
Journal of Object Technology | RESEARCH ARTICLE

Addressing the trade off between smells and quality
when refactoring class diagrams

Angela Barriga∗, Lorenzo Bettini†, Ludovico Iovino‡, Adrian Rutle∗, and Rogardt Heldal∗
∗Western Norway University of Applied Sciences, Norway

†Università degli Studi di Firenze, Italy
‡Gran Sasso Science Institute, Italy

ABSTRACT Models are core artifacts of modern software engineering processes, and they are subject to evolution throughout
their life cycle due to maintenance and to comply with new requirements as any other software artifact. Smells in modeling
are indicators that something may be wrong within the model design. Removing the smells using refactoring usually has a
positive effect on the general quality of the model. However, it could have a negative impact in some cases since it could
destroy the quality wanted by stakeholders. PARMOREL is a framework that, using reinforcement learning, can automatically
refactor models to comply with user preferences. The work presented in this paper extends PARMOREL to support smells
detection and selective refactoring based on quality characteristics to assure only the refactoring with a positive impact is
applied. We evaluated the approach on a large available public dataset to show that PARMOREL can decide which smells
should be refactored to maintain and, even improve, the quality characteristics selected by the user.

KEYWORDS Smells, Refactoring, Quality evaluation, Reinforcement learning.

1. Introduction
Models are becoming core artifacts of modern software engi-
neering processes (Whittle et al. 2014). Models, as happens
with code, change and evolve throughout their life cycle due to
maintenance and to comply with new requirements. Preserving
the quality of these models is of the utmost importance to ease
their maintenance and to correctly produce the systems they
represent. To this extent, the model-driven engineering (MDE)
community has developed a series of mechanisms to identify
bad practices and smells that worsen models maintenance and
to measure the quality of models.

Smells in code (Beck & Fowler 2018) are not bugs or errors
but instead, can be considered as violations of the fundamentals
of developing software that decrease the quality of code. In the
same way, smells in modeling (Bettini et al. 2019) are indicators

JOT reference format:
Angela Barriga, Lorenzo Bettini, Ludovico Iovino, Adrian Rutle, and Rogardt
Heldal. Addressing the trade off between smells and quality when
refactoring class diagrams. Journal of Object Technology. Vol. 20, No. 3,
2021. Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2021.20.3.a1

that something may be wrong within the model design, even if
the model is valid. Some examples of domain modeling smells
would be unnecessary duplicated features or classes isolated
from the rest of the model, often resulting in uninstantiatable
classes, especially if the model is instantiated with a class that
could not reach the isolated one. Smells may severely affect
the maintenance and evolution of models, as happens with code.
Therefore, their early identification and removal is crucial to
assure the final quality of models. There are many smells de-
fined in the literature (Mumtaz et al. 2019; Beck & Fowler 2018;
Strittmatter et al. 2016) and detecting and removing them is far
from trivial. Refactoring models to remove smells might come
with a cost. Since removing the smells imply modifying the
model structure, this usually has a positive effect on the general
quality of the model (Bettini et al. 2019) but, in some cases, it
could also have a negative impact. This impact is strictly related
to multiple aspects: the model’s structural composition, smell
occurrences and combinations, etc.

However, to know the impact of the refactoring one needs a
way to measure the quality of the model after the refactoring. In
this paper, we will use quality characteristics. Quality charac-
teristics have been extensively studied in the literature (Boehm

An AITO publication

http://dx.doi.org/10.5381/jot.2021.20.3.a1

et al. 1976; Dromey 1995; Ortega et al. 2003). With them, mod-
elers can quantify how good models are in terms of concepts
like analyzability, adaptability, understandability, etc. Several
tools exist in code analysis and also in MDE where modelers
can define their own characteristics and automatically detect
them in models using various automated mechanisms (Basciani
et al. 2019; López-Fernández et al. 2014).

The positive effect of calculating these quality characteristics
automatically is that they can be used to measure the impact of
removing a specific smell on the overall model or on specific
quality characteristics (Di Rocco et al. 2014; García-Magariño
et al. 2008). By combining the removal of smells and quality
measurement, modelers could tackle the refactoring of models to
remove smells without compromising the overall model quality,
making it possible to find a balance between which smells
should be removed and which ones not.

In our previous work (Barriga, Heldal, et al. 2020), we pre-
sented PARMOREL, an extensible model repair framework,
implemented as an Eclipse plugin, which enables users to deal
with different types of model issues and to add their own re-
pair preferences to customize the results. This customization
of results is achieved with reinforcement learning (RL) (Thrun
& Littman 2000). By using RL, PARMOREL finds the best
solution for repairing a model according to the user preferences.
So far, as model issues, we tackled with PARMOREL the repair
of syntactic errors in broken models. As user preferences, we
have worked with quality characteristics (Iovino et al. 2020).

In this paper, we will demonstrate the flexibility of PAR-
MOREL showing that it can support smells detection and refac-
toring. To achieve this, we integrate PARMOREL with a tool
that allows modelers to identify smells and refactor them with
known refactorings (Bettini et al. 2019). This extension is based
on Edelta (Bettini et al. 2020), a DSL-based tool to define smells
and corresponding refactorings in personalized libraries.

To validate this new extension, we solve the trade-off prob-
lem between smells and model quality in a dataset used in
the literature, consisting of 404 class diagrams extracted from
GitHub (Babur 2019). The results are encouraging and show
that PARMOREL is able to decide which are the best smells
to refactor in order to maintain and, even improve, the quality
characteristics selected by the user.

Structure of the paper. This paper is organised as follows:
Section 2 illustrates and presents the PARMOREL architec-
ture. Section 3 demonstrates why we need to selectively remove
smells instead of addressing all of them. Then, in Section 4,
we show the customization applied to PARMOREL to perform
selective removal of smells and how existing components have
been extended, i.e., with Edelta and with a quality evaluation
framework. In Section 5, we evaluate if PARMOREL can suc-
cess in refactoring with a balance between smells and quality.
Then, we present threats to validity in Section 6, explore the
related work in Section 7 and conclude the paper in Section 8.

2. PARMOREL Framework
In this section, we briefly present the PARMOREL framework
in order to understand its extension (in Section 4) to support

selective refactoring of models containing smells. PARMOREL
makes use of three main concepts: issues to be found in the mod-
els, actions to be applied in response to issues and preferences
with which the user customizes how issues are solved. Then, a
RL algorithm is in charge of deciding which is the best action to
apply in response to an issue, according to preferences selected
by the user. The architecture of PARMOREL is based on three
main modules that we represented in Fig. 1: a modeling module,
a learning module and a preferences module. In the rest of this
section, we will explain these components and show how they
make the framework flexible to be adapted to the needs of the
users in terms of different models, issues, actions, preferences
and learning algorithms.

Modeling module

PARMOREL Framework

Learning
Module

input

refactored model

output

Modeling
module

Issues
submodule

Actions
submodule

Preferences
Module

Experience
submodule

rewards

solutions

model info

actions

domain model

Refactoring

Figure 1 Overview of the PARMOREL architecture

2.1. Modeling module

The modeling module is divided in two submodules, namely the
issues submodule and actions submodule.

The issues submodule is in charge of identifying which is-
sues are present in the model and sends them to the learning
module. In (Barriga, Heldal, et al. 2020) we introduced the
concept of issue. An issue represents something that is improv-
able in a model regardless of its nature. An issue could be a
syntactic or semantic error, a smell, a violation with respect to
an architectural pattern or a specific constraint, etc.

The actions submodule is in charge of sending to the learning
module the actions which are available for refactoring the model
and of applying the chosen refactorings.

In this paper, we focus on extending the modeling module
so that PARMOREL supports smell identification and refactor-
ing. Therefore, more details about this module can be found in
Section 4.

2.2. Learning module

The learning module makes use of RL to learn which actions
are the best to refactor the issues in the models according to the
preferences introduced by the users.

RL consists of algorithms able to learn by themselves how
to interact in an environment without existing pre-labelled data,
only needing a set of available actions and rewards for each
of these actions. RL allows PARMOREL to perform model

2 Barriga et al.

manipulation without having any prior data (i.e., labelled data,
historical data, etc.) about removing issues in models.

By using and tuning RL rewards, these algorithms can learn
which are the best actions to apply to the model. RL rewards can
be adapted to align with any preference introduced by the user
as long as it can be quantified, e.g., improving quality character-
istics (Iovino et al. 2020). Preferences need to be quantified so
that their values can be mapped into RL rewards. For example,
the value of the maintainability quality characteristic itself could
be used as a reward, if the modeler wants to improve it.

