
Journal of Object Technology | RESEARCH ARTICLE

A Methodology for Retrofitting Generative Aspects in
Existing Applications

Imke Drave, Arkadii Gerasimov, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga
Software Engineering, RWTH Aachen University, Germany

ABSTRACT Using model-based approaches and code synthesis to engineer information systems improves agile application
development and evolution. However, current research lacks systematic approaches to integrate generative aspects in already
existing applications. Existing approaches consider partial aspects of the engineering process, such as software language
engineering or generator engineering. However, an overall approach for the model-based reconstruction of existing systems is
missing. We propose a set of activities for retrofitting the model-based approach into already existing enterprise information
systems. Using our experience in language engineering as well as previous generative practical realizations of applications, we
have developed a methodology with three phases: problem analysis and decomposition, domain-specific language engineering
and application engineering and operation. We demonstrate its practical application using a real-world enterprise information
system as an example. Using our methodology developers can make structured, informed decisions when retrofitting a
model-based approach into enterprise information systems.

KEYWORDS Methodology, Model-Based Software Engineering, Generators, Brown Field, Information Systems, Problem Decomposition.

1. Introduction

1.1. Motivation and Relevance
Modern software systems are pervasive systems of systems that
continuously increase in size and complexity (France & Rumpe
2007; Möller et al. 2011), this growth still challenges soft-
ware engineers today. The gap between the problem(s) solved
by a software system and its realization (known as problem-
implementation gap (France & Rumpe 2007)) still exists and
contributes to the complexity of these systems. Model-Based
Software Engineering (MBSE) enables automatic code synthe-
sis and thereby offers solutions to overcome these challenges:
Addressing each aspect of a problem that occurs during develop-
ment through a tailored Domain-Specific Language (DSL) and
utilizing models within this language for generative engineering
of a software system has proven an effective means to reduce the

JOT reference format:
Imke Drave, Arkadii Gerasimov, Judith Michael, Lukas Netz, Bernhard
Rumpe, and Simon Varga. A Methodology for Retrofitting Generative
Aspects in Existing Applications. Journal of Object Technology. Vol. 20, No.
2, 2021. Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2021.20.2.a7

problem-implementation gap (France & Rumpe 2007; Schmidt
2006). Abstracting from details of the implementation platform
and generating code from this abstract description enables ag-
ile development and, thus, allows for efficient adaptation to
changing requirements. Nevertheless, current research lacks a
systematic decision-making procedure, e.g., to choose between
the reuse of an existing DSL or the engineering of a new one,
to be used in modeling solutions to a problem and retrofitting a
running Enterprise Information Systems (EISs) with implemen-
tations generated from models. A software language, general-
purpose or domain-specific (Fowler 2010; Völter et al. 2013),
serves a dedicated purpose (Karsai et al. 2009), has strengths
and weaknesses depending on its properties, and is often used
during multiple phases of the engineering process. Software
engineering for modern EISs is defined by the heterogeneity of
development teams and languages used to model and implement
the system (Clark et al. 2015). A holistic approach to MBSE
that enables exploiting the potential of code generation requires
a systematic collaboration of developers (Clark et al. 2015) and
explicit relationships between models, e.g., through the compo-
sition of languages (Hölldobler et al. 2018) or models (Kienzle
et al. 2019; Degueule et al. 2015). Choosing or engineering

An AITO publication

http://dx.doi.org/10.5381/jot.2021.20.2.a7

a modeling language for a specific problem aspect, therefore,
requires consideration of the interrelations and overlaps of prob-
lem aspects. A methodology that (1) divides the large complex
problem domain of an EIS into problem aspects, (2) offers a
mechanism to choose an appropriate DSL or General Purpose
Language (GPL) to handle problem aspects while regarding
their interrelations, and (3) includes aspects of generator engi-
neering as well as regeneration of the system until redeploying
an improved EIS, is still missing.

1.2. Research Question and Objective
This paper, therefore, addresses the research question how to
retrofit generative aspects in existing enterprise information
systems and proposes a concrete model-based methodology
for reconstructing existing applications (brown-field) through
structured and informed decision-making.

The objective is to provide a comprehensive guide for soft-
ware engineers which suggests possible activities for the trans-
formation of a handwritten application to a model-driven appli-
cation and generator infrastructure.

1.3. Main Contribution
The main contribution of this article is a methodology for
retrofitting generative aspects into existing EISs (brown-field)
that can be applied throughout the phases of the development
process, i.e., problem analysis, language engineering, and ap-
plication engineering.

The methodology uses the divide- and conquer principle to
divide large complex problems into smaller problems that can
be handled with dedicated modeling languages. It includes
three phases, namely (Phase P) problem analysis and decom-
position, (Phase L) domain-specific language engineering as
well as (Phase A) application engineering and operation. This
includes activities such as (1) coping with complex problems,
(2) choosing or creating a modeling language and adapting or
creating a generator, and (3) continuous regeneration, test, and
deployment.

