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ABSTRACT Model-Based Systems Engineering (MBSE) enables system development and analysis on a suitable level of
abstraction. In the context of railway systems engineering, system verification is of major importance as software failures can
cause serious damage. At DB Netz AG, a railway infrastructure manager that operates large parts of the German railway
system, the challenge of enabling both high-level system modelling and formal system verification is addressed by employing
SysML, a widespread systems modelling language, and Event-B, a formal systems modelling language particularly suited for
automated system verification. In the currently applied completely manual development process, engineers (i) create models
using SysML, (ii) translate relevant parts of these models to Event-B for verification, (iii) possibly improve the Event-B models
based on verification results, and finally (iv) reflect these improvements in the original SysML models. This process is both
tedious and error-prone, clearly indicating a need for an increase in the level of automation.
In this paper, we argue that steps (ii) and (iv) can be viewed as a coupled forward transformation and a backward synchronisation,
respectively, as the SysML models cannot be completely reconstructed from their Event-B counterparts. Exploiting this
observation, we demonstrate that steps (ii) and (iv) can be suitably automated using a bidirectional transformation (bx) language.
With Triple Graph Grammars (TGGs) as a rule-based bx language, we establish a tool chain connecting the modelling tools
used at DB Netz AG for SysML and Event-B. We show the feasibility of our automation solution by solving three representative
case studies provided by DB Netz AG. Based on these case studies, we conduct a qualitative evaluation via semi-structured
interviews with domain experts.
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1. Introduction
Model-Based Systems Engineering (MBSE) advocates using
models to support all phases of systems engineering by intro-
ducing a suitable level of abstraction and automation (Hoang
2013). Models can be used to improve communication between
stakeholders, enable traceability across varying levels of abstrac-
tion, and boost productivity via code generation and other model
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transformations (Sendall & Kozaczynski 2003). MBSE, already
standard practice in domains such as defense and aerospace engi-
neering, is also gaining popularity in the railway domain, where
MBSE tools are used to create a standardised system architec-
ture, functions, and interfaces for railway systems (Amendola et
al. 2020). As failures of safety-critical systems such as railway
systems can lead to serious damage, a formal verification of
expected system behaviour is very important. To limit roll-back
and re-implementation costs, the verification and validation of
safety requirements should be integrated into the early stages of
development. (Freund 2012)

At DB Netz AG, a railway infrastructure manager that op-
erates major parts of the German railway system, an MBSE
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process is to be introduced for interface standardisation as part
of the EULYNX initiative1. To support high-level systems
modelling, the PTC Integrity Modeler2 is used for creating
Systems Modeling Language (SysML) (Object Management
Group 2019) state machines. While simulation-based testing
can be used to identify software faults in SysML models, a
formal proof of correctness with respect to expected system
behaviour is not supported. To overcome this limitation, Event-
B (Abrial & Hallerstede 2007; Hoang 2013) – a formal method
for system-level modelling and analysis – is used to verify
safety properties via proof obligations for all possible system
configurations. As a simulation and verification environment
for Event-B, the RODIN platform (Butler & Hallerstede 2007)
is used.

The current development process is depicted in Fig. 1 in an
informal notation inspired by Stevens (Stevens 2017). In step (i),
engineers create state machines (S) as SysML models. Relevant
parts of these models are then (step ii.1) translated manually
by experts in formal methods to semantically equivalent UML-
B (Snook & Butler 2006) state machines (U). In step (ii.2),
these UML-B models are transformed automatically into Event-
B code (E) using the UML-B plug-in of RODIN. The generated
Event-B code can then be verified against safety properties.
Results and insights gained from the formal verification are
reflected in the Event-B code (E’) in step (iii), and then have
to be manually propagated back to the original SysML models
(S’) in step (iv).
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Figure 1 Process Overview

The current process is tedious and error-prone due to the
manual transformation from SysML to UML-B state machines,
as well as the equally manual backward propagation of correc-
tions in the Event-B code to the original SysML models. The
intermediate UML-B representation is not required for the ver-
ification itself, but rather a necessary concession to keep the
manual transformation manageable, as writing Event-B code
directly is challenging. It is moreover impossible to certify
these manual steps of the process as there is no transformation
specification that could be reviewed by experts.

1 https://www.eulynx.eu/
2 https://www.ptc.com/en/products/windchill/modeler

In this paper, we argue that the SysML to Event-B forward
transformation and coupled backward synchronisation are best
viewed as a Bidirectional Transformation (BX) (Abou-Saleh et
al. 2016), as the SysML models cannot be simply reconstructed
from their Event-B counterparts. Instead, applied changes in the
Event-B model should be (incrementally) propagated back to
the SysML model based on the same consistency relation, being
a key property of BX languages. We apply Triple Graph Gram-
mars (TGGs) (Schürr 1994), a declarative rule-based approach
to BX, to encode the knowledge of practitioners about the con-
crete application scenario in a consistency relation from which
both rules for the forward transformation (initial generation of
the Event-B code) and backward synchronisation (propagation
of potential fixes to the SysML model) can be automatically
derived. At the same time, the generation of an intermediate
UML-B model can be completely omitted, merging (ii.1) and
(ii.2) into a single transformation step. Traceability informa-
tion between informal requirements and the modelled system,
specifically for safety properties, can further be maintained. We
demonstrate the feasibility of our approach by solving three
representative case studies provided by DB Netz AG. Based
on these case studies, we provide a qualitative evaluation by
conducting expert interviews with employees of the company to
assess the applicability of the proposed solution in practice. Our
contribution is therefore twofold: On the one hand, we present
a TGG-based BX from SysML to Event-B as an example for
bridging semantic gaps between a semi-formal and a formal
language. On the other hand, we investigate and evaluate a prac-
tical application scenario of a model-to-model transformation
from SysML and Event-B in the railway systems engineering
domain. The identified potential and limitations of our approach
can be used to drive further research towards improving the
practical applicability of model transformation technology.

The remainder of this paper is organised as follows: Af-
ter providing an overview of related approaches (Sect. 2), we
analyse SysML and Event-B to identify the relevant language
constructs for the required transformation (Sect. 3). By adding
further knowledge about the transformation process at DB Netz
AG, we define a consistency relation using TGG rules in Sect. 4.
The implemented tool chain is sketched in Sect. 5. Section 6
presents a qualitative evaluation of our approach based on three
representative case studies provided by DB Netz AG, used to
conduct semi-structured interviews with domain experts. Fi-
nally, Sect. 7 concludes the paper and proposes directions for
future research.