Before finding a refactoring for a given model, PARMOREL
is executed for a number of episodes. Each episode equals to
one iteration refactoring the model. During the episodes, differ-
ent actions will be applied to remove the different issues present
in the model. For each of these episodes, a refactoring sequence
is found, and by applying it, a provisional refactored model
is created. The provisional refactored models are analyzed ac-
cording to the preferences selected by the user, and the result is
translated into rewards (e.g., the value of the considered quality
characteristic of the refactored model). Hence, PARMOREL
can identify how good the applied refactoring is according to the
user requirements. Following this process, after each episode,
actions leading to the results closest to the user requirements
will have higher rewards and thus higher probabilities of be-
ing selected. After performing enough refactoring iterations,
PARMOREL will select the refactoring with higher rewards and
save the final refactored model.

RL is a broad field with many algorithms. In previous work,
we compared the performance of different RL algorithms in
PARMOREL and Q(λ) was the one that provided us the best
performance (Barriga, Mandow, et al. 2020). Hence, we use
Q(λ) in our current implementation.

Q(λ) In this algorithm, knowledge acquired is stored in a table
structure called Q-Table (Thrun & Littman 2000). This table
stores pairs of states (states equal smells in our application) and
actions together with a Q-value. The Q-value is calculated using
the rewards and it indicates how good each pair is. The Q-value
is obtained with repeated calculations based on the Bellman
Equation (Bellman 2013) as follows:

Q(s, a) = α(r + γ maxa′ Q(st+1, a′)−Q(s, a)) (1)

telling that the maximum future reward is the reward r the agent
received for entering the current state s with some action a plus
the maximum future reward for the next state st+1 and action a′

reduced by a discount factor γ.
This allows inferring the value of the current (s, a) pair based

on the estimation of the next one (st+1, a′), which can be used
to calculate an optimal policy to select actions. The factor α
provides the learning rate, which determines how much new
experience affects the Q-values. One of the variables used to
calculate the Q-value, is the maximum weight stored in the
Q-table for the next error to refactor (maxa′ Q(st+1, a′)). This
allows us to measure the consequences of applying a certain
action in the model (e.g., if applying an action creates a new
smell this action would be punished, getting a lower weight).
At the end of the execution, pairs with the highest Q-value will
conform to the policy to solve the problem. Our algorithm

is epsilon-greedy (ε-greedy): it avoids local optima using an
exploration-exploitation trade-off by exploring (i.e. choosing a
random action) with probability ε, and exploiting (i.e. choosing
the action with highest Q-value) the remainder of the time. Ac-
cording to our testing (Barriga, Mandow, et al. 2020), we obtain
better results with an ε of 0.3. Regarding other parameters,
discount factor (γ), and learning rate (α), we use 1.0 for both of
them.

Q(λ) uses a technique called eligibility traces (see lines 9-
18 in Algorithm 1) to back-propagate the values and received
rewards, but it does so not only to the immediately preceding
state e(s,a) (or pair of state-action), but to all preceding states
of the current episode, (stored in the sae list, see lines 16-18).
The idea is that this propagation decays in intensity the further a
state is in the past. This decayed propagation can lead to a speed
up in the algorithm’s convergence, especially in sparse reward
models (Thrun & Littman 2000), which provides rewards only at
the end of each episode (e.g., PARMOREL receives the quality
characteristics rewards from the provisional refactored model
at the end of an episode). The propagation decay is controlled
with a parameter λ (see line 18). In practice, the speed of
convergence as a function of the value of λ (between 0 and 1)
generally has a U-shape. Therefore, the optimal convergence is
usually achieved with an intermediate value of λ, which needs
to be determined experimentally. According to our experiments
(Barriga, Mandow, et al. 2020), we get the best results by giving
λ a value of 0.7. Lower or higher values lead to results of lower
quality. The new Q-value is temporarily stored in the variable
δ (see line 15). It is later stored in the Q-table (see line 17) by
adding the already stored Q-value for that pair of state-action
(s, a) to the product of α, δ (the new Q-value) and the eligibility
trace of (s, a).

The pseudocode depicted in Algorithm 1 is adapted from the
one presented in chapter 12 in (Thrun & Littman 2000).

Algorithm 1 Q(λ)
1: Initialize Q-Table
2: for each episode do
3: Initialize eligibility table e (default value 0)
4: Initialize sae as an empty list of state-action pairs
5: s← initial state s0
6: while errors in model != ∅ do
7: Get state s
8: Select best action a with ε-greedy policy for s
9: if a is selected randomly then

10: reset eligibility to 0
11: reset sae as an empty list
12: st+1 ← a applied in s
13: Add (s,a) to sae list
14: e(s, a)← e(s, a) + 1
15: δ = r + γmaxa′Q(st+1, a′)−Q(s, a)
16: for each s,a in sae do
17: Q(s, a) = Q(s, a) + αδe(s, a)
18: e(s, a)← γλe(s, a)
19: t← t + 1
20: s← st+1

Experience submodule One of the advantages of using RL is
that these algorithms can improve their performance the more
they are applied. In our approach, the more PARMOREL modi-

Addressing the trade off between smells and quality when refactoring class diagrams 3

Entry

Experience

Action

Issue

Preference

Reward

+ value: int

[1..*] preferences

[1..*] entries

[0..*] rewards

[1..1] issue

[1..1] action

[1..1] preference

[1..*] rewards

Figure 2 Model of experience in PARMOREL

fies models, the better performance it might get. This is because
PARMOREL acquires and builds experience that is reused in
later refactorings. To this end, we define the experience submod-
ule. This submodule makes use of the machine learning (ML)
technique of transfer learning (TL) (Barriga, Rutle, & Heldal
2020). In traditional RL, the value of each pair of issues and
actions depends on a single reward; e.g., for a robot learning
how to escape a maze, it receives a negative reward when step-
ping into a wall and a positive one when entering a free space.
However, in our case one pair’s weight may depend on multiple
rewards since it might involve several user preferences, e.g., a
user might want to boost the maintainability and reusability of
a model. Introducing user preferences complicates reusing the
experience acquired by the RL algorithm, since what is a good
refactoring for one user might not be acceptable for another one.
With this technique, what is learnt from the refactoring of one
model could be reused for other models. Hence, consequent
executions of PARMOREL could achieve better performance
the more experience is reused. Even if the users are different,
if the preferences they selected and the issues present in the
models are similar, sharing experience would be useful.

We use the model in Fig. 2 to illustrate how PARMOREL
supports TL. The learning information gained after each refac-
toring is represented by the concept Experience which is com-
posed of one to many entries and preferences. The concept
Entry refers to the pairs in the Q-table and hence it has refer-
ences to all the elements that are part of the Q-table: an Issue
and an Action. In addition, an Entry has a zero to many ref-
erences to Reward. The Reward contains a numerical value
based on the users’ preferences.

The rewards stored in the Experience are used to initialize
the Q-table in following executions. This way, if the current
user shares any preference with previous ones, the rewards these
previous preferences provided in previous refactorings can be
used to initialize the new user’s Q-table, so that the refactoring
does not start from zero. This way, the learning will converge
faster and less episodes will be required. When sharing expe-
rience in PARMOREL, we reduce the value of ε (see line 8
in Algorithm 1) from 0.3 to 0.15 to enhance the influence of
the previous Experience. We initialize the Q-table with the
accumulated rewards of the shared preferences multiplied by a
discount factor of 0.2. This way we assure previous refactoring
processes influence the new ones by jump-starting the process
but without interfering with learning new refactoring sequences.

User1: pref1, pref2

User2: pref1, pref3

entry1:= issue1, action1
entry2:= issue1, action2
entry3:= issue2, action1
entry4:= issue2, action2

Total pref1 pref2

entry1:= issue1, action1
entry2:= issue1, action2
entry3:= issue2, action1
entry4:= issue2, action2

Total Without TLWith TL

10.42
10.97
12.06
11.27

7.91
4.65
8.32
5.64

2.51
6.32
3.74
5.63

x 0.2

1.58
0.93
1.66
1.12

Figure 3 TL between 2 users with a shared preference

Based on our experimental results (Barriga, Rutle, & Heldal
2020), we found that a value of 0.2 gave the best results for our
cases. This parameter’s value can be modified to affect the im-
pact of previous experience on new refactorings. However, the
value should remain a constant during the execution otherwise
some parts of the experience will be more favoured than others.

An example of this process is displayed in Fig. 3. In the
left part of the image we show the Q-table of User1 once she
finishes using PARMOREL. User1 chooses as preferences pref1
and pref2 to refactor a model with two issues, namely issue1
and issue2. Both issues can be refactored with actions action1
and action2. Then, in the right part of Fig. 3 we show how the
Q-table will look for User2 once she starts using PARMOREL.
This user chooses to refactor with preferences pref1 and pref3.
The model to refactor is different than the one refactored by
User1, but since what is relevant for PARMOREL are issues and
actions, the Experience can be reused regardless of the specific
model to refactor. Without TL the Q-table will not exist and a
new one will be created, adding more time to the processing
part of the learning algorithm. With TL, every entry existent
in the Experience is copied in the Q-table, and since pref1 is
shared with User1, the Q-table is initialized with the rewards
provided from this preference multiplied by the discount factor.
This way, when PARMOREL starts the refactoring process for
User2, the time spent in populating the Q-table is reduced and
the learning algorithm will already have an intuition of which
actions are better for each issue.

