team. (2013). A high performance ruby,
written in RPython. Retrieved from http://docs.topazruby
.com/en/latest/

Google. (2018). Liftoff: a new baseline compiler for webassem-
bly in v8. Retrieved from https://v8.dev/blog/liftoff

Hong, P. J. (1992, October). Threaded code designs for forth
interpreters. SIGFORTH Newsl., 4(2), 11–16. doi: 10.1145/
146559.146561

Izawa, Y., & Masuhara, H. (2020). Amalgamating differ-
ent jit compilations in a meta-tracing jit compiler frame-
work. In Proceedings of the 16th acm sigplan interna-
tional symposium on dynamic languages (p. 1–15). New
York, NY, USA: Association for Computing Machinery. doi:
10.1145/3426422.3426977

10 Izawa et al.

http://hippyvm.baroquesoftware.com/#performance
http://hippyvm.baroquesoftware.com/#performance
http://docs.topazruby.com/en/latest/
http://docs.topazruby.com/en/latest/
https://v8.dev/blog/liftoff


Kotzmann, T., Wimmer, C., Mössenböck, H., Rodriguez, T.,
Russell, K., & Cox, D. (2008, May). Design of the java
hotspot™ client compiler for java 6. ACM Trans. Archit.
Code Optim., 5(1). Retrieved from https://doi.org/10.1145/
1369396.1370017 doi: 10.1145/1369396.1370017

Mozilla. (2016). IonMonkey, the Next Generation JavaScript
JIT for SpiderMonkey. Retrieved from https://wiki.mozilla
.org/IonMonkey

Niephaus, F., Felgentreff, T., & Hirschfeld, R. (2019). Graal-
squeak: Toward a smalltalk-based tooling platform for poly-
glot programming. In Proceedings of the 16th acm sigplan in-
ternational conference on managed programming languages
and runtimes (pp. 14–26). New York, NY, USA: ACM. doi:
10.1145/3357390.3361024

Oracle Lab. (2013). A high performance implementation of
the ruby programming language. Retrieved from https://
github.com/oracle/truffleruby

Oracle Lab. (2015). A high-performance implementation of the
R programming language, built on GraalVM. Retrieved from
https://github.com/oracle/fastr

Oracle Labs. (2018). Graal/Truffle-based implementation
of Python. Retrieved from https://github.com/graalvm/
graalpython

Paleczny, M., Vick, C., & Click, C. (2001). The Java Hotspot™

Server Compiler. In Proceedings of the 2001 symposium on
javatm virtual machine research and technology symposium -
volume 1 (p. 1). USA: USENIX Association.

Rigo, A., & Pedroni, S. (2006). PyPy’s Approach to Vir-
tual Machine Construction. In Companion to the 21st acm
sigplan symposium on object-oriented programming sys-
tems, languages, and applications (pp. 944–953). New
York, NY, USA: Association for Computing Machinery. doi:
10.1145/1176617.1176753

Vijayan, K. (2013). The Baseline Compiler Has Landed. Re-
trieved from https://blog.mozilla.org/javascript/2013/04/05/
the-baseline-compiler-has-landed/ (Mozilla)

Würthinger, T., Wöundefined, A., Stadler, L., Duboscq, G.,
Simon, D., & Wimmer, C. (2012). Self-optimizing ast in-
terpreters. In Proceedings of the 8th symposium on dynamic
languages (p. 73–82). New York, NY, USA: Association for
Computing Machinery. doi: 10.1145/2384577.2384587

About the authors
Yusuke Izawa is a Ph.D. student at the Tokyo Institute
of Technology (Japan). You can contact the author at
izawa@prg.is.titech.ac.jp or visit https://www.yuiza.org.

Hidehiko Masuhara is a professor at the Tokyo Institute of Tech-
nology. You can contact the author at masuhara@acm.org.

Carl Friedrich Bolz-Tereick is PyPy/RPython contributor and
scientific employee at Heinrich-Heine-Universität Düsseldorf.
You can contact the author at cfbolz@gmx.net or visit https://
cfbolz.de.

Youyou Cong is an assistant professor at the Tokyo Institute of
Technology. You can contact the author at cong@c.titech.ac.jp.

Threaded Code Generation with a Meta-Tracing JIT Compiler 11

https://doi.org/10.1145/1369396.1370017
https://doi.org/10.1145/1369396.1370017
https://wiki.mozilla.org/IonMonkey
https://wiki.mozilla.org/IonMonkey
https://github.com/oracle/truffleruby
https://github.com/oracle/truffleruby
https://github.com/oracle/fastr
https://github.com/graalvm/graalpython
https://github.com/graalvm/graalpython
https://blog.mozilla.org/javascript/2013/04/05/the-baseline-compiler-has-landed/
https://blog.mozilla.org/javascript/2013/04/05/the-baseline-compiler-has-landed/
mailto:izawa@prg.is.titech.ac.jp?subject=Your paper "Threaded Code Generation with a Meta-Tracing JIT Compiler"
https://www.yuiza.org
mailto:masuhara@acm.org?subject=Your paper "Threaded Code Generation with a Meta-Tracing JIT Compiler"
mailto:cfbolz@gmx.net?subject=Your paper "Threaded Code Generation with a Meta-Tracing JIT Compiler"
https://cfbolz.de
https://cfbolz.de
mailto:cong@c.titech.ac.jp?subject=Your paper "Threaded Code Generation with a Meta-Tracing JIT Compiler"

