
Journal of Object Technology | RESEARCH ARTICLE

Modeling Objects with Uncertain Behaviors
Paula Muñoz∗, Priyanka Karkhanis†, Mark van den Brand†, and Antonio Vallecillo∗

∗ITIS Software. Universidad de Málaga, Spain
†Technical University of Eindhoven, The Netherlands

ABSTRACT Modeling the behavior of complex systems that operate in real environments, deal with physical elements, or
interact with humans is a challenging task. It involves the explicit representation of aspects of behavioral uncertainty that are
inherent in the system, but generally neglected in software models. In this paper, we focus on the explicit representation of
the behavior of objects of complex systems, considering their motivations, randomness, and the different types of underlying
uncertainty that affect their actions. We show how such uncertain behaviors can be effectively modeled in UML and OCL, and
how the specifications produced can be used to simulate and analyze these systems.
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1. Introduction
One of the current challenges of software models is related to
their ability to accurately represent systems that exhibit com-
plex and uncertain behavior, such as those that operate in real
environments, deal with physical elements, or interact with hu-
mans (Bucchiarone et al. 2020). We are particularly interested
in systems where humans play a role, either because the system
needs to interact with them, or emulate their behavior (Pedersen
et al. 2018). Examples of such systems include those that model
the behavior of cars and pedestrians at intersections (Ridel et
al. 2018), those of autonomous vehicles (Liu et al. 2018), or
those of cyberphysical systems (Kirchhof et al. 2020). They are
common in different domains such as intelligent transportation
systems (ITS) (Dajsuren & van den Brand 2019; Karkhanis
et al. 2018) or in the Industry 4.0 applications (Mosterman &
Zander 2016; Wortmann et al. 2020). In these domains, system
properties such as correctness or safety are critical.

Modeling the behavior of agents in these systems is non-
trivial due to their complex behavior. This may depend on their
profile and abilities, current state and personal motivation, or
on random events (Jay et al. 2020; Nassal & Tichy 2016). Fur-
thermore, the environment of such systems normally involves

JOT reference format:
Paula Muñoz, Priyanka Karkhanis, Mark van den Brand, and Antonio
Vallecillo. Modeling Objects with Uncertain Behaviors. Journal of Object
Technology. Vol. 20, No. 3, 2021. Licensed under Attribution 4.0
International (CC BY 4.0) http://dx.doi.org/10.5381/jot.2021.20.3.a8

unknown factors and circumstances (Shi et al. 2005; Geller &
Bradley 2012).

Starting from a traditional behavioral specification based
on state machines, our proposal for modeling these types of
behaviors uses a combination of:

– probabilistic state machines (Novák 2009) and influence
diagrams (Howard & Matheson 2005) for representing the
causalities and effects of the agents’ actions (Pearl 1994;
Darwiche 2009; Pearl 2000);

– the motivational forces that influence the agents’ decisions
towards achieving their goals (Nassal & Tichy 2016);

– the explicit representation and propagation of the aleatory
uncertainty due to the imprecision in the measuring tools
or unreliable sources (JCGM 100:2008 2008);

– the subjective interpretation of the environment by each
individual agent and the confidence assigned to its data
sources (Jøsang 2016; Burgueño, Clarisó, et al. 2019;
Muñoz et al. 2020); and

– the representation of the randomness inherent to any real
environment (Oberkampf et al. 2002; Garlan 2010).

Although there are proposals to model these aspects using vari-
ous approaches, typically using agent systems, they usually do
not cover all these factors. In addition, they tend to use lower
level languages and platforms, which makes the simulation of
these types of systems rather complex and cumbersome.

Our goal is to show how these behaviors and associated un-
certainties can be effectively modeled in high-level languages
such as UML (Object Management Group 2015) and OCL (Ob-
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ject Management Group 2014), and how these specifications can
be used to simulate and analyze systems. We demonstrate our
approach with two exemplar applications, one from the traffic
domain and another from the games simulation field.

After this introduction, Sect. 2 briefly presents the back-
ground of our work and provides an overview of related works
that model agent and human behavior. Then, Sect. 3 presents
our proposal, describing how to represent the behavior of agents
under the presence of uncertainty. It includes two applications
that we have developed to demonstrate and evaluate the pro-
posal. Sect. 4 discusses the types of analyses that can be carried
out with our specifications. Finally, Sect. 5 concludes with an
outlook on future work.

2. Related Work and Background

2.1. Uncertainty
Uncertainty is an inherent property of any system that operates
in a real environment or that interacts with physical elements.
Uncertainty can be due to imprecision in the measuring tools;
lack of knowledge about the system or its environment; imper-
fect, incorrect, or missing information; unreliable data sources
and communication networks; numerical approximations; differ-
ent interpretations of the same evidences by different parties, or
the inability to determine whether a particular event has actually
occurred or not (JCGM 100:2008 2008).

There are several uncertainty classifications. The primary
one divides it into aleatory and epistemic (Kiureghian &
Ditlevsen 2009). Aleatory uncertainty refers to the inherent
probabilistic variability or randomness of a phenomenon. For
example, measuring the distance between two objects, or the
duration of a software development process. This type of uncer-
tainty is irreducible, in that there will always be variability in the
underlying variables (JCGM 100:2008 2008). Epistemic uncer-
tainty refers to the lack of knowledge we have about the system
(modeled or real) or its elements. For example, the confidence
we have on the actual occurrence of a modeled event. This type
of uncertainty is reducible, in that additional information or
knowledge may reduce it.

The increasing need to model physical systems has led to
several modeling proposals that explicitly represent different
types of uncertainty in software models (Troya et al. 2021). The
OMG is also working on a metamodel for the precise specifica-
tion of uncertainty (PSUM) (Object Management Group 2017),
based on the U-Model (Zhang et al. 2016) and the Uncertum
conceptual model (Zhang et al. 2019). Some works address par-
ticular types of uncertainties using different notations and logics,
namely, Measurement uncertainty (Burgueño, Mayerhofer, et
al. 2019; Bertoa et al. 2020); Design uncertainty (Zhang et al.
2018; Famelis et al. 2012; Salay et al. 2013); Occurrence un-
certainty (Burgueño et al. 2018); Belief uncertainty (Burgueño,
Clarisó, et al. 2019; Martín-Rodilla & Gonzalez-Perez 2019),
or Data uncertainty (Jing et al. 2008; Zhou et al. 2009; Wang
& Bai 2019). However, the specification of the behavior of
agents subject to uncertainty, which combines several of these
types of uncertainty, has received less attention by the modeling
community (Giese et al. 2014).

2.2. Modeling the behavior of agents
In UML, a Behavior is a specification of events that may occur
dynamically over time (Object Management Group 2015). Be-
havior can be specified in terms of operations, state machines,
sequence diagrams and activities. Typically, reactive and real
time systems are specified using state machines, with many
tools available for the specification, simulation and analysis of
such systems. These are normally deterministic specifications.