For more details about how PARMOREL uses TL and how
the experience submodule works we refer the reader to our
previous work (Barriga, Rutle, & Heldal 2020; Barriga, Heldal,
et al. 2020).

2.3. Preferences module
Users can customize the results PARMOREL produces with
their own preferences. PARMOREL supports preferences as
long as they can be translated into numeric values. PARMOREL
will take these values as rewards that will guide the refactor
process.

For example, users could prefer to refactor improving a qual-
ity characteristic (e.g., maintainability, reusability, understand-

4 Barriga et al.

Figure 4 Quality characteristics model

ability, etc.), to minimize the model distance with respect to
the original model, etc. PARMOREL will use the rewards to
estimate how good or bad each action is to satisfy the user
preferences. As part of the preferences given to the users, PAR-
MOREL integrates a quality evaluation tool (Iovino et al. 2020),
which is inspired by (Basciani et al. 2016).

Quality Characteristics as preferences This quality evalua-
tion tool supports the specification of quality characteristics
conforming to the domain model in Fig. 4. Each EvaluatedAr-
tifact (the artifact from which the quality characteristics will
be measured, e.g.; a domain model) will be assigned a set of
QualityCharacteristics which can be specified by the modeler.
Moreover, whether quality characteristics should be maximized
or minimized, is specified in the attribute solution. The cal-
culation function functionName of each quality characteristic
has to match with a definition of an EOL (Kolovos et al. 2006)
script aggregating the available metrics (as shown in the var-
ious formulas) in a predefined library (Basciani et al. 2019).
EOL (Kolovos et al. 2006) is an imperative programming lan-
guage for creating, querying and modifying EMF models. EOL
offers model management operations with a dedicated language
built on top of EMF. This makes it easier to define evaluation
operations compared to Java implementations using the EMF
API directly (Basciani et al. 2016).

In this paper, we specify the following quality characteristics
to be used as user preferences: maintainability, understandabil-
ity, complexity, and reusability.

The maintainability has been defined according to the defini-
tion given in (Genero & Piattini 2001) and the formula presented
in (Basciani et al. 2016), that is based on some of the metrics
shown in Table 1 as follows:

Maintainability =

(
NC + NA + NR + DITMax + FanoutMax

5

)
(2)

The definitions of the understandability and complexity qual-
ity characteristics are adopted from (Sheldon & Chung 2006).
In particular, understandability can be defined as follows:

Understandability =

(
∑NC

k=1 PRED + 1
NC

)
(3)

where PRED regards the predecessors of each class, since, in

Characteristic Acronym

Number of classes NC

Number of references NR

Number of opposite references NOPR

Number of containment references NCR

Number of attributes NA

Number of unidirectional references NUR

Max. generalization hierarchical level DITmax

Max. reference sibling FANOUTmax

Number of features NTF

Sum of inherited structural features INHF

Attribute inheritance factor AIF

Number of predecessor in hierarchy PRED

Table 1 Metrics used in the quality characteristics equations

order to understand a class, we have to understand all of the
ancestor classes that affect the class as well as the class itself.

Complexity can be defined in terms of the number of static
relationships between the classes (i.e., number of references).
The complexity of the association and aggregation relationships
is counted as the number of direct connections, whereas the
generalization relationship is counted as the number of all the
ancestor and descendant classes. Thus, the complexity quality
characteristic can be defined as follows:

Complexity = (NR−NUR + NOPR + UND + (NR− NCR))
(4)

where NUR is the number of unidirectional references mea-
sured as the difference between bidirectional and number of
references, and UND is the understandability value measured
as defined in Equation 3.

The reusability of a given model can be measured in different
ways. One of these is to use the attribute inheritance factor AIF
as proposed in (Arendt & Taentzer 2013). As presented in (Al-
Jáafer & Sabri 2007), AIF can be defined as follows:

Reusability = AIF =

(
INHF
NTF

)
(5)

where INHF is the sum of the inherited features in all classes,
and NTF is the total number of available features.

3. Dilemma: Removing all the smells?
According to (Arendt & Taentzer 2013) a model quality as-
surance framework should implement three important iterative
phases: i) model analysis, ii) identification of smells and iii)
removing of the smells. In order to confirm that removing the
smells had a positive effect not only formally but also practically,
quality evaluation is crucial and can be considered as a litmus
test of the refactoring activity. For this reason, it is helpful to
evaluate the model before and after removing the smells to see
if the applied refactorings effectively improved the design of
the model.

In this section, we use an explanatory example to motivate
our research. We demonstrate that removing all the smells in
a model may be beneficial in terms of quality, but we can have
cases in which not all the quality characteristics improve. These

Addressing the trade off between smells and quality when refactoring class diagrams 5

)LQDO,QWHUPHGLDWH��9RODWLOH�,QLWLDO

60�

60�

60�

60�
60� 60� 60�

60�

60�

60�

Figure 5 Running example showing an initial smelly model, an intermediate version of the model where SM1 and SM2 are re-
moved, and a final version where SM3 and SM4 are removed

cases strictly depend on the model containing the smells, num-
ber of occurrences and the structure of the parts that are not
affected by the smells. For instance, evaluating the quality of a
huge model with only one smell can give very different results
with respect to a small model containing the same smell. More-
over, certain type of smells may affect specific quality character-
istics because of the parts of the model they affect (Strittmatter
et al. 2016; Basciani et al. 2016; Bettini et al. 2019), as we will
see later in this section.

Removing all the smells unconditionally should improve the
quality characteristics, but depending on the model structure,
smell occurrences and applied refactorings, some of the quality
characteristics may get worse. In Fig. 5 we introduce, as an ex-
ample, a “smelly” model. This domain model is inspired by an
example taken from the ATL Zoo and it represents a simplified
conference management system that can be used internally by
universities or departments. We use this trivial example to high-
light the issues and motivate the problem, whereas in Section 5
we will show case studies part of a real dataset.

In this system, as can be seen from Fig. 5 (initial), the mod-
eler can declare a Conference, that contains the submitted Arti-
facts, that can be identified with a title and a name. Moreover,
a set of Users can be defined and registered to the system with
their email addresses. In particular, users can be assigned to
papers. A Conference contains a set of Artifacts which might
be either a Paper or a TechnicalReport, that may extend one or
more papers. These two classes extend the class Artifact which
is declared as concrete. The possibility of an accidental instanti-
ation of the class Artifact leads to the smell concrete abstract
class (SM1). Three of the classes in this model, Conference,
Paper and TechnicalReport, share the attribute name, which
can be identified with the smell SM3, duplicated features. The
two subclasses of Artifact (i.e., Paper and TechnicalReport)
share the attributes title and name (String). This identifies the

smell duplicated features in hierarchy, i.e., SM2, which is a
more specific version of duplicated features: here the same
feature is found in all of the subclasses of a given superclass.
Finally the class Document is declared, maybe with a missing
relationship to any of the other classes. This implies the dead
class smell, i.e., SM4. It is worth noting that the class Docu-
ment could not be instantiated in a framework like EMF—due
to EMF’s requirement that all model elements should be con-
tained in a root model element—since Conference is the root of
our model. One way to instantiate it is to declare it as root of the
model but then the modeler would not be able to instantiate the
remaining classes of the metamodel, hence the class is identified
as dead.

These four smells may affect multiple quality characteris-
tics, and when multiple smells are automatically removed with
refactorings, the quality characteristics can improve but in some
cases can also get worse. In the case reported in Fig. 5, four
possible refactorings may be applied:

SM1 Concrete abstract class→Make the class abstract
SM2 Duplicated features in hierarchy→ Pull up features
SM3 Duplicated features→ Extract superclass
SM4 Dead class→ Remove class

When our smell finder detects a smell, the corresponding
refactoring is immediately applied. Applying all the refactor-
ings immediately after finding the smells might lead to models
with lower quality characteristics than the original smelly mod-
els. In Fig. 5, the intermediate model shows the model after
applying the refactoring for SM1 (Artifact is made abstract) and
SM2 (name and title are pulled up into Artifact), whereas the
final model in Fig. 5 shows the model after applying all the
refactorings, including also a newly created instance of SM3.
Hence a new class NameElement is added as superclass for
Conference and Artifact) and SM4 is removed by deleting the

6 Barriga et al.

maint. understand. complexity reusability

0

100

200

with smells smells removed

Figure 6 The quality characteristics maintainability (maint.),
understandability (understand.), complexity, and reusability
before and after removing all the smells in the model in Fig. 5

dead class Document. Although we identified both SM2 and
SM3 on the classes Paper and TechnicalReport, we removed
the more specific smell SM2. This strategy incorporated in our
smells finder and resolver (see Section 4.1) makes sense with
respect to how a modeler would refactor this smell, however,
it would at the end produce the final model in Fig. 5 which
is of lower quality than the original smelly model. Figure 6
displays some quality characteristics, namely, maintainability,
understandability, complexity and reusability, measured in the
final model before and after the smells are removed. That is, by
removing all the smells automatically with the listed refactor-
ings, we will get worse values in all these characteristics except
for reusability.

