
Journal of Object Technology | RESEARCH ARTICLE

Co-evolution of Metamodel and Generators:
Higher-order Templating to the Rescue

Tiziano Lombardi, Vittorio Cortellessa, and Alfonso Pierantonio
Università degli Studi dell’Aquila, Italy

ABSTRACT In Model-Driven Engineering, metamodels are the cornerstone entities underpinning modeling environments. Given
one or more metamodels, a diversity of artefacts, including models, transformations, and code generators, are formally coupled
with them. Like any other software, metamodels are prone to evolutionary pressure due to shifting business requirements.
However, metamodel modifications might come at the price of jeopardizing the related artefacts that, in turn, must be adapted in
order to remain valid. While a comprehensive corpus of research has shown that the co-evolution of metamodels and models
can be effectively addressed with semi-automated techniques, the co-evolution of transformations and code generators still
requires significant manual intervention. This paper proposes a novel technique to make template-based code generators
resilient, to some extent, against metamodel evolution. A new template-based language, called hotello, is proposed for the
specification of meta-templates, i.e., higher-order model-to-text transformations. The approach has been implemented, and a
demonstration of its capabilities on a case study in the IoT domain is discussed.

KEYWORDS Coupled evolution, Change resilience, Code generators, Templating, Higher-order transformation language.

1. Introduction

In Model-Driven Engineering (Schmidt 2006) (MDE), meta-
models are at the core of any modeling environment. Such
environments are typically complex, tailored for specific appli-
cation domains, and made of numerous metamodel-dependant
artefacts, whether editors, transformations, analyzers, or code
generators. Defining a metamodel is a complex and iterative
process that aims to analyze, engineer, and formalize an appli-
cation domain by involving different stakeholders. Evolution
is an inevitable aspect that affects the whole life-cycle of soft-
ware systems (Lehman & Belady 1985), and metamodels are
not exempted from this general law. On the contrary, they are
steadily subject to evolutionary pressure due to abrupt require-
ments, novel insights emerging from the domain, or simply
bug-fixing (Di Ruscio et al. 2012). However, modifying a meta-
model comes at the price of jeopardizing the corresponding

JOT reference format:
Tiziano Lombardi, Vittorio Cortellessa, and Alfonso Pierantonio.
Co-evolution of Metamodel and Generators: Higher-order Templating to the
Rescue. Journal of Object Technology. Vol. 20, No. 3, 2021.
http://dx.doi.org/10.5381/jot.2021.20.3.a7

modeling ecosystem because its components might result no
longer valid after the changes; therefore, they must be consis-
tently adapted to restore their validity: this is typically referred
to as the co-evolution problem (Van Der Straeten et al. 2008).

Over the last years, many approaches for the co-evolution of
metamodels and models emerged, e.g., see (Hebig et al. 2016)
for a survey. They typically differ in the way they identify
metamodel changes and how instances are migrated. Besides
the more general problem of (meta)model matching and com-
parison (Kolovos et al. 2009), programmatic and generative ap-
proaches are adopted for performing model migration (Di Rocco
et al. 2012). Such techniques have been applied, with differ-
ent degrees of success, also to the migration of other kinds
of artefacts, including model transformations (Wimmer et al.
2010; García et al. 2012; Kusel et al. 2015; Rutle et al. 2020),
GMF-based editors (Di Ruscio et al. 2010), and code genera-
tors (Di Ruscio et al. 2013; Di Rocco et al. 2014). Unfortunately,
spelling out the requirements for a proper migration is not an
easy task, and translating captured requirements into correct
operational procedures can be even harder regardless of the
adopted technique. In particular:

– generative techniques present the advantage of performing

An AITO publication

http://dx.doi.org/10.5381/jot.2021.20.3.a7

the migration directly from a model-based representation
of the metamodel changes as differences; however, differ-
encing algorithms are not always accurate and consistency
restoration is based on heuristics encoded in higher-order
transformations that make them hardly customizable and
manageable;

– programmatic techniques can be more accurate and man-
ageable; however, their scalability is limited due to the
difficulty of writing and maintaining refactoring programs
that must consistently migrate the considered artefacts or
even co-evolve them together with the metamodels.

Arguably, such difficulties limit the ability to keep a model-
ing environment aligned to shifting (business) demands leading
to a potential lock-in in the defined abstractions and genera-
tors (Visser et al. 2007).

This paper presents a novel approach that introduces a notion
of resilience in the co-evolution of metamodels and generators,
i.e., model-to-text transformations. Generators are usually de-
fined by means of template-based languages, such as Acceleo1

or EGL2. Given a metamodel, templates are defined to generate
textual artefacts (regardless of the target notation) whose con-
tent is extracted by querying the conforming models. In order
to make, to a certain extent, templates persistent to metamodel
changes, this paper proposes hotello, a higher-order template-
based language (and the corresponding implementation) for the
specification of meta-templates. Analogously to a higher-order
model transformation, a meta-template is used for generating
a class of templates that are, in turn, applied for code genera-
tion. The approach is based on the observation that the same
syntactic structures in the target notation may originate from
ontologically similar information. Thus, as long as metamodel
changes are not disruptive and refer to the same kind of informa-
tion, meta-templates can still operate and produce the expected
output despite the different syntax. The required syntactical tol-
erance is provided by a simple annotation mechanism that can
categorize the information described in the metamodel for later
use in the meta-template. The effectiveness of the approach
is demonstrated by applying the proposed techniques in the
domain of Internet-of-Things.

Outline. The paper is organized as follows. The next section
illustrates a motivating scenario that highlights the need for
more resilient to change artefacts instruments in code or text
generation. Section 3 presents the hotello language and the
related approach. In Sect. 4, a case study related to the Internet-
of-Things is illustrated, showing how meta-templating provides
a robust solution for generating code in the context of evolving
metamodels. Related works are discussed and compared in
Sect. 5. Finally, conclusions are drawn in Sect. 6 alongside a
brief outline of future work.

2. Motivational Scenario
This section illustrates an elementary scenario in which we show
how simple modifications to an Entity-Relationship metamodel

1 https://www.eclipse.org/acceleo/
2 https://www.eclipse.org/epsilon/doc/egl/

Figure 1 ER1, an Entity-Relationship metamodel

affect an associated template written in EGL for the generation
of SQL queries. Let ER1 be the metamodel in Fig. 1, where a
Diagram consists of an arbitrary number of Entities inheriting
the name attribute from the Named metaclass. Each Entity has
typed Attribute(s) with one of them denoted as (primary) Key.
An instance of the metamodel is given in Fig. 2, which specifies
a PhoneBook with the contact details of an employee. The EGL

Figure 2 The PhoneBook model conforming to ER1

template in Listing 1 defined upon ER1, starting from a conform-
ing model, can generate the corresponding queries for creating
the database tables, as follows: for each entity, a CREATE query is
generated (line 4-5) with a column for each associated property
(line 8-9) and a primary key (line 13). Once applied the to the
model in Fig. 2, it generates the query in Listing 2 for creating
the corresponding table.

