
Journal of Object Technology | RESEARCH ARTICLE

Clustering Natural Language Test Case Instructions as
Input for Deriving Automotive Testing DSLs

Katharina Juhnke∗, Alexander Nikic∗∗, and Matthias Tichy∗
∗Institute of Software Engineering and Programming Languages, Ulm University, Germany

∗∗Mercedes-Benz AG, Germany

ABSTRACT System testing is an important quality assurance technique in the area of automotive software development where
predominantly natural language test cases are used for testing prototype vehicles. To ensure that these test cases are able to
identify faults, the test cases themselves must also be of high quality. Testing DSLs can improve the quality of the test cases.
To support the smooth introduction of Testing DSLs into the industry, the reuse of system-specific terminology and syntax
of existing natural language test case specifications is recommended. Consequently, it is necessary to identify and cluster
highly similar domain-specific instructions used in the action and expected result descriptions from those specifications. This
is a key activity in automating the development of Testing DSLs to enable the application of grammar inference approaches.
However, with an average of 400 – 500 test cases per specification, this is a time-consuming task when executed manually.
We present a clustering approach based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm to automatically cluster similar instructions. Due to the special structure of the instructions used in our industrial test
case specifications, we further developed a specific distance function required by the DBSCAN algorithm. Additionally, we
determined appropriate values for the DBSCAN’s parameters MinPts and Eps. Our evaluation on three industrial test case
specifications shows that our approach is suitable for automatically clustering instructions from those test case specifications
due to an almost perfect agreement (κ > 0.81) between clusters, created manually by experts, and the automatically created
clusters. Furthermore, we show how to use the Multiple Sequence Alignment (MSA) approach to automatically derive grammar
suggestions from the clustered instructions.

KEYWORDS Automotive, Test case templates, DSL, DBSCAN, Distance function, MSA.

1. Introduction
Natural language test case specifications are commonly used
in the automotive domain to specify test cases for a specific
system, especially for system tests that are manually executed
by human testers in a prototype vehicle (Hauptmann et al. 2013;
Lachmann & Schaefer 2014; Juhnke et al. 2018). The core of
such test cases are the descriptions of actions to be performed
and the corresponding expected results to be checked, each con-
sisting of a sequence of instructions (e.g., “close passenger door”

JOT reference format:
Katharina Juhnke, Alexander Nikic, and Matthias Tichy. Clustering Natural
Language Test Case Instructions as Input for Deriving Automotive Testing
DSLs. Journal of Object Technology. Vol. 20, No. 3, 2021. Licensed under
Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2021.20.3.a5

or “press unlock key button”). Similar to the problems known
from natural language requirements, the documentation of test
cases in natural language often leads to incomprehensible, am-
biguous and unmaintainable test cases (cf. Juhnke et al. 2018)
identified in particular problems related to the natural language
description of automotive test cases, such as translation and
spelling errors, inconsistent phrasing, inconsistent use of vo-
cabulary, different description styles for similar test procedures
or excessive use of abbreviations. Consequently, test designers
and testers demanded mechanisms for a more consistent docu-
mentation of test cases of their system to avoid ambiguities and
misunderstandings during test execution. To meet this require-
ment, Juhnke & Tichy (2019) propose the use of system-specific
Automotive Testing DSLs for test case documentation and a

An AITO publication

http://dx.doi.org/10.5381/jot.2021.20.3.a5

domain analysis method for developing such Domain Specific
Languages (DSLs) for different systems. For instance, over 100
different systems are installed in premium cars today.

In most cases, manually quality-checked test case specifi-
cations already exist for a system from another model series
or variant, so that they can be used as starting point for the
definition of system-specific Testing DSLs. First, the different
instructions used in action and expected result descriptions of
all test cases (input) are clustered to identify similar instructions.
Based on this, so-called conceptual templates (output) are de-
rived which represent common parts as well as alternatives and
optional parts of all instructions contained in a cluster. These
conceptual templates are suitable to be used by domain engi-
neers for the definition of Testing DSLs and to cover 70%–95%
of a test case specification (see Juhnke & Tichy 2019).

Our experience in a testing department at Mercedes-Benz has
shown that it takes a domain engineer approx. two days to manu-
ally derive conceptual templates for actions and expected results
from a smaller test case specification with about 250 test steps.
Very large specifications can contain up to 16, 000 test cases,
which can be very time-consuming. Hence, it is reasonable and
necessary to automate the activities regarding the aggregation
of instructions and derivation of conceptual templates.

The contribution of this paper is an approach to automate
those activities based on existing manually quality-checked test
specifications. A special focus of our work lies on the clustering
of the instructions used in action and expected result descrip-
tions, which forms the basis for the derivation of conceptual
templates. Any existing quality issues like the aforementioned
translation errors or spelling errors in the input test case speci-
fications would still be in the conceptual templates. However,
they are now more easily to spot in the templates by domain
experts. The following two research questions guide our work:

RQ1: How can the similarity between instructions be deter-
mined automatically so that similar instructions can be assigned
to the same cluster?

RQ2: How good is the result of the automated clustering of
instructions compared to groups created manually by domain
experts?

We compare different similarity measures for determining
similarity between instructions, including Levenshtein (Leven-
shtein 1966), Jaro-Winkler (Winkler 1990), Trigram similarity
(based on n-grams (Shannon 1948)), and a measure for deter-
mining similarities from plagiarism detection called Sherlock
similarity (Joy & Luck 1999; White & Joy 2004). In addition,
we present our own developed similarity measure called Run
Length and its results. For clustering instructions, we use the
DBSCAN algorithm (Ester et al. 1996) and determine a suitable
Eps parameter by a heuristic approach based on the determina-
tion of the k-th nearest neighbor. We compare the results of the
automated clustering with the results of manual grouping for
three real automotive test case specifications. To determine the
agreement between the automated and manual results, we cal-
culated Cohen’s Kappa (κ) (Cohen 1960). We obtain κ > 0.81
for all three test case specifications, which corresponds to an
almost perfect agreement. In addition, we show how a Multiple
Sequence Alignment (MSA) approach can be used to derive

conceptual templates from our clustering results, which then
have to be manually refined into a system-specific Testing DSL.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses related work regarding grammatical inference,
clustering, and appropriate distance functions for texts. Sec-
tion 3 presents our developed automated approach for clustering
instructions used in action and expected result descriptions. Sec-
tion 4 shows the evaluation results of our approach. Finally,
Section 5 provides the conclusion and future work.

2. Related work
In this section we discuss, with regard to our action and ex-
pected result descriptions as input, approaches to grammatical
inference, common methods for clustering data, and types of
similarity measures that are needed to calculate the distance.

2.1. Grammatical inference
Grammatical Inference (GI) is a subarea of machine learning
and is about the process of learning a grammar based on positive
and/or negative samples. Applications in software engineering
are the inference of general purpose programming languages
(GPLs), DSLs, graph grammars, and visual languages (Steven-
son & Cordy 2013).

The inference of DSLs is intended to support domain experts
who may not be familiar with language design or implementa-
tion, which is also our intention. For this purpose, the syntactic
structure of the underlying grammar is generated based on ex-
ample DSL programms (Bryant et al. 2010) or sample sentences
of the language. This means that the input are formal languages
rather than natural languages, which does not apply to our natu-
ral language test case specifications. Our action and expected
result descriptions are available as unstructured data, i.e., they
are not based on an already existing DSL or example DSL pro-
gram, they contain ambiguities due to their natural language
elements, and they are not classified as positive or negative
samples in any way by domain experts.

However, most GI approaches generate grammars from posi-
tive samples, such as GenInc (Javed et al. 2008), PACS (M. Li
& Vitanyi 2008), MAGICe (Mernik et al. 2009), or the MDL
approach from (Sapkota et al. 2012). For example, the GenInc
learning algorithm requires sorted positive samples to incremen-
tally derive a grammar. The difference between two consecutive
samples should be small, which limits the use of GenInc for
real problems. Furthermore, a different order of the samples can
lead to a wrong grammar (Sapkota et al. 2012). The example
shows that in order to apply these methods to our actions and
expected result descriptions, positive samples from a test case
specification would first have to be identified by a domain expert.
Otherwise, applying GI approaches to a non-preprocessed test
case specification, which contains constructs that are faulty and
would not be used in the future, would lead to useless results.

Moreover, our industry experience reveals that domain ex-
perts have trouble defining good examples from scratch and it
works better if we show them typically used instructions from
previous test case specifications. But as already mentioned, it
takes time to extract these instructions and aggregate similar

2 Juhnke et al.

variants. By clustering similar instructions, we obtain a set of
instructions that have similar linguistic patterns (e.g., terminol-
ogy and syntax) and are therefore better suited as input for a GI
approach than the set of all instructions (including unlabeled
faulty ones) of a test case specification. Additionally, the clus-
tered instructions can be evaluated by domain experts, so that
we get positive (and negative) sample sentences as well as the
necessary labeling of our data, to apply GI approaches based on
positive and/or negative samples, much faster. Therefore, our
approach is based on an automated clustering of the contained
instructions, which goes beyond the recognition of repetitions as
for example used by the Sequiture algorithm (Nevill-Manning &
Witten 1997) to directly derive grammars. For this purpose, we
first have to adequately recognize similarities between instruc-
tions and cluster them. Subsequently, a meaningful derivation
of conceptual templates by using GI algorithms is possible. In
the following two sections we will therefore consider clustering
approaches and distance functions.

