
Journal of Object Technology | RESEARCH ARTICLE

Adapting TDL to Provide Testing Support for
Executable DSLs

Faezeh Khorram∗, Erwan Bousse†, Jean-Marie Mottu†∗, and Gerson Sunyé†

∗IMT Atlantique, LS2N, Nantes, France
†Université de Nantes, LS2N, Nantes, France

ABSTRACT Testing is one of the most prevalent and successful verification and validation (V&V) techniques used in the field of
software engineering. While a large number of testing frameworks exist for general-purpose programming languages, providing
testing facilities for any given executable Domain Specific Language (xDSL) remains a costly and challenging task. In this
context, a standard such as the Test Description Language (TDL) appears as a suitable foundation for the definition of a generic
testing approach for xDSLs. Unfortunately, TDL does not provide the domain-specific concepts required to write test cases for
a given xDSL and does not include any model execution facilities. Our contribution addresses these limitations and thereby
provides a fully generic testing approach for xDSLs based on TDL. Required TDL domain-specific concepts are automatically
inferred from the xDSL definition through a model transformation into TDL. Model execution facilities are provided through the
definition of a refined operational semantics for TDL. The application of our approach on 5 different xDSLs shows its generality
and that it can successfully be used for testing executable models.

KEYWORDS Executable Domain-Specific Language, Executable models, Testing, Test Description Language

1. Introduction
A large portion of DSLs are proposed for describing the dy-
namic aspects of systems as behavioral models (e. g., (Object
Management Group 2013b; Bendraou et al. 2007; OASIS 2007;
Fischer et al. 2000)). Each time a new DSL is engineered, a com-
plete modeling environment has to be provided for its users (i. e.,
domain experts), so they can use the DSL in practice. When the
environment offers dynamic verification and validation (V&V)
techniques, the domain expert can also analyze the behavioral
models as early as possible to ensure the correctness of the sys-
tem’s behavior. As dynamic V&V techniques rely on the ability
to execute models, their application is reserved to DSLs with
execution semantics, such as DSLs with translational semantics
(i. e., compilation) or operational semantics (i. e., interpretation).
In this paper, we focus on DSLs with operational semantics,

JOT reference format:
Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, and Gerson Sunyé.
Adapting TDL to Provide Testing Support for Executable DSLs. Journal of
Object Technology. Vol. 20, No. 3, 2021. Licensed under Attribution -
NonCommercial - No Derivatives 4.0 International (CC BY-NC-ND 4.0)
http://dx.doi.org/10.5381/jot.2021.20.3.a6

referred to as executable DSLs (xDSLs).

In the field of software engineering, probably the most preva-
lent dynamic V&V technique is testing, which involves exe-
cuting systems and observing whether they act as expected.
Accordingly, testing frameworks have been built for both a wide
range of General-Purpose Languages (GPLs) (e. g. JUnit for
Java) and specific xDSLs (Mijatov et al. 2015; Kos et al. 2016;
Lübke & van Lessen 2017; Iqbal et al. 2019a). A testing frame-
work must at least include both a way to write test cases, and
a way to execute such test cases in unison with the programs
or models under test. Unfortunately, providing such complex
testing facilities for a given new xDSL remains an expensive
and error-prone task.

Therefore, in a context where the engineering of new xDSLs
is recurrent, a desirable solution would be an approach applica-
ble to a wide range of xDSLs, i. e. a generic testing approach
for xDSLs. This raises at least three interconnected challenges.
First, to allow the domain expert to write test cases, a testing
language must be defined, generated, or identified. In partic-
ular, this testing language must somehow allow the domain
expert to use domain concepts to define how a model under test

An AITO publication

http://dx.doi.org/10.5381/jot.2021.20.3.a6


should be executed, and what results should be expected from
the execution. Second, the execution semantics of this testing
language must somehow be connected to the execution seman-
tics of the considered xDSL, for the testing language to demand
the execution of models as needed. Third, this testing language
must provide facilities to analyze the runtime state of the tested
model, and to compare this state with the expected one.

A recent effort of the European Telecommunications Stan-
dards Institute (ETSI) led to the creation of the Test Description
Language (TDL), a standardized language for the specification
of test descriptions (Makedonski et al. 2019). Since TDL is not
specific to any specific GPL or xDSL, it represents an interest-
ing candidate for generically writing test cases for executable
models. In addition, TDL was designed as a simple language
for testers lacking programming knowledge, making it a good
fit for domain experts working on models. Unfortunately, TDL
fails to fully address the three aforementioned challenges: (1)
because of its genericity, TDL requires the domain expert to
first define the required domain-specific concepts, before being
able to write test cases; (2) the TDL standard does not provide
any clear way to make TDL test cases able to execute models
conforming to a given xDSL; (3) the TDL standard relies on a
simple representation of the expected observable behavior of
the system under test, and does not provide any efficient way to
analyze an arbitrarily complex runtime state of a tested model.