It is worth noting that the template contains several references
to syntactical elements in ER1. Therefore, if changes involve
such elements, then the corresponding template expressions
might become invalid and break the consistency with ER1. Let
us consider the metamodel ER2 in Fig. 3, as obtained by mod-
ifying ER1, where additions are highlighted in green, whereas
modifications in red (Ohst et al. 2003). In particular:

– a metaclass called Relation is added with properties and
entities as structural features, where the latter one refers
to the two entities forming the relation;

1 [%import "utils.eol";%]
2
3 [* MS SQL Entity Create Table *]
4 [%for (t in source!Entity.all) {%]
5 CREATE TABLE [%=t.name%] (
6
7 [* Columns *]
8 [%for (c in t.properties) {%]
9 [%=c.name%] [%=c.type.literal%],

10 [%}%]
11
12 [* Primary Key *]
13 PRIMARY KEY ([%=t.key.attributes.namesToList()%])
14);
15 [%}%]

Listing 1 An ER1 template for generating CREATE queries

2 Lombardi et al.

https://www.eclipse.org/acceleo/
https://www.eclipse.org/epsilon/doc/egl/

Figure 3 ER2, a refactoring of ER1

1 CREATE TABLE employee (
2 name VARCHAR(255),
3 telephone VARCHAR(255),
4
5 PRIMARY KEY (name)
6);

Listing 2 The query generated from the PhoneBook model

– a relations structural feature is added, which collects all
the relations in the Diagram;

– the properties old structural feature is renamed as
features.

Because of the performed changes, the template illustrated
above is not valid anymore3. Therefore, the template must
be consistently adapted to a) deal with the renaming and b)
consider the newly added modeling elements, e.g., the Rela-
tion metaclass, in the query generation. A possible template
adaptation is the following4:

1 [%import "utils.eol";%]
2
3 [* MS SQL Entity Create Table *]
4 [%for (t in source!Entity.all) {%]
5 CREATE TABLE [%=t.name%] (
6
7 [* Columns *]
8 [%for (c in t.features) {%]
9 [%=c.name%] [%=c.type.literal%],

10 [%}%]
11
12 [* Primary Key *]
13 PRIMARY KEY ([%=t.key.attributes.namesToList()%])
14);
15 [%}%]
16
17 [* MS SQL Relation Create Table *]
18 [%for (t in source!Relation.all) {%]
19 CREATE TABLE [%=t.name%] (
20
21 [* Extra Columns *]
22 [%for (c in t.features) {%]
23 [%=c.name%] [%=c.type.literal%],
24 [%}%]
25
26 [* Foreign Keys *]
27 [%for (k in t.key) { %] [%var c = k.attributes.first();%]
28 [%=c.name%] [%=c.type.literal%],
29 [%}%]
30
31 [%for (k in t.key) {%]
32 FOREIGN KEY ([%=k.name%])
33 REFERENCES [%=k.eContainer().name%] ([%=k.name%]),
34 [%}%]
35);
36 [%}%]

Listing 3 An ER2 template for generating CREATE queries

Like the previous one, the new template generates a CREATE

query for each Entity instance occurring in a model. A CREATE

3 For the sake of accuracy, it should be noted that the renaming breaks the
conformance of the PhoneBook model as well.

4 Generally, artefacts can be adapted to a metamodel evolution in multiple ways.

query is generated for each Relation as well. Let us consider
the model conforming to ER2 presented in Fig. 4. It contains
a version of the PhoneBook in which an employee can be as-
sociated with her unit by means of the belongs relation. At

Figure 4 An extended PhoneBook model conforming to ER2

this point, the application of the new template on the extended
PhoneBook given place to the following queries

1 CREATE TABLE employee (
2 name VARCHAR(255),
3
4 PRIMARY KEY (name)
5);
6 CREATE TABLE Unit (
7 id INT,
8 name VARCHAR(255),
9

10 PRIMARY KEY (id)
11);
12
13 CREATE TABLE belongs (
14 name VARCHAR(255),
15 id INT,
16
17 FOREIGN KEY (name)
18 REFERENCES employee (name),
19 FOREIGN KEY (id)
20 REFERENCES unit (id),
21);

Listing 4 The queries generated from the extended PhoneBook

model

Despite the simplicity of the changes operated in the scenario
discussed in this section, they had severe repercussions on the
considered tooling chain. The query-generating template was
urged to be consistently co-evolved in order to keep operational
the modeling infrastructure and to avoid a metamodel lock-in.
Unfortunately, the maintenance of different artefacts and tools
consistent with the metamodel is challenging, and even a simple
renaming or extension can force the modeler to opt for leaving
the metamodel unchanged.

In the sequel of the paper, we will present an approach to
model-to-text transformations that, instead of adapting the re-
lated templates, makes them resilient to a certain extent to
changes.

3. A higher-order template-based approach
Based on the previous section’s considerations, we present a
higher-order transformation language, called hotello. The lan-
guage can be used for the specification of meta-templates, i.e.,
templates that can be applied to a class of similar metamodels to
produce traditional instance-level templates for the generation
of textual artefacts. For the sake of clarity, we call the for-
mer and the latter ones meta-templates and instance-templates,
respectively.

Metamodel Change Resilience of Code Generators in Model-Driven Engineering 3

Figure 5 The hotello application architecture

Let us consider the hotello application architecture given
in Fig. 5, the meta-template (see ¶) is a textual specification
containing a number of so-called meta-patterns (besides other
syntactical fragments that will compose the target of textual
artefacts). A meta-template exemplar is illustrated in Listing 5.

1 /* MetaModel-Level used libraries */
2 IMPORT "resources/mylib";
3
4 /* Model-Level used libraries */
5 import "resources/utility";
6
7 /*
8 * This is the rule to create SQL Tables
9 */

10 FORALL (mc: EClass.all TAGGED table) {
11 /* For each matching Metaclass loops through instances */
12 foreach(instance in [mc.name].all) {
13 CREATE TABLE [[instance.name]] #{
14
15 // Table columns
16 FORALL (r: mc.getEReferences() TAGGED column) {
17 /* For each matching reference loops through values */
18 foreach(object in instance.[r.name].properties) {
19 [[object.type]] [[object.name]],
20 }
21 }
22
23 // Table Primary keys
24 FORALL (r: mc.getEReferences() TAGGED primary) {
25 /* For each matching reference loops through values */
26 foreach(object in instance.[r.name].key.attributes.namesToList()) {
27 PRIMARY KEY ([[object.name]]),
28 }
29 }
30
31 // Table Foreign keys
32 FORALL (r: mc.getEReferences() TAGGED foreign) {
33 /* For each matching reference loops through values */
34 foreach(object in instance.[r.name].key) {
35 FOREIGN KEY ([[object.name]])
36 REFERENCES [[object.parent.name]] ([[object.name]]),
37 }
38 }
39 #}
40 }
41 }

Listing 5 Meta-template definition for SQL table creation

It refers to the Entity-Relationship domain already presented
in Sect. 2 for generating SQL queries. The meta-template con-
tains four meta-patterns (denoted by uppercase and pink colored
text) universally quantifying over metaclasses (line 10) and ref-
erences (lines 16, 24, and 32), respectively. Moreover, only
modeling elements with specific annotations (denoted by the
TAGGED clause) are selected. Now, if we consider the ER1 meta-

model on the left-hand side of Fig. 6 in place of the metamodel
occurring in the application architecture (see · in Fig. 5), then
the meta-patterns will identify the highlighted elements5

Figure 6 ER1 and ER2 decorated with annotations

A simplified version of the hotello grammar is presented
in Fig. 7. The m-template non-terminal is the root element
denoting an hotello meta-template that consists of an header
and a list of commands. As for the root element, whenever
the scope or the context in which the constructs is related to
meta- or instance-templates, the corresponding non-terminals
are prefixed by m- and i-, respectively. Thus, the iterators
(like those given, e.g., on lines 10 and 12) are specified by
m-iterator and i-iterators. The non-terminal query is
an EOL6 expression that predicates on metamodels if occurs in
an m-iterator, whereas on the specific metaclass and meta-
properties in case it occurs within an i-iterator.