2.2. Clustering
To the best of our knowledge, there is no work that clusters
natural language test case descriptions, especially not from the
automotive domain. Therefore, we consider general cluster
approaches in the following.

Clustering is an unsupervised learning technique that groups
data elements into clusters. Data elements in the same cluster are
similar while data elements between clusters differ significantly.
There are different clustering approaches, which can be divided
into the following (Xu & Wunsch 2005):

– Partitioning-based clustering: divides the data elements
into k partitions, where one partition corresponds to a clus-
ter. The most common representative is the k-Means algo-
rithm (MacQueen 1967).

– Hierarchical-based clustering: structures data in hier-
archies based on a neighborhood matrix. Well-known
representatives are agglomerative and divisive methods
(Maimon & Rokach 2005). Agglomerative methods op-
erate according to the bottom-up principle, in which each
data element initially represents a unique cluster and is
then merged with the nearest data element to form a new
cluster. This step repeats until all data elements form a
cluster. Divisive methods act in exactly the opposite way.

– Fuzzy-based clustering: also called soft clustering, where
the data elements can belong to several clusters. Fuzzy-c-
Means (Bezdek 1981) is a widely known example.

– Density-based clustering: groups data elements to clus-
ters together according to a certain density and a minimum
number of members. One of the most popular algorithms
is the DBSCAN algorithm from Ester et al. (1996).

Each of these clustering approaches has its strengths and
weaknesses. Partitioning-based approaches expect a given k
for the number of clusters to be determined, which is difficult
to predict for unknown data. Hierarchical-based clustering of-
fers different linkage methods, each leading to different results.
Additionally, the determination of the clusters has to be done
manually using dendrograms. When using fuzzy-based cluster-
ing approaches, it happens that a data element is assigned to

several clusters. This requires also a manual intervention at the
end in order to clearly assign the respective data elements to
a cluster. Moreover, none of these three approaches considers
outliers in the data. Density-based clustering algorithms, like
the DBSCAN algorithm, can deal with outliers. If an instruction
cannot be assigned to a cluster, it remains as a non-clustered in-
struction. This may apply in particular to individual instructions
which are, for example, unique and have no similarities with
other instructions. In addition, usually it is not known how many
clusters can be formed from instructions of a test case specifi-
cation, which is why the DBSCAN algorithm is suitable in this
case. Furthermore, the DBSCAN algorithm does not limit the
cluster size (number of instructions within a cluster) and an in-
struction can only be assigned to exactly one cluster. Therefore,
we use the DBSCAN algorithm for clustering instructions as a
representative for density-based clustering approaches.

2.3. Distance functions
In order to assign instructions to clusters using the DBSCAN
algorithm, a distance function is required which indicates how
different the instructions are. The value 0 usually represents a
perfect match. To calculate the distance, text similarity measures
are used, which can be distinguished as follows:

– Edit-distance-based: e.g., Levenshtein (Levenshtein
1966) and Jaro-Winkler (Winkler 1990) similarity calculate
the minimum number of operations needed for transform-
ing a string s1 into string s2. The smaller the value, i.e.,
the less editing operations are necessary, the more similar
the strings s1 and s2 are.

– Token-based: e.g., Jaccard Index (Jaccard 1912) of two
sets is calculated by the number of common elements di-
vided by the size of the union set. Two strings can be com-
pared based on the contained tokens (e.g., single words or
n-grams (Shannon 1948)).

– Sequence-based: e.g., Ratcliff-Obershelp (Ratcliff & Met-
zener 1988) searches between two strings for the longest
common substring. Parts that do not match are trimmed
off and more common substrings are searched until the end
of a string is reached.

The different text similarity measures each have their ad-
vantages and disadvantages, which also emerges from various
studies, such as (Huang 2008; Strehl et al. 2000). In sequence-
based approaches, it may happen that words are trimmed in
the middle and assigned with other words as “equal”, even
though they are semantically independent from each other. This
can lead to supposedly good results with semantically incor-
rect correlations and is therefore not used for our instructions.
Consequently, we consider edit-distance-based and token-based
similarity measures as suitable, because edit-distance-based sim-
ilarity measures are particularly well suited for short instructions
or single words and token-based similarity measures are more
appropriate for longer instructions. Both may be applicable for
instructions in automotive test case specifications.

Furthermore, typical natural language processing techniques
for comparing texts are Word2Vec (Mikolov et al. 2013),
Doc2Vec (Le & Mikolov 2014), or TF-IDF (Rajaraman & Ull-
man 2011). These techniques require the transformation of

Clustering Natural Language Test Case Instructions as Input for Deriving Automotive Testing DSLs 3

the strings into vectors so that based on these vectors so-called
“true” metrics like the euclidean distance or the cosine similarity
can be used to compare these strings (Huang 2008). However,
vectorizing the strings may result in high dimensions, where
investigations (Aggarwal et al. 2001) have shown that the dis-
tances between the data elements become more uncertain by
means of the euclidean distance.

Moreover, Veni (2009) and Taghva & Veni (2010) show
that different distance functions have different effects on the
clustering algorithms used, depending on the type of text to
be compared. There is no global solution for every type of
text. Hence, existing distance functions are often modified
for special applications (Eldesoky et al. 2009; Morichetta et
al. 2016; L. Li & Li 2017). Karypis et. al (Karypis et al.
2000) compared different document loss techniques and show
that token-based methods, such as n-grams (Shannon 1948),
predominantly achieve better results in text clustering.

In summary, the similarity measure used must be aligned
with the underlying data (i.e., automotive test case specifica-
tions) and the effects on the clustering algorithm must be inves-
tigated. For this we consider the Jaro-Winkler and Levenshtein
distance as representatives of the edit-distance-based similarity
measures and a trigram similarity measure based on the Jaccard
Index as representative of the token-based similarity measure
to be promising. In case this is not successful, we have to
consider the modification of existing distance functions for our
specific applications.

3. Automation of domain analysis activities
The implementation of our automated approach is strongly ori-
ented to the manual approach introduced by Juhnke & Tichy
(2019). The core activities of this approach are shown in Fig-
ure 1 together with an annotation (green highlighting) of which
activities have been (semi-) automated by our approach and
what the respective inputs and outputs are.

In the following we explain the preparation of the test case
descriptions for clustering (semi-automated activities within
Step 1, Sec. 3.1), our developed clustering approach for in-
structions (Sec. 3.2), and how the clustering results are used to
automatically derive conceptual templates (Step 2, Sec. 3.3).

3.1. Preparations for clustering
First, we split the action and expected result descriptions which
each contain several instructions (e.g., ’close passenger door’
or ’press unlock key button’), into instructions, depending on
enumeration characters and line breaks. After that, we auto-
mated the rectification of instructions in Step 1 only to a lim-
ited extent, which is why this activity is shown in Figure 1 as
semi-automated (dashed line). The recognition and automated
correction of spelling mistakes is not possible with the aid of
conventional dictionaries, since the instructions contain domain-
specific technical terms, automotive specific abbreviations or
signal names. However, such domain-specific dictionaries do
not currently exist, not even at Mercedes-Benz. Hence, in prepa-
ration for the clustering of instructions, we only normalize mul-
tiple spaces to one. Then, we decompose the instructions into

Resulting Templates
Template 1: press (locking | unlocking) on zv-inside_button (left | right) rear door
Template 2: opening the (left | right) rear door from inside
Template 3: clamp state = (ign_acc | ign_lock)
Template 4: valet parking not? activated

Resulting Clusters

Raw Data as Input for Clustering (e.g., Action Descriptions)

Step 2: Definition of Key Concepts

Step 1: Identification of Key Concepts

Transformation of elementary phrases

Creation of conceptual templates

Rectification of elementary phrases
Grouping of similar elementary phrases

Domain Analysis Activity AutomatedSemi-AutomatedLegend:

clamp state = ign_acc
press unlocking on zv-inside_button left rear door
opening the left rear door from insideA

ct
io

n
1 clamp state = ign_acc

press locking on zv-inside_button left rear door
opening the left rear door from insideA

ct
io

n
2

clamp state = ign_lock
valet parking not activated
press unlocking on zv-inside_button right rear door
opening the left rear door from insideA

ct
io

n
3 clamp state = ign_lock

valet parking activated
press locking on zv-inside_button right rear door
opening the left rear door from insideA

ct
io

n
4

…

press unlocking on zv-inside_button left rear door
press locking on zv-inside_button left rear door
press unlocking on zv-inside_button right rear door
press locking on zv-inside_button right rear door

Cluster 1

clamp state = ign_acc
clamp state = ign_lock

Cluster 3

opening the left rear door from inside
opening the right rear door from inside

Cluster 2 valet parking activated
valet parking not activated

Cluster 4

…

…
Input/Output

Figure 1 Overall process with completely automated (green
boxes with solid line) and semi-automated (green boxes with
dashed line) activities of the domain analysis method

individual tokens using a string tokenizer. A token is a sequence
of characters or a word. The space character is used as delimiter
between the tokens. Afterwards we completely convert each
token to lower case letters. This facilitates the later comparison
of instructions and can also eliminate typing errors, such as

“Isw_Stat” instead of “ISw_Stat”. For the performed instruction
analyses, we found no cases in which the unification in lower
case caused errors or unintentionally merged instructions in the
used industrial test case specifications.