Several approaches have been proposed for the specifica-
tion of models of agent behavior. First, rule-based systems
define actions that are triggered based on the rules specified by
the system modeler. The set of rules can even be dynamically
changed during the system simulation. They are common in sim-
ulation games such as SimSE (Navarro & van der Hoek 2004),
SESAM (Ludewig et al. 1992), SimVBSE (Jain & Boehm 2006),
or SimjavaSP (Shaw & Dermoudy 2005). They simulate hu-
mans following precisely the instructions given by the rules,
which make their behavior very predictable and therefore differ-
ent from human behavior.

Another approach to model the behaviour of agents emulat-
ing humans is by using parameterized feedback loops repre-
sented by multiple equations that describe their actions or trajec-
tories (Ridel et al. 2018; Albrecht & Stone 2018). Although the
models are very accurate, the behaviour of the agents is again
predictable. Besides, they normally neglect the inherent random-
ness and uncertainties existing in real environments (Thompson
& Smith 2019).

There is a vast literature on the specification of probabilistic
or stochastic behavior, which allows the description of different
alternative actions and their probability of occurrence. They
allow simulations of systems that calculate alternative outcomes
and their probabilities. For example, some works provide ex-
tensions to UML for modeling stochastic statecharts (Novák
2009) or sequence diagrams (Refsdal 2008; Refsdal & Stølen
2008). Fuzzy-DEVS (Kwon et al. 1996) extends the DEVS
formalism for simulating uncertain behavior. Models@runtime
are also successfully used for self-adaptive robots under un-
certainty (Giese et al. 2014). The main drawback of these
approaches is that they are not able to describe the causes that
motivate the resulting behavior (motivational forces), and how
these causes influence the behavior.

To address these limitations, different approaches,
e.g., (Sharma et al. 2018), make use of Bayesian net-
works (Pearl 1994; Darwiche 2009), or Causal networks (Pearl
2000; Pearl & Mackenzie 2018) to model the behaviour of
agents. These networks can implement the decision-making
process conducted by the agents to decide the next action
to perform. One of the main benefits of these proposals is
that they enable the specification of different features of the
agents (character, skills or current state). These approaches
provide more realistic simulations of human behavior and
how they influence their decisions, normally to maximize
utility (Pedersen et al. 2018; Neumann & Morgenstern 1953).

The Social Force Model is used by other authors to explicitly
represent and reason about the motivations of agents to decide
the action to perform next (Helbing & Molnár 1995; Huang et
al. 2017). Similar approaches use the concept of Motivational
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Force (Nassal & Tichy 2016) for every possible action, in order
to perform the one with the highest motivation. In particular,
the motivational force of a given action is computed as the
maximum benefit (called valence) of all possible results of that
action. Typically, the action with the highest valence will be per-
formed by the agent. However, incorporating uncertainty into
these behavioral specifications is still an open issue (Albrecht &
Stone 2018), and one of the goals of this paper.

3. Modeling the behavior of agents
This section describes our approach to modeling uncertainty
in the behavior of agents in complex systems, such as those
involving humans with unpredictable behavior, environmental
conditions and imperfect physical elements.

3.1. Methodology
Our proposal consists of a set of steps that incorporates the dif-
ferent uncertainty factors to the behavior of the system objects.

– First, we specify the possible actions that each agent can
perform, and the agent’s state machines that describe its
basic behavior using a traditional (deterministic) approach.

– Second, we specify the possible situations in which the
agents can be depending on their environmental conditions
and the subjective interpretation of the environment by
each individual agent, and the confidence assigned to its
data sources (situational context). These situations will be
used to further refine the state machines of the agents.

– Third, we should identify the motivational forces that
influence the agents’ decisions towards achieving their
goals (Nassal & Tichy 2016).

– Fourth, specify the corresponding weights of the situational
context and the motivational forces when combining them
to decide the action to perform (Fig. 4). This results in a set
of decision tables with their associated weights that define
probabilistic state machines (Novák 2009) and influence
diagrams (Howard & Matheson 2005) for representing the
causalities and effects of the agents’ actions (Pearl 1994;
Darwiche 2009; Pearl 2000)

– In the fifth step, we determine the attributes of the agents
that need to consider measurement or belief uncertainty
due to the imprecision in the measuring tools or unreliable
sources, and how they get propagated.

– Finally, we specify the degree of randomness of the be-
haviour of the agents and of their environments, capturing
those unpredictable decisions or unforeseen events.

We have evaluated this approach with different applications.
In this paper we will illustrate the proposal with two case stud-
ies. The first corresponds to a pedestrian crossing system in
which cars and pedestrians cross the street in diverse situations,
trying to minimize hard brakes, near-collisions and accidents.
The second emulates a war of tanks chasing and shooting at
each other (or trying to escape in case of low ammunition or
numerical inferiority). These examples are described below, as
well as how the uncertainty in the behavior of its agents can be
modeled and simulated with UML and OCL tools.

Figure 1 Graphical representation of the Crosswalk system.
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Figure 2 The Crosswalk system metamodel.

3.2. Motivating Example: A crosswalk system
Suppose that we want to model a crosswalk system that emulates
the behavior of two types of agents: car drivers and pedestrians.
The structure of the crosswalk system is depicted in Fig. 1.

Each agent has a position, given by its planar coordinates,
its dimension (length and width) and its current speed, which
can be either zero (when stopped), slow or normal. Their age,
experience in manoeuvring, vision range, or mental stress in-
fluence the decision to take an action. Moreover, there are
environmental conditions (class EnvironmentCond) such as
road visibility and road grip which are influenced by weather
conditions class WeatherCond, which represents, e.g., fog, rain,
ice or darkness (Czarnecki & Salay 2018; Leibowitz et al. 1998).
These factors impact the crosswalk system and could cause colli-
sion or near-collision events (Sanders 2015). Being common to
all agents at the same crosswalk, the environmental conditions
are associated to CrossWalk objects, and then used by each
individual agent to compute its own speed or visibility.

The crosswalk system is not guided by any traffic lights, and
hence the agents have to decide intuitively to take an action. As
shown in Fig. 2, Class Crosswalk defines several attributes in-
dicating the agents starting point, stopping point, and end point.
The stopping point defines where the agent should stop before
entering the crosswalk. The stopping point of a car coincides
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Figure 3 Excerpt of the state machine for Car objects in the Crosswalk system.

with the crosswalk’s stop line. The stopping point of a pedes-
trian is at the end of the sidewalk, before starting to cross it (see
Fig. 1). Agents implement a query operation (beforeSP()) that
decides if the agent has not yet passed its stopping point. An-
other operation (aboutToCollide()) determines if the agent is
about to collide with another one. Whenever a collision occurs,
an instance of class Incident is created.