2. Related Work
Comparable to our contribution and focus in this paper, there
have been numerous projects investigating the application of
TGGs in an industrial context. Giese et al. present an ap-
proach for transforming SysML models to AUTOSAR3 using
TGGs (Giese et al. 2010). In contrast to our application, how-
ever, SysML block diagrams are transformed and not state ma-
chines. The application domain is also different, i.e., supporting
the transition from system design to software design in the

3 https://www.autosar.org/
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automotive domain as opposed to supporting formal analysis
for safety requirements in the railway domain. These differ-
ences also lead to a different set of relevant challenges: Giese
et al. focus on transforming and synchronising large models in
a scalable manner, while we focus more on comprehensibility
and expressiveness, especially regarding attribute manipulation.
Hermann et al. present an approach to translate satellite proce-
dures from one language to another also using TGGs (Hermann
et al. 2014). While Hermann et al. face similar challenges
as we do, in this case comprehensibility and formal correct-
ness of the transformation, the application domain is of course
different (aerospace vs railway). Moreover, the supported de-
velopment process is simpler than ours as Hermann et al. only
require a forward transformation while we require both a for-
ward transformation and a backward synchronisation. Blouin et
al. report on their experience of using TGGs to develop a syn-
chronisation layer between different tool environments for the
Architecture Analysis and Design Language (AADL), the Open
Source AADL Tool Environment (OSATE) textual editor and
the Adele graphical editor (Blouin et al. 2014). While Blouin
et al. also require true synchronisation (Adele does not cover
the entire AADL language), their focus and set of challenges
again differs from ours. Blouin et al. have to deal with very
large metamodels (i.e., require many TGG rules), and are more
concerned about establishing usable tooling (e.g., scalability)
and less about comprehensibility and formal correctness. In
general, existing industrial case studies with TGGs tend not to
focus on a qualitative evaluation, investigating instead quanti-
tative aspects such as scalability of the solution, which might
arguably not be the strongest argument for BX in general and
TGGs in particular. While previous TGG-based work on solv-
ing allocation problems in the software testing domain (Anjorin,
Weidmann, et al. 2020) did include a qualitative evaluation, it
was limited to a single test engineer and centred on consistency
checking not synchronisation.

Concerning our choice of TGGs as a BX language, Anjorin et
al. (Anjorin, Buchmann, et al. 2020) provide a recent overview
and benchmark of various BX languages, and state that TGGs
scale well in practice for transformation and synchronisation
tasks. To solve our use case we could have used any equally
mature BX language such as BiGUL (Ko et al. 2016). While we
cannot (yet) back the following conjecture with any empirical
evidence, we suspect that TGGs might be more comprehensible
than, e.g., BiGUL in the context of our application scenario
as relevant domain experts are familiar with visual modelling
languages and the concept of transformation rules, as opposed
to a functional approach and Haskell-like syntax. The situation
is probably completely reversed for other application domains.

The general problem of SysML not being sufficiently formal
has been addressed in different ways by numerous authors. Pais
et al. present an approach to transform SysML state machines
to Petri Nets (PNs) (Pais et al. 2014) to be able verify formal
properties, generate code, visualise and execute the resulting
PNs. As the authors use Atlas Transformation Language (ATL)
for the transformation it remains unclear how insights gained
from the formal analysis are reflected back to the SysML state
machines. Huang et al. present a transformation of SysML

activity diagrams to PNs also for formal verification (Huang et
al. 2020). According to the authors, the execution semantics
for Unified Modeling Language (UML) and SysML are not
sufficiently precise to be unambiguous and thus they use the
foundational UML (fUML) standard to provide a precise seman-
tic definition of SysML activity diagrams. Again it is unclear
how changes to the resulting PNs are reflected back to the corre-
sponding activity diagrams. There are several further examples
for transformations from SysML to formal languages such as
Alloy (Anastasakis et al. 2010), NuSMV (Caltais et al. 2016),
Promela (Caltais et al. 2020), or to CSP# processes (Ando et al.
2014). While it is possible to verify the transformation results
with state-of-the-art model checker in each case, the subsequent
incorporation of findings remains a manual task. In general, we
argue that the workflow of applying a “formalising” transfor-
mation, gaining insights from a formal analysis, and reflecting
these insights back to the initial models in a productive manner
is a clear application of BX languages.

3. Domain Analysis
In this section, we identify syntactic elements required for the
transformation from SysML to Event-B.

3.1. Running Example
As a running example, we introduce a small and simple case
study provided by DB Netz AG. The case study originates from
a technical specification and requirements document describing
a point machine interface to an interlocking. In railway sig-
nalling, an interlocking is the part of a signal apparatus that pre-
vents conflicting movements through an arrangement of tracks
such as junctions or crossings.4 An interlocking is designed so
that it is impossible to display a signal to proceed unless the
route to be used can be proven to be safe.

Figure 2 depicts the configu-

Figure 2 Point machine

ration of a point machine: Two
tracks represent two possible po-
sitions, denoted as left and right.
The lamps represent the position
of the tracks after the movement.
The main requirement is to move
the tracks to the left or right posi-
tion depending on the commands
from the interlocking. Being a
safety-critical system, properties
such as: “When the track is set to
right, the lamp should be lit” have
to be proven to hold as soon as the command is given by the
interlocking.

EULYNX5 develops the railway interlocking specification
and requirements, involving various state machine diagrams
for individual systems of the interlocking. These include level-
crossing systems, interlocking systems, light signalling systems,
and other auxiliary systems. Each of these systems interacts
and communicates with each other through a communication

4 https://projects.au.dk/into-cps/industry/railways-case-study/
5 https://www.eulynx.eu/
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interface, which must guarantee safe communication. To this
end, the relevant behavioural part, i.e., the state machines of
the SysML models must be verified against safety properties
necessary to fulfil user requirements. To perform the verifica-
tion, the state machines are transformed to Event-B code, so
that Event-B can be used as a formal method. To implement
this transformation, two questions must be clarified:

1. Which subsets of SysML and Event-B are sufficient for
the required verification?

2. Which model elements are semantically interrelated, and
how can they be consistently transformed?

Based on the list of state-machine diagram elements from the
SysML 1.6 specification (Object Management Group 2019),
we defined a supported subset of features sufficient to fulfill
the requirements of the involved stakeholders at DB Netz AG,
i.e., domain experts both in systems engineering and formal
verification. In the following, we briefly introduce the two
considered languages and identify respective subsets relevant
for the transformation.

3.2. SysML: A Semi-Formal Language
SysML was developed from UML as a general purpose lan-
guage for MBSE (Holt & Perry 2019). SysML can be regarded
as both an extension and a restriction of UML including nine
diagrams subdivided into structural (block definition diagram,
internal block diagram, package diagram), behavioural (use
case, activity, sequence, and state machine diagram), require-
ment and parametric diagrams. SysML is a primarily visual
modelling language and aims to be easily understood by system
engineers. It has gained popularity in different fields such as
aerospace, defence, and medical industries (Holt & Perry 2019).

While five SysML diagrams are used in the context of the
EULYNX initiative, we restrict ourselves to the transformation
of state machine diagrams in the scope of this paper. In the
following, we introduce the relevant concepts of SysML by
modelling the point machine (cf. Fig. 2) as a state-machine
diagram, depicted in Fig. 3.

Simple Point Machine

RIGHT

LEFT

12

1 when(move_point_left = TRUE) /
left := TRUE;
right := FALSE;

2 when(move_point_right = TRUE) /
left := FALSE;
right := TRUE;

Figure 3 SysML state machine for the point machine

3.2.1. State Machine and Region There are two types of
state machines: Behavioural state machines describe the be-
haviour of subsystems, whereas protocol state machines define
valid interaction sequences, denoted as protocols. For defining
the transformation to Event-B, the focus is set on behavioural

state machines.6 The point machine of Fig. 2 is depicted as a
state machine in Fig. 3, identified by its name on the top left. A
state machine can consist of multiple regions, while only one
region is necessary for this example.