Furthermore, there are also restrictions for automating the
transformation of instructions, since expert knowledge is re-
quired for this. In order to support this activity, our devel-
oped algorithm offers the possibility to define a placeholder
and assign to it synonymously used terms, signal names or
values. For this the domain engineer has to create a .txt file,
which first contains a freely selectable name for the placeholder
(e.g., __IGNITION_STATES__). After that, the file contains a
list of terms separated by line breaks which are to be replaced
by the defined placeholder, e.g., ignition positions IGN_LOCK,
IGN_ACC, IGN_ON, or IGN_START. This procedure allows
the domain engineer and domain experts to take already known
inconsistencies in test case specifications (e.g., different techni-
cal terms) into account before clustering instructions.

3.2. Clustering of instructions
Similar instructions are grouped together in a cluster if they
have similarities in terms of the tokens they contain. For this
we use the DBSCAN algorithm described by Ester et al. (1996)
that, applied to our data material (i.e., the instructions), requires
the following two parameters:

4 Juhnke et al.

(1) Eps, maximum distance between two neighboring instruc-
tions

(2) MinPts, minimum number of instructions in an Eps-
neighborhood of an instruction to form a cluster with these
instructions

Accordingly, two instructions pX and pY from a test case
specification T are considered neighbors, if pY is in the Eps-
neighborhood NEps of pX. For this, the distance dist(pX , pY)
between the instructions pX and pY must be less than or equal
to Eps (Ester et al. 1996):

NEps(pX) = {pY ∈ T|dist(pX , pY) ≤ Eps} (1)

In this case, pY is also called directly density-reachable
from pX . In addition, two instructions pA and pB are assigned
to the same cluster if a chain of instructions p1, ..., pn with
p1 = pA and pn = pB exists, such that pi+1 is directly density-
reachable from pi, i.e., pi+1 ∈ NEps(pi). In this case, pA and
pB are called density-connected to each other. Instructions that
are neither directly density-reachable nor density-connected or
inside a NEps neighbourhood are defined as outliers. For clus-
tering instructions appropriately, we require a suitable distance
function dist(pA, pB) to determine the similarity between in-
structions. In addition, the parameters Eps and MinPts of the
DBSCAN algorithm have to be defined appropriately. This will
be discussed in the following two subsections.

3.2.1. Similarity measures for comparing instructions
To determine the similarity between instructions, we applied
edit-distance-based and token-based distance functions (cf.
Sec. 2) to automotive test case descriptions. Table 1 shows
computed results using the example of a German test case spec-
ification for the edit-distance-based similarity measures Lev-
enshtein similarity siml (Levenshtein 1966) and Jaro-Winkler
similarity simjw (Winkler 1990) as well as for the token-based
similarity measures Trigram similarity simt (Shannon 1948;
Ukkonen 1992) and Sherlock similarity sims (Joy & Luck 1999;
White & Joy 2004). Usually the similarity measures between
two instructions pA and pB in Table 1 take a value between 0
(maximum difference) and 1 (perfect match) with the excep-
tion of simt.

Results for the comparison of edit-distance-based and to-
ken-based similarity measures As can be seen from Table 1,
the Levenshtein similarity is usually less than the Jaro-Winkler
similarity. This is due to the prefix scale that Jaro-Winkler simi-
larity uses, which gives higher ratings to strings with the same
beginning. Thus, even instructions that have only few similari-
ties receive quite high similarity values, such as simjw = 0.87
in row number 4 in Table 1. The Levenshtein similarity measure
is unsuitable if words within a string are transposed or occur in
different order, such as siml = 0.09 in row number 2 in Table 1.

Furthermore, it can be seen from Table 1 that the Trigram
similarity is strongly dependent on the length of the instructions.
Instructions smaller than three words do not contain trigrams,
which is indicated by a negative value (simt = −1.00). Hence,
this similarity measure is particularly suitable for instructions
with more than three tokens or words, which is not always the

case in automotive test case descriptions (e.g., parameter-value
assignments usually consist of only three words).

Development of the Run Length similarity measure The sim-
ilarity measures siml and simt do not provide satisfactory re-
sults. Only the Jaro-Winkler similarity measure simjw shows
convincing values for different kinds of instructions, sometimes
a bit too optimistic, but quite promising enough to be examined
in conjunction with the clustering algorithm (see Sec. 3.2.2).
Therefore, we additionally considered similarity measures that
are used in plagiarism detection algorithms especially for the
detection of source code plagiarism, since source code has a cer-
tain similarity to parameter assignments in automotive test case
descriptions and the instructions per line are rather short. For
instance, the algorithms Ferret (Lyon et al. 2004) and Sherlock
(Joy & Luck 1999; White & Joy 2004) are based on token-based
distance functions, where Ferret resembles the Trigram simi-
larity simt. In contrast, the Sherlock similarity originates from
sentence-based natural language plagiarism detection (Joy &
Luck 1999; White & Joy 2004) and is based on the assumption
that two documents can be considered plagiarism, i.e., similar,
if they have a limited number of structural changes. According
to the Sherlock algorithm defined by the University of Warwick
(University of Warwick 2014), the similarity of two sentences s1
and s2 is calculated based on the sentence lengths (e.g., len(s1)),
which is defined by the number of words. In addition, the num-
ber of common words com(s1, s2) of two sentences s1 and s2 is
calculated. Hence, the Sherlock similarity sims for sentences s1
and s2 is calculated as follows:

sims(s1, s2) =
1
2

(
com(s1, s2)

len(s1)
+

com(s1, s2)

len(s2)

)
(2)

The Sherlock similarity score is given by 100 · sims with
0 ≤ sims ≤ 1. White & Joy (2004) define a similarity thresh-
old of 80 and a common threshold of 6 words, i.e., two sentences
are similar if they have a similarity of sims > 80 or have more
than six words in common (com(s1, s2) > 6). However, these
thresholds result from experience gained from the comparison
of source code comments and may not be transferable to automo-
tive test case specifications. Furthermore, White & Joy (2004)
perform an extensive preprocessing of the sentences to be com-
pared, e.g., words that occur too often and do not appear useful
for comparison and duplicate words are eliminated. Especially
the removal of duplicates in an instruction entails the risk of
introducing considerable changes in the meaning of the instruc-
tions. Therefore, the preparation of instructions in Step 1 does
not include such changes, but only the adjustments described in
Section 3.1. Nevertheless, the good similarity results (cf. Tab. 1)
led to the idea to adjust the Sherlock similarity measure, which
resulted in the creation of the Run Length similarity simrl .

Our developed Run Length similarity measure is based on
runs. Joy et al. (Joy & Luck 1999) define a run, as sequence of
sentences that two documents have in common. The sequence
of these common sentences does not have to be coherent. In the
context of comparing two instructions, a run is a sequence of
common words that occur in the same order in both instructions
and form a coherent sequence. Between two instructions pA

Clustering Natural Language Test Case Instructions as Input for Deriving Automotive Testing DSLs 5

Instruction pA Instruction pB siml simjw simt sims
a simrl

1 beifahrertür schließen beifahrertür schließen 1.00 1.00 -1.00b 1.00 1.00

2 beifahrertür schließen schließen __ARTICLE__ beifahrertür 0.09 0.54 0.00 0.83 0.33

3 schließen __ARTICLE__ drehfalle heckdeckel schließen __ARTICLE__ heckdeckeldrehfalle 0.60 0.95 0.00 0.58 0.50

4 abwarten von busruhe abwarten von powerdown 0.64 0.87 0.00 0.67 0.67

5 aktivierung kindersicherung fondtür rechts aktivierung kindersicherung fondtür links 0.88 0.96 0.33 0.75 0.75

6 taste entriegeln auf __ARTICLE__ zv-innentaster
hinten links betätigen

taste entriegeln auf __ARTICLE__ zv-innentaster
vorne links betätigen

0.93 0.95 0.33 0.88 0.88

7 schlüsseltaste entriegeln betätigen zv-innentaster fahrertür entriegeln betätigen 0.58 0.68 0.00 0.58 0.50

8 abwarten von powerdown __ARTICLE__ ezs öffnen __ARTICLE__ tankdeckels 0.26 0.64 0.00 0.27 0.20

9 taste entriegeln auf __ARTICLE__ zv-innentaster vorne
links betätigen für
zvi_tastenbetätigung_halten

mehrfach taste entriegeln auf __ARTICLE__
zv-innentaster vorne links betätigen

0.60 0.73 0.67 0.84 0.80

10 taste entriegeln auf __ARTICLE__ elektronischen
fahrzeugschlüssel für schlüsselbetätigung_kurz
innerhalb von __NUMBER__ sec nach
erreichen __ARTICLE__ spielschutzes betätigen

taste verriegeln auf __ARTICLE__ elektronischen
fahrzeugschlüssel für schlüsselbetätigung_kurz
betätigen innerhalb von __NUMBER__ sec nach
erreichen __ARTICLE__ spielschutzes

0.98 0.90 0.59 0.94 0.94

11 zeitgleich taste verriegeln auf __ARTICLE__
zv-innentaster vorne links und taste verriegeln
auf __ARTICLE__ zv-innentaster hinten rechts betätigen

taste entriegeln auf __ARTICLE__
zv-innentaster hinten links betätigen

0.45 0.66 0.06 0.73 0.35

a The Sherlock algorithm calculates a similarity score between 0 and 100. For better readability the calculated score was divided by 100 to get a value between 0
and 1 that is comparable to the other similarity values.

b Total length of both instructions is less than 3, therefore no trigram can be formed. To indicate this, the resulting similarity is negative, i.e., -1.00.
Note: We evaluated the different similarity measures on industrial test cases from Mercedes-Benz which are predominantly written in German. Hence, we chose to
report the original measures on the original German instructions.