Once we know how to write a meta-template and a meta-
model is given, the hotello translator generates the corresponding
instance-template (see ¸) written in EGL. In the case of ER1, the
instance-template is given in Listing. 1 in Sect. 2. In particular,
the lines 8-10 of the instance-template are generated from the
code in lines 10 and 18 in the meta-template once instanciated
for the column tagged metaclass in ER1, i.e., Attribute. Then,
the generated instance-template can be applied to any instance
of the selected metamodel (¹), e.g., ER1, to produce the target
artefact (º).

As already said, a meta-template purpose is to render model-
to-text transformations resilient to metamodel changes. While
the changes a metamodel can undergo are arbitrary, their ratio-
nale is related to shifting business requirements or new insights
emerging from the domain. Therefore, revised metamodels

5 The annotations have been manually reproduced by the red boxes to enhance
the image readability.

6 https://www.eclipse.org/epsilon/doc/eol/

4 Lombardi et al.

〈m-template〉 ::= 〈header〉 { 〈command〉}

〈header〉 ::= {〈import〉}
〈import〉 ::= 〈m-imports〉

| 〈i-imports〉

〈m-imports〉 ::= 'IMPORT' path ';'

〈i-imports〉 ::= 'import' path ';'

〈command〉 ::= 〈iterator〉
| 〈comment〉
| 〈text〉
| . . .

〈comment〉 ::= '/*' string '*/'

| '//' string

〈iterator〉 ::= 〈m-iterator〉
| 〈i-iterator〉

〈m-iterator〉 ::= 'FORALL' '('

id ':' 〈m-pattern〉 'TAGGED' id

')' '{'
{〈command〉}

'}'

〈i-iterator〉 ::= 'foreach' '('

id 'in' id '.' 〈i-pattern〉
')' '{'

{〈command〉}
'}'

〈m-pattern〉 ::= EOL expression

〈i-pattern〉 ::= EOL expression

. . .

Figure 7 The hotello EBNF grammar definition

are usually within a certain proximity from the version they
originated from. Such way such mutations affect model-to-text
transformations is mitigated by the hotello tagging and anno-
tation mechanism as they allow to abstract from the concrete
metaclasses and structural features used in the meta-template.
For instance, the meta-template above can be applied to the ER2

metamodel in the right-hand side of Fig. 6 thanks to the annota-
tions. In particular, by annotating the metaclass Relation with
table the meta-template can generate a table for each of the en-
tities and relations occurring in the corresponding ER2 instances.
The resulting instance-template for the ER2 metamodel is given
in Listing 3.

The class of metamodels class that a meta-template can han-
dle is defined by the meta and instance patterns occurring in
it, i.e., the patterns must be valid navigational expressions for
the considered metamodel. Such requirement gives place to a
notion of typing (Steel & Jézéquel 2007) similar, although less
expressive, to the transformation typing requirements model in
the sense of (Lara et al. 2019). The patterns define the naviga-
tional expressions as follows: the meta-patterns predicate over
the metamodel (metaclasses and metaproperties), whereas the
instance-patterns predicate, in turn, over the specific syntactical

connectives defined in the selected metamodel. More in de-
tail, in hotello the m-patterns occurring in the m-iterators
identifies the admissible metamodels, whose instances can, in
turn, be queries by means of the i-patterns present in the in-
stantiated i-iterators. In essence, as long as the metamodel
mutations do not affect the structures subsumed by the meta-
and instance-pattern, the meta-template keeps producing the
expected outcome and becoming, therefore, resilient to such
changes.

Figure 8 The meta-template edited in the hotello environment

The language has been implemented on the EMF framework
using Xtext7; from the complete hotello grammar, a parser, a
serializer, and a smart editor are generated. Figure 8 shows the
meta-template given in Listing 5 while edited in the hotello mod-
eling environment. A multi-step semantic anchoring translates
hotello meta-templates into an intermediate EGL-based notation
and, in turn, into plain EGL (instance-)templates by means of
an Epsilon transformation. For the sake of reproducibility, the
complete application alongside the artefacts featured in this
paper are publicly available on GitHub8.

In the next section, a validation of hotello model-to-text trans-
formations is provided in the domain of Internet-of-Things. The
objective is to demonstrate how meta-templates can generate
component adaptors written in C++ and persist changes per-
formed on the metamodel to accommodate new requirements.

4. Case study: device interfacing in IoT
In this section, we describe a case study realized in the domain
of Internet-of-Things (IoT). The domain is characterized by
many different devices that typically need to communicate with
each other across different protocols and means urging system
designers to realize various interface adapters to let parts com-
municate. Consequently, maintaining such systems becomes
critical whenever some device needs to be replaced with a dif-
ferent one no matter the reasons, which results in a considerable
7 http://eclipse.org/Xtext
8 https://github.com/MDEGroup/metatemplating

Metamodel Change Resilience of Code Generators in Model-Driven Engineering 5

http://eclipse.org/Xtext
https://github.com/MDEGroup/metatemplating

impact on the source code, mostly whether the device uses a
different protocol. We show how such an evolutionary scenario
can be conveniently managed by employing the hotello approach
by automatically creating and updating standard adapters based
on designer needs and system requirements. In particular, start-
ing from a domain-specific notation for modeling single isolated
IoT systems consisting of many parts that have to communicate
by-wire with their central controller, e.g., using protocols like
1-wire9, I2C10, or SPI11. After that, the initial metamodel is ex-
tended to manage systems with remote device communication
(e.g., using high-level network protocols like JSON-based or
XMI-based) in a System-of-Systems context. In our example,
we assume that very low-level functions are provided by ven-
dor libraries, which expose or expect in some way predefined
values.

Figure 9 First version of IoT domain metamodel.

Figure 9 describes an initial version MM1 of our IoT meta-
model, as intended for designing isolated systems com-
posed of devices connected through Sensors, Actuators, and
Controllers. We focus our attention on the Adapter concept,
the software component that realizes the standardization among
peripherals and controllers. We aim at uniforming the values

9 https://www.maximintegrated.com/en/products/ibutton-one-wire/
one-wire.html

10 https://www.nxp.com/docs/en/user-guide/UM10204.pdf
11 https://www.intel.com/content/www/us/en/support/articles/000020952/

software/chipset-software.html

provided by device-specific libraries to a typical object-oriented
structure used in controller firmware code. Then, each Adapter

is linked to a specific Port defined onto the controller: such
port is a logical grouping of some physical Pins used for the
electronic interfacing between a controller and a peripheral. All
these pins have to be initialized at startup time, so it is suitable
to provide an Initializer for each controller that setups pins
for input or output at firmware startup.

The rest of the section is organized as follows. First, we
show how adapters and pin initializers can be generated with
hotello by:

– describing the corresponding meta-patterns and meta-
templates for both categories of components;

– generating the instance-templates, i.e., the model-to-text
generators; and

– generating the target artefacts by applying the generators
to an MM1 instance.

After that, the metamodel MM1 is extended into MM2 to capture
additional requirements. New generators for adapters and pin
initializers consistent with MM2 are then consistently obtained
while retaining the meta-template unmodified.