3.2.2. State A state models a situation in the execution of a
state machine, during which some invariant condition holds (Ob-
ject Management Group 2015). States are also considered the
fundamental building blocks of the state machine. In each
active region, at most one state can be assumed at the same
time. States can be subdivided into simple, composite, and sub-
machine states; only simple states are relevant for the scope of
this paper. Simple states do not have any sub-states, regions or
internal transitions. Simple states can either be atomic or final
states. While atomic states have no special meaning, final states,
when active, indicate the completion of their parent region, i.e.,
the admissibility of a given input sequence. Figure 3 depicts
two simple states (LEFT and RIGHT), which are both atomic.

3.2.3. Pseudo-State The difference between a state and a
pseudo-state is that the latter cannot be assumed by the state
machine. Pseudo-states are typically used to connect multi-
ple transitions into more complex paths. For example, a fork
pseudo-state with a single incoming and multiple outgoing tran-
sitions can be regarded as a compound transition that leads to a
set of orthogonal target states. Pseudo-states can be classified as
initial states, junctions, choices, forks and joins, entry and exit
points or history states. In the scope of this paper, we restrict
ourselves to initial states, whereby an extension of the transfor-
mation towards other pseudo-state types is possible. In a region,
there can be at most one initial state present. The initial state
has only outgoing but no incoming transitions. The outgoing
transitions of the initial state cannot trigger any event and have
no guards. An initial state is depicted as a small solid filled
circle (cf. Fig. 3).

3.2.4. Transition, Event, Effect, Trigger, and Guard A
transition in a state machine is a directed association between
a source state and a target state, and can be expressed in the
following form:

transition ::= [trigger][guard]['/'effect]

In Fig. 3, three transitions are depicted as arrows between the
three states. An optional trigger can be used to specify an event
that induces a state transition. An event is a notable occurrence
at a point in time that causes a reaction of the state machine.
These reactions lead to an execution step of the modelled be-
haviour. For example, a signal event may trigger a transition
of a state machine. In Fig. 3, for instance, move_point_left
triggers the transition from RIGHT to LEFT. An optional guard
specifies additional constraints as a boolean expression. An op-
tional effect is an action to be executed when its transition fires.
While effects are sufficient for our current considerations, fur-
ther action types such as entry, exit, and do actions can be added
as an extension of the transformation. Considering the running

6 To distinguish state machines from the eponymous diagram type of the UML,
they are also referred to as SysML state machines.
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example of Fig. 3, the variables left and right are set to TRUE
and FALSE as an effect, respectively, when the transition from
RIGHT to LEFT fires.

3.2.5. Port Ports are interfaces via which external entities
can connect to and interact with the specified system. In
the running example, the point machine receives the instruc-
tion whether to move to the right or to the left via ports
(move_point_left, move_point_right). Ports are often
used to trigger events.

3.3. Event-B: A Formal Language
Even though the behaviour of the point machine can be specified
with a SysML state-machine as presented, it is not possible
to verify safety-related properties. The chosen solution for
formal verification in the context of the EULYNX initiative is to
transform SysML state-machines into formal Event-B models.
An overview of the relevant syntactic constructs of the Event-B
language is therefore provided in the following.

Event-B is a formal method for system level modelling and
analysis.7 Its key features are the use of set theory as a mod-
elling notation, defining a system at different levels of abstrac-
tion via refinements, and the verification of formal properties
via theorems and invariants (Abrial & Hallerstede 2007). An
Event-B model comprises two main components, a Machine
and Context. For the transformation of SysML state machines,
the former is sufficient.

3.3.1. Machine, Variables, Events In Event-B, a machine
defines the behavioural properties of the model. Each machine
is composed of variables (v), invariants (I(v)), and a collection
of transitions denoted as events (cf. the schematic example8

depicted in Fig. 4). There are further optional building blocks
annotated with a * in Fig. 4: A machine can refine another
machine and be embedded into one or more contexts. Refined
machines have an additional variant block containing an ex-
pression that is unique for the machine. Theorems R(v) are
additional properties that must be derivable from the set of in-
variants I(v). For each theorem, a proof obligation is generated
to prove that the theorem is derivable from the invariants, i.e.,
I(v) ` R(v) (Hoang 2013). As the mandatory components
are sufficient for describing the running example, we will now
describe them in the remainder of this section.

The set of variables v defines the current state of a Event-B
machine, and is used in several other language constructs. To
model the point machine, six boolean variables are required (cf.
Fig. 5): For the current position of the point machine (RIGHT,
LEFT), for the next possible movement direction (right, left),
and for the actual movement commands from outside the system
(move_point_right, move_point_left).

3.3.2. Invariants Invariants I(v) define constraints which
have to hold at any time, i.e., in each possible state of the
machine. They can involve one or more variables forming
an expression in first order logic. Each invariant has a label,

7 http://www.event-b.org/
8 Adapted from http://deploy-eprints.ecs.soton.ac.uk/11/3/notation-1.5.pdf

MACHINE
<machine_identifier>

REFINES *
<machine_identifier>

SEES *
<context_identifier>
. . .

VARIABLES
<variable_identifier>
. . .

INVARIANTS
<label> : <predicate>
. . .

THEOREMS *
<label> : <predicate>
. . .

EVENTS
<label>=̂
STATUS

<status>
WHEN

<label> : <guard>
. . .

THEN
<label> : <action>
. . .

END
. . .

VARIANT *
<variant>

END

Figure 4 Event-B Machine Structure Example

followed by a colon and an expression. In Fig. 6, the invari-
ants typeof_RIGHT, typeof_LEFT, inv4, inv5, inv6 and
inv10 only define the data types of the respective variables;
inv3, inv7, inv8, and inv9 state that the involved variables
must either be true or false, i.e., are never undefined. Finally,
distinct_states_in_position ensures that the machine
cannot be in state RIGHT and LEFT at the same time (position
refers to the machine here). The predefined predicate parti-
tion(S,x,y) ensures that a set S can be partitioned into x and y,
i.e. x ∩ y = ∅ and x ∪ y = S, so exactly one of the variables
RIGHT and LEFT must be set to TRUE.

3.3.3. Events, Guards, Actions As a machine specifies
the dynamic behaviour of an Event-B model, events are essen-
tial to trigger changes from one machine state to another. Events

MACHINE
machine

VARIABLES
RIGHT
LEFT
right
left
move_point_left
move_point_right
. . .