Table 1 Results of various tested similarity measures

and pB there can be several runs, so that the sum of the length of
all runs is defined by the total run length trl(pA, pB). Figure 2
shows an example for calculating the total run length between
two instructions p1 and p2.

To normalize this similarity measure to values between
0 and 1, we divided the total run length by the maximum length
of both instructions, which is the number of words in the longest
instruction, i.e., len(pA) or len(pB). Hence, the Run Length
similarity simrl is calculated as follows:

simrl(pA, pB) =
trl(pA, pB)

max (len(pA), len(pB))
(3)

The Run Length similarity measure represents a downward
estimate compared to the original Sherlock similarity measure,
i.e., sims ≥ simrl . Hence, the Run Length similarity is more
stringent. This is shown by the following mathematical deriva-
tion based on sims (cf. Equation 2):

1. It applies len(pA), len(pB) ≤ max(len(pA), len(pB)):

1
2

(
com(pA , pB)

len(pA)
+

com(pA , pB)

len(pB)

)
≥ 1

2

(
com(pA , pB) + com(pA , pB)

max (len(pA), len(pB))

)

2. It applies com(pA, pB) ≥ trl(pA, pB):

1
2

(
com(pA , pB)

len(pA)
+

com(pA , pB)

len(pB)

)
≥ 1

2

(
2 · trl(pA , pB)

max (len(pA), len(pB))

)

3. Summarize equation:

1
2

(
com(pA , pB)

len(pA)
+

com(pA , pB)

len(pB)

)
≥ trl(pA , pB)

max (len(pA), len(pB))

4. Hence it applies: sims ≥ simrl

Step two of the estimation downwards is based on the fact
that for the calculation of the total run length trl(pA, pB) the
order of the tokens is taken into account, while com(pA, pB)
only checks if words from instruction pA are also contained
in instruction pB, regardless of their position. Instructions that
contain the same token more than once are a special case. In
this case com(pA, pB) ≤ trl(pA, pB) would apply. However,
based on the examined automotive test case specifications in the
context of this work, test case descriptions rarely contain the
same tokens more than once, since they are usually written in
note form or in short sentences.

As can be seen from Table 1, simrl returns in most cases
somewhat lower similarity values than simjw, but this is desir-
able, especially for simrl = 0.20 in row number 8.

Selected distance functions In conclusion, for clustering us-
ing the DBSCAN algorithm, we considered the Jaro-Winkler
and the Run Length similarity to be promising. The DBSCAN
algorithm requires a distance measure dist(pA, pB), which pro-
vides values between 0 and 1, where 0 represents a perfect
match and 1 the maximum difference. Therefore, the Jaro-
Winkler distance distjw(pA, pB) and the Run Length distance
distrl(pA, pB) are defined based on the presented similarity
measures as follows:

distjw(pA, pB) = 1− simjw(pA, pB) (4)

distrl(pA, pB) = 1− simrl(pA, pB) (5)

6 Juhnke et al.

Common
Tokens

First Run Length r1 = 4 Total Run Length = r 1 + r2 = 4 + 1 = 5Second Run Length r2 = 1

run () run ()

cl state door rear left = unlockedp1 :

r1 r2

cl state door rear right = locked

run () run ()

p2 :

r1 r2

Figure 2 Example for calculating the total run length between two instructions.

Based on this, we considered the determination of suitable
values for the parameters Eps and MinPts of the DBSCAN
algorithm in the following.

3.2.2. Determining suitable parameters for DBSCAN al-
gorithm As mentioned at the beginning of Section 3.2, the
DBSCAN algorithm requires the two parameters MinPts and
Eps, whose determination is explained below.

Parameter MinPts Ester et al. (1996) suggest the default value
4 for the parameter MinPts. However, this recommendation
refers to two-dimensional data. In the case of the instructions
to be clustered, however, these are only one-dimensional data.
According to the recommendation of Sander et al. (1998), the
value for MinPts should be as small as possible and a suitable
value should be calculated as MinPts = 2 · dim− 1, where
dim represents the dimensionality of the data. However, it
should apply MinPts > 1, otherwise the “single-link effect”
may occur (Sander et al. 1998). It may happen that objects are
clustered in one large cluster, although it makes more sense to
split them into two clusters. This is exactly the case if there is a
chain of objects between these two clusters, where the distance
of each object to the neighboring object is smaller than Eps.
Based on the suggestions of Sander et al. (1998), the parameter
MinPts for clustering instructions (dim = 1), would be one,
which is not recommended. Therefore, we chose MinPts = 2
as a suitable value. In principle, this also allows smaller clusters.

Parameter Eps To determine a suitable value for the parame-
ter Eps, we used the heuristic described by Ester et al. (1996)
that is based on the determination of the k-th nearest neighbor
of an instructions. Therefore, the k-dist value, i.e., the distance
to the k-th nearest neighbor of an instruction pX , is calculated
for all instructions. The resulting k-dist values of all instructions
are then sorted and plotted in descending order. The resulting
graph is called a sorted k-dist graph and gives information about
the density distribution (Ester et al. 1996). Figures 3 and 4 show
the sorted k-dist graphs for k ∈ [1..6] based on the Jaro-Winkler
distance and the Run Length distance using the example of an
automotive test case specification that is considered by experts
to be of high quality.

The goal is to choose the smallest possible k-dist value of
an instruction pX based on which the parameter Eps is set to
k-dist(pX). All instructions with a smaller or equal k-dist value
are grouped in one cluster, therefore a smaller value should
be chosen. This value is called the threshold point and can be
identified by a “plateau”1 in the sorted k-dist graph.

Basically, it can be seen from Figure 4 that the Run Length

1 In the original paper, Ester et al. (1996) refer to such noticeable points in the
sorted k-dist graph as “valley”. However, since the graph is sorted in descend-
ing order, there can be no “valley”. Hence, we prefer the term “plateau”.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 100 200 300 400 500 600 700 800 900

1NN 2NN 3NN 4NN 5NN 6NN

k-
di

st
an

ce

instructions (k-order)

Distance to

Figure 3 Sorted k-dist plots regarding Jaro-Winkler distances.

k-
di

st
an

ce

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 100 200 300 400 500 600 700 800 900

1NN 2NN 3NN 4NN 5NN 6NNDistance to

instructions (k-order)

Figure 4 Sorted k-dist plots regarding Run Length distances.

distance seems to be more suitable for determining a k-dist
value, since the graph shows more distinctive “plateaus”. In
addition, the “plateaus” are much wider, i.e., there are more
frequent instructions with identical k-dist values to their neigh-
boring instructions. For example, the k-dist value 0.500 is
applicable for 109 instructions or the value 0.333 is applicable
for 63 instructions (cf. Figure 6):

In contrast, the sorted k-dist graph of the Jaro-Winkler dis-
tance (cf. Figure 3) shows a very flat curve and only a few
distinctive “plateaus”. Some examples of potentially suitable
k-dist values are shown in Figure 5 but they are not as clearly
identifiable as in the sorted k-dist graphs regarding the Run
Length distance. The flat curves of the sorted k-dist graphs
shown in Figure 3 also confirm that many of the instructions are
rated as relatively similar by the Jaro-Winkler distance measure,
which is reflected in a lower dispersion of the k-dist values,
which are mostly between 0.003 and 0.406. The same observa-
tion has already been made in Table 1. Based on the heuristic of
Ester et al. (1996) a suitable value for the parameter Eps was de-
termined using the sorted k-dist plots of different automotive test
case specifications. After analysis of different cluster results for
different k-dist values and both distance measures, we found the
Run Length distance to be appropriate. We observed that when

Clustering Natural Language Test Case Instructions as Input for Deriving Automotive Testing DSLs 7

0.0

0.1

0.2

0.3

0.4

1 100 200 300

k-
di

st
an

ce

instructions (k-order)

k-dist(16)=0.335

k-dist(43)=0.272

k-dist(82)=0.203

k-dist(51)=0.250

2NN

Figure 5 Zoomed extract from the sorted k-dist graphs regard-
ing Jaro-Winkler distances.