In our example, applying the refactoring associated with
SM3 extract superclass, worsen the overall quality of the model,
since it affects the maintainability, understandability and com-
plexity by adding a new element into the model. However,
SM3 improves the reusability, since it creates more inherited
features. The refactorings associated with SM2-SM3 improve
the reusability and maintainability by removing features from
the model. Removing classes to solve SM4 worsens under-
standability and complexity while it improves maintainability.
Regarding SM1, removing it does not affect the quality char-
acteristics considered in this example, however, if unsolved, it
could deteriorate the model’s quality in the future, since a class
that is concrete when it should be abstract could be incorrectly
instantiated.

By combining these refactorings we could face situations
where removing several smells lead to no improvement in the
model quality, for example by removing SM1 and SM4 we get
worse understandability and complexity, without improving any
quality characteristics. This is an indication that, by selectively
applying refactorings when removing smells, quality charac-
teristics could improve with respect to automatically removing
every smell in a model.

To overcome these limitations and complement the automatic
approaches as (Bettini et al. 2019; Arendt & Taentzer 2013) we
propose a new application of PARMOREL to find a balance
between smells refactoring and models quality.

PARMOREL Framework

refactored model

Modeling module

Preferences
module

Quality
Evaluation

...
rewards

output

input

...

Q(λ)

Learning
Module

smelly domain model

Refactoring

Issues submodule

... Experience
submodule

le
ar

ni
ng

Actions submodule

actions

solutions

model info

Edelta

Smells finder

Smells resolver

Figure 7 Detailed architecture of the framework

4. Selective smell removal
In previous work (Barriga, Rutle, & Heldal 2020; Barriga, Hel-
dal, et al. 2020; Iovino et al. 2020), we have applied PAR-
MOREL to repair faulty models that violate certain constraints
of the Ecore metamodel. In order to apply it for refactoring
smells, there are some parts of the framework that must be
adapted. In this section, we detail how the PARMOREL frame-
work has been extended to support this task. Figure 7 displays
the architecture of the framework in detail after this extension.

4.1. Modeling module extension
In this paper, we extend the modeling module to identify and
refactor smells by using EMF (Steinberg et al. 2008) together
with Edelta (Bettini et al. 2017) for refactoring Ecore models.

Edelta Edelta is a model refactoring tool, based on a DSL, for
easily defining Ecore model evolutions and refactorings. The
core features of Edelta and its DSL have been detailed in (Bet-
tini et al. 2017). Edelta provides modelers with constructs for
specifying atomic evolutions and complex refactorings. Atomic
evolutions are simple changes applied to models, i.e., addi-
tions, deletions and edits. Complex refactorings are reusable
changes, defined by composing already defined atomic or com-
plex refactoriings. The Edelta DSL has been implemented with
Xtext (Bettini 2016) and also a complete IDE based on Eclipse
is available, offering syntax highlighting, code completion, error
reporting, incremental building, as well as debugging. Recently,
in (Bettini et al. 2020), the new version of Edelta was presented,
supporting a completely live environment, where the modeler
can have an immediate feedback in the IDE of the evolved Ecore
models. Edelta has also been used for detecting Ecore model
smells and for removing them by means of reusable refactorings
organised in libraries (Bettini et al. 2019). In previous work,
Edelta has been used as a standalone tool that can be used on
a subject metamodel to analyze it, evolve it or to apply refac-
torings, interactively, with the live IDE environment of Edelta.

Addressing the trade off between smells and quality when refactoring class diagrams 7

Moreover, all these mechanisms can also be used in a standard
Java program to process a set of metamodels in batch mode.

In this paper, we make use of Edelta libraries to instantiate
the issues submodule and the actions submodule with a smells
finder and smells resolver, respectively.

Smells finder The smells finder uses the Edelta DSL to spec-
ify queries for identifying smells in Ecore models. Using the
Edelta language, the modeler can provide the specification of
custom smell finders and refactorings, which can be properly
organized in reusable libraries. The Edelta DSL has a Java-like
syntax, so it should be easily understood by Java programmers,
but with less “syntactic noise”. For example, most of types
declarations can be omitted if they can be inferred from the
context. Moreover, the Edelta DSL is based on the Java type
system and it is completely interoperable with all existing Java
types and libraries. Indeed, the types used in the next listings
are Java types.

Edelta comes with a smell finder including the smells men-
tioned in this paper, but the modeler can further extend this
library with new smells or refine the existing ones. In Listing 1
we report an extract of an Edelta library containing a few smells
finders mentioned in Section 3.

1 de f findDuplicatedFeatures(EPackage epackage) {
2 r e t u r n findDuplicatedFeaturesInCollection(
3 ePackage.allEStructuralFeatures,
4 [existing, current| new EdeltaFeatureEqualityHelper()
5 .equals(existing, current)])
6}
7 de f findDuplicatedFeaturesInCollection(
8 Collection<EStructuralFeature> features,
9 BiPredicate<EStructuralFeature, EStructuralFeature>

matcher) {
10 v a l map = newLinkedHashMap
11 f o r (f : features) {
12 v a l existing = map.entrySet.findFirst[matcher.test(i t .key

, f)]
13 i f (existing != n u l l) {
14 existing.value += f
15 } e l se {
16 map.put(f, newArrayList(f))
17 }
18 }
19 r e t u r n map.filter[key, values| values.size > 1]
20}
21 de f findConcreteAbstractMetaclasses(EPackage ePackage) {
22 r e t u r n ePackage.allEClasses
23 .filter[cl | !cl.abstract && cl.hasSubclasses]
24}
25...

Listing 1 Edelta snippet of the smell finder library

Concerning finding duplicated features, the core function
is findDuplicatedFeaturesInCollection. This operation
takes the collection of features to inspect and a lambda ex-
pression1 that is responsible of deciding whether two features
should be considered equal in two different classes2. Both find-
DuplicatedFeaturesInHierarchy and findDuplicated-
Features call this operation with a different collection of fea-
tures to inspect and with a lambda expression that relies on our

1 In Edelta lambda expressions have the shape: [param1, param2, ... |
body]. As in Java, types of parameters can be omitted when they can be
inferred. Note that the lambda expression is assignable to the Java functional
interface BiPredicate.

2 We do not report all the code since the complete implementation of the smell
finders can be found in the source files of the Edelta plugin: https://
github.com/LorenzoBettini/edelta.

default implementation of equality detection for features, which
scans all the properties of two given features. Note that model-
ers can reuse findDuplicatedFeaturesInCollection with
a custom equality matcher for their own new smells and refactor-
ings. The smell finder returns the possible detected duplicated
features in an appropriate data structure (in this case, a map).
Such a data structure contains the information needed to possi-
bly “resolve” the smell, as shown in the next paragraphs. The
definition of findConcreteAbstractMetaclasses should
be straightforward. In the above code we rely on some utility
functions defined in Edelta (e.g., allEClasses, directSub-
classes, etc.) that we do not detail here.

The smells finder implements the issues submodule in the
PARMOREL framework and hence, it takes care of identifying
which smells are present in the models and communicating them
to the learning module.

Smells resolver To complement the smells finder we use a
smells resolver to remove the smells found in the models. When
a smell is declared the modeler needs to specify the refactoring
to resolve the smell. This correspondence is declared in a Edelta
library called resolver that basically links the smells with the
refactorings. Model refactorings are specified by using the
Edelta DSL as well. For instance we could specify that the
duplicated features in hierarchy should be resolved by pull
up attributes, that the more general duplicated features smell
should be resolved by extract superclass, and that the concrete
abstract class should be resolved by simply making the class
abstract.

An important feature of Edelta is that it resolves all oc-
currences of a smell type in one run. For instance, when
resolving SM2 in Fig. 5, both of the attributes name and
title are pulled up to the same class Artifact. The impact
of this batch resolution would be more visible if we had
two common superclasses for Paper and TechnicalReport,
since in this case, atomic resolutions would lead to poten-
tially pulling up name to one of the superclasses and title to
the other one. Listing 3 reports a few Edelta refactorings
that we have defined in the catalog published at https://
www.metamodelrefactoring.org that we used in the
above resolver functions in Listing 2. In particular, in this
Listing we show the Edelta operations for pull up and extract su-
perclass (functions like addNewEClass and addEStructural-
Feature are examples of Edelta atomic refactorings).