This paper addresses these limitations and thereby proposes
a novel generic testing approach for xDSLs. This approach uses
TDL as a testing language and relies on three main contribu-
tions. First, we provide a model transformation to automatically
generate a TDL library—i. e. all the TDL boilerplate code that
the domain expert would otherwise write by hand—from the
definition of an xDSL. Such generated TDL library can be used
by the domain expert to write test cases for models conform-
ing to the considered xDSL. This transformation relies on a
mapping between the concepts of the Ecore metamodeling lan-
guage (Steinberg et al. 2008) and the concepts of TDL. Second,
we provide an operational semantics for TDL, adapted to the
testing of executable models. To be compatible with a wide
range of diverse xDSLs, this operational semantics for TDL is
not coupled to any specific xDSL, nor to any specific metapro-
gramming approach used to define the considered xDSL. Third,
the approach provides two different methods to interrogate the
state of the runtime model: one relying on model comparison
and the second relying on an OCL interpreter. This enables the
definition of oracles for executable models in TDL test cases.

We implemented the presented approach for the GEMOC
Studio, a language and modeling workbench for xDSLs (Bousse
et al. 2016). We conducted an evaluation to assess the genericity
aspect of our proposed approach considering the diversity of xD-
SLs. More precisely, we aimed to answer the following research
questions: RQ#1 Does the approach provide testing facilities
for xDSLs in which their abstract syntax is designed for different
domains? RQ#2 Does the approach provide testing facilities
for xDSLs in which their operational semantics is implemented
using different metaprogramming approaches? To this end, we
applied the approach on five xDSLs covering various domains
and implemented with different metaprogramming approaches.

The evaluation results demonstrate that the genericity aspect is
successfully realized.

The rest of the paper is organized as follows: Section 2
provides the background and presents a running example for
the paper. Section 3 describes an overview of our proposed
approach, and the details for its main components are given in
Sections 4 and 5. The tool support for the approach is described
in Section 6. In Section 7, the method used for the evaluation
along with its result is illustrated. The previous related work
is presented in Section 8 and the paper concludes in 9 with a
discussion on future work.

2. Background and Motivation

In this section, we first present the executable DSLs considered
in the scope of the approach and give an overview of the Test
Description Language (TDL). Then, we further motivate the
proposed approach through a running example.

2.1. Executable DSLs (xDSLs)

In the present paper, we focus on executable DSLs (xDSLs),
which are composed of two main parts: an abstract syntax1

and an operational semantics. The abstract syntax defines the
domain concepts while the operational semantics (i. e. the inter-
preter) specifies how the runtime state of a conforming model
under execution varies over time. More specifically, we consider
the abstract syntax of an xDSL to be defined as a metamodel
using the Ecore metamodeling language (Steinberg et al. 2008).
A metamodel is commonly made of a set of metaclasses, each
containing a set of features. A feature can be either an attribute
typed by a primitive type or a reference to another metaclass.

The operational semantics of an xDSL is composed of two
parts: the definition of what are the possible runtime states of a
model under execution and the set of execution rules that define
how such a runtime state changes over time. For a given xDSL,
we consider that the definition of the possible runtime states
is a set of dynamic features directly added to the metamodel.
During the execution of a model, only the parts defined by these
dynamic features may be altered by the execution rules. To
distinguish the dynamic features from other ones, we assume
they each have an annotation labeled ‘dynamic’.

Figure 1 illustrates an example of an executable Finite State
Machine DSL (later referred to as xFSM). An xFSM model is
an automaton that consumes a string and produces a new string
based on the transitions that were fired to parse the consumed
string. The abstract syntax of xFSM is defined as a metamodel
(part a in Figure 1). The root element of an xFSM model is
a StateMachine composed of a set of State and Transition
elements. The initialState of the StateMachine specifies the
starting state. Each Transition object connects two states called
source and target. A transition may also have an input string
that tells which characters are consumed when this transition is
fired, and an output string that tells what characters are produced
when this transition is fired. The elements written in bold are

1 The proposed approach is agnostic of the concrete syntax of an xDSL, therefore
this part is left out of the scope of the paper.

2 Khorram et al.