k-
di

st
an

ce

0.1

0.2

0.3

0.4

0.5
2NN

100 200 300 400
instructions (k-order)

k-dist(309)=0.333

k-dist(273)=0.381

k-dist(109)=0.500

k-dist(231)=0.438

Figure 6 Zoomed extract from the sorted k-dist graphs regard-
ing Run Length distances.

clustering is based on the Jaro-Winkler distance, similar instruc-
tions are usually distributed over several clusters, resulting in
a larger number of clusters. In addition, a larger proportion
of instructions remain that could not be assigned to a cluster.
In contrast, using the Run Length distance for clustering leads
to cluster results that are very similar to the results of manual
clustering as described in Juhnke & Tichy (2019). In the end,
we chose Eps = 0.333 as a suitable value for the clustering of
instructions, which is also evident from the results of the clus-
terings performed in the evaluation (cf. Section 4). It should be
noted that for this k-dist value a wider “plateau” could also
be identified in different sorted k-dist plots and for different
test case specifications. Therefore, Eps = 0.333 is a suitable
starting value for clustering other automotive test case specifi-
cations. However, if test case specifications deviate from the
conventional way of describing test cases or if the cluster results
are not satisfactory, it is advisable to repeat the determination
of Eps based on the heuristic described by Ester et al. (1996).

3.2.3. Handling unclustered instructions Due to the pre-
sented approach, a large number of instructions can be clus-
tered depending on the test case descriptions contained in a test
case specification. The remaining non-clustered instructions are
mainly short instructions, such as shown in Table 2.

Action Instructions Expected Result Instructions

closing the fuel filler flap light_switch_position = auto

closing the wiper water flap light_switch_position = manual

closing the tank cap light_switch_position = parking light

execute bs_adl_off closing passive = active

execute bs_adl_on closing passive = not active

Table 2 Examples of non-clustered instructions

Example Instructions: “Open the door rear left”

n-Gram Name n n-Grams

Unigram 1 “Open”, “the”, “door”, “rear”, “left”

Bigram 2 “Open the”, “the door”, “door rear”, “rear left”

Trigram 3 “Open the door”, “the door rear”, “door rear left”

Tetragram 4 “Open the door rear”, “the door rear left”

Pentagram 5 “Open the door rear left”

Table 3 Examples for n-grams

This is quite plausible, since the Run Length distance used
is a token-based similarity measure, which is known to be less
suitable for single words or shorter strings. In particular, this
affects descriptions from expected results, which often involve
parameters and value assignments (cf. Table 2).

For this reason, a subsequent clustering of remaining in-
structions is necessary. This clustering is performed using a
developed greedy algorithm that is based on n-grams (Shannon
1948). The term n-grams is used when a instruction p is split
into sub-instructions psub of length len(psub) = n. Examples
for the decomposition of an instruction into n-grams of different
lengths and their names are shown in Table 3.

Our developed algorithm initially groups all remaining in-
structions that have common trigrams. This is then repeated for
still non-clustered instructions with digrams and monograms.
Thus, even short instructions can be clustered that were not pre-
viously clustered by the DBSCAN algorithm due to a low simi-
larity. The heuristic offers particular advantages if the remaining
instructions are signal or value assignments and therefore con-
tain the same technical terms, signal names or parameters. Thus,
they are typically assigned to the same cluster.

In summary, the results of the comparison of similarity mea-
sures (cf. Tab. 1) and the insights gained from their application
together with the DBSCAN algorithm (cf. Sec. 3.2.2) allow us
to answer RQ1 as follows:

The similarity between instructions can be determined au-
tomatically by using a suitable similarity measure, which op-
timally interacts with the clustering algorithm used. This also
corresponds to the statement of Veni (2009) that different dis-
tance measures have effects on clustering algorithms. In the
case of instructions from automotive test case descriptions, we
have shown that a mixture of the Run Length distance devel-
oped by us and the DBSCAN algorithm with the parameters
MinPts = 2 and Eps = 0.333 is suitable. In addition, the
presented automation approach seems to be appropriate for au-
tomotive test case specifications, since the clustering results are

8 Juhnke et al.

similar to the results of the manual grouping. This is substanti-
ated by the evaluation results presented in Section 4, which also
allows us to answer RQ2.

3.3. Using the clustered instructions
After Step 1, the clustered instructions are used in Step 2 to
automatically derive suggestions for conceptual templates (cf.
Figure 1). These suggestions serve as a preliminary stage for
the definition of a final Testing DSL for specifying test cases.
Ideally, the resulting conceptual templates can be used directly
for the definition of a grammar for the respective testing DSL.
However, if an initial test case specification of low quality was
provided with incorrect formulations or massive spelling errors
(which go beyond a correction of upper and lower case as de-
scribed in our minimalistic pre-processing), these deficiencies
will also be reflected in the generated conceptual templates.
To demonstrate how the clustered instructions can be further
used to derive conceptual templates, we make use of an es-
tablished approach from bioinformatics that is typically used
for the analysis of structures in RNA and DNA sequences –
Multiple Sequence Alignment (MSA). Multiple sequences are
compared methodically and with respect to the order of the con-
tained elements. The results are multiple alignments between
the sequences, which describe sequences of editing operations
that describe a transformation from one sequence to another.
We used a global alignment, in which all elements of a sequence
are taken into account and not only subsequences, as would
be the case with a local alignment (Chao & Zhang 2009). We
combine the MSA approach together with a developed heuristic
to automatically derive conceptual templates for instructions
that are clustered in a group. The algorithm we developed for
this purpose is described below.

First, the instructions clustered in a group are converted into a
string that encodes an instruction as a protein sequence. For this
purpose, all words of the instructions contained in a cluster are
first recorded and assigned to a unique protein coding. For ex-
ample, this results in the protein sequence “I Q R K M H P N E”
from the instruction “press unlock button several times on zv-
inside_button front left”. MSA is then performed based on these
protein sequences. For this, similarities between the sequences
are first calculated pairwise using the Needleman-Wunsch al-
gorithm (Needleman & Wunsch 1970). This results in a matrix
which contains the calculated distances between the sequences.
These are used to create a guide tree (Chao & Zhang 2009), also
known as a phylogenetic tree. This is used to perform a pro-
gressive alignment (Feng & Doolittle 1987), the result of which
is the MSA. This method for performing MSA is implemented
in the program Clustal (Higgins & Sharp 1988) or ClustalW
(Thompson et al. 1994), which is also part of the open source
project BioJava (BioJava 2020), which we used. Table 4 shows
an example of MSA of four instructions.

After that, the obtained MSA serves as a basis for the deriva-
tion of a conceptual template. For this purpose, our developed
heuristic compares the contained elements column by column.
If the elements of different sequences of the respective column
are identical, the element is included in the template. If there
are several different elements per column, such as the elements

Multiple Sequence Alignment Decoded Instructions

I Q R K M H P N E – – – – – press unlock button several times on zv-
inside_button front left

I F R K M H P N E – – – – – press lock button several times on zv-
inside_button front left

I Q R K M H P N E D C G A L press unlock button several times on zv-
inside_button front left in intervals of 1 sec

I F R K M H P N E D C G A L press lock button several times on zv-
inside_button front left in intervals of 1 sec

Table 4 Example of a MSA based on instructions encoded in
protein sequences

Q and F in Table 4, options are created in the template (e.g.,
Q | F). If there are gaps in one or more of the sequences indicated
by “–”, this element is included in the template as optional and
marked with a “?”. Therefore, the template shown in Figure 7
results from the example of the MSA shown in Table 4. This
protein sequence (see Figure 7) is then decoded again, resulting
in the conceptual template shown in Figure 8.

I (Q | F) R K M H P N E (D C G A L) ?

Figure 7 Example of a template suggestion represented as
protein coding.

press (lock | unlock) button several times on zv-inside_button
front left (in intervals of 1 sec) ?

Figure 8 Example of a conceptual template decoded from the
protein coding in Figure 7.

Further examples of clustered instructions and the conceptual
templates derived for them based on the described MSA-based
approach are shown in Figure 1. The definition of the grammar
of a Testing DSL (e.g. using the Xtext grammar) finally looks
similar to these templates.

However, the described MSA-based approach is a heuristic,
which means that it is not always possible to obtain a context-
free grammar from the conceptual templates for creating an
Automotive Testing DSL. Thus, not all automatically gener-
ated conceptual templates are suitable. For example, Table 5
shows three clustered instructions and the automatically deter-
mined conceptual template. Based on this, the following two
instructions could also be derived using the conceptual template:

“request for interior locking from system active protection” or
“request for interior locking from system special comfort”. But
the systems active protection or special comfort might not exist
at all. In this case the conceptual template “request for inte-
rior locking from system (parkpilot|special protection|active
comfort)” would be correct.

Nevertheless, the automatically generated conceptual tem-
plates provide insights into the structure and vocabulary used
and also show which parts are variable parts (indicated by |)
or optional parts (indicated by ?). This supports a language
engineer in the development of a system-specific Testing DSL.