END

Figure 5 Event-B: Machine with variables
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INVARIANTS
typeof_RIGHT : RIGHT ∈ BOOL
typeof_LEFT : LEFT ∈ BOOL
distinct_states_in_position : partition({TRUE},

{RIGHT} ∩ {TRUE}, {LEFT} ∩ {TRUE})
inv3 : (left=TRUE) ∨ (left=FALSE)
inv4 : right ∈ BOOL
inv5 : left ∈ BOOL
inv6 : move_point_right ∈ BOOL
inv7 : (right=TRUE) ∨ (right=FALSE)
inv8 : (move_point_left=TRUE) ∨

(move_point_left=FALSE)
inv9 : (move_point_right=TRUE) ∨

(move_point_right=FALSE)
inv10 : move_point_left ∈ BOOL

Figure 6 Event-B: Invariants

involve a set of variables v and parameters x for these variables.
An event e occurs in some state, if there exists some value for
its parameter x such that the guard G(x, v) holds in that state.
In Fig. 7, there are two events that describe the transition from
the state RIGHT to LEFT (next_position) and in the opposite
direction (current_position). To move the point machine
from RIGHT to LEFT, the machine must be in the state RIGHT
(isin_RIGHT) and there must be a command to move it to the
other state (position_guards1). These two conditions repre-
sent the guard of the event. For the current_position event,
the opposite must hold. Actions describe how state variable
values change when an event occurs. Similar to a guard, an
action Q(x, v) involves parameters x and variables v. As soon
as the event occurs, the specified values are assigned to the
respective variables. Each assignment is identified by a label
(cf. Fig. 7). In case of the next_position event, the variables
RIGHT and LEFT flip their values, as well as the variables for
the next movement (right and left). As depicted in Fig. 7,
a guard is a block following the keyword WHEN, the action is
surrounded by the keywords THEN and END.

There are also events that do not have a guard, i.e., only con-
sist of an action block. In our example, the initialisation event
brings the point machine into the state RIGHT at the beginning,
depicted in Fig. 8. Syntactically, the WHEN block is omitted, and
the keyword THEN is replaced by BEGIN.

4. Transformation Design
According to the TGG approach, a transformation designer must
specify a consistency relation between the involved languages
(here the relevant subsets of SysML and Event-B). A TGG tool
is then able to automatically derive various operations from the
single consistency relation, including a forward transformation
and backward synchronisation as required for our application.
The TGG approach guarantees that all derived operations are
correct in the sense that they always result in consistent triples
according to the provided consistency relation.

After identifying relevant subsets of the involved modelling
languages (cf. Sect. 3), the next step in the TGG transforma-
tion design process is to identify semantic similarities, i.e., the
semantic overlap of both languages (cf. Sect. 4.1). This is for-
malised as a triple metamodel with correspondence link types

EVENTS
. . .
next_position =

∧

STATUS
ordinary

WHEN
isin_RIGHT : RIGHT = TRUE
position_guards1 : move_point_left = TRUE

THEN
leave_RIGHT : RIGHT := FALSE
position_actions1 : left := TRUE
position_actions4 : right:= FALSE
enter_LEFT : LEFT := TRUE

END

current_position =
∧

STATUS
ordinary

WHEN
isin_LEFT : LEFT = TRUE
position_guards2 : move_point_right = TRUE

THEN
leave_LEFT : LEFT := FALSE
position_actions2 : right := TRUE
position_actions3 : left := FALSE
enter_RIGHT : RIGHT := TRUE

END

Figure 7 Event-B: Move Events

EVENTS
INITIALISATION =̂
STATUS
ordinary

BEGIN
init_RIGHT : RIGHT := TRUE
init_LEFT : LEFT := FALSE
act1 : move_point_left := TRUE
act2 : right := FALSE
act3 : left := FALSE
act4 : move_point_right := TRUE

END
. . .

Figure 8 Event-B: Initialisation Event

connecting semantically overlapping types. Finally, based on
the triple metamodel, a rule-based definition of the consistency
relation completes the specification.

4.1. Semantic Similarities and Triple Metamodel
Our aim is to identify similarities in the semantics of the two
languages such that SysML models can be transformed into
Event-B models in a semantics preserving manner. Doing this
requires domain knowledge from experts familiar with both
languages. Figure 9 depicts the relevant excerpt of the SysML
metamodel for state machines to the left, the Event-B meta-
model to the right, and the mapping in form of correspondences
(denoted as diamonds), which are connected to the respective
metamodel elements. To improve readability, only multiplicities
different from 1 for the source and 0..* for the target of an
association are depicted.

The Statemachine class defines the primary behaviour of

6 Weidmann et al.



Statemachine

name : EString

Machine

name : EString

Region

name : EString

Transition

name : EString

State

name : EString

Effect

name : EString

body : EString

Event

name : EString

Action

name : EString

action : EString

Trigger

name : EString

body : EString

Guard

name : EString

predicate : EString

Invariant

name : EString

predicate : EString

Variable

name : EString

regions

events

transitions

subvertex

variables

invariants

actions

triggers

guardssource target

effects

Port

name : EString

ports

11

Pseudostate

kind : EString

Guard

name : EString

body : EString

guards

Figure 9 Triple Metamodel

the modelled system and consists of Regions and Ports. The
Event-B Machine, which consists of Variables, Invariants
and Events, has the same purpose, so these classes correspond
to each other. In the SysML metamodel, a Region consists of
States and Transitions but has no direct correspondence in
the Event-B metamodel. The States of a SysML state machine
correspond to Variables in the Event-B model. As they can
also be involved in the definition of Invariants, Guards, and
Actions, correspondence links to these language constructs are
also required. Invariants in Event-B specify the properties
that a Variable must satisfy before and after each Event. For
example, the data type and value ranges of variables that cor-
respond to SysML States are specified by Invariants. A
Transition in SysML is annotated with Triggers, Guards
and Effects, and it represents the directed relation between a
source and a target State. Activating a Transition is similar
to the occurrence of an Event in Event-B, thus these elements
are connected via a correspondence. An Event incorporates
Guards to restrict its occurrences and Actions that take place
during the Event. Guards and Actions in Event-B thus cor-
respond to Triggers, Guards, and Effects in SysML as de-
picted in Fig. 9. Ports in SysML state machines are used for
communication with external components. They are used to
trigger Events and are therefore represented as Variables in
the Event-B model. In Sect. 3.2, we made a distinction between
States and Pseudostates, with the latter being a subclass

of the former in the SysML metamodel. Pseudostates do
not have a direct correspondence in Event-B and do not need
to be translated. Their adjacent Transitions, however, cor-
respond to Events (cf. Fig. 8), such that the semantics of
Pseudostates has an indirect influence on the Event-B model.
Such details cannot be expressed solely using the triple meta-
model, however, as it is mainly used for typing model elements
and defining mappings between nodes of particular types. In-
stead, TGG rules are used to fully specify the desired consis-
tency relation between the languages, which is presented next.

4.2. A Consistency Relation as a Triple Graph Grammar
Consistency management is a key challenge in the field of
Model-Driven Engineering (MDE), as domain experts of differ-
ent fields of expertise work on different models concurrently.
TGGs are a well-known approach to consistency management
with the unique advantage of being declarative enough to ad-
dress multiple consistency management operations with the
same specification, while still achieving an acceptable level of
scalability for realistic application scenarios (Anjorin, Buch-
mann, et al. 2020). TGGs were introduced by Schürr (Schürr
1994) as a technique for bidirectional model transformation. As
a BX language, TGGs can be viewed as a practical implementa-
tion of the delta-lens framework, based on the mature theory of
algebraic graph transformation (Anjorin 2016). From a single
declarative specification, rules for different operations includ-
ing forward and backward transformation, consistency checks,
and model synchronisation, can be automatically derived. In
the application scenario under consideration, a forward trans-
formation (initial transformation from SysML to Event-B) and
a backward synchronisation (propagating updates/fixes from
Event-B back to SysML) are of special interest. In addition to
potentially9 reducing execution times, an incremental synchro-
nisation of updates is an elegant means of retaining existing
and unchanged structure that does not have a corresponding
construct in the updated model (e.g. Regions in SysML).