Time is modeled by a Clock object. On every tick (whose
resolution can be defined by the user, in our simulations we
have used 0.1 seconds), it invokes operation action() on all
active objects associated to the clock. When an agent receives
an action() operation, it decides what to do next. Possible
options are: move() at the current speed until it receives a
new action() operation; accelerate(), which increases the
speed and then moves at the new speed; decelerate(), which
decreases the speed and then moves; or stop(), which suddenly
brakes and changes the speed to 0. In the Slow state, it is the
same for the pedestrian to decelerate as to stop; in the case of a
car, when stop() is invoked, it first moves with half speed and
then stops. Accelerating when moving at normal speed does not
have any effect. Likewise, decelerating, moving or stopping in
the Stopped state do nothing. For simplicity, the intersection is
located at point (0,0), cars move along the X-axis from right to
left, and pedestrians move top-down along the Y-axis. Methods
currentSpeed() and currentVisionRadius() are affected
by the environmental conditions. They recalculate the current
speed and vision radius of the agent according to the current
road visibility and grip.

A common way to specify the behavior of these types of
real-time systems is by means of state machines (Harel 1987;
Object Management Group 2015). Operations define the signa-
ture of the events accepted by the objects, and state machines
define how the state of each object changes upon receipt of
an operation. For example, Fig. 3 shows an excerpt of the
state machine for Car objects. In addition to showing the ef-
fects of operations move(), accelerate(), decelerate()
and stop(), it specifies how the object decides what to do
when an action() operation is received (only shown for the
Moving state). Roughly, if the car is moving and there is no
pedestrian in sight, or both the pedestrian and the car are before
the crosswalk stopping points, the car keeps moving; if the car is
before its stopping point and the pedestrian has already passed
it, the car slows down; and if both the car and the pedestrian
have passed their stopping points, or they are about to collide,

Table 1 Car decision table.
Car state

Situation of car Moving Slow Stopped
C1. No pedestrian in vision radius move accel. accel.
C2. Car before SP, ped. before SP decel. move accel.
C3. Car after SP, ped. before SP move accel. accel.
C4. Car before SP, ped. after SP decel. move accel.
C5. Car after SP, ped. after SP stop stop stop
C6. Car in near collision with ped. stop stop stop

Table 2 Pedestrian decision table.
Pedrestian state

Situation of pedestrian Moving Slow Stopped
P1. No car in vision radius move accel. accel.
P2. Ped. before SP, car before SP move accel. accel.
P3. Ped. after SP, car before SP move accel. accel.
P4. Ped. before SP, car after SP decel. decel. stop
P5. Ped. after SP, car after SP move accel. accel.
P6. Ped. in near collision with car stop stop stop

the car stops. Similar rules can be defined for states Slow and
Stopped. They are not displayed in Fig. 3 but summarized in
the state-transition tables 1 and 2. The left columns show the
situation of the agent when the action() operation is received,
requesting it to decide what to do next. Depending on the situa-
tion and on the current agent state (Moving, Slow or Stopped),
its reaction can be different.

We have modeled the Crosswalk system in UML and OCL,
employing the tool USE (Gogolla et al. 2007) that provides an
action language called SOIL (Büttner & Gogolla 2014) that
allows modelers to create instances and links, perform assign-
ments of values to attributes, and invoke operations on objects.
This way, the system can be simulated. Further validation and
verification tests are also available with USE, as described
in (Gogolla et al. 2018). However, one of the limitations of
these specifications is that they are deterministic, failing to ac-
count for both the stochastic nature of the agents’ behavior and
the uncertainty aspects of these kinds of systems.

The following subsections describe how we propose to model
such a behavior, illustrating it using the Crosswalk system.
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Figure 4 Basic actions and their causes.
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Figure 5 Environment influence on agent parameters.

3.3. Modeling the basic behavior: actions and forces
First, we need to identify the actions that each agent can per-
form during the system execution. In the Crosswalk system, the
actions that both car drivers and pedestrians can perform are:
move(), accelerate(), decelerate() and stop().

Second, we need to specify how each agent decides to per-
form an action, as well the factors that motivate such a decision,
i.e., the forces that influence the agents’ decision process. To
specify these influences we will use both the Situational context
and the Motivational Force of each action. The first one defines
the situation in which an agent is, something that complements
the agent’s state machine to decide the action to perform (cf.
tables 1 and 2). For example, one possible situation of the car is
before the stopping point and with other agent inside the cross-
walk (situation C4). In contrast, the Motivational Force defines
the motivations of an agent to decide the action to perform next,
ranking them according to their utility (Neumann & Morgen-
stern 1953) and how they satisfy the agent’s needs (Nassal &
Tichy 2016). For example, when a pedestrian is in a real rush, it
will prioritize acceleration over all other actions.

Figure 4 shows an Influence Diagram (Howard & Matheson
2005) with these relations. This diagram is a generalization of
Bayesian and Causal Networks to achieve not only probabilistic
inference but also decision making, following the maximum
expected utility criterion (Neumann & Morgenstern 1953).

Finally, we also need to specify how the environment and
personal conditions influence the parameters of the actions.
For example, difficult weather conditions like heavy fog or rain
can affect the visibility of the agent, and also the road grip,
which in turn influence the speed of the agent and its visibility.
This is shown in the influence diagram depicted in Fig. 5.

These elements are discussed in detail in next subsections.

3.4. Situational context
In our proposal, the Situational Context defines the possible
situations in which an agent can be, when having to decide the
action to perform next, as well as their associated probabilities.

In the Crosswalk system, the Situational Context of the car is
defined by situations {C1...C6} described in Table 1.

As previously mentioned in Sect. 3.2, these tables define the
state machines that specified the agents’ behavior. Based on
the situation the object is in, and the current state of the object
(Moving, Slow, Stopped), the tables determine the next action
to perform.

In order to define the influence of the Situational Context
on each action (the arrows that connect the Situational Context
node with each action node in the influence diagram shown in
Fig. 4), our proposal extends these traditional state machines
in two ways. First, we replace them with probabilistic decision
tables that determine, for each situation in the agent’s Situational
Context, the probability of each possible transition. In other
words, they become probabilistic state machines (Novák 2009).
And second, probabilities are also assigned to situations, to
represent the fact that sometimes it is difficult to decide precisely
in which situation the agent is (see below).

For example, Table 3 shows the probabilities associated with
each possible action of a Car agent, when it is in the Slow state.
Basically, it extends column 3 of Table 1, which determined for
each situation the (only) action to take by the Car, with the set
of possible actions that can be performed by the Car, and their
associated probabilities.

Second, we assign probabilities to the situations, which rep-
resent the likelihood of the agent to be in each one. These
probabilities are normally due to the incorporation of measure-
ment uncertainty (Bertoa et al. 2020) into the models, because
comparing two distances with imprecision no longer returns a
Boolean value, but a probability (Burgueño et al. 2018), which
gets propagated when operating with imprecise attributes. In
this way, instead of being able to crisply decide whether we
are close or not to a given point, or to another object, we can
only estimate how close we are to it. This naturally reflects the
human incertitude in evaluating distances or times, and allows
us to model the imprecise behavior, or hesitation (Jay et al.
2020), that occurs when a pedestrian or car evaluates whether it
is ‘close enough’ to the intersection to stop or cross.