Clustering Natural Language Test Case Instructions as Input for Deriving Automotive Testing DSLs 9

Template: request for interior locking from system (parkpilot | special
| active) (protection | comfort)?

Cluster: request for interior locking from system parkpilot

request for interior locking from system special protection

request for interior locking from system active comfort

Table 5 Example of an insufficient conceptual template

4. Evaluation
In this section, the automated approach for grouping instructions
is evaluated by comparing the results of manual grouping (G)
with those of automated clustering (C). Therefore, we examine
to what extent manually grouped instructions are also clustered
by the DBSCAN algorithm. Furthermore, we investigated in
how many clusters the instructions are distributed by the auto-
mated approach compared to the manual approach.

4.1. Study Design & Data Collection
Instructions are the basis for manual grouping and automated
clustering. To obtain instructions, action and expected result
descriptions must first be extracted from test case specifications,
split, rectified, and, if necessary, transformed (cf. Juhnke &
Tichy 2019). In this evaluation, the same instructions from
action and expected result descriptions are used as input for
manual grouping and automated clustering. Then, we deter-
mine for each instruction from the manual grouping to which
automatically created cluster it is assigned. This is shown
graphically using sankey diagrams. These diagrams visualize
which groups respectively clusters exist and which instructions
from a group are contained in a certain cluster. In addition,
we use Cohen’s Kappa κ (Cohen 1960) as measure for the
agreement between the result of manual grouping and auto-
mated clustering. For the interpretation of Cohen’s Kappa, and
thus for the description of the relative strength of agreement,
we use the nomenclature of Landis & Koch (1977), where,
for example, 0.81 ≤ κ ≤ 1.00 stands for an almost perfect,
0.61 ≤ κ ≤ 0.80 for a substantial, 0.41 ≤ κ ≤ 0.60 for a
moderate, 0.21 ≤ κ ≤ 0.40 for a fair, 0.00 ≤ κ ≤ 0.20 for a
slight, and κ < 0.00 for a poor agreement.

For the evaluation, we selected three real automotive test case
specifications that have already been reviewed by domain ex-
perts who assessed them as being of high quality and contained
established formulations. For these test case specifications, in-
structions have already been manually extracted and a manual
grouping has been performed. These groups serve as a refer-
ence for comparison with the results of our developed clustering
approach. The selected test case specifications are of different
sizes, i.e., test case specification E1 is a small, E2 is a medium
and E3 is a large one (see Tab. 6).

4.2. Results
Figures 9 to 14 illustrate the results of the comparison using
sankey diagrams, which are discussed below. For each test case
specification (TestSpec E1 – E3) there is a sankey diagram for
the instructions from the action (A) and one for those from
the expected result (ER) descriptions. On the left-hand side
are the groups (G), whih represent the result of the manual

Test Case Specifications E1 E2 E3

test cases 46 203 750

test steps 127 353 2845

action instructions 39 86 131

expected result instructions 54 77 105

Table 6 Overview of the evaluated test case specifications

grouping. On the right-hand side are the groups resulting from
the automated clustering (C). The number of instructions
contained in the groups (G and C) is indicated in parentheses.

For Test Case Specification E1, Figure 9 shows for ac-
tion descriptions that one instruction from group GA1 and
one from GA5 are not clustered by the automated approach.
The instruction “Outdoor temperature < 5◦C” was manually
grouped together with instructions of the form “Light switch
position = AUTO” in group GA1, since both instructions are
considered as a kind of parameter and value assignment. In
contrast, the instruction for temperature indication was not
clustered automatically, as there are no matching tokens with
light switch instructions.

Furthermore, the three instructions from group GA5 have
different lengths. The two instructions clustered in cluster CA8
contain six and eight words. The third instruction from group
GA5, which was not clustered by the DBSCAN algorithm, is
only three words long, with two words matching the longer
instructions. Therefore, these three instructions from group
GA5 are not clustered in the same cluster. For instructions used
in action descriptions of Test Case Specification E1, Cohen’s
Kappa was calculated2 with κ = 0.932, which represents an
almost perfect agreement between groups (G) and clusters (C).

GA1(6)

GA3(15)

GA4(10)

GA5(3)

CA1

CA2

CA3

CA4

CA5

CA6
CA7
CA8

(5)

(4)

(13)

(2)

(5)

(3)
(2)
(2)

not grouped
(1)

not clustered
(3)

(4) GA2

Figure 9 Comparison of the results of manual grouping (G)
and automated clustering (C) for TestSpec E1 (A).

For expected result descriptions, only one instruction from
group GER1 that is also used to indicate the outside temperature
is not clustered (see Figure 10). All other instructions were
clustered and were also clustered in similar clusters. The only
thing that stands out is that the clusters are more fine-grained
2 Several clusters resulting from a group and thus representing a more fine-

grained division of this group were combined, so that the calculation of
Cohen’s Kappa is based on a nxn confidence matrix, where n corresponds to
the number of groups including the group of not grouped instructions. This
procedure was used to calculate Cohen’s Kappa for TestSpecs E1 to E3.

10 Juhnke et al.

GER1

GER2

GER3

GER4

GER5

(10)

(32)

(3)

(4)

(5)

(5)

(2)
(2)

(7)

(6)

(5)

(5)

(4)

(3)
(2)
(3)

(4)

(2)
(2)

CER1

CER2
CER3

CER4

CER5

CER6

CER7

CER8

CER9

CER12

CER10
CER11

CER13
CER14
not clustered

(2)not grouped
(1)

Figure 10 Comparison of the results of manual grouping (G)
and automated clustering (C) for TestSpec E1 (ER).

and therefore there are more clusters than groups. In this case
this may indicate poor manual grouping. For example, group
GER2 contains instructions describing the state of an object,
such as “parking light is active” or “rear blind remains open”.
The clustering into several clusters (CER4 – CER10) is done
according to the objects, such as “high beam”, “sunroof”,

“windscreen wiper”, “ambient lights”, “trunk lid”, or “exterior
mirrors”. For instructions used in expected result descriptions
of Test Case Specification E1, Cohen’s Kappa was calculated
with κ = 0.969, which represents an almost perfect agreement
between groups (G) and clusters (C).

Figure 11 shows in the action descriptions of Test Case Spec-
ification E2 three manually created groups (GA2, GA3, and
GA4) which group parameters, such as “isw_stat=ign_acc”,

“set isw_stat=ign_off”, “rdlgt_fl_rq_st3 = 0%”, or
“[icf_modelparam_write][pilc_ttimeout] = 10s”. The lat-
ter type of parameters form the group GA3. The parameter
names were considered in the evaluation in their original form
and not replaced by placeholders (cf. Section 3.1). This also
explains the more fine-grained partitioning of the parameter
instructions from groups GA2 and GA3 into clusters CA3
to CA7. Replacing the parameter names with placeholders
would result in fewer clusters. From the group of not grouped
instructions one instruction was clustered in cluster CA17
together with instructions from group GA13 due to a matching
word by the subsequent greedy algorithm (see algorithm
description on Page 8). Overall, the cluster result is very
similar to the manual grouping result. This is also confirmed by
Cohen’s Kappa with κ = 0.842, which represents an almost
perfect match.

In the expected result descriptions in Figure 12, the instruc-
tions from groups GER1 to GER3 are similar to the parameter
instructions in action descriptions. This also explains the clus-
tering of four instructions from group GER1 and the two instruc-
tions from group GER2 into cluster CER3. Group GER6 has an
instruction that is twice as long (eight words) as the instructions
otherwise contained (three to four words). This instruction is as-
signed to cluster CER13 by the subsequent clustering. The other
instruction contains only three words, and only one word has a

GA1

GA3

GA2

GA4

GA5

GA6

GA7

GA8

GA9

GA10

GA11
GA12
GA13

(9)

(26)

(7)

(2)

(7)

(4)

(3)

(3)

(11)

(2)

(12)(12)

(6)

(3)

(3)

(8)

(4)

(3)

(3)
(2)
(2) (3)

(2)
(3)

(3)

(4)

(8)

(3)

(3)

(6)

not grouped
(3) not clustered

(2)

CA1

CA2

CA3

CA4

CA5

CA6

CA7

CA8

CA9

CA10

CA11

CA12

CA13

CA14

CA15
CA16
CA17

Figure 11 Comparison of the results of manual grouping (G)
and automated clustering (C) for TestSpec E2 (A).

GER1

GER2
GER3
GER4
GER5

GER6

GER7

GER8

GER9

GER10

GER11

(6)

(4)

(6)

(2)
(2)
(2)

(21)

(3)

(3)

(5)

(7)

(2)
(3)
(2)

(14)

(2)
(2)
(2)
(2)

(23)

(3)

(3)

(5)

(7)

(2)

not grouped
(12) not clustered

(9)

CER1

CER2

CER3

CER4
CER5
CER6

CER7

CER8

CER9

CER12

CER10

CER11

CER13
CER14

Figure 12 Comparison of the results of manual grouping (G)
and automated clustering (C) for TestSpec E2 (ER).

match with other instructions. Therefore this instruction is not
clustered. In addition, it is noticeable that the greedy algorithm
causes previously not clustered instructions to form new clusters
(CER13 and CER14). Overall, the calculated Cohen’s Kappa
with κ = 0.908 shows an almost perfect agreement between
groups (G) and clusters (C).