1 de f resolveDuplicatedFeaturesInHierarchy(EPackage pack) {
2 finder.findDuplicatedFeaturesInHierarchy(pack)
3 .forEach[superClass, duplicates|
4 duplicates.forEach[key, values|
5 refactorings.pullUpFeatures(superClass, values)]]
6}
7 de f resolveDuplicatedFeatures(EPackage pack) {
8 finder.findDuplicatedFeatures(pack).values
9 .forEach[refactorings.extractSuperclass(i t)]

10}
11 de f resolveAbstractSubclassesOfConcreteSuperclasses(

EPackage pack) {
12 finder.findAbstractSubclassesOfConcreteSuperclasses(pack)
13 .forEach[makeConcrete]
14}
15...

Listing 2 Edelta snippet (i) of the resolver library

8 Barriga et al.

https://github.com/LorenzoBettini/edelta
https://github.com/LorenzoBettini/edelta
https://www.metamodelrefactoring.org
https://www.metamodelrefactoring.org

1 de f extractSuperclass(List<? extends EStructuralFeature>
duplicates) {

2 v a l feature = duplicates.head;
3 v a l name = feature.name.toFirstUpper + "Element";
4 v a l containingEPackage = feature.EContainingClass.EPackage
5
6 containingEPackage.addNewEClass(name) [
7 makeAbstract
8 duplicates.map[EContainingClass].forEach[c | c.

addESuperType(i t)]
9 pullUpFeatures(duplicates)

10]
11}
12 de f pullUpFeatures(EClass dest, List<? extends

EStructuralFeature> duplicates) {
13 duplicates.head.copyTo(dest)
14 removeAllElements(duplicates)
15}
16...

Listing 3 Edelta snippet (ii) of the resolver library

The Edelta DSL supports the definition of new smell finders
and refactorings that can be coupled together and thus creating
new resolvers (as can be seen in Listing 2). These finder-resolver
pairs can be organized in a way which dictates the order in which
the smells are resolved by Edelta. Although this order is impor-
tant, the modeler could also specify mutually-exclusive smell
finders since the Edelta specification allows for user-defined
libraries. For instance, one could define duplicated features not
in hierarchy as a counterpart for duplicated features in hierarchy
so that model elements matched by a former smell finder are
not related with model elements matched by a latter one. In this
way, an implicit order of resolutions could be defined. All such
new smell and resolver definitions are automatically available
to the entire ecosystem.

The smells resolver implements the actions submodule, so
it notifies the learning module about the refactorings available
for each smell. Additionally, it applies the chosen refactorings
in the model. As mentioned in Section 3, the integration with
an external tool like PARMOREL could also reuse the order of
invocation of the resolvers. Since PARMOREL removes smells
by their types (e.g. all instances of SM2) we rely on the order
in which the smells are found and resolved.

4.2. Issues
Previously, we tackled issues individually. PARMOREL would
address them one by one regardless of their type or possible
duplicities. This made sense since, in a broken model with
syntactic errors, the desirable solution is that all errors are re-
moved. Additionally, these errors could have multiple potential
solutions that could modify drastically the model structure.

In our current scenario, we contemplate the possibility to
leave smells unsolved as long as this is beneficial for the over-
all quality of the model. Now, for each smell type, the smell
resolver provides us with one possible solution. Hence, PAR-
MOREL has to learn whether it is worth it or not to apply the
refactoring. According to our testing with the smell types and
their refactorings which are implemented for this paper (see
Section 5), removing a particular smell type will have a very
similar impact on the quality characteristics of the models. This
is because the quality characteristics we consider are based on
the number of different elements in the models. Changing the
number of specific elements with addition or removal or setting

values, will affect some quality characteristics positively and
others negatively.

Because of this, we consider smells in batches, organized
by their types. For example, if a model present 3 instances of
SM1 (see Section 3), PARMOREL will tackle SM1 as a batch,
deciding to refactor or leave it unsolved, instead of tackling the
3 instances individually.

4.3. Episodes
With this batch organization, we reduce the time needed for
refactoring, since the maximum number of episodes the RL
algorithm will run depends on the found smell types, and not
the smell instances.

As explained in Section 2, an episode equals to one iteration
refactoring the model. In each episode, a possible refactoring
sequence is found, and by applying it, a provisional refactored
model is created. At the end of all the episodes, PARMOREL
will have learned which are the best actions to solve the issues
in the model according to the user preferences. The maximum
number of episodes which PARMOREL runs is a parameter
within the framework.

According to our testing, PARMOREL needs, for learning
the best refactoring for each model, a maximum of 50 episodes
for each present smell type. The more smell types a model
contains, the longer PARMOREL will require to learn which
is the best refactoring for it. For example, for a model with
one smell type, PARMOREL will require a maximum of 50
episodes to converge, while for a model with 5 smell types, the
maximum will be 250.

To avoid reaching the maximum needlessly, we run the RL
algorithm with an early-stopping criteria. The learning will stop
once maxaQ(s0, a) (the maximum Q-value of the initial state)
remains unchanged for 25 episodes.

4.4. Rewards
To support the combination of several quality characteristics as
a preference, it is not enough to directly use the values of the
characteristics as a reward.

According to the characteristics definitions presented in Sec-
tion 3, maintainability, understandability and complexity are
decreasing characteristics. This means that lower values in
these characteristics are an indicator of better quality. By con-
trast, reusability is an increasing characteristic, meaning that the
higher its value is, the better reusability the model has. Hence,
we could directly use increasing characteristics values, but de-
creasing ones need to be converted so that their values can be
used as a reward.

For example, a user wants to improve the maintainability
and reusability characteristics of a model which initial values
(v0) are 10 and 0.15, respectively. For this model, PARMOREL
finds two possible refactorings, R1 and R2, each leading to the
following quality values (vr): R1: maintainability of 9.6 and
reusability of 0.02 and R2: maintainability of 9.2 and reusability
of 0.17. Maintainability improves in both refactorings while
reusability gets better in R2 and worse in R1. If we directly
added these values we would obtain a reward of 9.62 for the first
refactoring and 9.37 for the second one. With this, PARMOREL

Addressing the trade off between smells and quality when refactoring class diagrams 9

would choose R1 although it worsens reusability rather than
choosing R2 which improves both characteristics and gives a
better result in maintainability.

To avoid this situation, for every decreasing characteristic, we
subtract vr from v0 and add v0 back to the result (see Equation
6). With this, we convert the characteristics values so that the
higher they are, the better quality they imply.

There could be situations where different quality charac-
teristics have very different ranges. To avoid that one of the
characteristics has more influence on the reward than the others,
we transform the values v so that they reflect the improvement
each characteristic has undergone within a closer range (see the
value x in Equation 7). For example, by applying Equation 6 for
R2, where vr values are 9.2 (decreasing) and 0.17 (increasing),
and the v0 values are 10 and 0.15, respectively, we obtain the
v values 10.8 and 0.17. Applying Equation 7 to these values,
we obtain the x values 108 and 113.3. Finally, by applying
Equation 8, (where n is the number of quality characteristics
selected by the user), we add all x values and we obtain the
reward.

By doing this, the example refactorings would get a reward
of 117.3 for R1 and 221.3 for R2. Hence, PARMOREL would
choose R2. To make them easier to read, values in Fig. 6 were
converted so that higher values imply higher quality by using
these equations.

v =

{
(v0 − vr) + v0, if decreasing characteristic
vr, if increasing characteristic

(6)

x =
v ∗ 100

v0
, if v == 0 then x = 0 (7)

reward =
n

∑
i=1

xi (8)

5. Evaluation
In this section, we present an evaluation of the proposed ap-
proach. In particular, we aim at answering the following re-
search question:

RQ: How well can PARMOREL refactor models with
a balance between removing smells and at the same
time improving their quality?

Experiment setup and dataset In this paper, we consider
the following quality characteristics (Genero & Piattini 2001):
maintainability, understandability, complexity, and reusability.
These characteristics are offered to PARMOREL users as pref-
erences. In this experiment, as user preferences, we select to
improve maintainability and reusability. These preferences are
mapped into reward values as explained in Section 4.4. These
characteristics are opposite and, usually, when one improves
the other worsens. This adds more challenge to the evaluation,
since PARMOREL needs to find a balance for satisfying both
quality criteria at the same time. For this evaluation, we choose
the dataset from (Babur 2019), containing 555 Ecore models ex-
tracted from GitHub. We run PARMOREL in Eclipse 2020-06
(the Modeling package) on a laptop with the following specifi-
cations: Windows 10 Home, Intel Core i5-6300U @2.4GHz, 64
bits, 16GB RAM.