4.1. Initial version of the IoT tooling chain
Both adapters and pin initializers are software components that
can be automatically generated. According to the process de-
scribed in Fig. 5, we will define two meta-templates based on
the MM1 metamodel by identifying the relevant patterns for each
meta-template, the corresponding annotations in the metamodel,
and the expected outcome to be generated.

4.1.1. Definition of meta-patterns and templates
In this section, we present the meta-patterns for navigating MM1;
the identified patterns for the Adapters meta-template are the
following:

– Adapter: the transformation has to traverse Adapter to
create the glue-code needed among the system components.
An Adapter can be distinguished into a SensorAdapter or
an ActuatorAdapter (see Fig. 9) depending on whether it
encodes or decodes the data objects exchanges between
the controller and the peripheral. It also contains metadata
about the producer coding type and communication Port;

– Coding: an Adapter is able to encode/decode data using a
set of predefined modes. In this first version, three modes
can be used: raw data (directly obtained from the single
pins), parallel digital data (obtained from the combina-
tion of two or more digital pins), and high-level protocol
(provided by the device producer libraries);

– Port and Pin: an Adapter communicates through logical
ports, namely a set of physical controller pins. Each spe-
cific type of controller has its characteristic representation
for its pins, which at least has to identify the GPIO (Gen-
eral Purpose Input/Output) number and its typology (e.g.,
analogic, digital, pwm).

– Naming: each model element that has to be uniquely iden-
tified refers to a common naming system.

6 Lombardi et al.

https://www.maximintegrated.com/en/products/ibutton-one-wire/one-wire.html
https://www.maximintegrated.com/en/products/ibutton-one-wire/one-wire.html
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.intel.com/content/www/us/en/support/articles/000020952/software/chipset-software.html
https://www.intel.com/content/www/us/en/support/articles/000020952/software/chipset-software.html

Whereas the meta-patterns for the Pin Initializer meta-
template are:

– Controller: each controller defines its used Pins as
grouped into logical Ports. Since there could be non-
standard controllers as well, each specific admitted type
has to be separately tagged;

– Pin: a specific controller has its own definition of Pin; for
each of them the GPIO number and pin direction (input,
output, bidirectional) have to be identified;

– Naming: each model element that has to be unambigu-
ously identified refers to a common naming system; in this
case, the same naming system for all model elements is
used.

The previous lists of patterns require the metamodel to be
consistently annotated; each annotation will be grouped under
a specific namespace to achieve the separation among meta-
templating processes. In detail, IotHal has been defined as
a namespace for Adapter meta-template, and IotStartup has
been defined as a namespace for Pin Initializers one.

We will now describe the definition of the meta-template
and the annotation of domain metamodel following identified
patterns-of-interest. For the sake of space, we will only describe
the process for the automatic creation of Adapter generators.

The meta-template for Adapter generator is divided into four
segments:

(1) a segment of static output, containing some source code
that is needed in all cases;

(2) a segment of dynamic output, containing the inclusion of
known protocols libraries;

(3) a segment of dynamic output for the construction of read-
ing Adapters;

(4) a segment of dynamic output for the construction of writing
Adapters.

The segment (1) is not affected by any transformation and
will appear as it is in the final artefacts. Segment (2) is elab-
orated in the first step of the meta-generation process and be-
comes static text for the second step in the instance-template.
The corresponding hotello fragment is given in Listing 6.

1 /* Protocols libraries */

2 FORALL (lib: EEnum.all TAGGED comm_modes) {
3 FORALL (proto: lib.eLiterals TAGGED proto) {
4 // *.getInfo(〈TAG〉) report extra information

5 // inserted into the annotation

6 #include 〈[proto.getInfo('proto')].h〉
7 }
8 }
9

10 /* Static code - Pin access Interface */

11 void writeAnalog(int pin, int value);

12 int readAnalog(int pin);

13 void writeDigital(int pin, bool value);

14 bool readDigital(int pin);

15 /* *** */

Listing 6 Meta-template fragment related to segments (1-2)

Segments (3-4) are processed in the first step of the meta-
generation process and become dynamic code for the second
step when some metamodel-dependent parts are instantiated as
a static piece of code. At the same time, the rest expects to

elaborate model-dependent information as shown in Listing 7.
Because of the duality of segments (3-4), we are discussing
segment (3) only.

1 /* Reading Adapters */

2 FORALL (mc: EClass.all TAGGED in_adapter) {
3 foreach(c in [mc.name]) {
4 // Get naming attribute from metamodel

5 FORALL (mc_name: mc.getAllAttributes() TAGGED naming) {
6 /* Reading Adapter - [[c.{mc_name.name}]] */

7 class [[c.{mc_name.name}]]ReadingAdapter {
8 public:

9

10 /* Fields */

11 FORALL (coding: mc.getAllAttributes() TAGGED coding) {
12 FORALL (c_type: coding.eType.eLiterals TAGGED raw) {
13 // [. . .]

14 }
15 FORALL (c_type: coding.eType.eLiterals TAGGED proto) {
16 // [. . .]

17 }
18 }
19 // [. . .]

Listing 7 Meta-template fragment related to segment (3)

Once the meta-templates are designed, the hotello tooling
chain generates the corresponding instance-templates as dis-
cussed in the next section.

4.1.2. Generation of instance-templates
The meta-templates defined in the previous section can be ac-
tualized with the MM1 metamodel, i.e., all references to meta-
elements occurring in the meta-templates are resolved with ac-
tual metaclasses and properties, and the corresponding instance-
templates are generated. This automated step is performed by
an Epsilon transformation yielding the target EGL code. At
this point, Adapters and Pin Initializers can be synthesized
from any model conforming to the MM1 metamodel.

Figure 10 Excerpt of the initial annotated domain metamodel

Figure 10 shows an excerpt of the MM1 decorated with the an-
notations corresponding to the Adapter meta-patterns, i.e., each
different annotation will be used in the guard of the meta-rule to
be triggered. In particular, the SensorAdapter metaclass is an-
notated as inadapter and some Coding literals are annotated as
proto. These annotations are used in previous defined segment
(3) as part of reading Adapters.

1 [*-Protocols libraries*]

Metamodel Change Resilience of Code Generators in Model-Driven Engineering 7

2 #include "Wire.h"

3 #include "I2C.h"

4

5 [*-Adapter for SensorAdapter*]

6 [%for (c in SensorAdapter) {%]
7

8 /* Reading Adapter - [%::=c.name%] */

9 class [%::=c.name%]ReadingAdapter {
10 public:

11

12 [*-Fields*]

13 [%if (c.coding.literal ::=::= "raw") {%]
14 [*. . .*]

15 [%}%]
16 [%if (c.coding.literal ::=::= "byte") {%]
17 [*. . .*]

18 [%}%]
19 [%if (c.coding.literal ::=::= "one_wire") {%]
20 [%for (port in c.port) {%]
21 Wire* [%::=port.id%];

22 [%for (pin in port.pins) {%]
23 const int [%::=port.id%]_[%::=pin.id%] ::= [%::=pin.number%];

24 [%}%]
25 [%}%]
26 [%}%]
27 [%if (c.coding.literal ::=::= "i2c") {%]
28 [%for (port in c.port) {%]
29 I2C* [%::=port.id%];

30 [%for (pin in port.pins) {%]
31 const int [%::=port.id%]_[%::=pin.id%] ::= [%::=pin.number%];

32 [%}%]
33 [%}%]
34 [%}%]
35 [*. . .*]

Listing 8 Excerpt of the instance-template generated from the

meta-template

After the metamodel is annotated, the meta-templates in
Listings 6 and 7 are translated into instance-templates written
in EGL, as shown in Listing 8.