A TGG defines a consistency relation between two languages
by generating a language of admissible, i.e. consistent, triple
graphs. The triple graphs consist of connected source, target,
and correspondence models, typed over a triple metamodel (cf.
Fig. 9), also denoted as a TGG schema. All model triples that
can be generated by a finite sequence of TGG rules starting
from an empty triple graph, form the language of the respective
TGG. A given model triple is consistent with respect to a TGG
if it is a member of the language of the TGG.

To specify a suitable consistency relation of SysML state
machines and Event-B models, a TGG was defined for the
application scenario in close cooperation with domain and trans-
formation experts at DB Netz AG. 14 rules were defined in total,
from which we now present a selected rule to demonstrate how
the required transformation and synchronisation operations are
automatically derived. The complete set of TGG rules in their
visual representation is available online10.

In Fig. 10, the rule DefaultTargetStateToEnterAction

9 Some BX languages require longer execution times for incremental modi (An-
jorin, Buchmann, et al. 2020)

10 https://bit.ly/3aFuKSH
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is depicted. It allocates an existing State to a Transition
in SysML, and creates a corresponding Action in the Event-B
model. The new Action is connected to the SysML State
via a correspondence link. To be able to apply this rule, sev-
eral elements must already exist: Besides the State, there
must be a Transition in the same Region of the SysML
Statemachine. This Transition must correspond to an
Event of an Event-B Machine that in turn corresponds to the
correct SysML Statemachine; the new Action is added to
the Event. The elements required to exist before applying the
rule, also referred to as context elements, are coloured black,
whereas elements created by applying the rule are green and
have a ++ mark-up.

sm : Statemachine m : Machine

r : Region

t : Transition

s : State

e : Event

a : Action

regions
events

transitions
subvertex

actionstarget
++

++

++

++

setEnterAction(s.name, a.name)
setEnterPredicate(a.name, a.action)

Figure 10 Declarative TGG rule

Finally, there are two attribute conditions attached to the rule,
represented in a textual concrete syntax at the bottom of Fig. 10.
These attribute conditions must evaluate to true after rule ap-
plication, i.e., can express conditions between attributes of exist-
ing elements as an additional precondition for rule application,
or include attributes of newly created elements representing a
postcondition over attribute values. While there is a library of
standard attribute conditions, it is also possible to implement
new conditions (Anjorin et al. 2012) such as setEnterAction
and setEnterPredicate for a specific application scenario.

To use TGG rules for model transformations, they have to
be operationalised for the specific transformation scenario. In
Fig. 11, the rule shown in Fig. 10 is operationalised for a for-
ward transformation, i.e. in this case the transformation from
SysML to Event-B. As the source model is provided as input in
this scenario, all context elements of the declarative rule must
be already translated, which is indicated by a respective marker
(X�). As the “created” edge from t to s already exists, it is
marked as translated by applying this operational rule (� →
X�). Compared to the declarative rule (Fig. 10), the target and
correspondence model elements in the operational rule are un-
changed as they are constructed analogously during the forward
transformation process. In this manner, all declarative rules
are systematically operationalised to derive corresponding for-
ward rules. The forward rules are then used by an algorithm
to realise a forward transformation. Conceptually, all that has

to be done is to search for an applicable forward rule, apply
it, and continue the process until no forward rule is applicable,
i.e., all input elements are marked as translated. To ensure that
this process always results in a consistent triple (correctness),
does not fail if such a consistent result exists (completeness),
and is reasonably efficient years of research have been invested
in developing translation algorithms for TGGs. The interested
reader is referred to e.g., Schürr et al. (Schürr & Klar 2008) for
further details.

sm : Statemachine m : Machine

r : Region

t : Transition

s : State

e : Event

a : Action

regions
events

transitions

subvertex
actionstarget

++

++

++

setEnterAction(s.name, a.name)
setEnterPredicate(a.name, a.action)

Figure 11 Forward Transformation Rule

We now provide some more details concerning the two in-
volved attribute conditions, depicted in Fig. 12 and 13 in an
abbreviated form. Attribute conditions specify the consistency
relation between attributes in different models (cf. (Anjorin et
al. 2012; Lambers et al. 2012; Guerra et al. 2009)). The attribute
condition setEnterAction relates the values of the SysML
State name and the Event-B Action label. These values are
stored in the variables v0 and v1, respectively. The binding
state of the involved attributes can be obtained (Line 5), and is
a sequence of B (for bound) or F (for free) for every attribute. If
the State name is bound and the Action label free, i.e., case
BF, the label is set by adding a prefix (Line 9), satisfying the
condition (Line 10). If both attributes are bound, i.e., case BB,
the condition is satisfied if their values correspond as expected
(Line 14-15). All other cases can be handled analogously.

Two important points should be noted: (i) Such an at-
tribute condition is implemented once and can be combined
freely with other attribute conditions in any order in multi-
ple TGG rules. (ii) As part of the operationalisation pro-
cess, the correct order of conditions and choice of binding
states is computed. This ensures that a compact library of
attribute conditions can be implemented and reused flexi-
bly. For example, setEnterAction could be implemented as
addPrefix("enter_", s.name, a.name) with a generic li-
brary attribute condition addPrefix (Anjorin et al. 2012).

The second attribute condition setEnterPredicate
(Fig. 13) operates on the label (name) and the actual instruction
(action) of an Action. This means that it is used to ensure
intra-model consistency as it only refers to the target model. Let
us consider the case of BB, i.e., both attributes are bound, which

8 Weidmann et al.



1 public class setEnterAction extends AttrCond {
2 public void solve() {
3 var v0 = variables.get(0);
4 var v1 = variables.get(1);
5 var bindingState = getBindingState(v0, v1);
6
7 switch(bindingState){
8 case "BF": {
9 v1.bindTo("enter_" + v0.getValue());

10 setSatisfied(true);
11 return;
12 }
13 case "BB": {
14 setSatisfied(v1.getValue().equals(
15 "enter_" + v0.getValue()));
16 return;
17 }
18 case "FB": {. . .}
19 case "FF": {. . .}
20 }
21 }
22 }

Figure 12 Attribute Condition setEnterAction

is especially relevant for backward transformation and synchro-
nisation (the Event-B model is provided as input). On Line 10,
the condition checks if the label starts with "enter_" as for
example in "enter_LEFT : LEFT := TRUE" from Fig. 7. If
this is the case, then the expected instruction should be, e.g.,
"LEFT := TRUE" for label "enter_LEFT". This check is im-
plemented on Line 12 – 14. For all other cases, the condition is
not satisfied and therefore blocks the application of the corre-
sponding rule.