Therefore, in our proposal a Situational Context will be de-
fined by a tuple of Real numbers, one for each possible situation,
which represent their associated probabilities. The sum of the
elements of the tuple must be 1. For example, at one moment
in time, the Situational Context of the car agent can be defined
by the tuple {c1=0,c2=0.95,c3=0.05,c4=0,c5=0,c6=0},
meaning that the evaluation of the car situation has dictated that
the car is before the stopping point with a likelihood of 95%,
and after the stopping point with a likelihood of 5%.

The probabilities of each situation are considered together
with the probabilities in the probabilistic transition tables. This
computes the degree of influence for the next action to be per-
formed by the agent.

3.5. Motivational Force
As shown in the influence diagram in Fig. 4, agents also take
into account the Motivational Force of each action (Nassal &
Tichy 2016), which computes the maximum benefit (valence)
of all possible results of the action, according to the agent’s
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Table 3 Probabilistic Car decision table, in the Slow state.
Car state: Slow

Situational context of car move accel decel stop
C1. No pedestrian in vision radius 0.1 0.9
C2. Car before SP, ped. before SP 0.8 0.1 0.1
C3. Car after SP, ped. before SP 0.2 0.7 0.1
C4. Car before SP, ped. after SP 0.9 0.1
C5. Car after SP, ped. after SP 0.1 0.9
C6. Car in near collision with ped. 1

personal preferences and system goals. The benefit of each
result depends on (1) the instrumentality of the result, i.e., the
chances it has to lead to a valid outcome (normally determined
by the goals of the system, or the objectives defined by the
agent’s owner), and (2) the personal priorities and needs of
the agent (which depend on the own agent’s goals, skills and
personal preferences).

With this, weights (i.e., probabilities) can be assigned to the
actions that the agent can perform, according to their Motiva-
tional Force. Such weights will be combined with the Situa-
tional Context, using the corresponding influence diagram, to
define the final probability of each action.

In general, computing the Motivational Force of the actions
of an agent is not easy because it depends on social, psycho-
logical and personal factors, and it may also imply non-trivial
resolution of conflicting interests and forces. In this paper we
propose the use of a high-level specification of such forces,
based on goals and responsibilities (Marron et al. 2020). Thus,
each agent will have a set of high-level goals to achieve, and a
set of responsibilities to comply with. In this case, the goal of all
agents of the Crosswalk system is the same: “to cross the street
as soon as possible and in a safe way, in order to reach their final
destinations.” The responsibilities are to avoid collisions with
other agents, and to obey the traffic laws — e.g., the maximum
speed when approaching the crosswalk. Each action of an agent
will contribute to the agent’s goals and responsibilities in differ-
ent ways, and therefore each agent will assign different weights
to each action, depending on its contributions to the agent’s
current motivational forces. For example, a reckless pedestrian
will give the maximum priority to the goal of crossing the street,
ignoring the rest of the forces, even the possibility of collisions.
A distracted driver may sometimes ignore that he has passed
the stopping point,e.g., when texting while driving, but will
always comply with the responsibility of avoiding collisions.
An attentive agent will always follow the rules, even when it
implies waiting for a long time until the crosswalk is free. As
with humans, profiles are never absolute; it can happen that an
agent is 20% reckless, 30% distracted and 50% attentive. These
weights contribute to the final decision.

This means, e.g., that an attentive agent will assign the same
weight to each action for each force, without imposing any
personal choice, while a reckless driver will always try to accel-
erate, assigning a weight of 0 to the rest of the possible actions,
in all agent states. Table 4 shows examples of weights assigned
to the possible actions of a car, in the Slow state, with different
motivational forces.

Table 4 Car Motivational Forces, in the Slow state.
Car state: Slow

Type of agent depending on
its motivational force move accel decel stop
Reckless agent 1.0
Distracted agent 0.2 0.6 0.1 0.1
Attentive agent 0.25 0.25 0.25 0.25

In general, obtaining these weights can be a difficult task,
but it is something that falls outside the scope of our work as it
depends largely on the type of application. Here we will focus
on how to this information can be used to enrich the software
models and their simulations.

3.6. Combining Situational Context and Motivational
Force

Figure 6 shows the UML class diagram of the Crosswalk sys-
tem, extended with behavioral uncertainty. It is modeled with
USE (Gogolla et al. 2007) because this tool already provides
an extension of the UML and OCL type system to deal with
uncertain datatypes (Bertoa et al. 2020).

The new attributes situationalContext and decision
of class Agent store, respectively, the values for its current situ-
ational context, and the probabilities associated with each action.
With this, the combined probabilities of each possible action will
be computed using the influence diagram shown in Fig. 4, based
on the weights given to the situational context and motivational
force, stored in the attributes situationalContextWeight
and motivationalForceWeight of class Behavior. These
weights (whose sum is 1) represent the relative importance the
agent assigns to the corresponding factors, i.e., the confidence
assigned to each one. The values of these tables can evolve, as
discussed later in Sect. 4.4.

Some additional inputs are needed for the computation of
the final probabilities associated with each action:

– The probabilistic decision tables defined for the states
of each agent (e.g., Table 3). These are stored in class
SituationalContextTables.

– The probabilities that the agent has to be in each of the
situations defined in its Situational Context, also stored in
class SituationalContextTables.

– The type of agent depending on its motivation, e.g., 20%
reckless, 20% distracted and 60% attentive. (Attributes
recklessMood, distractedMood and attentiveMood
of class MotivationalForce).

– The weights assigned to the possible actions of the agent,
depending on the type of agent and on its current state (e.g.,
Table 4), also stored in class MotivationalForce (not
shown in Fig. 6).

According to the maximum expected utility criterion (Neumann
& Morgenstern 1953), the action with the highest probability
(i.e., the one with the highest value in the decision tuple
attribute of class Agent) will be typically performed by the
agent. In addition, agents record their decisions using traces,
which provide logs that can be used after the simulation to
visualize and/or analyze the system execution.

6 Muñoz et al.



Figure 6 The Crosswalk system metamodel, extended with behavioral uncertainty.

3.7. Object attributes and simulation parameters
Once the agent has decided the action to perform during the
next time interval, we need to set the parameters of such actions,
e.g., the speed at which the agent will move. For the estimation
of these parameters we need to consider both the uncertainty
factors that affect their values, and the degree of influence of the
environment conditions on the corresponding attributes (Fig. 5).

3.7.1. Uncertainty in parameter calculation Object at-
tributes are used in models to capture their properties, such
as physical dimensions (length, width, collision radius), ca-
pabilities (maximum speed, reaction time), and current state
(position, speed, vision radius). These variables are normally
typed using the UML and OCL primitive datatypes, which as-
sume precise values. However, models of physical systems need
to account for the inherent uncertainty of their elements and
environment, and therefore the need for notations that consider
such uncertainty. Here we will focus on the following types of
uncertainty (Czarnecki & Salay 2018; Troya et al. 2021):

– Measurement uncertainty, due to, e.g., unreliable or impre-
cise measuring instruments, mechanical tolerance, or lack
of visibility conditions. This leads to imprecise calcula-
tion of distances or speeds, and of the comparison of their
values (Salay et al. 2020).