Smell Refactoring

1-Concrete abstract class Make the class abstract

2-Duplicated features in hierarchy Pull up features

3-Duplicated features in classes Extract superclass

4-Dead class Remove dead class

5-Redundant container relation Set correct reference as opposite

6-Abstract subclasses of concrete superclass Make subclasses concrete

7-Abstract concrete class Make the class concrete

8-Classification by hierarchy Transform the hierarchy to enum

Table 2 Smells and refactorings supported in the evaluation

SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8
0

100

200

300

Figure 8 Distribution of smells throughout the dataset

Only 58 models in the dataset do not contain any smell,
meaning that 89.54% of the models present some type of smell.
From the models with smells, we discard 93, since they are not
supported by the quality evaluation tool and hence we can not
extract their quality and use it as rewards in the RL algorithm.
This makes a total of 404 models subject to be refactored.

The models are of diverse size, containing between 10 and
445 elements, counting classes, attributes and references. From
the 8 smell types we have defined in the smells finder for this
evaluation, each model present between 1 and 7 types. Counting
individual instances of each smell type, the models present
between 1 and 52 smell instances. Table 2 details the defined
smells and the refactoring for each of them. Figure 8 shows the
number of models in the dataset containing each smell type.

We randomly split the dataset of models with an 80-20%
distribution, refactoring 20% of the models twice, with and
without having first refactored the 80%. With this, we analyze
the impact of reusing learning with the experience submodule
on the refactoring time of the 20%.

Analysis of results When refactoring the 80+20% of the
dataset, it takes PARMOREL between 0.9 and 56.5s to learn
how to refactor each model.

When refactoring the 20% independently, without reusing
learning, it takes PARMOREL an average of 37% more time
to refactor these models. Faster refactoring happens in models
with bigger size, since the bigger the models, the more learning
can be reused from previous refactorings. By comparing the
refactor time from refactoring with and without reusing learning,
we can conclude that PARMOREL streamlines the refactor time
of the models between 2% and 61% when it has learned from
refactoring other models.

10 Barriga et al.

Regarding maintainability, PARMOREL is able to improve
it in 33.6% of the models. For 40% of the models it remains un-
changed and, for the remaining 26.3%, it worsens. For reusabil-
ity, 74.50% of the models present better results after refactoring
and 25.2% remains unchanged. Only one model from the dataset
presented worse reusability after refactoring. These results are
summarized in Fig. 9. In 100% of the models, whenever one
of the characteristics worsened, the other one improved. These
refactorings were selected because in the trade-offs between the
characteristics values the best decision for the overall quality of
the model was to worsen one of the characteristics in benefit of
the other one.

0 20 40 60 80 100

maint

reuse

improves unchanged worsens

Figure 9 Reusability and maintainability results

Figure 10 displays the percentage of each smell type removed
from the total present in the models for which maintainability
and reusability improves, respectively. SM1-3 are mostly re-
moved in both cases, while SM4-8 are mostly ignored. More-
over, SM4 and SM8 are more often removed when reusability
improves, mostly because the refactoring of these smells reduce
the total number of elements in the model.

Taking into account the characteristics in combination, PAR-
MOREL was able to improve the quality of both of them in
31.43% of the models in the dataset. It also improves one of the
two characteristics in 45.29% of the models while for 23.28%
both remained unchanged (see Fig. 11).

As a conclusion, only in 22.27% of the models the best solu-
tion found by PARMOREL was to remove all the smells With
the results of this evaluation, we can conclude that when tak-
ing into account the quality of the models, the best solution is
usually not to remove all the smells. Hence, as an answer to

SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8

0

50

100

maintainability improves reusability improves

Figure 10 Percentage of each smell type fixed when quality
improves

0 20 40 60 80 100

both

both improve one improves both unchanged

Figure 11 Both characteristics results after refactoring

our research question, PARMOREL is able to refactor the mod-
els with a balance between which smells should be addressed
without degrading the quality of the models and even improving
it. In most cases, the refactored model presents higher quality
in the characteristics selected by the user than the original one
(76.72% of the models in the evaluation). Additionally, as Fig.
10 shows, PARMOREL has the tendency to remove some of the
smell types and to ignore others.

6. Threats to validity
In this section, we discuss potential threats that are associated
with the validity of the experiments discussed in Section 5. We
distinguish between internal and external threats to validity as
in the following:

Internal validity Internal threats are factors influencing the
outcomes of the performed experiment. One potential internal
threat is that we focus on automatically detectable smells and
this could limit the applicability of the approach since semantic-
driven smells might not be representable with the Edelta DSL
syntax. Moreover the correctness of the experiments results are
driven by the solver, the applied refactoring, smells definitions
and quality characteristics calculation formulas. All these el-
ements are defined by modelers and then subject to possible
inconsistencies that could influence the final result. To mitigate
this aspect we reused, when possible, existing definitions from
literature and represented them faithfully with the corresponding
models or DSL syntax.

External validity In this context we discuss how the conducted
experiment would still be valid outside the used setting. To
mitigate this aspect, we considered various models since the
dataset is heterogeneous and used in other experiments in lit-
erature (Nguyen et al. 2019). We plan to further replicate the
experiment with other large datasets.

Throughout the paper we have picked four quality charac-
teristics as a proof of concept to measure the quality of the
refactored models. Likewise, we work with a set of eight smells
and their corresponding refactorings. Many other characteris-
tics could be measured in the models and other smells could
be identified together with different refactorings. We consider
the set of characteristics, smells and refactorings representative
enough since they are related to different elements in the models,
covering a wide range of structural changes in them.

Finally, the examples in the paper are based on EMF and
Ecore models, but as we explained, it is possible to switch to
other modeling frameworks by extending PARMOREL. Within
EMF, the work presented in this paper is specific for Ecore
models. However, it could be applied in general to models

Addressing the trade off between smells and quality when refactoring class diagrams 11

instances if the refactoring actions retrieved from the framework
were domain specific.

7. Related Work
This section discusses relevant works that are related to smells
detection and code refactoring with ML, model refactoring, ML
approaches for MDE and, recommender systems.

Smells detection and code refactoring with ML ML for
smells detection has been more applied at code level than at
model level. In (Fontana et al. 2016), the authors perform a
comparative study with different ML techniques for identify-
ing a set of four smells. They achieve high accuracy without
needing much data for each smell. However, in the literature
review presented in (Azeem et al. 2019) and (Di Nucci et al.
2018), authors point that most studies are done at a theoretical
level, and there are still big open challenges the field needs to
overcome to reach its full potential.

ML offers the possibility to identify complex smells and it
could also be used to detect smells in models. However, users
would need to find or define their own datasets in order to tackle
the smells they are interested in. The scope of the smells de-
tected using the Edelta DSL is automatically detectable smells,
but users just need to define their own smells at code level with-
out needing to train on any dataset. Regarding code refactoring,
different ML techniques (Alenezi et al. 2020; Sheneamer 2020)
have been applied to predict and identify which parts of the
code are prone to be refactored. By doing so, the time spent in
refactoring can be reduced. Although our current approach does
not support predictions, we use RL to identify both the parts of
models that should be refactored in their current state and what
is the best action to perform the refactoring. Approaches for
code refactoring usually rely on great amounts of data, including
code’s historic evolution coming from public code repositories.
This amount and type of data is not yet available in the MDE
field.

Model refactoring The concept of refactoring has been ex-
plored using UML class diagrams in (Mens 2006) after a com-
plete analysis of Fowler in (Fowler 1999) for code. A DSL
called Wodel (Gómez-abajo et al. 2016), allows to create model
mutations by means of a metamodel independent specification.
Creation, deletion and reference reversal are the primitives of-
fered by the model mutations whereas the composition of muta-
tions are similar to the Edelta mechanism. The specifications
are translated into Java code but Edelta works in a different
abstraction layer in which the refactoring / mutation is applied.

Similarly to the applied refactorings used in the experiments,
a refactoring catalog for UML models is presented in (Sunyé et
al. 2001). Whereas in (Xing & Stroulia 2006; Fadhel et al. 2012)
mechanisms for detecting refactorings are presented. Lastly,
the approach in (Langer et al. 2013) proposes an a searching
algorithm for occurrences of composite operations within a set
of detected atomic changes in a post-processing manner.

In these approaches, the user is responsible of deciding which
refactorings to apply in the model and sometimes of designing
them. In PARMOREL, we abstract users from this burden as

the tool will take care of deciding which refactorings should be
applied to satisfy the user preferences.

ML approaches for MDE We could not find in the literature
any research applying RL to model refactoring hence, we focus
on other ML techniques as related work.

Puissant et al. propose a tool called Badger based on an
artificial intelligence technique called automated planning (Puis-
sant et al. 2015). Badger generates sequences that lead from an
initial state to a defined goal.

It has a set of repaired operations to which users can assign
costs and weights to decide its priority. Badger generates a set
of plans, each plan being a possible way to repair one error. This
makes it difficult for the user to decide which action to apply
without knowing how it affects the rest of the model. We prefer
to generate alternative sequences to refactor the whole model
since some actions can modify the model drastically.