1 public class setEnterPredicate extends AttrCond {
2 public void solve() {
3 var v0 = variables.get(0);
4 var v1 = variables.get(1);
5 var bindingState = getBindingState(v0, v1);
6
7 switch(bindingSate){
8 case "BB": {
9 var name = v0.getValue();

10 if(name.startsWith("enter_")){
11 var expectedAction =
12 name.replace("enter_", "") + " := TRUE";
13 setSatisfied(v1.getValue().equals(
14 expectedAction);
15 } else {
16 setSatisfied(false);
17 }
18 return;
19 }
20 case "FF" {. . .}
21 . . .
22 }
23 }
24 }

Figure 13 Attribute Condition setEnterPredicate

The presented triple metamodel and rules only cover the
basic language constructs, and can be extended to handle, e.g.,
composed states and include them in the scope of the transfor-
mation, which is left to future work due to space limitations.

5. Implementation
This section introduces the tool-chain used to implement the
transformation, and sketches the work-flow established for the
existing tools at DB Netz AG.

5.1. PTC Integrity Modeler

For creating SysML models, the PTC Integrity Modeler1112

is used at DB Netz AG. The PTC Integrity Modeler provides
a development environment that allows different systems en-
gineering teams to work in a collaborative setting, from the
conceptual level to the delivery and maintenance of the system.
It helps define an unambiguous single model definition of the
system, including requirements, functions, as well as hardware
and software components. Besides SysML, several other OMG
standards are supported, including UML, Unified Profile for
DoDAF/MODAF (UPDM), and Open Verification Methodol-
ogy (OVM). For creating SysML state machines, a visual editor
is used. It is also possible to simulate modelled behaviour to
detect errors in early stages of development. The tool provides
interfaces for synchronisation with other modelling tools (e.g.
Simulink13, Doors14). Code in different general purpose lan-
guages (e.g. C, C++, Java and Ada) can be generated from
the models (Zolotas et al. 2020). For our tool integration solu-
tion, the model export to Eclipse Modelling Framework (EMF)-
compatible XML Metadata Interchange (XMI) is relevant.

5.2. RODIN Platform
As an Integrated Development Environment (IDE) for formal
modelling with Event-B, the RODIN tool (Abrial et al. 2010) is
used at DB Netz AG. It is provided as an open-source Eclipse
plug-in that supports the construction and verification of Event-
B models. Besides basic support for formal modelling, RODIN
provides feedback for the developer at design-time. Event-B
development (modelling and programming), and formal verifi-
cation are decoupled into distinct phases to ease, for example,
tracing the origin of a failed proof obligation. As verification
techniques, both model checking and theorem proving are sup-
ported. Model checking can be used as a pre-filter, before
theorem provers are applied to proof obligations (Abrial et al.
2010). In addition to their textual representation, formal models
can be visualised and simulated to make the models more com-
prehensible for the developer. These features are integrated via
a range of plug-ins for the RODIN platform. Various analysis
tools, such as theorem provers15, model checkers16, step-wise
simulation17 and translation tools such as for UML-B18 have
been developed as extensions for the RODIN platform. The
UML-B plug-in, for instance, helps to diagrammatically vi-
sualise the formal model, and thereby aids construction and

11 https://www.mathworks.com/products/connections/product_detail/
ptc-integrity-modeler.html

12 https://www.ptc.com/en/products/windchill/modeler
13 https://www.mathworks.com/products/simulink.html
14 http://www-03.ibm.com/software/products/en/ratidoor
15 http://www.b4free.com/index.html
16 http://www.stups.uni-duesseldorf.de/ProB/overview.php
17 http://www.brama.fr/indexen.html
18 users.ecs.soton.ac.uk/cfs/umlb.html
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validation. Event-B machines are stored and imported as XMB
files, which are syntactically similar to XMI files. XMB files
can be visualised with the Rose Structured Editor from different
viewpoints.

5.3. eMoflon::IBeX
To bridge the modelling environments for SysML and Event-
B (cf. Fig. 14), an additional tool is required to perform
the transformation and synchronisation steps in both direc-
tions. In our approach, the TGG-based model management tool
eMoflon::IBeX19 is used to address this task. Although only
forward transformation and backward synchronisation are of pri-
mary interest for our application, eMoflon::IBeX also supports
other consistency management operations including consistency
checking and (concurrent) model synchronisation (Weidmann
et al. 2019). Similar to RODIN, eMoflon::IBeX is an open-
source Eclipse plug-in. Several external components can be
attached via defined interfaces, including incremental graph
pattern matchers and Integer Linear Programming (ILP) solvers,
leading to a modular software architecture. Both triple meta-
models and TGG rules are specified in a textual concrete syntax,
complemented with a simultaneous read-only visualisation us-
ing PlantUML20. Additional attribute conditions from an exten-
sible library of conditions implemented in Java (cf. Sect. 4.2)
can be specified in a simple textual concrete syntax (Weidmann
et al. 2019). Metamodels for source, target, and correspondence
models as well as the respective models are all EMF compatible
and can be persisted in any EMF compatible format including
the default XMI. The common use of EMF as a modelling
standard substantially eases the establishment of a tool-chain to
connect PTC Integrity Modeler, eMoflon::IBeX, and RODIN.

5.4. From PTC Integrity Modeler to RODIN and Back
The setup for the established tool integration is depicted in
Fig. 14. eMoflon::IBeX is used as a bridge between the PTC
Integrity Modeler and RODIN. After specifying the consistency
relation between SysML state machines and Event-B as triple
metamodel and a TGG, eMoflon::IBeX is used to operationalise
the TGG as required for the scenario.

initial SysML
models (XMI)

transformed Event-B
models (XMI)

updated Event-B
models (XMB)

transformed SysML
models (XMI)

Figure 14 Overview of the Tool Integration Setup

The behaviour modelling of the system is done using SysML
with the PTC Integrity Modeler. The resulting model is exported
as an XMI file from which a relevant part (state machines) is
extracted and passed on as the input model for eMoflon::IBeX.

19 emoflon.org
20 plantuml.com/

The forward transformation is executed by eMoflon::IBeX, us-
ing the derived forward rules and a generic forward transfor-
mation algorithm. The output of this forward transformation
is a correspondence and target model that extend the source
model to a consistent triple. A transformation protocol is also
generated containing information about which rules were ex-
ecuted in which order to create which elements. While only
the target model is strictly required for the tool integration, the
correspondence model and transformation protocol are useful
for debugging and understanding the transformation, e.g. with
MDE debuggers for TGGs (Giese et al. 2014; Weidmann et al.
2020). The next step is to convert21 the generated target model
from XMI to XMB and to import it into RODIN. After this
RODIN is used to automatically generate Event-B code from
the XMB file. The Event-B code can now be used to perform
formal verification and check if all safety requirements are ful-
filled. Gained insights are integrated directly in the Event-B
code, resulting in a new version. To reflect these changes to
the Event-B code back to SysML, the backward synchronisa-
tion with eMoflon::IBeX requires (i) the old triple of source,
correspondence, and target models, and (ii) a target delta repre-
senting the changes applied to the target model, which should
be backward propagated incrementally to the existing source
model. Currently, this target delta (also a model) must be cre-
ated manually based on a text diff between the initial and final
Event-B code. This is certainly a step that could be improved in
the future by automatically transforming a diff on Event-B code
to a target delta that eMoflon::IBeX directly understands.