At this point, the final textual artefact can be generate from
any MM1 instance as illustrated in the next section.

4.1.3. Generated artefact

Figure 11 An MM1 instance

Figure 11 presents an examplar of model conforming to the
MM1 metamodel. It represents a simple IoT system composed
of a single Arduino controller with a temperature DHT sensor
and a command relay. There are two single pin ports defined
on the controller, one for the sensor and another for the relay.
DHT sensors use a one-wire digital protocol, which exchanges
packet data on a single pin. The device vendor provides its
own library to access such information. On the other side, a
relay uses a single two-state digital pin to be excited or not. A
first Sensor Adapter is defined for interfacing the temperature
sensor, and it is declared as a 1-wire protocol coding. A second

Actuator Adapter is given for interfacing the relay, and it is
declared as a raw data coding.

Applying the instance-template generated in the previous
section to the model in Fig. 11 will produce the C++ code
reported in Listing 9.

1 #include "Wire.h"

2 #include "I2C.h"

3

4 // Static code - Pin access Interface

5

6 void writeAnalog(int pin, int value);

7 int readAnalog(int pin);

8 void writeDigital(int pin, bool value);

9 bool readDigital(int pin);

10

11 // ***

12

13 /* Reading Adapter - TempSens */

14 class TempSensReadingAdapter {
15 public:

16

17 Wire* DhtBus;

18

19 const int DhtBus_dht_data ::= 3;

20

21 void run() {
22

23 DhtBus-〉read();
24 }
25

26 };
27

28 /* Writing Adapter - RelayDriver */

29 class RelayDriverWritingAdapter {
30 public:

31

32 bool heater_cmd;

33

34 void run() {
35

36 writeDigital(2, heater_cmd);

37

38 }
39

40 };

Listing 9 Result of generation process

4.2. Evolving the IoT metamodel
As already described, a metamodel is a living entity that, sim-
ilarly to software, is prone to changes for the most disparate
reasons. Modifying a metamodel does come with the price of
adapting the rest of the modeling ecosystem, including models,
editors, and transformations, to respond to the changes. In order
to illustrate the resilience of the hotello meta-templates, we mod-
ify the IoT metamodel MM1 to cover also remote communication
management. To this end, the metamodel is extended with new
concepts and new kinds of Adapters.

The revised metamodel MM2 is presented in Fig. 14. Before
discussing the details of the performed evolution, we briefly
discuss the two simple (parallel independent) modifications
represented in Fig. 12 and Fig. 13, respectively.

In the first modification, the metaclass Named is renamed
into UUID (alonside the attribute name that is renamed into id).
Such change let any instance-pattern using either Named or name
become invalid. However, the meta-template copes with such
renaming thanks to the naming annotation presents in line 5 in
Listing 7 (that is then used in line 7). Therefore, as long as the
UUID metaclass preserves the naming annotation given to Named

8 Lombardi et al.

the meta-template behaves as expected. The annotations can be
considered as denoting an equivalence class of concepts that are
ontologically similar.

Figure 12 Case 1: model differences between MM1 and MM2

The second case in Fig. 13 is another atomic modification,
i.e., the addition of the literal enumeration spi for denoting
a new high-level protocol. It is worth noting that the new lit-
eral does not introduce a new kind of knowledge and can be
associated with an existing instance-pattern using the right an-
notation. Indeed, the spi literal does not add any information
for the scope of Adapters generation, and can be treated as
i2c and one− wire. In this case, they are all annotated with
proto, which specifies that the Adapter uniformly refers to a
device vendor library that manages the specific protocol. Like
this, the instance-template is automatically updated to extend
its management to the spi coding.

Figure 13 Case 2: model differences between MM1 and MM2

Despite the renaming and the literal addition are simple
refactorings that should not pose any difficulty, their impact has
repercussions on the tooling chain and possibly throughout the
modeling ecosystem. It is also worth noting that such changes
likely do not completely respond to shifting requirements or do-
main issues that typically imply considerations on the modified
modeling notation’s semantics.

As already said, the metamodel MM2 introduces a set of new
concepts that enhances the modeling capabilities by covering
aspects that were not considered by the previous metamodel
version. The main modifications in the evolution from MM1 to
MM2 and the rationale motivating them is summarized in Table 1.
Interestingly, the motivations are strictly related to the need to
extending the formalization of the IoT domain and to overcome
the difficulties due to the lack of expressiveness in MM1.

For instance, the necessity of extending the expressiveness
by modeling multiple systems, letting them interact, and pro-
vide a specific kind of network adapters is significant. It implies
that modelers reported difficulties using modeling notation as
they could not fully express their needs. Thus, the modifica-
tions extended the notation intended semantics and provided the
modelers with additional constructs and connectives for express-
ing uncovered scenarios. In detail, the new NetworkAdapter

metaclass is a refinement of SoftwareAdapter that manipulates
internal data object formats to different string-based types, e.g.,

Figure 14 MM2, the evolved IoT metamodel

JSON and XML. Such an extension is backward compatible,
i.e., existing individual MM1 conforming models can be imported
into a single MM2 multi-system model.

Despite the semantical relevance of the evolution operated
over the modeling notation, the meta-template remains valid,
i.e., the instance-templates can then be seamlessly upgraded to
MM2 to produce a more expressive final artefact. Nevertheless,
when changes cannot be associated with existing meta-patterns,
i.e., the extensions are related to domain aspects left uncovered,
they are just ignored by the meta-template leading to informa-
tion loss.

In the rest of the section, we present the upgrade of the
Adapter-related instance-template from the same meta-template

Table 1 The main evolution steps from MM1 to MM2

Metamodel Change Resilience of Code Generators in Model-Driven Engineering 9

given for MM1 and, in turn, the generation of the final artefact.

4.2.1. Automated upgrade of the instance-template
The instance-template given in Listing 8 is not aware of the dif-
ferences between MM1 and MM2. However, it can be automatically
upgraded to MM2 by simply applying the meta-template to the MM2
metamodel. The new version of the Adapter instance-template
given in Listing 10 features code fragments and new EGL state-
ments that were not considered in the previous version.

1 [*-Adapter for SensorAdapter*]

2 [%for (c in SensorAdapter) {%]
3

4 /* Reading Adapter - [%::=c.id%] */

5 class [%::=c.id%]ReadingAdapter {
6 public:

7

8 [*-Fields*]

9 [%if (c.coding.literal ::=::= "raw") {%]
10 [*. . .*]

11 [%}%]
12 [%if (c.coding.literal ::=::= "byte") {%]
13 [*. . .*]

14 [%}%]
15 [%if (c.coding.literal ::=::= "one_wire") {%]
16 [*. . .*]

17 [%}%]
18 [%if (c.coding.literal ::=::= "i2c") {%]
19 [*. . .*]

20 [%}%]
21 [%if (c.coding.literal ::=::= "spi") {%]
22 [%for (port in c.port) {%]
23 SPI* [%::=port.id%];

24 [%for (pin in port.pins) {%]
25

26 const int [%::=port.id%]_[%::=pin.id%] ::= [%::=pin.number%];

27 [%}%]
28 [%}%]
29 [%}%]
30

31 [*. . .*]

32 };
33 [%}%]
34

35 [*-Adapter for DownlinkAdapter*]

36 [%for (c in DownlinkAdapter) {%]
37

38 /* Reading Adapter - [%::=c.id%] */

39 class [%::=c.id%]ReadingAdapter {
40 public:

41

42 [*-Fields*]

43 [%if (c.coding.literal ::=::= "json") {%]
44 [%for (port in c.port) {%]
45 JsonFormatter* [%::=port.id%];

46 [%for (pin in port.pins) {%]
47

48 const int [%::=port.id%]_[%::=pin.id%] ::= [%::=pin.number%];

49 [%}%]
50 [%}%]
51 [%}%]
52 [%if (c.coding.literal ::=::= "xml") {%]
53 [%for (port in c.port) {%]
54 XmlConnector* [%::=port.id%];

55 [%for (pin in port.pins) {%]
56

57 const int [%::=port.id%]_[%::=pin.id%] ::= [%::=pin.number%];

58 [%}%]
59 [%}%]
60 [%}%]
61

62 void run() {
63 [*-Reading*]

64 [%if (c.coding.literal ::=::= "json") {%]
65 [%for (port in c.port) {%]
66 [%::=port.id%]-〉read();
67 [%}%]
68 [%}%]
69 [%if (c.coding.literal ::=::= "xml") {%]
70 [%for (port in c.port) {%]
71 [%::=port.id%]-〉read();
72 [%}%]

73 [%}%]
74 }
75 };
76 [%}%]

Listing 10 Excerpt of the instance-template upgraded by the

meta-template

In particular, the instance-template from line 36 on generates
the C++ code for network adapters.

4.2.2. Upgraded artefacts

Figure 15 Example model conform to second metamodel
version

Figure 15 presents a MM2 instance describing a model con-
taining two extended IoT systems. It represents the extension
of the previous system model in a system-of-systems environ-
ment, where systems can interact through network links. In this
scenario, it is expected that the generator create adapters for all
systems by properly navigating the new model structure, by us-
ing the new naming feature and managing all by-wire protocols,
including spi.

1 #include "Wire.h"

2 #include "I2C.h"

3 #include "SPI.h"

4

5 #include "JsonFormatter.h"

6 #include "XmlConnector.h"

7

8 // Static code - Pin access Interface

9 void writeAnalog(int pin, int value);

10 Lombardi et al.

10 int readAnalog(int pin);

11 void writeDigital(int pin, bool value);

12 bool readDigital(int pin);

13 // ***

14

15 /* Reading Adapter - TempSens */

16 class TempSensReadingAdapter {
17 public:

18 Wire* DhtBus;

19 const int DhtBus_dht_data ::= 3;

20

21 void run() {
22 DhtBus-〉read();
23 }
24 };
25

26 /* Reading Adapter - KeypadInterface */

27 class KeypadInterfaceReadingAdapter {
28 public:

29 bool btn_1;

30 bool btn_2;

31 bool btn_3;

32 bool btn_4;

33

34 void run() {
35 btn_1 ::= readDigital(2);

36 btn_2 ::= readDigital(3);

37 btn_3 ::= readDigital(4);

38 btn_4 ::= readDigital(5);

39

40 }
41 };
42

43 /* Reading Adapter - CmdRcv */

44 class CmdRcvReadingAdapter {
45 public:

46 JsonFormatter* WifiSerial;

47

48 const int WifiSerial_uart_tx ::= 0;

49 const int WifiSerial_uart_rx ::= 1;

50

51 void run() {
52 WifiSerial-〉read();
53 }
54 };
55

56 /* Reading Adapter - TempRcv */

57 class TempRcvReadingAdapter {
58 public:

59 JsonFormatter* WifiSerial;

60

61 const int WifiSerial_uart_tx ::= 0;

62 const int WifiSerial_uart_rx ::= 1;

63

64 void run() {
65 WifiSerial-〉read();
66 }
67 };
68

69 /* Writing Adapter - RelayDriver */

70 class RelayDriverWritingAdapter {
71 public:

72 bool heater_cmd;

73

74 void run() {
75 writeDigital(2, heater_cmd);

76 }
77 };
78

79 /* Writing Adapter - DisplayInterface */

80 class DisplayInterfaceWritingAdapter {
81 public:

82 I2C* ExternalBus;

83

84 const int ExternalBus_i2c_sda ::= 6;

85 const int ExternalBus_i2c_scl ::= 7;

86

87 void run() {
88 ExternalBus-〉write();
89 }
90 };
91

92 /* Writing Adapter - TempSend */

93 class TempSendWritingAdapter {
94 public:

95 JsonFormatter* WifiSerial;

96

97 const int WifiSerial_uart_tx ::= 0;

98 const int WifiSerial_uart_rx ::= 1;

99

100 void run() {
101 WifiSerial-〉write();
102 }
103 };
104

105 /* Writing Adapter - CmdSend */

106 class CmdSendWritingAdapter {
107 public:

108 JsonFormatter* WifiSerial;

109

110 const int WifiSerial_uart_tx ::= 0;

111 const int WifiSerial_uart_rx ::= 1;

112

113 void run() {
114 WifiSerial-〉write();
115 }
116 };

Listing 11 Result of generation process

Listing 11 presents the outcome of applying the upgraded
instance-template to the model in Fig. 15. The listing con-
tains the C++ code related to one of the two modeled systems,
the other code fragment is analogous and has been omitted.
As expected, it contains all the needed hardware and software
adapters, and a proper C++ include directive to support JSON
and XML network protocols, and the spi by-wire protocol too.

4.3. Discussion
In this section, we have presented an application of hotello in
the IoT domain. The objective is to demonstrate that under cer-
tain conditions, the meta-templates are resilient to metamodel
changes. The conditions are mainly related to the degree of
disruptiveness of the modifications performed during the evo-
lutions. On the one side, the rationale behind the metamodel
changes depends on the insight coming from the domain, which
naturally characterizes the requested changes’ deepness. On the
other hand, the changes are characterized by their impact on the
meta-template’s validity, which also has a linguistic or syntactic
nature.

It is worth considering that for a better comprehension of the
nature of changes, a classification of the impact of metamodel
changes can be useful. Following the classification originally
introduced in (Gruschko et al. 2007) for the co-evolution of
models, metamodel changes can be classified according to the
way they affect the instance-template as follows:

– non-breaking and partial: changes that do not break the
template validity but that include additions of elements that
are ignored by the template in the generation process;

– breaking and resolvable: changes that breaks the tem-
plate but that can be resolved deterministically by an auto-
mated procedure, e.g., a metaclass or an attribute renaming;

– breaking and non-resolvable: changes that break the tem-
plate validity whose structure and navigation expressions
cannot be automatically adapted.

Even though the first category of changes is non-breaking,
they reduce the metamodel coverage offered by the instance-
templates with a consequent loss of information. Re-
establishing the full metamodel coverage typically requires

Metamodel Change Resilience of Code Generators in Model-Driven Engineering 11

extending the instance-template with additional rules and navi-
gational expressions, a task that might present limited scalability
and is prone to errors. The case study presented above demon-
strated that this class of changes can be quickly addressed with
hotello. Also, the breaking and resolvable changes can be eas-
ily resolved, but this is true also for other approaches, e.g.,
(Di Rocco et al. 2014). Finally, the breaking and non-resolvable
changes are the most challenging as they might require addi-
tional knowledge to be provided by the modeler.