It is worth mentioning search-based and genetic algorithm-
based approaches since, although they have not been applied
yet to model repair, they are possible competitors to RL. These
techniques have shown promising results dealing with model
transformations and evolution scenarios, for example in (Kessen-
tini et al. 2017) authors use a search-based algorithm for model
change detection. These algorithms deal efficiently with large
state spaces, however they cannot learn from previous tasks nor
improve their performance. While RL is, in the beginning, less
efficient in large state spaces, it can compensate with its learning
capability. In the beginning, performance might be poor, but
with time refactoring becomes straightforward.

Some approaches make use of neural network (NN) archi-
tectures to solve different MDE problems. In (Burgueño et al.
2019) authors present a NN architecture for model transforma-
tion without specifying code for any specific transformations.
Tackling model refactoring, in (Sidhu et al. 2020) authors make
use of a deep NN architecture to refactor UML diagrams with
symptoms of design flaws. NN need a great amount of data in
order to work. The produced solutions are tightly related to the
training dataset, so if the requirements of the problem changes,
so needs to do the data. By using RL we do not need training
data, as these algorithms learn by directly interacting with the
models and, by using the abstract concepts of PARMOREL
architecture, our tool can easily be adapted to solve different
problems without the burden of designing new datasets.

Recommender systems Other approaches such as (Cuadrado
et al. 2018; Muşlu et al. 2012) work as recommender systems
(both for code and models) instead of only relying on automa-
tion. PARMOREL may also be utilized like a recommender
system allowing users to choose the solution they prefer from a
ranked list of proposed solutions. These choices are in turn fed
back to the learning algorithm and affect the rewards (Barriga,
Heldal, et al. 2020). However, the main focus of this paper
is on providing automatic model refactoring to remove smells.
Hence, instead of letting the users know about the consequences
of the refactorings so that they decide a solution, we ask them
beforehand which consequences (quality characteristics as pref-
erences) they prefer, and we use these preferences to guide the
refactoring phase. In (Cuadrado et al. 2018) authors present a

12 Barriga et al.

catalogue of quick fixes, knowing which one of them can solve
each problem. In our paper, each smell found by the smell finder
has a corresponding refactoring, however, we have worked in
scenarios where we had a set of available actions and we did
not know which one solved each smell. Finally, although some
quick-fix approaches (Cuadrado et al. 2018) might be initially
faster than PARMOREL, the idea of our approach is that it
learns and streamlines its performance the more models it refac-
tors. As could be seen in the evaluation, with a relatively small
dataset we already were able to refactor models in which the
issues were known by PARMOREL 37% faster on average.

8. Conclusions and future work

In this paper, we present a new PARMOREL extension to sup-
port smells detection and selective refactoring. The approach
is able to selectively remove smells that has impact on the
quality characteristics expressed as preference by the user. To
achieve this, we integrate PARMOREL with a tool that allows
modelers to identify smells and refactor them with precise refac-
torings. This extension is based on the integration of tools, e.g.,
Edelta, and a model-based quality assessment methodology. We
demonstrated how we can solve the trade-off between smells
and quality characteristics with a dataset used in the literature,
consisting of 404 models extracted from GitHub. The results
are positive and show that PARMOREL effectively select the
best smells to refactor in order to maintain and, even improve,
the quality characteristics expressed by the modeler. We outline
that this approach is totally model-based and that can be further
extended with other preferences, issues and actions that we plan
to investigate. The main strength of PARMOREL is the degree
of flexibility it provides to the user.

In this flexible environment, we use reinforcement learning
to learn how to refactor a model without any prior knowledge
of the model, and by using our transfer learning approach with
experience sharing, we can forward what the framework learns
from previous refactorings. Reinforcement learning might have
the weakness to provide a slower solution than other approaches
during the first refactorings, however, the idea of our approach is
that the learning module learns and streamlines the performance
the more models it refactors.

Currently, PARMOREL is limited to quantitative user prefer-
ences and it needs to get a set of actions to modify the model,
unlike other approaches these actions cannot yet be inferred
from the issues in the models. Also, PARMOREL needs to de-
tect issues in a model in order to improve it, it cannot deal with
models without issues yet. We plan to address these limitations
as part of our future work.

Next, we plan to create a benchmark using different model
datasets, including the one used in this paper, with which we
will compare PARMOREL results and its performance to other
existing model refactor and repair approaches in the literature.
Also, we plan to extend PARMOREL to solve other problems
relevant in the modeling field, like model refactoring after their
corresponding metamodel evolves (co-evolution) and making
architectural models compliant with best practices and recom-
mended design patterns.

Additionally, we plan to extend the learning module with
other algorithms beyond reinforcement learning, specially fo-
cusing in other AI and search-based approaches and study their
performance with respect to RL algorithms.

References
Alenezi, M., Akour, M., & Al Qasem, O. (2020). Harness-

ing deep learning algorithms to predict software refactoring.
Telkomnika, 18(6).

Al-Jáafer, J., & Sabri, K. E. (2007). Metrics for object oriented
design (mood) to assess java programs (Tech. Rep.).

Arendt, T., & Taentzer, G. (2013). A tool environment for
quality assurance based on the Eclipse Modeling Framework.
Automated Software Engineering, 20(2), 141–184.

Azeem, M. I., Palomba, F., Shi, L., & Wang, Q. (2019). Machine
learning techniques for code smell detection: A systematic
literature review and meta-analysis. Information and Software
Technology, 108, 115–138.

Babur, O. (2019, March). A labeled Ecore metamodel dataset
for domain clustering. Zenodo. Retrieved from https://
doi.org/10.5281/zenodo.2585456

Barriga, A., Heldal, R., Iovino, L., Marthinsen, M., & Rutle,
A. (2020). An extensible framework for customizable model
repair. In Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and
Systems (pp. 24–34). ACM.

Barriga, A., Mandow, L., Perez de la Cruz, J. L., Rutle, A.,
Heldal, R., & Iovino, L. (2020). A comparative study of
reinforcement learning techniques to repair models. In 2020
ACM/IEEE 23rd International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-
C). ACM.

Barriga, A., Rutle, A., & Heldal, R. (2020, July). Improving
model repair through experience sharing. Journal of Object
Technology, 19(2), 13:1-21.

Basciani, F., Di Rocco, J., Di Ruscio, D., Iovino, L., & Pieranto-
nio, A. (2016). A customizable approach for the automated
quality assessment of modelling artifacts. In 2016 10th In-
ternational Conference on the Quality of Information and
Communications Technology (QUATIC) (pp. 88–93). IEEE.

Basciani, F., Di Rocco, J., Di Ruscio, D., Iovino, L., & Pieran-
tonio, A. (2019). A tool-supported approach for assessing
the quality of modeling artifacts. Journal of Computer Lan-
guages, 51, 173–192.

Beck, K., & Fowler, M. (2018). Bad smells in code. In
Refactoring: Improving the design of existing code (2nd ed.,
chap. 3). Addison-Wesley.

Bellman, R. (2013). Dynamic programming. Courier Corpora-
tion.

Bettini, L. (2016). Implementing domain-specific languages
with Xtext and Xtend (2nd ed.). Packt Publishing Ltd.

Bettini, L., Di Ruscio, D., Iovino, L., & Pierantonio, A. (2017).
Edelta: An approach for defining and applying reusable meta-
model refactorings. In Proc. MODELS (Satellite Events) (pp.
71–80). ACM.

Bettini, L., Di Ruscio, D., Iovino, L., & Pierantonio, A. (2019).
Quality-driven detection and resolution of metamodel smells.

Addressing the trade off between smells and quality when refactoring class diagrams 13

https://doi.org/10.5281/zenodo.2585456
https://doi.org/10.5281/zenodo.2585456

IEEE Access, 7, 16364–16376.
Bettini, L., Di Ruscio, D., Iovino, L., & Pierantonio, A. (2020).

Edelta 2.0: Supporting live metamodel evolutions. In Proc.
MODELS (Satellite Events) (pp. 1–10). ACM.

Boehm, B. W., Brown, J. R., & Lipow, M. (1976). Quanti-
tative evaluation of software quality. In Proceedings of the
2nd international conference on software engineering (pp.
592–605). IEEE Computer Society Press.

Burgueño, L., Cabot, J., & Gérard, S. (2019). An LSTM-Based
Neural Network Architecture for Model Transformations. In
2019 ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems (MODELS) (pp.
294–299). IEEE.

Cuadrado, J. S., Guerra, E., & de Lara, J. (2018). Quick fixing
atl transformations with speculative analysis. Software &
Systems Modeling, 17(3), 779–813.

Di Nucci, D., Palomba, F., Tamburri, D. A., Serebrenik, A., &
De Lucia, A. (2018). Detecting code smells using machine
learning techniques: are we there yet? In 2018 IEEE 25th
international conference on software analysis, evolution and
reengineering (SANER) (pp. 612–621). IEEE.