The current state of the implementation should be regarded
as a proof-of-concept prototype as (i) the level of automation
can still be improved, and (ii) only the most important parts
of the two behavioural models are covered. We are convinced,
however, that the scope can be extended to cover the remaining
parts of the state machine specification and even further SysML
models without fundamentally changing the overall work-flow.
Using XMI as a uniform data exchange format seems promising
as it is supported by all three tools, but has a number of draw-
backs including its missing ability to represent diffs or delta
structures (Zolotas et al. 2020). Further tool integration could
replace XMI by a more suitable standard for data exchange. To
assess strengths, weaknesses, and the potential of our approach,
the results of a qualitative evaluation are presented in Sect. 6.

6. Evaluation
We now provide a qualitative evaluation of our implemented so-
lution based on three small but representative test cases provided
by DB Netz AG. After running the transformation and synchro-
nisation chain for the three test cases, we then conducted a semi-
structured interview with three SysML and Event-B modelling
experts at DB Netz AG. In particular, we aimed to investigate
the following research questions:

RQ1 Feasibility: Is it possible to transform representative exam-
ples of SysML state machines into Event-B (Sect. 6.1)?

21 In most cases this just involves changing the extension of the file from “.xmi”
to “.xmb”.

10 Weidmann et al.
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RQ2 How is the applicability, extensibility and usability of the
solution perceived by relevant practitioners (Sect. 6.2)?

6.1. Representative Test Cases
This section briefly introduces the three test cases used for
our evaluation. To validated the transformation results, formal
modelling experts at DB Netz compared them to the expected
Event-B models and conducted simulations using the RODIN
platform. Although the test cases are rather simple and contain
only language elements that were presented in Sect. 3.2, they
differ in the structure of transitions and states, and combine
different triggers and actions with each other. In particular, they
can be used to investigate whether the rule-based transforma-
tion produces a correct result that complies with the modelling
experts’ expectations.

6.1.1. Log-In Form State Machine The first test case con-
sists of a state machine designed for a simple log-in process.
It consist of three states: In the IDLE state, the log-in form
is ready to accept requests, while the ACTIVE state indicates
that a user has logged into the system. The SERVICE_ERROR
state represents an error state for the system. It is possible to
switch between IDLE and ACTIVE, as well as between IDLE and
SERVICE_ERROR, whereas a direct transition from ACTIVE to
SERVICE_ERROR is not possible. The transition 1 has a trigger
(in round brackets) and a guard (in square brackets), whereas
all other transitions have only one trigger. Figure 15 depicts the
state machine for the log-in form.

Log-in Form

IDLE

ACTIVE

SERVICE_ERROR

1

2

3

4

1 when(Insert_Card = TRUE)
[Finish = FALSE] /
Card_Inserted := TRUE;
Service_Fixed := FALSE;
Finish := FALSE;

2 when(Insert_Card = FALSE) /
Card_Inserted := FALSE;
Finish := TRUE;

3 when(Check_Service = FALSE) /
Service_Error := FALSE;
Service_Fixed := TRUE;

4 when(Check_Service = TRUE) /
Finish := FALSE;
Service_Error := TRUE;
Service_Fixed := FALSE;

Figure 15 Test Case 1: Log-In Form State Machine

6.1.2. Light System This state machine represents a basic
Light System. Similar to the log-in form test case, there are
three states, of which one is an error state. In this example,
however, there is a transition from the state ON to the state
SYSTEM_ERROR, forming a cycle between all three states. Fig-
ure 16 depicts the state machine for light system.

6.1.3. Trip Planner System This test case is slightly more
complex than the previous two as there is a fourth state and a
fifth transition to be transformed. The system models a trip plan-
ner, e.g. for a cab ride. As soon as a user requests a trip, they
are asked to pay a certain amount of money (1). The user can
either confirm the payment and choose a driver (3) or go back to

Light System

OFF

ON

SYSTEM_ERROR

12

3

4

1 when(switch_on = TRUE) /
light_on := TRUE;
light_off := FALSE;
shut_system := FALSE;

2 when(switch_on = FALSE) /
light_on := FALSE;
light_off := TRUE;

3 when(switch_error = TRUE) /
light_on := FALSE;
light_error := TRUE;
shut_system := FALSE;

4 when(switch_error = FALSE) /
light_error := FALSE;
shut_system := TRUE;

Figure 16 Test Case 2: Light System State Machine

modify the requested trip (2). Transition 4 represents the com-
pletion of the trip. With the last step (5), the driver is unassigned
and the state machine goes back to the state TRIP_REQUESTED.
Figure 17 shows the state machine for the trip planning system.

Trip Planning System

TRIP_REQUESTED

PAYMENT

DRIVER_ASSIGNED

DRIVER_UNASSIGNED
_AND_TRIP_END

12

3

4

5

1 when(payment = TRUE) /
payment_requested := TRUE;
payment_failed := FALSE;

2 when(payment = FALSE) /
payment_requested := FALSE;
payment_failed := TRUE;

3 when(payment_success = TRUE) /
payment_successful := TRUE;

4 when(driver_assigned = TRUE) /
driver_cancelled := FALSE;
trip_completed := TRUE;
payment_successful := FALSE;

5 when(driver_assigned = FALSE) /
driver_cancelled := TRUE;
trip_completed := FALSE;

Figure 17 Test Case 3: Trip Planning System State Machine

Using our implemented solution, Event-B machines could
be generated from the SysML input models. The generated
Event-B machines were all syntactically correct and could be
displayed in the RODIN platform. According to domain experts,
the transformation works as expected for the three test cases.

6.2. Interviews with Modelling Experts and a Project
Manager at DB Netz AG

To investigate RQ2, we conducted three semi-structured inter-
views presented in the following, which were based on the
implemented test cases. We were able to obtain interviews with
(i) a modelling expert from the SysML semi-formal modelling
side, and (ii) a modelling expert from the Event-B formal mod-
elling side in order to get technical feedback, as well as with
(iii) a project manager in order to get feedback on the com-
plete approach and aspects related to strategic plans for future
developments. The interviews presented in this section are a
summary of the complete interviews provided online22.

22 https://bit.ly/3aFuKSH
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6.2.1. Applicability The modelling experts expect the rule-
based transformation to save time and lower the error rate com-
pared to the current manual process. Even for project members
with only basic knowledge about formal modelling, it should
now be possible to generate and verify the formal model pro-
duced from a SysML state machine thanks to the fully auto-
mated procedure. Furthermore, based on expert reviews of the
TGG, a certification of the entire process is now a possibility.

In order to use the approach in practice, the considered sub-
sets of the SysML and Event-B metamodels must be sufficiently
large. For a first proof-of-concept version, the currently sup-
ported subsets are sufficient but must be extended in the future.
This extension depends on requirements, however, as it is im-
portant to only cover features that are actually useful for the
formal verification process.