– Occurrence uncertainty, about the presence (or not) of
objects in the system. It can be due to, e.g., lack of visibility
or adverse weather conditions, which make the agent be
unsure about the presence of a pedestrian or any other
object in the road (Phan et al. 2019).

To handle these uncertainties we make use of an extension of
UML and OCL datatypes to represent and propagate measure-
ment uncertainty according to the international metrology stan-
dards (JCGM 100:2008 2008), and of its realization in the mod-
eling tool USE (Bertoa et al. 2020). Type UReal extends type
Real with measurement uncertainty (e.g., UReal(3.5,0.01)
represents the uncertain Real 3.5± 0.01), while type UBoolean
provides the Probabilistic extension of Boolean logic, where
probabilities represent the likelihood (confidence) of a predi-
cate to be true; e.g., UBoolean(true,0.99) represents a confi-
dence of 99%. The extended type system provides the automatic
propagation of uncertainty through the numerical, comparison
and logic operators.

3.7.2. Influence from external factors To define the rela-
tionships between the different object attributes, and the effects
that external factors have on them, we use influence diagrams
such as the one shown in Fig. 5.

The concrete influence of some attributes on others can be
expressed by OCL expressions and operations that implement
the relations defined in the influence diagram. For example, the
relationship between the weather conditions and the visibility
in the crosswalk and the road grip can be specified as follows:

currentVisibility ( ) : Rea l = visibility *
s e l f .weatherCond−>iterate (wc : WeatherCond ;
r : Rea l = 1 . 0 | r * wc .visibilityFactor ) )

currentRoadGrip ( ) : Rea l = roadGrip *
s e l f .weatherCond−>iterate (wc : WeatherCond ;
r : Rea l = 1 . 0 | r * wc .roadGripFactor ) )

Modeling Objects with Uncertain Behaviors 7



These variables are real numbers in the range [0..1] where
0 means no visibility/grip and 1 means perfect visibility/grip.
The expression used to derive their values simply modifies the
initial road value by a factor that is obtained by multiplying the
factors of all the weather condition that currently apply to the
road (e.g, ice, fog, rain or darkness).

Calculating the variations of other attributes depending on
the environmental conditions is a bit more complex, since they
use simulation parameters. For example, the way in which the
speed of the agent is modified by the visibility and road grip
can be specified as follows:

currentSpeed ( ) : UReal =
l e t visibility : Rea l =

s e l f .int .env .currentVisibility ( ) in
l e t roadGrip : Rea l =

s e l f .int .env .currentRoadGrip ( ) in
l e t fv : Rea l = s e l f .int .param .speedVisibFactor in
l e t fg : Rea l = s e l f .int .param .speedGripFactor in
s e l f .speed*(fv*visibility + fg*roadGrip +

(1 − fv − fg ) )

Next, operation currentVisionRadius() adjusts the vi-
sion radius depending on the current visibility:

currentVisionRadius ( ) : UReal =
s e l f .visionRadius* s e l f .int .param .vRadVisibFactor

Finally, operation visionConfidence() returns the confi-
dence, expressed as a Real number in the range [0..1], that we
assign to an object that an agent sees at a certain distance.
It will be 0 is the object is outside the vision range of the
agent. Inside its vision range, the confidence will be 1 if it
is close, and starts diminishing as the object reaches the vi-
sion range limit. This is determined by the value of parameter
vRadVisibFactor.

visionConfidence (distance : UReal ) : Rea l =
l e t VR : UReal = s e l f .currentVisionRadius ( ) in
l e t th : Rea l = s e l f .int .param .truthThreshold in
l e t vf : Rea l = s e l f .int .param .vRadVisibFactor in

i f (distance>VR ) .confidence ( ) >=th then 0 . 0
e l s e i f (distance<VR*vf ) .confidence ( ) >=th then 1

e l s e 1 . 0 − (distance /R ) .value ( )
e n d i f

e n d i f

In this expression, note the use of truthThreshold to de-
cide if a condition expression is true or false. Given that our
measurement and logical expressions incorporate uncertainty,
thresholds are needed to make decisions.

3.8. Representing Random Behavior
Finally, another aspect that cannot be neglected is related to the
unpredictable or even random behavior of agents. For example,
a pedestrian who suddenly stops, or a car that accelerates with no
apparent reason (Kraaier & Killat 2008; Oberkampf et al. 2002).
This is modeled by a final (and optional) phase that randomly
modifies the decision of the agent about its next action.

Attribute randomBehavior of class Behavior deter-
mines the likelihood of the agent to behave randomly,
while the randomFactor attribute determines the degree of
change allowed for the final decision. For example, if
randomBehavior=0.2 and randomFactor=1, the agent will

exhibit a completely random behavior on 20% of its decisions.
Likewise, if randomBehavior=0.1 and randomFactor=0.3,
one of the possible actions of the agent (arbitrarily chosen) will
be added a 30% chance of being selected, in 10% of the agent’s
decisions. Of course, other alternative algorithms to implement
random behavior could be applied instead.

Note that this last step attempts to capture unpredictable
behaviors or unplanned circumstances such as the agent sud-
denly changing its mind or simply malfunctioning, which are
generalized here as random actions. More careful reasoning or
more detailed analysis of unexpected behaviors could be used
to eliminate the randomness of the unknown, unplanned, or
apparently surprising behavior of the agents when they are of
an epistemic nature. Other aleatory uncertain behaviors, such as
a car engine suddenly breaking or a pedestrian having a stroke
while crossing, still need to be treated randomly.

3.9. Second motivating example: A Tank Warfare
The second application we developed to demonstrate and evalu-
ate our proposal is a survival game, a Tank Warfare, in which
two teams of tanks fight each other. The last team standing is
the winner. Different types of uncertainty are involved in this
application, which must be taken into account to simulate the
system more realistically and faithfully.

First of all, the tank occupants’ uncertain behaviour needs to
be considered, as well as their profiles and motivations, which
may be more or less bold or cautious. Measurement uncertainty
also plays an important role, since this type of vehicle’s navi-
gation and firing systems usually have limited precision. The
visibility conditions of each tank and its environment should
also be taken into account. Finally, there is always a degree of
randomness in the final decisions of each tank crew.

3.9.1. Game specification At any given time, tanks can do
any of the following: they can shoot at another tank, move in
any direction or do nothing. As in the crosswalk simulation,
time is modeled by a Clock object whose tick() operation
invoke the action() method of all tanks.

To determine if the tank can execute an action, there are three
main parameters in the game. The first is health; every time a
tank is shot, this value is decreased. When the value reaches 0,
the tank is destroyed. The second parameter is power, which
is consumed each time a tank executes an action. Tanks can
not perform actions if this value reaches 0. The third parameter
is ammo, which indicates the number of cannonballs available.
Reloading is not possible in our simulation, so once the tank
fires all of its bullets, it cannot shoot any more.