Di Rocco, J., Di Ruscio, D., Iovino, L., & Pierantonio, A. (2014).
Mining metrics for understanding metamodel characteristics.
In Proceedings of the 6th International Workshop on Model-
ing in Software Engineering (pp. 55–60). ACM.

Dromey, R. G. (1995). A model for software product quality.
IEEE Transactions on software engineering, 21(2), 146–162.

Fadhel, A. B., Kessentini, M., Langer, P., & Wimmer, M. (2012).
Search-based detection of high-level model changes. In Icsm
(pp. 212–221). IEEE Computer Society.

Fontana, F. A., Mäntylä, M. V., Zanoni, M., & Marino, A.
(2016). Comparing and experimenting machine learning
techniques for code smell detection. Empirical Software
Engineering, 21(3), 1143–1191.

Fowler, M. (1999). Refactoring: improving the design of
existing code. Addison-Wesley.

García-Magariño, I., Gómez-Sanz, J. J., & Fuentes-Fernández,
R. (2008). An Evaluation Framework for MAS Modeling
Languages Based on Metamodel Metrics. In AOSE (Vol.
5386, pp. 101–115). Springer.

Genero, M., & Piattini, M. (2001). Empirical validation of
measures for class diagram structural complexity through
controlled experiments. In QAOOSE@ECOOP.

Gómez-abajo, P., Guerra, E., Lara, J. D., Gomeza, P., & Guerra,
E. (2016). Wodel : A Domain-Specific Language for Model
Mutation. In SAC (pp. 1–6). ACM.

Iovino, L., Barriga, A., Rutle, A., & Heldal, R. (2020). Model
repair with quality-based reinforcement learning. Journal of
Object Technology, 19(2), 17.

Kessentini, M., Mansoor, U., Wimmer, M., Ouni, A., & Deb,
K. (2017). Search-based detection of model level changes.
Empirical Software Engineering, 22(2), 670–715.

Kolovos, D. S., Paige, R. F., & Polack, F. A. (2006). The
epsilon object language (EOL). In European Conference on
Model Driven Architecture-Foundations and Applications (pp.
128–142). Springer.

Langer, P., Wimmer, M., Brosch, P., Herrmannsdörfer, M., Seidl,

M., Wieland, K., & Kappel, G. (2013). A posteriori operation
detection in evolving software models. J. Syst. Softw, 86(2),
551–566.

López-Fernández, J. J., Guerra, E., & De Lara, J. (2014). Assess-
ing the Quality of Meta-models. In MoDeVVa@MODELS
(pp. 3–12). CEUR-WS.org.

Mens, T. (2006). On the use of graph transformations for
model refactoring. In GTTSE (Revised Papers) (pp. 219–257).
Springer.

Mumtaz, H., Alshayeb, M., Mahmood, S., & Niazi, M. (2019).
A survey on UML model smells detection techniques for
software refactoring. Journal of Software: Evolution and
Process, 31(3).

Muşlu, K., Brun, Y., Holmes, R., Ernst, M. D., & Notkin, D.
(2012). Speculative analysis of integrated development envi-
ronment recommendations. ACM SIGPLAN Notices, 47(10),
669–682.

Nguyen, P. T., Di Rocco, J., Di Ruscio, D., Pierantonio, A., &
Iovino, L. (2019). Automated Classification of Metamodel
Repositories: A Machine Learning Approach. In MODELS
(pp. 272–282). IEEE.

Ortega, M., Pérez, M., & Rojas, T. (2003). Construction of
a systemic quality model for evaluating a software product.
Software Quality Journal, 11(3), 219–242.

Puissant, J. P., Van Der Straeten, R., & Mens, T. (2015). Re-
solving model inconsistencies using automated regression
planning. Software & Systems Modeling, 14(1), 461–481.

Sheldon, F. T., & Chung, H. (2006). Measuring the complexity
of class diagrams in reverse engineering. Journal of Software
Maintenance, 18(5), 333–350.

Sheneamer, A. M. (2020). An Automatic Advisor for Refac-
toring Software Clones Based on Machine Learning. IEEE
Access, 8, 124978–124988.

Sidhu, B. K., Singh, K., & Sharma, N. (2020). A machine learn-
ing approach to software model refactoring. International
Journal of Computers and Applications, 1–12.

Steinberg, D., Budinsky, F., Paternostro, M., & Merks, E. (2008).
EMF: Eclipse Modeling Framework (2nd ed.). Addison-
Wesley.

Strittmatter, M., Hinkel, G., Langhammer, M., Jung, R., &
Heinrich, R. (2016). Challenges in the evolution of metamod-
els: Smells and anti-patterns of a historically-grown meta-
model. In CEUR Workshop Proceedings (Vol. 1706, p. 30-39).
CEUR.

Sunyé, G., Pollet, D., Le Traon, Y., & Jézéquel, J.-M. (2001).
Refactoring UML Models. In Proceedings of UML (Vol.
2185, pp. 134–148). Springer.

Thrun, S., & Littman, M. L. (2000). Reinforcement learning:
an introduction. AI Magazine, 21(1), 103–103.

Whittle, J., Hutchinson, J., & Rouncefield, M. (2014). The
state of practice in model-driven engineering. IEEE software,
31(3), 79–85.

Xing, Z., & Stroulia, E. (2006). Refactoring Detection based on
UMLDiff Change-Facts Queries. In WCRE (pp. 263–274).
IEEE.

14 Barriga et al.

About the authors
Angela Barriga is a PhD Candidate at Western Norway Univer-
sity of Applied Sciences. She has experience working with ma-
chine learning, computer vision, gerontechnology and pervasive
systems. Barriga’s thesis is focused on model repair, specially
on repairing using reinforcement learning. She has been part
of the local organization of iFM 2019 and is involved in STAF
2020-2021. She is also part of the program committee of the
third international workshop on gerontechnology. You can learn
more about her at https://angelabr.github.io/ or
contact her at abar@hvl.no.

Lorenzo Bettini is an Associate Professor in Computer Sci-
ence at DISIA Dipartimento di Statistica, Informatica, Appli-
cazioni ‘Giuseppe Parenti’, Università di Firenze, Italy, since
February 2016. Previously, he was an Assistant Professor (Re-
searcher) in Computer Science at Dipartimento di Informatica,
Università di Torino, Italy. His research interests cover de-
sign, theory and implementation of DSLs and programming
languages (in particular Object-Oriented languages and Net-
work aware languages). He is also committer of the Eclipse
projects Xtext and SWTBot and the project lead of the Eclipse
project EMF Parsley. Contact him at lorenzo.bettini@unifi.it,
or visit http://www.lorenzobettini.it.

Ludovico Iovino is Assistant Professor at the GSSI Gran Sasso
Science Institute, LAquila - in the Computer Science depart-
ment. His interests include Model Driven Engineering (MDE),
Model Transformations, Metamodel Evolution, code genera-
tion and software quality evaluation. Currently he is work-
ing on model-based artifacts and issues related to the meta-
model evolution problem. He has been included in program
commitees of numerous conferences and in the local organ-
isation of the STAF 2015 and iCities 2018 conferences, he
organised also the models and evolution workshop at MOD-
ELS 2018. He is part of different academic projects related to
Model Repositories, model migration tools and Eclipse Plug-
ins. Contact him at ludovico.iovino@gssi.it, or visit http://
www.ludovicoiovino.com.

Adrian Rutle is professor at Western Norway University of Ap-
plied Sciences. Adrian holds PhD in Computer Science from
the University of Bergen, Norway. Rutle is professor at the
Department of Computer science, Electrical engineering and
Mathematical sciences at the Western Norway University of Ap-
plied Sciences, Bergen. Rutles main interest is applying theoret-
ical results from the field of model-driven software engineering
to practical domains and has expertise in the development of
modeling frameworks and domain-specific modeling languages.
He also conducts research in the fields of modeling and simula-
tion for robotics, eHealth, digital fabrication, smart systems and
machine learning. Contact him at adrian.rutle@hvl.no

Rogardt Heldal is professor of Software Engineering at the
Western Norway University of Applied Sciences. Heldal holds
an honours degree in Computer Science from Glasgow Univer-
sity, Scotland and a PhD in Computer Science from Chalmers

University of Technology, Sweden. His research interests in-
clude requirements engineering, software processes, software
modeling, software architecture, cyber-physical systems, ma-
chine learning, and empirical research. Many of his research
projects are performed in collaboration with industry. Contact
him at rogardt.heldal@hvl.no

Addressing the trade off between smells and quality when refactoring class diagrams 15

https://angelabr.github.io/
mailto:abar@hvl.no
mailto:lorenzo.bettini@unifi.it
http://www.lorenzobettini.it
mailto:ludovico.iovino@gssi.it
http://www.ludovicoiovino.com
http://www.ludovicoiovino.com
mailto:adrian.rutle@hvl.no
mailto:rogardt.heldal@hvl.no