In the illustrated case study, the code related to the inter-
action between the two systems and modeled employing the
NetworkLink concept cannot be generated by the meta-template.
Such a task would require knowledge not available to the meta-
template and cannot be predicted in advance without additional
means such as a domain ontology. In other words, this is a
case of breaking and partial change that borders (if not over-
laps) the non-resolvable case. Indeed, its solution requires the
analysis and understanding the new domain insight and the cor-
responding requirement elicitation. Nevertheless, the degree of
automation introduced by hotello in the upgrade and adaptation
of the instance-templates is relevant and represents the central
contribution of the hotello approach.

5. Related work
As already discussed, modifying a metamodel in response to
shifting business requirements is commonplace in model-driven
engineering. Existing approaches typically refer to the problem
of restoring conforming or consistency relation between a chang-
ing metamodel and different categories of artefacts, including
models, model transformations, and model-to-text transforma-
tions. As to existing template-based languages, such as Acceleo
and EGL, they are single-order mechanism for code/text gener-
ation. Hotello is implemented on top of EGL and the instance
templates are written in EGL. In this respect, it is difficult to
provide a direct comparison between Hotello and them.

Metamodel/model co-evolution. The co-evolution between
metamodels and models has been largely investigated over the
last decade and more, as witnessed by the survey in (Hebig
et al. 2016). The approaches are distinguished in state-based
and operation-based (Koegel et al. 2010). The former ones
compare two (meta)models regardless of how they are obtained
by using, e.g., similarity-based differencing. In (Cicchetti et
al. 2008), migration procedures are generated, via higher-order
transformations, directly from the metamodel differences; a
similar approach is given in (Garcés et al. 2009), where also
the equivalences and differences between any pair of metamod-
els are computed. Other approaches assume that differences
are given, and only focus on the generation of the adaptation
procedures (Wachsmuth 2007; Herrmannsdoerfer et al. 2008;
Vermolen & Visser 2008). In contrast with state-based ap-
proaches that tend to be more declarative, operation-based ones
can be considered programmatic since they rely on specialized
languages, like Flock (Rose et al. 2010) or EMF Migrate (Iovino
2012), or refactoring catalogs (Herrmannsdoerfer 2010). It is
worth noting that all available approaches, but EMF Migrate,
are specialized on the co-evolution of models only and cannot

be applied to the adaptation of other kind of artefacts.

Metamodel/model transformation co-evolution. Not too
many approaches are available for the co-evolution of arte-
facts other than models. One of the main obstacles is related
to the strong coupling between the structural definition of a
(source) metamodel and the rule-based decomposition of associ-
ated transformations (Kurtev et al. 2006). In (Levendovszky et
al. 2009), higher-order transformations are used to adapt trans-
formations developed in the GME/GReAT toolset12. Another
approach is proposed in (García et al. 2012), where atomic meta-
model changes are detected and, for each of them, an associated
co-evolution is automatically derived. Both approaches auto-
mate only parts of the adaptation, thus leaving the missing parts
to the modeler’s responsibility.

Metamodel/model-to-text transformation co-evolution.
Again, not too many approaches are available. In (Di Rocco et
al. 2014), an approach to the coupled evolution of metamodels
and template-based transformations is proposed. The solution is
based on the Acceleo template-based language and is proposed
to adapt corrupted templates by means of an ATL (Jouault et al.
2006) transformation that takes the metamodel changes and a
model-based representation of the corrupted template, and it
returns the adapted transformation.

In addition to the existing approaches, an analysis (Khelladi
et al. 2017) proved how the existing approaches for adapting
model-to-model and model-to-text transformations could offer
only limited support. The approach that we have presented in
this paper is entirely different from the existing ones, as it does
not rely on the possibility of adapting the template-based gen-
erators. Instead, it proposes a new notation that, at the limited
price of some additional annotation, makes the artefacts resilient
to changes that so far have been considered non-resolvable, as
long as the target notation remains unchanged.

6. Conclusions and future work
This paper presented a novel approach based on higher-order
techniques that leverage the abstraction in template-based lan-
guages. A notion of resilience has been introduced that can
make templates persistent to metamodel changes in evolution-
ary processes. In practice, the meta-template approach defined
by hotello exploits the fact that the metamodels involved in the
evolution are ontologically related. The approach has been val-
idated on a case study in the IoT domain, thus showing how
ranges of modifications can be addressed with little or no ef-
fort. Future work regards the investigation of meta-template
foundational aspects, and how to increase the expressiveness
alongside the needed automation. In particular, we are inter-
ested in defining a metamodel-typing notion characterized by
meta- and instance-patterns in the meta-templates, because it
would increase the overall degree of support and automation.
Moreover, we are interested in adopting an annotation mech-
anism based on domain ontologies, rather than a set of labels,
to exploit the structural knowledge encoded in ontologies for
validation and assurance purposes. To this end, we will consider

12 https://www.isis.vanderbilt.edu/Projects/gme/

12 Lombardi et al.

https://www.isis.vanderbilt.edu/Projects/gme/

existing metamodel matching algorithms, such as the work in
(Addazi et al. 2016), to detect traceability links identifying the
metaclasses that in the current approach are denoted by the
same labels. In this respect, it may be interesting to investigate
the adoption of metamodel clustering techniques like those in
(Basciani et al. 2016), and (Babur et al. 2016), for defining a no-
tion of proximity that characterizes the class of metamodels the
same meta-template can be applied to. Future work comprises
also empirical experiments for validating the approach against
existing template-based languages and co-evolution techniques
for code-generators.

Acknowledgments
The authors are supported by ERMES (Envisioning Railways
systems through Model-driven Engineering approacheS), a
project funded by Rete Ferroviaria Italiana (RFI).

References
Addazi, L., Cicchetti, A., Di Rocco, J., Di Ruscio, D., Iovino, L.,

& Pierantonio, A. (2016). Semantic-based model matching
with emfcompare. In Me@ models (pp. 40–49).

Babur, Ö., Cleophas, L., & van den Brand, M. (2016). Hier-
archical clustering of metamodels for comparative analysis
and visualization. In European conference on modelling
foundations and applications (pp. 3–18).

Basciani, F., Di Rocco, J., Di Ruscio, D., Iovino, L., & Pieran-
tonio, A. (2016). Automated clustering of metamodel reposi-
tories. In International conference on advanced information
systems engineering (pp. 342–358).

Cicchetti, A., Di Ruscio, D., Eramo, R., & Pierantonio, A.
(2008). Automating co-evolution in model-driven engineer-
ing. In 2008 12th international ieee enterprise distributed
object computing conference (pp. 222–231).

Di Rocco, J., Di Ruscio, D., Iovino, L., & Pierantonio, A. (2014).
Dealing with the coupled evolution of metamodels and model-
to-text transformations. In Me@ models (pp. 22–31).

Di Rocco, J., Iovino, L., & Pierantonio, A. (2012). Bridging
state-based differencing and co-evolution. In Proceedings of
the 6th international workshop on models and evolution (pp.
15–20).

Di Ruscio, D., Iovino, L., & Pierantonio, A. (2012). Evolu-
tionary togetherness: how to manage coupled evolution in
metamodeling ecosystems. In International conference on
graph transformation (pp. 20–37).

Di Ruscio, D., Iovino, L., & Pierantonio, A. (2013). Managing
the coupled evolution of metamodels and textual concrete
syntax specifications. In 2013 39th euromicro conference on
software engineering and advanced applications (pp. 114–
121).

Di Ruscio, D., Lämmel, R., & Pierantonio, A. (2010). Auto-
mated co-evolution of gmf editor models. In International
conference on software language engineering (pp. 143–162).