3.9.2. Method application The first step is to specify the
possible actions that the tanks can perform, together with the
state machines that specify their (deterministic) behavior. Given
the two main actions mentioned in the previous section (move
and shoot), we defined five compound actions: escape(),
which moves in the opposite direction to the nearest enemy tank;
shoot() at the closest enemy tank; chaseEnemy(), which
moves towards the nearest enemy tank; joinAlly(), which
moves towards the nearest ally tank; and stop() to save power.
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Figure 7 Examples of simulations showing different scenarios. Square dots represent the times when the agents cross the mid-
point of the crosswalk. Collisions only occur if they cross at the same time.

In the second step, we define the situational context by speci-
fying the possible situations in which the agents can be, depend-
ing on their subjective interpretation of the environment. In this
case, we have defined 6 situations and 2 states in which a tank
can be, given the number of allies and enemies surrounding it,
and its vulnerability level.

A tank can be in any of these two states: Low Vulnerabil-
ity or High Vulnerability. The current state depends on the
value of attribute vulnerability, which is calculated by ag-
gregating the values of power, health, and ammo. Attribute
vulnerabilityBound defines the threshold that determines
the current state. In the High Vulnerability state, the tank deci-
sions will be more reckless, while in the Low Vulnerability state
its decisions will be more conservative. For example, in the sec-
ond situational context, a vulnerable tank will escape because
there are no allies nearby to help, while a non-vulnerable agent
will chase the enemy to engage in a fight.

The third step identifies the motivational forces that influence
the agent’s decisions. In our case, we consider two types of
behaviour depending on the strategy chosen to play the game.
The first one is the bold strategy, in which the tanks will priori-
tize the most aggressive decisions over all others. For example,
they will be willing to shoot at enemy tanks even in a minority
situation. In the second strategy, called cautious, the tanks will
prioritize conservative choices to try to survive at all costs. If
tanks feel that they can lose because they are in a minority, they
will choose to escape.

The fourth step assigns weights to the situational context and
motivational force models. In our examples, these weights were
assigned by estimating the possibilities of the logical actions
that a player would take, but they can come from any source
such as real sampled data or machine learning simulations.

The fifth step incorporates the possible measurement and be-

lief uncertainty to the model. In this example, we have defined
some uncertain attributes regarding the mobility of the tank, the
power consumption process or its vulnerability because they are
all related to physical parameters. We also considered occur-
rence uncertainty about the presence of objects in the system
when some tank is unsure of the existence of another one.

Finally, some randomness in the tanks’ behaviour can also
be added to emulate the unpredictability of human behaviour.

The UML and SOIL specifications of this and the previous
system, as well as the results of several simulations with various
configurations can be found in the paper’s companion website.1

4. Analysis
Once we have described our proposal for modeling the behavior
of agents, in this section we discuss the types of analyses that
can be performed with it.

4.1. Simulation
Although in theory upfront design-time verification techniques
could be used to analyze their properties, research has shown
that the complexity of these systems makes static analysis prac-
tically unfeasible (Helle et al. 2016; Koopman & Wagner 2016).
In contrast, run-time techniques, such as simulation or moni-
toring, can still provide very relevant information at a lower
cost (Babikian 2020).

One of our reasons for specifying our models with the tool
USE is that it provides a high-level textual action language,
called SOIL (Büttner & Gogolla 2014) that enables the behav-
ioral specification of UML models, as well as its execution.
In particular, SOIL extends the OCL notation with traditional
imperative constructs, including the creation of instances and

1 http://atenea.lcc.uma.es/projects/ModelingUncertainBehaviours
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Figure 8 Visualization of a simple simulation with 3 tanks.

links, the assignment of values to attributes, and the imperative
specification of bodies of operations. Probability distributions
and random numbers are also supported (Vallecillo & Gogolla
2017). This is important to create agents with different behav-
ior by simply changing the values of their decision tables and
motivational forces, and to generate stochastic simulations.

With USE, our simulation framework basically consists of
a simulation loop in which the Clock object invokes method
action() on all active objects (cf. Sect. 3.2), which perform
the actions specified in those methods by evaluating OCL and
SOIL expressions.

For illustration purposes, Fig. 7 graphically displays the
resulting traces of four simulations of the Crosswalk system,
showing different scenarios where one car and one pedestrian try
to cross the street. Similar graphics can be used to visualize the
effect of changes in the simulation parameters, the environment
conditions, etc. These charts can be developed from the agents’
traces, which can be directly obtained from the USE tool and
easily converted into csv files.

Similarly, we can simulate the Tank Warfare application. For
example, let us consider one team with two tanks (A0 and A1)
and another team with one (B0), see Fig. 8. Initially, tanks
A0 and A1 are in the Low Vulnerability state and have a bold
personality. In contrast, B0 is in the High Vulnerability state
and has a cautious personality. Their situational contexts are
different too: while tanks A0 and A1 are in superiority (they
have allies in their vision range), tank B0 is alone (no allies
around) and has enemies close by. We can see how during the
simulation, tanks A0 and A1 start chasing B0. After eight time
units, B0 is in their shooting range. Then, A0 and A1 shoot at it,
and tank B0 is destroyed.

4.2. Monitoring system properties of interest
Having the possibility to simulate the system with different pa-
rameters is very useful to understand how the system works, and
to obtain information about the possible behavior of different
types of agents (reckless, attentive or distracted; with better or
worse reaction times and vision ranges, etc.), and under varying

Figure 9 The Crosswalk metamodel with Observers.

situations and circumstances (e.g., diverse weather conditions,
different precision of measuring instruments, etc.). The use
of high-level modeling notations also enables the specification
and analysis of some system properties of interest, such as
the mean-time between collisions in varied weather conditions,
the average crossing times for different agent profiles, or the
number of collisions depending on the congestion of cars and
pedestrians—in the Crosswalk example—, or the effect of more
calibrated and precise guns, better trained and motivated crews
(hence more confident, less cautious), or longer-lasting batteries
in the Tanks example.

To do so, we make use of observer objects (Troya et al. 2013),
whose purpose is to monitor the execution of the system and
the state of other objects. Each observer is in charge of one
or more properties of interest, and has a well defined behavior.
Observers can also monitor other observers.

Figure 9 shows an excerpt of the Crosswalk system meta-
model, extended with three observers (the newly added classes
are shaded darker). Two observers monitor, respectively, the av-
erage crossing time and the mean time between collisions of the
system. The individual observer AgentCompanion computes
the number of times that its associated agents had to stop; the
number of near collisions they were involved in, and their final
crossing times.