The third considered Test Case Specification E3 shows a
few more differences between manual grouping and automated
clustering in the action descriptions (cf. Figure 13). Two in-
structions from group GA8 with a length of seven words were
clustered in cluster CA9, since these seven words are completely

Clustering Natural Language Test Case Instructions as Input for Deriving Automotive Testing DSLs 11

contained in an instruction from GA9. The instructions from
GA8 to GA10 are very similar, since they describe the operation
of a handheld transmitter. They differ only in the beginning,
which describes a temporal context, such as “exactly 20 seconds
after the signal is sent ...” or “within 60 seconds of pressing
the key ...”. Hence, they are clustered together into cluster CA9.
Group GA12 contains instructions like “send standby request”
or “send wake-up request”. These two instructions are assigned
the previously non-grouped instruction “send 3 times different
security byte”, which results in cluster CA13. This can be ex-
plained by the subsequent greedy algorithm due to the matching
of the word “send”. Since there is a match of two words be-
tween the third instruction from group GA12 and an instruction
from group GA13, they form the new cluster CA14.

The combination of the instructions from groups GA15,
GA16 and GA17 (cf. Figure 13) can be explained by the fact
that the instructions of the form “press button 1 for 1 second”
from group GA15 are completely contained in the instructions
from groups GA16 and GA17, e.g., “during engine start press
button 1 for 1 second”. This is an example that manual group-
ing can also be carried out very fine-granularly. The instruction

“press programming key on garage door operator” from group
GA15 is not clustered by the automated approach because it
does not match the instructions of the form “press button 2
for 1 second”. The subsequent greedy algorithm also causes
a clustering of previously not clustered instructions, which is
mainly due to the combination of instructions that have only
one word in common. Altogether, Test Case Specification E3
has 131 instructions for action descriptions, which makes it a
larger test case specification. The sankey diagram (cf. Fig-
ure 13) shows some more differences between manual grouping
and automated clustering. Nevertheless, the calculated Cohen’s
Kappa with κ = 0.848 indicates an almost perfect agreement.

The clustering results for expected result descriptions are
quite similar to the results of manual grouping, as shown in
Figure 14. The group GER7 contains instructions of the form

“gdo sends on the lin gdo_stuckedbutton_flt_st3 = 1 = fault”.
The group GER18 contains instructions describing a waiting
time and a subsequent reaction. The instruction “after 180
seconds gdo sends on the lin gdo_stuckedbutton_flt_st3 = 1 =
fault” from GER18 is clustered together with instructions from
group GER7 into cluster CER12, since 10 of 13 tokens match.
This also applies to instructions from groups GER8 and GER9,
which are similar to instructions from group GER7. Also for
the expected result descriptions, the calculated Cohen’s Kappa
with κ = 0.946 shows that there is an almost perfect agreement
between groups (G) and clusters (C).

Altogether, it is noticeable in all three test case specifications
that the instructions are clustered by the automated approach
in a partly finer granular way. This is due to the fact that the
similarity comparison between instructions in the automated
approach is based exclusively on a syntactic comparison. In
contrast, semantic similarities were partially taken into account
for the manually performed groupings. A variation of the pa-
rameter Eps of the DBSCAN algorithm, such as Eps < 0.333,
leads to larger clusters, but also to a mixture of instructions from
different groups, which are then combined in a cluster. As a

(4)

(2)
(3)

(3)
(2)
(2)

(6)

(6)

(24)

(6)

(12)

(3)

(14)

(5)

(15)

(3)
(2)
(2)
(3)

(4)

(4)

(2)
(3)

(3)
(2)
(2)

(6)

(4)

(5)

(2)
(3)

(8)

(2)
(3)

(5)

(7)

(6)

(26)

(2)
(2)

(19)

(2)
(3)

not grouped
(10)

not clustered
(10)

GA1

GA3
GA2

GA4
GA5
GA6

GA7

GA8

GA9

GA10

GA11

GA12

GA13

GA14

GA15

GA16
GA17
GA18
GA19

GA20

CA1

CA2
CA3

CA4
CA5
CA6

CA7

CA8

CA9

CA10

CA11

CA12

CA13
CA14

CA15

CA16
CA17

CA18

CA19

CA20
CA21
CA22
CA23

Figure 13 Comparison of the results of manual grouping (G)
and automated clustering (C) for TestSpec E3 (A).

result, instructions that have less in common are also combined.
For this reason, a fine-granular result is preferred. In summary,
this allows us to answer RQ2 as follows:

The evaluation shows that automated clustering provides
useful results and is comparable to manual grouping. This is
particularly clear from the sankey diagrams in Figures 9 to 14.
In addition, the calculated values for Cohen’s Kappa are always
κ > 0.81 and thus, according to Landis & Koch (1977), show
an almost perfect agreement between groups (G) and clusters
(C) for all considered test case specifications.

5. Conclusion and future work
In this paper we presented an automated clustering approach
to support the domain analysis of automotive test case spec-
ifications. Therefore, we used the DBSCAN algorithm and
developed a similarity measure called Run Length similarity.
Furthermore, we showed how to appropriately parameterize the
DBSCAN algorithm for the application to automotive test case
specifications (MinPts = 2, Eps = 0.333). In addition, we
evaluated our automated clustering approach by showing for
three real test case specifications that there is an almost perfect
alignment between the result of the automated clustering and

12 Juhnke et al.

(4)

(5)

(6)

(22)

(3)

(3)

(20)

(3)

(4)

(5)

(4)

(3)

(3)

(3)
(2)
(2)
(2)

(11)

(4)

(5)

(6)

(5)

(5)

(4)

(3)

(3)
(2)
(3)

(3)

(15)

(4)

(4)

not clustered
(1)

(3)

(4)

(5)

(5)

(2)
(3)

(3)

(2)
(2)
(3)

(3)

(3)

CER1

CER2

CER3

CER4

CER5

CER6

CER7

CER8
CER9

CER12

CER10

CER11

CER13

CER14

CER15

CER16

CER17

CER18

CER19

CER20
CER21
CER22
CER23
CER24

CER25

CER26

GER1

GER2

GER3

GER4

GER5

GER6

GER7

GER8

GER9

GER10

GER11

GER12

GER16

GER13

GER14
GER15

GER17

GER18

Figure 14 Comparison of the results of manual grouping (G)
and automated clustering (C) for TestSpec E3 (ER).

the groups created manually (κ > 0.81). The advantage of
automated clustering is that the results are person-independent
and thus easier to reproduce, which is not necessarily the case
with manual created groups. Since the instructions used in ac-
tions and expected result descriptions are uniquely assigned to
a cluster and outliers are allowed, so that an inappropriate as-
signment of instructions to a cluster does not necessarily occur,
our automated approach provides basis for deriving conceptual
templates. A special feature of our automation approach is its
application to unknown and unlabeled data, i.e., no knowledge
of the test case specifications used or special pre-processing is
required, which would require, for example, domain-specific
dictionaries or a preliminary analysis by domain experts.

In future work, we intend to apply our clustering approach to
additional test case specifications (e.g., of varying quality and
maturity) to further investigate the suitability of the resulting
clusters for deriving DSLs. In this respect, and complementary
to the MSA-based approach used, we want to investigate how
the input is suitable for other grammatical inference algorithms
to derive grammars. In addition, since our approach works well
on reviewed test case specifications even without special pre-
processing, we also want to identify possible approaches for
more extensive pre-processing that would allow our approach
to be applied to test case specifications with a lower level of
maturity. Furthermore, we plan to investigate how well the
presented approach and particularly the clustering and similarity
measures apply to requirements documents for automatically
inferring requirement boilerplates.