Garcés, K., Jouault, F., Cointe, P., & Bézivin, J. (2009).
Managing model adaptation by precise detection of meta-
model changes. In European conference on model driven
architecture-foundations and applications (pp. 34–49).

García, J., Diaz, O., & Azanza, M. (2012). Model transfor-
mation co-evolution: A semi-automatic approach. In Inter-
national conference on software language engineering (pp.
144–163).

Gruschko, B., Kolovos, D., & Paige, R. (2007). Towards syn-
chronizing models with evolving metamodels. In Proceed-
ings of the international workshop on model-driven software
evolution (p. 3).

Hebig, R., Khelladi, D. E., & Bendraou, R. (2016). Approaches
to co-evolution of metamodels and models: A survey. IEEE
Transactions on Software Engineering, 43(5), 396–414.

Herrmannsdoerfer, M. (2010). Cope–a workbench for the cou-
pled evolution of metamodels and models. In International
conference on software language engineering (pp. 286–295).

Herrmannsdoerfer, M., Benz, S., & Juergens, E. (2008). Au-
tomatability of coupled evolution of metamodels and models
in practice. In International conference on model driven
engineering languages and systems (pp. 645–659).

Iovino, L. (2012). Coupled coevolution in metamodeling ecosys-
tems (Unpublished doctoral dissertation). Università degli
Studi dell’Aquila.

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., & Valduriez,
P. (2006). Atl: a qvt-like transformation language. In
Companion to the 21st acm sigplan symposium on object-
oriented programming systems, languages, and applications
(pp. 719–720).

Khelladi, D. E., Rodriguez, H. H., Kretschmer, R., & Egyed,
A. (2017). An exploratory experiment on metamodel-
transformation co-evolution. In 2017 24th asia-pacific soft-
ware engineering conference (apsec) (pp. 576–581).

Koegel, M., Herrmannsdoerfer, M., Li, Y., Helming, J., & David,
J. (2010). Comparing state-and operation-based change track-
ing on models. In 2010 14th ieee international enterprise
distributed object computing conference (pp. 163–172).

Kolovos, D. S., Di Ruscio, D., Pierantonio, A., & Paige, R. F.
(2009). Different models for model matching: An analysis
of approaches to support model differencing. In 2009 icse
workshop on comparison and versioning of software models
(pp. 1–6).

Kurtev, I., Van Den Berg, K., & Jouault, F. (2006). Evaluation
of rule-based modularization in model transformation lan-
guages illustrated with atl. In Proceedings of the 2006 acm
symposium on applied computing (pp. 1202–1209).

Kusel, A., Etzlstorfer, J., Kapsammer, E., Retschitzegger, W.,
Schwinger, W., & Schönböck, J. (2015). Consistent co-
evolution of models and transformations. In 2015 acm/ieee
18th international conference on model driven engineering
languages and systems (models) (pp. 116–125).

Lara, J. D., Guerra, E., Ruscio, D. D., Rocco, J. D., Cuadrado,
J. S. n., Iovino, L., & Pierantonio, A. (2019). Automated
reuse of model transformations through typing requirements
models. ACM Transactions on Software Engineering and
Methodology (TOSEM), 28(4), 1–62.

Lehman, M. M., & Belady, L. A. (1985). Program evolution:
processes of software change. Academic Press Professional,
Inc.

Levendovszky, T., Balasubramanian, D., Narayanan, A., & Kar-

Metamodel Change Resilience of Code Generators in Model-Driven Engineering 13

sai, G. (2009). A novel approach to semi-automated evolution
of dsml model transformation. In International conference
on software language engineering (pp. 23–41).

Ohst, D., Welle, M., & Kelter, U. (2003). Differences between
versions of uml diagrams. In Proceedings of the 9th european
software engineering conference held jointly with 11th acm
sigsoft international symposium on foundations of software
engineering (pp. 227–236).

Rose, L. M., Kolovos, D. S., Paige, R. F., & Polack, F. A.
(2010). Model migration with epsilon flock. In International
conference on theory and practice of model transformations
(pp. 184–198).

Rutle, A., Iovino, L., König, H., & Diskin, Z. (2020). A query-
retyping approach to model transformation co-evolution. Soft-
ware and Systems Modeling, 19, 1107–1138.

Schmidt, D. C. (2006). Model-driven engineering. Computer-
IEEE Computer Society-, 39(2), 25.

Steel, J., & Jézéquel, J.-M. (2007). On model typing. Software
& Systems Modeling, 6(4), 401–413.

Van Der Straeten, R., Mens, T., & Van Baelen, S. (2008).
Challenges in model-driven software engineering. In Inter-
national conference on model driven engineering languages
and systems (pp. 35–47).

Vermolen, S., & Visser, E. (2008). Heterogeneous coupled
evolution of software languages. In International conference
on model driven engineering languages and systems (pp. 630–
644).

Visser, E., Warmer, J., Van Deursen, A., & Van Deursen, A.
(2007). Model-driven software evolution: A research agenda.
In Proc. Int. Ws on Model-Driven Software Evolution held
with the ECSMR, 7, 33.

Wachsmuth, G. (2007). Metamodel adaptation and model
co-adaptation. In European conference on object-oriented
programming (pp. 600–624).

Wimmer, M., Kusel, A., Schönböck, J., Retschitzegger, W.,
Schwinger, W., & Kappel, G. (2010). On using inplace
transformations for model co-evolution. In Proc. 2nd int.
workshop model transformation with atl (Vol. 711, pp. 65–
78).

About the authors
Vittorio Cortellessa Vittorio Cortellessa is Professor at the Uni-
versità degli Studi dell’Aquila (Italy). His research interests are
in software performance engineering, software reliability engi-
neering, non-functional software properties, and model-driven
engineering. He has published more than 120 articles in inter-
national journals and conferences, he has been and currently
is part of the organizing committees of several international
conferences, including ICSE, ASE, ICSA and ICPE, and he is
in the editorial board of Empirical Software Engineering. You
can contact the author at vittorio.cortellessa@univaq.it or visit
http://people.disim.univaq.it/cortelle/.

Alfonso Pierantonio is professor at the Università degli Studi
dell’Aquila (Italy). His interests are in software engineering
and, in particular, model-driven and language engineering with
special attention to co-evolution techniques, consistency man-
agement, and bidirectionality. He has published more than 140
articles in scientific journals and conferences and has been on
the organizing committee of several international conferences,
including MoDELS and STAF. Alfonso is Editor-in-Chief of
the Journal of Object Technology and in the editorial and ad-
visory board of Software and System Modeling, and Science
of Computer Programming, respectively. He is co-principal
investigator of several research and industrial projects. You
can contact the author at alfonso.pierantonio@univaq.it or visit
http://pieranton.io.

Tiziano Lombardi is PhD student at the Università degli
Studi dell’Aquila (Italy) and registered IT Engineer.
His research fields include Model-Driven Engineering
and code generation. You can contact the author at
tiziano.lombardi@graduate.univaq.it.

14 Lombardi et al.

mailto:vittorio.cortellessa@univaq.it?subject=Your paper "Co-evolution of Metamodel and Generators: Higher-order Templating to the Rescue"
http://people.disim.univaq.it/cortelle/
mailto:alfonso.pierantonio@univaq.it?subject=Your paper "Co-evolution of Metamodel and Generators: Higher-order Templating to the Rescue"
http://pieranton.io
mailto:tiziano.lombardi@graduate.univaq.it?subject=Your paper "Co-evolution of Metamodel and Generators: Higher-order Templating to the Rescue"