The advantage of this approach is that all these properties are
stored in the observers’ attributes and they can be specified at the
model level, using OCL expressions. For example, the following
listing shows the derivation expressions for the attributes of class
AgentCompanion, which is the individual observer defined for
system agents.

c l a s s AgentCompanion < IndividualObserver
a t t r i b u t e s
nStops : I n t e g e r d e r i v e :

s e l f .agent .step−> s e l e c t (action=#hb )−> s i z e ( )
nNearCollisions : I n t e g e r d e r i v e :

s e l f .agent .incident−> s e l e c t (i |
i .oclIsTypeOf (NearCollision ) )−> s i z e ( )

crossingTime : I n t e g e r d e r i v e :
s e l f .endingTime − s e l f .creationTime

Being derived attributes, their values are always updated.
Using the attributes of the agents’ individual observers, the
system observers can similarly specify theirs.

4.3. Temporal properties
Observers can also be used to monitor temporal properties of the
system, enabling their dynamic analysis. For example, a typical
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temporal requirement expressing a liveness property may state
that any stopped agent waiting to cross, will eventually move on.
To specify this property in a simulation environment, individual
observers use their agents’ traces to compute the time they have
remained stopped, and a system observer checks that no agent
is stopped more than the maximum acceptable delay.
c l a s s StopsObs < IndividualObserver
a t t r i b u t e s
stoppedTime : I n t e g e r d e r i v e :

l e t ts : I n t e g e r = ( s e l f .agent .step−>
s e l e c t (action=#hb )−>last ( ) ) .time in

l e t tm : I n t e g e r = ( s e l f .agent .step−>
s e l e c t (action=#accel )−>last ( ) ) .time in

(tm − ts ) .max ( 0 )
end
c l a s s WatchdogObserver < Observer
a t t r i b u t e s
maxAcceptableWaitingTime : I n t e g e r i n i t : 6000
limitExceeded : Boolean d e r i v e :
StopsOb .allInstances−> s e l e c t (stoppedTime >

s e l f .maxAcceptableWaitingTime )−>notEmpty ( )
end

Different strategies can be considered when a property is
violated. For instance, if we want to stop the simulation when
an agent remains in the Stopped state more than the speci-
fied threshold, a postcondition can be added to the observer’s
action() operation in order to check that limitExceeded is
false. The USE engine stops the execution whenever a pre- or
postcondition is violated.

In turn, a typical safety temporal property may state that no
collision happens. This can be checked by a system observer
that monitors that no instances of class Collision occur.

These examples illustrate how temporal properties that use
always and eventually operators can be specified and monitored
with our proposal. We expect that more complex temporal
properties can be similarly specified with observers, and thus a
more thorough study is planned as part of our future work.

4.4. Self-adaptive features
Observers can also be used to implement self-adaptive features,
by using the values of the observers’ attributes to decide changes
in the system parameters. For example, we could specify an
observer that monitors the average time agents remain stopped
at a crosswalk, and if this value goes above a certain threshold,
the observer can automatically increase the normal speed of
the agents until the situation goes back to normal. Similarly,
if the number of near collisions in a crosswalk increases, lim-
iting the maximum speed of the agents can help reducing the
collisions. We can use our behavioral specifications combined
with observers to perform simulations able to check whether
our assumptions are correct or not, and to evaluate the effect of
different thresholds values on the system overall behavior.

Again, the use of UML and OCL models simplifies the high-
level specification of such self-adaptive behavior, enabling the
cost-effective analysis and simulation of systems, compared to
other solutions that use lower-level agent platforms.

4.5. Evaluation
This section describes the evaluation we have conducted on our
proposal.

Simulation. We performed a series of simulations to analyze
the effect of incorporating uncertainty into our models, and
whether it results in more informative simulations. We defined
a set of scenarios, each one describing a specific situation.

In the Crosswalk example, we distinguished first between
normal and peak hours, as representative examples of extreme
situations. The former case emulates a system working in nor-
mal conditions and where all agents are attentive and incidents
should not happen; the latter scenario represents a system with
reckless and distracted agents where incidents might be com-
mon. More precisely, we assumed that in peak hours, the speed
of the agents was 5% higher than in normal hours, and 20%
of the pedestrians walked in groups of 2-4 persons forming
lines. We included 0.2% of reckless agents (who cross rashly,
ignoring traffic signals and the presence of other agents) and 4%
of distracted ones. In contrast, reaction time was 10% faster in
rush hours, since all agents tend to be more alert. Weather con-
ditions was the second dimension that we considered, affecting
the visibility and the road grip. It could be either good visibility,
or bad visibility (50%, emulating a poorly illuminated road at
night), or bad road grip (50%, as in an slippery road), or both.

Among other things, we wanted to understand the effects of
the different parameters (speed, visibility, road grip and mea-
surement uncertainty) on the system behavior. Our aim was to
analyze the situational and the motivational context that help
providing a reasonable decision. In our scenario, this could
mean assessing the impact of whether installing a street light
close to the crosswalk could mitigate the incidents in dark nights,
or the effect of fixing the road infrastructure on the reduction of
the incidents by improving the road grip by 30%.

We simulated the initial crisp system that does not use our
proposal (Fig. 2) and then we used our approach, with differ-
ent levels of Measurement uncertainty (No, Small, Med and
High), depending on the precision of the measuring instruments
(0, 1cm, 2.5cm, 10cm) and the degree of confidence (100%,
99%, 95% and 85%). Table 5 shows the results for every 1000
crossings. Each cell displays the number of hard brakes, near-
collisions and collisions that occurred during the simulation.
Hard brakes are important because they mean abrupt stops, nor-
mally to avoid near-collisions or collisions. In all cases, agents
were generated with different reaction times and vision ranges,
following Normal distributions N(0.7, 0.1) and N(30.0, 2.0),
respectively (Makishitaa & Matsunaga 2008). Each simulation
was run 5 times, and the table shows the average results.

The resulting figures show that the parameters used for the
agents’ speed and reaction times, and well as the distances
defined for the intersection, ensure safe crossings in normal
conditions. However, increasing the speed of the agents and
introducing reckless and distracted agents start causing inci-
dents. We can also observe the effects on the safety conditions
of the crosswalk of the main simulation parameters: road grip,
visibility, level of measurement uncertainty (precision and con-
fidence), and the speed of agents. Using our models, we can
check, for instance, that if we want to reduce the number of
incidents during peak hours, the most effective measure would
be to decrease the allowed speed limit by 15%, which would
permit agents to avoid collisions.
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Table 5 Simulation results for 1000 crossings (Figures indi-
cate number of Hard brakes, Near-collisions and Collisions).

Good W. Bad Grip Bad Vis. Bad G-V.