References

Aggarwal, C. C., Hinneburg, A., & Keim, D. A. (2001). On the
surprising behavior of distance metrics in high dimensional
space. In Proc. of ICDT’01 (pp. 420–434). Springer. doi:
10.1007/3-540-44503-X_27

Bezdek, J. C. (1981). Pattern recognition with fuzzy objective
function algorithms. Springer. doi: 10.1007/978-1-4757
-0450-1

BioJava: The open-source java library for bioinformatics.
(2020). Retrieved from http://biojava.org/index.html

Bryant, B. R., Mernik, M., Hrnčič, D., Javed, F., Liu, Q., &
Sprague, A. (2010). Grammar inference technology appli-
cations in software engineering. In Grammatical inference:
Theoretical results and applications (ICGI’10) (pp. 276–279).
Springer. doi: 10.1007/978-3-642-15488-1_25

Chao, K.-M., & Zhang, L. (2009). Sequence comparison:
Theory and methods. London: Springer. doi: 10.1007/
978-1-84800-320-0

Cohen, J. (1960). A coefficient of agreement for nominal scales.
Educational and Psychological Measurement, 20(1), 37–46.
doi: 10.1177/001316446002000104

Eldesoky, A., Saleh, M., & Sakr, N. (2009). Novel similarity
measure for document clustering based on topic phrases. In
Proc. of ICMN’09 (pp. 92–96). IEEE. doi: 10.1109/ICNM
.2009.4907196

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A
density-based algorithm for discovering clusters in large spa-
tial databases with noise. In Proc. of KDD’96 (pp. 226–231).
AAAI Press. Retrieved from http://www.aaai.org/Papers/
KDD/1996/KDD96-037.pdf

Feng, D. F., & Doolittle, R. F. (1987). Progressive se-
quence alignment as a prerequisite to correct phylogenetic
trees. Journal of Molecular Evolution, 25(4), 351–360. doi:
10.1007/bf02603120

Hauptmann, B., Junker, M., Eder, S., Heinemann, L., Vaas, R.,
& Braun, P. (2013). Hunting for smells in natural language
tests. In Proc. of ICSE’13 (pp. 1217–1220). IEEE. doi:
10.1109/ICSE.2013.6606682

Higgins, D. G., & Sharp, P. M. (1988). Clustal: A package for
performing multiple sequence alignment on a microcomputer.
Gene, 73(1), 237–244. doi: 10.1016/0378-1119(88)90330-7

Huang, A. (2008). Similarity measures for text document
clustering. In Proc. of the 6th new zealand computer science
research student conference (NZCSRSC’08) (pp. 49–56).

Jaccard, P. (1912). The distribution of the flora in the alpine
zone. New Phytologist, 11(2), 37–50. doi: 10.1111/j.1469
-8137.1912.tb05611.x

Javed, F., Mernik, M., Bryant, B. R., & Sprague, A. (2008).
An unsupervised incremental learning algorithm for domain-
specific language development. Applied Artificial Intelli-
gence, 22(7-8), 707–729. doi: 10.1080/08839510802164127

Joy, M., & Luck, M. (1999). Plagiarism in programming
assignments. IEEE Transactions on Education, 42(2), 129–
133. doi: 10.1109/13.762946

Juhnke, K., & Tichy, M. (2019). A tailored domain analysis
method for developing system-specific testing DSLs enabling

Clustering Natural Language Test Case Instructions as Input for Deriving Automotive Testing DSLs 13

http://biojava.org/index.html
http://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
http://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf

their smooth introduction in automotive practice. In Proc.
of SEAA’19 (pp. 10–18). IEEE. doi: 10.1109/SEAA.2019
.00011

Juhnke, K., Tichy, M., & Houdek, F. (2018). Challenges
concerning test case specifications in automotive software
testing. In Proc. of SEAA’18 (pp. 33–40). IEEE. doi: 10.1109/
SEAA.2018.00015

Karypis, M. S. G., Kumar, V., & Steinbach, M. (2000). A
comparison of document clustering techniques. In Workshop
on text mining at KDD 2000 (may 2000).

Lachmann, R., & Schaefer, I. (2014). Towards efficient and ef-
fective testing in automotive software development. In Infor-
matik 2014. (pp. 2181–2192). Gesellschaft für Informatik e.V.
Retrieved from http://dl.gi.de/handle/20.500.12116/2847

Landis, J. R., & Koch, G. G. (1977). The measurement of
observer agreement for categorical data. Biometrics, 33(1),
159–174. doi: 10.2307/2529310

Le, Q., & Mikolov, T. (2014). Distributed representations of
sentences and documents. In Proc. of ICML’14 (pp. 1188–
1196). JMLR.org.

Levenshtein, V. I. (1966). Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics Doklady,
10(8), 707–710. Note: Translated from Doklady Akademii
Nauk SSSR Vol. 163, No. 4, pp. 845–848, 1965.

Li, L., & Li, H. (2017). A novel document distance based on
concept vector space. In Proc. of the 17th international con-
ference on communication technology (ICCT’17) (pp. 2014–
2017). IEEE. doi: 10.1109/ICCT.2017.8359982

Li, M., & Vitanyi, P. M. (2008). An introduction to kolmogorov
complexity and its applications (3rd ed.). Springer. doi:
10.1007/978-0-387-49820-1

Lyon, C., Barrett, R., & Malcolm, J. (2004). A theoretical basis
to the automated detection of copying between texts, and its
practical implementation in the ferret plagiarism and collu-
sion detector. Plagiarism: Prevention, Practice and Policies,
1–7. Retrieved from http://hdl.handle.net/2299/2114

MacQueen, J. (1967). Some methods for classification and anal-
ysis of multivariate observations. In Proc. of the 5th berkeley
symposium on mathematical statistics and probability (Vol. 1,
pp. 281–297). University of California Press.

Maimon, O., & Rokach, L. (2005). Data mining and knowledge
discovery handbook. Springer. doi: 10.1007/978-0-387
-09823-4

Mernik, M., Hrnčič, D., Bryant, B. R., Sprague, A. P., Gray, J.,
Liu, Q., & Javed, F. (2009). Grammar inference algorithms
and applications in software engineering. In Proc. of ICAT’09
(p. 1-7). doi: 10.1109/ICAT.2009.5348441

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient
estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781.

Morichetta, A., Bocchi, E., Metwalley, H., & Mellia, M. (2016).
Clue: Clustering for mining web urls. In Proc. of ITC 28 (pp.
286–294). IEEE.

Needleman, S. B., & Wunsch, C. D. (1970). A general method
applicable to the search for similarities in the amino acid
sequence of two proteins. Journal of Molecular Biology,
48(3), 443–453. doi: 10.1016/0022-2836(70)90057-4

Nevill-Manning, C. G., & Witten, I. H. (1997). Identifying
hierarchical structure in sequences: A linear-time algorithm.
Journal of Artificial Intelligence Research, 7, 67–82. doi:
10.1613/jair.374

Rajaraman, A., & Ullman, J. D. (2011). Mining of massive
datasets. Cambridge University Press.

Ratcliff, J. W., & Metzener, D. E. (1988). Pattern matching:
The gestalt approach. Dr. Dobb’s Journal, 13(7), 46.

Sander, J., Ester, M., Kriegel, H.-P., & Xu, X. (1998). Density-
based clustering in spatial databases: The algorithm gdbscan
and its applications. Data Mining and Knowledge Discovery,
2, 169–194. doi: 10.1023/A:1009745219419

Sapkota, U., Bryant, B. R., & Sprague, A. (2012). Unsupervised
grammar inference using the minimum description length
principle. In Proc. of MLDM’12 (pp. 141–153). Springer.
doi: 10.1007/978-3-642-31537-4_12

Shannon, C. E. (1948). A mathematical theory of communi-
cation. Bell System Technical Journal, 27(3), 379–423. doi:
10.1002/j.1538-7305.1948.tb01338.x

Stevenson, A., & Cordy, J. R. (2013). Grammatical inference
in software engineering: An overview of the state of the art.
In Software language engineering (SLE’12) (pp. 204–223).
Springer. doi: 10.1007/978-3-642-36089-3_12

Strehl, A., Ghosh, J., & Mooney, R. (2000). Impact of similarity
measures on web-page clustering. In Workshop on artificial
intelligence for web search (AAAI’00) (pp. 58–64).

Taghva, K., & Veni, R. (2010). Effects of similarity metrics
on document clustering. In Proc. of ITNG’10 (pp. 222–226).
IEEE. doi: 10.1109/ITNG.2010.65

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994).
Clustal W: improving the sensitivity of progressive multiple
sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice. Nucleic
Acids Research, 22(22), 4673–4680. doi: 10.1093/nar/22.22
.4673

Ukkonen, E. (1992). Approximate string-matching with q-
grams and maximal matches. Theoretical Computer Science,
92(1), 191–211. doi: 10.1016/0304-3975(92)90143-4

University of Warwick. (2014). Sherlock: Plagiarism detec-
tion software. Department of Computer Science. Retrieved
from http://warwick.ac.uk/fac/sci/dcs/research/ias/software/
sherlock

Veni, R. (2009). Effects of similarity metrics on docu-
ment clustering (PhD Thesis, University of Nevada, Las
Vegas). Retrieved from http://digitalscholarship.unlv.edu/
thesesdissertations/71

White, D. R., & Joy, M. S. (2004). Sentence-based natural
language plagiarism detection. ACM Journal of Educational
Resources in Computing, 4(4), 1–20. doi: 10.1145/1086339
.1086341

Winkler, W. E. (1990). String comparator metrics and enhanced
decision rules in the fellegi-sunter model of record linkage.
Proc. of the Section on Survey Research Methods, 354–359.
Retrieved from http://eric.ed.gov/?id=ED325505

Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms.
IEEE Transactions on Neural Networks, 16(3), 645–678. doi:
10.1109/TNN.2005.845141

14 Juhnke et al.

http://dl.gi.de/handle/20.500.12116/2847
http://hdl.handle.net/2299/2114
http://warwick.ac.uk/fac/sci/dcs/research/ias/software/sherlock
http://warwick.ac.uk/fac/sci/dcs/research/ias/software/sherlock
http://digitalscholarship.unlv.edu/thesesdissertations/71
http://digitalscholarship.unlv.edu/thesesdissertations/71
http://eric.ed.gov/?id=ED325505