An advantage of using a BX language for the transformation
is that several other consistency management operations can be
derived from the same specification, i.e., from the developed
TGG. While forward transformation and backward synchroni-
sation are currently most relevant to reflect fixes in the formal
model back to the semi-formal model, also forward synchro-
nisation could be relevant for reflecting changes in the SysML
model at later stages of the engineering process. Other sup-
ported operations, such as consistency checking, are certainly
perceived as being potentially useful for future workflows in the
context of the EULYNX project.

Considering the goals of the EULYNX project, the automated
approach supports the synergetic combination of formal and
semi-formal methods. A primary goal in EULYNX was to
establish a well-understandable semi-formal language such as
SysML to be used by all project partners, as well as to offer
separate, complementary formal verification facilities. With
the automated approach, this goal can be achieved to enable
a uniform validation and verification process that incorporates
safety requirements.

6.2.2. Extensibility As the EULYNX project is constantly
evolving, it is important to have a solution that can easily be
adapted and extended. For example, a recent change was the
replacement of flow ports by proxy ports, so the supported
SysML language subset would have to be extended accordingly.
As the EULYNX specification also involves interconnected state
machines, the current subsets also have to be extended to handle
such state machines as well.

According to the interviewees, the automated approach can
be easily extended and adapted to the expectations of the formal
modelling experts for verification. The current transformation
results provide a solid basis for the further development of
the tool-chain by providing reliable results. The only thing
lacking at the moment is “conformity”, which means that the
translated models are not yet certified. If the complete TGG-
based tool chain could be certified, then the overall validation
and verification approach could be provided to other project
members using different target formal modelling languages.

Regarding the future role of the automated transformation
in research projects, a medium-term goal is to convince the

project managers of EULYNX and RCA23 of the importance of
an automated transformation approach. A short-term goal is to
apply the approach to EULYNX models, which can form the
concrete basis to convince other project members.

6.2.3. Usability As the complete transformation process
still requires some user interaction, usability aspects of the
tool-chain cannot be ignored. The most important manual steps
are including safety requirements and safety invariants. An addi-
tional manual step is to add further invariants of two types: State
invariants have to hold for a single state, whereas global invari-
ants apply to the complete model. While state invariants can
already be generated automatically, global invariants must be
specified and added manually by the formal modelling experts.
This is because global invariants do not have a corresponding
SysML construct and can only be added to the semi-formal
model as an informal annotation.

Despite these manual tasks, the use of an automated trans-
formation still leads to a substantial reduction of effort. For
complex models such as several state machines with refine-
ments communicating with each other, the automation promises
to be especially beneficial in this regard. Moreover, assuring
the correctness of the resulting Event-B machine for the manual
process is still an unresolved issue, as errors can occur when hu-
mans perform the transformation manually. With the automated
process, only safety invariants have to be added, and the rest
of the Event-B code can be generated automatically, increasing
time efficiency possibly by around 70-80%.

The main obstacle with the automated approach is that an
average engineer might have reservations about processes they
do not understand in full detail. To increase acceptance, it
would be very helpful to have a User Interface (UI) that supports
the engineer while conducting the automated transformation.
The UI should support the user to initiate the transformation
process via a single click of a button, and it should present
the translated model as well as the corresponding verification
results. It should also provide a means of visualising and editing
the formal model if necessary, and should ideally be easy to
use for inexperienced users without any expert knowledge on
formal modelling. The UI should provide the domain experts in
both semi-formal modelling and formal modelling with a simple
work-flow to run the simulation and verify user requirements
without having to fully understand the underlying details.

Another aspect relevant for future maintenance of the system
is the required knowledge for refining the consistency relation
definition, i.e., for adding or modifying TGG rules. Different
levels of expertise are conceivable: To maintain the set of rules
and modify the tool-chain, knowledge about both the semi-
formal and formal language are required, and probably also
expert knowledge in MDE. All other modelling experts should
understand the overall process, but should not require in-depth
knowledge to apply it. To achieve this, the solution should be
well-documented based on the triple metamodel as a central and
formal artefact.

23 The RCA initiative is driven by several EULYNX project members and strives
for improving command, control and signalling systems using MBSE tech-
niques: https://eulynx.eu/index.php/news/61-rca-gamma-published
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6.3. Summary and Threats to Validity
For all three test cases presented in Sect. 6.1, the transforma-
tion yields correct results according to the modelling experts.
As the SysML state machines involve all syntactic constructs
presented in Sect. 3.2 in different arrangements, the rule-based
approach appears to work as expected for this language subset
(RQ1). From the interviews, we conclude that the implementa-
tion forms a solid basis for automating the transformation from
SysML to Event-B, which can be extended in the future. An
extension to support the full expressive power of the formal
and semi-formal modelling languages is, however, necessary
for practical usage. Furthermore, the handling of the tool-chain
still requires advanced knowledge about all three tools and un-
derlying concepts. Usage should, therefore, be simplified by
offering a suitable UI to support inexperienced users (RQ2).

While the provided test cases incorporate more states, tran-
sitions, and actions than the running example (cf. Sect. 3.1),
the models are still rather small and simple. Larger, intercon-
nected state machines would be necessary to determine corner
cases for which further rules might be necessary. Regarding
the assessment of the approach, it is important to note that the
interviewees were already strongly in favour of automating the
transformation, such that chances might be overstated and risks
underestimated. Finally, only three people were interviewed,
all employed at the same company and working on the same
project at the time of implementation. It is questionable, there-
fore, if our results can be directly transferred to other industries
or application contexts. Regarding maintainability, it is impor-
tant to note that at least one person with advanced knowledge
about TGGs must be involved in the project to add and adapt
rules whenever this is necessary. For certifying the process,
i.e., validating the correctness of the transformation itself, each
new rule must be considered. As the TGG-based consistency
relation definition is purely syntactic, the certification process
should also involve simulation and different testing strategies to
complement the formal verification.

7. Conclusion and Future Work
This paper proposes an approach for an automated model trans-
formation between SysML and Event-B models based on TGGs.
The approach is demonstrated with a prototypical implementa-
tion that is able to connect the modelling tools PTC Integrity
Modeler for SysML, and the RODIN platform for Event-B via
the TGG-based consistency management tool eMoflon::IBeX.
We limited the scope of the transformation to minimal subsets
of both languages covering most of the relevant language con-
structs, and identified semantic similarities to create a triple
metamodel as a basis for typing the consistency relation. As
a final step, we defined a suitable TGG consisting of 14 rules
and required attribute conditions. To validate our approach,
we provided a qualitative evaluation based on three represen-
tative examples provided by DB Netz AG and semi-structured
interviews conducted with domain experts. Our interviewees
stated that the prototype is indeed a good basis for substan-
tially reducing manual efforts and for eventually certifying the
transformation process.

Future steps include extending the transformation of SysML
state machines to cover more language constructs, thereby in-
creasing the practical applicability of the approach. This ex-
tension involves further tests with real-world models from the
EULYNX project. Depending on the results, other project part-
ners can be convinced to use BX techniques in a similar fashion
to establish model transformations between their respective
modelling languages. Furthermore, developing a suitable UI to
support inexperienced users would improve the usability of the
current approach.
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