Crisp Normal [– | – | –] [– |.04| –] [– |.01| –] [– |.05|.01]

Model Peak [– |2.5| –] [– |5.0|1.5] [– |3.0|1.0] [.02|5.5|2.0]

No Normal [– | – | –] [– |.04| –] [– |.01| –] [– |.05|.01]

Unc. Peak [.2|.6| –] [– |7.0|1.0] [– |2.0|.6] [– |9.6|1.3]

Small Normal [– | – | –] [.01|.03| –] [– |.01| –] [.01|.07|.02]

Unc. Peak [– |.2|.2] [.2|5.4|2.8] [.2|.4|.4] [.4|7.8|4.4]

Med Normal [– | – | –] [.01|.03|.01] [.01|.02| –] [.01|1.2|.02]

Unc. Peak [.6|4.4|.6] [.2|4.4|3.8] [.6|2.4|1.0] [.2|6.2|5.4]

High Normal [– | – | –] [.02|.01|.06] [.01|.06|.02] [.04|1.5|.08]

Unc. Peak [1.4|3.4|5.4] [.2|6.8|9.8] [1.2|5.6|4.2] [.6|11.2|11.2]

Table 6 Execution times of the Crosswalk system for different
number of crossings.

No. of crossings No. of Agents Time (secs.)
200 400 12.61
500 1000 32.00

1000 2000 62.19
1500 3000 126.00
2000 4000 264.68

Performance. Although in this paper our main focus is the
expressiveness and analysis capabilities of our proposal, we also
evaluated the performance of our simulations. The goal was to
check whether the use of high-level languages, such as OCL, and
the employ of USE, which is a tool neither intended or optimized
for running simulations, could hinder the applicability of our
approach. All the tests mentioned here were carried out on a
personal computer with an Intel® coreTM i7-7500U @2.70GHz,
16Gb RAM and running Windows 10 Pro and USE 6.0.

In the Crosswalk example, the average execution time for
running 1000 crossings (i.e., involving 2000 agents) was 62.19
seconds, with a standard deviation of 4.5 s. These figures are
not exceptional, but they were acceptable for running our tests
in a reasonable time. Table 6 shows the execution times for
different number of crossings and agents involved.

Table 7 shows the execution times of the Tanks example. We
simulated the system with several number of tanks per team
(1 to 4). Every time one of the tanks was shot down or ran
out of power, it was removed from the simulation and a new
one was created, until the total number of tanks defined for the
simulation was reached (1000 and 1500, respectively).

4.6. Further issues and limitations
This section describes here some of the limitations of our pro-
posal as well as other issues that may require further investiga-
tion.

Model Calibration. Validation is a process of comparing the
model and its behavior to that of the real system. Further,

Table 7 Execution times of the Tanks Warfare system for
different number of simulations.

No. of tanks per team
Total No. of tanks 1 2 3 4

1000 29.29 34.45 42.62 44.76
1500 39.05 46.08 57.52 63.05

calibration is the iterative process of comparing the model with
real system, revising the model if necessary by, e.g., adjusting
the model parameters, until the behavior of the model faithfully
emulates that of the real system (Wigan 1972). In addition
to the modeling effort required to develop the models of the
system, their calibration requires a significant effort that cannot
be neglected (Glenn et al. 2004; Kiesel et al. 2011).

In our case, for calibrating and validating the Crosswalk
system agents we used the data of a research project on ITS
applications, on which the example was inspired,2 as well as the
existing data available from the literature on the behavior of cars
and pedestrians, as referenced in Sect. 3. The time and effort
we spent in calibrating the behavior of the individual agents was
similar to the effort required to develop the models, much more
than we initially expected. Unfortunately, this step cannot be
ignored (Wigan 1972), although some solutions could be used
to mitigate the effort required. For example, the development
of a library of ready-made agents of several classes that can be
reused in different models could be of great help.

Related to this, unconstrained propagation of measurement
uncertainty can also represent problems because of an un-
bounded and excessive accumulation of uncertainty. One coun-
termeasure that we used was to restrict the life-time of the agents
as much as possible, focusing just on their behavior during each
simulation cycle.

Complexity. Simulating the interactions among agents with
uncertain behavior is inherently complex. Even when we have
proposed a step-by-step methodology to incrementally add sev-
eral types of uncertainty into the behavior of the agents, this
approach requires to explicitly consider the interactions among
the agents too. Thus, the complexity of the specifications will
grow exponentially with the number of agent types. For exam-
ple, introducing a traffic light in the crosswalk example, or two
different lanes, one for pedestrians and one for cyclists, would
require to consider a growing combination of situations. This
problem, which also applies to systems modeled with BBNs,
would require further research.

Faithfulness. In general, there is an inevitable compromise
between the level of detail and the complexity of the specifica-
tions. The key is to define a set of abstractions that are faithful
enough to capture the relevant properties of interest, and simple
enough to be usable by the system modelers and analysts (Lee
2017). In our context, the value of a model lies in how well
its behavior matches that of the physical system (Lee & Sirjani
2018). Such a faithfulness is easier to achieve if properties of
the modeling language itself reflect properties of the problem

2 https://c-mobile-project.eu/
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domain being modeled (Sirjani 2018), and this is why the use
of the extension of OCL datatypes with uncertainty has proved
to be very helpful. Likewise, the use of casual networks and
influence diagrams have provided the appropriate specification
mechanisms for reasoning about the agents’ motivations. They
have enabled us to explicitly capture the relevant aspects of the
system, and understand how they influence its behavior. With
this paper we have tried to show the power of modeling uncer-
tain behavior using high-level notations, and the mechanisms
available to achieve this.

Other limitations. Apart from the limitations discussed above,
one of the problems of a proposal like this is obtaining real data
to validate and calibrate the models. Even when our crossing
system was inspired in a real example from a research project
in the Netherlands, every crossing is unique and generalizing
from this data would be a challenge.

Our current proposal may also not be suitable for all types of
systems. For example, it cannot deal with continuous models
of physical systems, but only with discrete ones (or the discrete
versions of the continuous models). Furthermore, as mentioned
above, the complexity of the model increases with the complex-
ity of the problem. This implies larger models that are more
difficult to develop, debug, validate and calibrate. Even when
the high-level modeling notations used attempt to reduce the ac-
cidental complexity of modeling efforts, the inherent complexity
of considering systems with uncertainty presents a challenge for
software modelers.

Finally, another general problem is that the modeler has
to anticipate the types of uncertainty the system is subject to.
Therefore, unknown-knowns and unknown-unknowns are not
contemplated. These types of uncertain behaviours are now
all encapsulated as random decisions of the agents, and are
added during the last step of the proposal. Further analyses for
unexpected behaviours may be needed in order to reduce this
uncertainty.

5. Conclusions and Future Work

In this paper we have presented a proposal for the specification
of the behavior of agents under different types of uncertainty,
using high-level models. We have also described how these
models can be used to simulate the modeled systems and to
analyze some of their properties of interest. Two main case
studies have been used to demonstrate the proposal, and to
highlight its main advantages and limitations.

Our work can be continued in several directions. First, fur-
ther case studies should give us more feedback on the features,
expressiveness and possible improvements of our approach.
Second, empirical validation with realistic systems in existing
environments would help us evaluate its applicability, usability
and effectiveness. Finally, adding new types of analyses to our
approach, such as static ones, or combining our proposal with
other specification techniques, such as scenario-based testing
to generate artificial scenarios as a way to support the specifica-
tion of parameters and variability in the system (Babikian 2020;
Gadelha et al. 2020), are also part of our future research goals.
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