We validate our methodology by example (Shaw 2003) using
a real-world example: an EIS from the domain of finances and
controlling (Gerasimov, Heuser, et al. 2020) with a codebase of
more than 500,000 lines of code. As an example for the prac-
tical realization of our methodology we use a set of languages
created with MontiCore (Hölldobler & Rumpe 2017), a lan-
guage workbench for the design and realization of textual DSLs.
MontiCore allows for language aggregation and composition as
well as for generation or synthesis of code from the models via
a common infrastructure.

This work builds on our previous research results and the
work of other authors, however, the proposed methodology and
its application were not published before. The example appli-
cation (MaCoCo project, Section 4) was already used in our
publication about the maintainable co-development of front-end
and back-end in generated information systems (Gerasimov,
Heuser, et al. 2020). The generator framework MontiGem was
published in (Gerasimov, Michael, et al. 2020). It is used to re-
alize activities 9 and 11 in our example application in Section 4.
Lessons learned about generator engineering were published

in (Adam et al. 2020). Our methodology was developed bottom-
up by identifying realizable underlying mechanisms of interac-
tions (analytical generalization (Yin 2003)) between modeling
languages, models and their specific characteristics and makes
use of our experiences in software language engineering and
practical realizations of generative approaches.

Outline. Section 2 describes the fundamentals for the prac-
tical application of our methodology, e.g., the used language
workbench, the example languages, and the generator frame-
work used for the generation of an EIS. We introduce our run-
ning example and discuss challenges for generative software
engineering. Section 3 shows our methodology to retrofit gener-
ative aspects in existing projects. Section 4 discusses the practi-
cal application of the approach on a real-world EIS. Section 5
critically discusses our ideas in relation to other approaches and
their limitations and threats to validity. Section 6 presents re-
lated work for the different activities. The last section concludes
this article.

2. Fundamentals
The problem-implementation gap in software occurs whenever
developers implement a software solution on a lower level of
abstraction than the abstraction level that is used to describe the
problem (France & Rumpe 2007). Software systems today are
pervasive systems of systems (France & Rumpe 2007) whose
components1 have to fulfill a heterogeneous variety of tasks
(Schmidt 2006; Kienzle et al. 2019; Aniche et al. 2019). For
example, EISs have to run processes, display a graphical user
interface, process data, and assure security at the same time. Si-
multaneously, these EISs have to be highly adaptable to the ever
changing corporate environment (Möller et al. 2011; Schmidt
2006). MBSE classifies the heterogeneous system tasks into
problem domains and utilizes modeling languages tailored for
implementing solutions in each domain individually. In MBSE,
a model is an abstract representation of a system suited to define
solutions to a specific set of heterogeneous tasks (Stachowiak
1973). By utilizing models in domain-specific modeling lan-
guages as primary development artifacts, MBSE raises the level
of abstraction when implementing solutions and, thereby, re-
duces the problem-implementation gap for the specific problem
domain significantly. Utilizing specialized modeling languages
for each problem domain strongly separates each domain con-
cern and allows them to be handled in multiple dimensions (Tarr
et al. 1999), e.g., models may regard different concerns of multi-
ple problem domains and may be handled differently according
to the phase of development. Generative software engineering
utilizes models created with DSLs to automatically generate
an implementation of the specified system (Czarnecki 2005),
and thereby, allows one to obtain an implementation from the
models directly. This section outlines fundamentals for the
methodology introduced in Section 3 regarding modeling lan-
guages and generators and describes the challenges addressed
by the methodology.

1 In this paper, a component is a unit that can be independently delivered and
versioned, has explicit interfaces, is largely independent of the environment
can be combined with other components, is reusable, and has no externally
observable state.

2.1. MontiCore Language Workbench
MontiCore (Hölldobler & Rumpe 2017; Haber, Look, et al.
2015b) is a workbench for developing compositional modeling
languages (Combemale et al. 2018). MontiCore uses context-
free grammars (CFGs) to simplify the definition of a language.
The grammars are used for the simultaneous development of
abstract and concrete syntax. The grammar of a language con-
tains production rules that are derived from terminals and non-
terminals which determine the permissible syntax of a language.
MontiCore also offers options to define specific language com-
ponents, which can then be combined into one language. This
makes it easier to reuse, adapt or extend individual parts. The
parser, abstract syntax classes, and other context dependencies
are automatically generated by MontiCore and can be adjusted
by hand using the TOP-mechanism (Hölldobler & Rumpe 2017),
which utilizes inheritance to override or to extend the generated
code. This infrastructure then allows a generator to process
models of the specified DSLs. The imported models are read by
the parser and then transformed into an Abstract Syntax Tree
(AST). Using the infrastructure, validity checks can also check
context-sensitive properties. The AST can be transformed as
required for the application. The transformed AST is then used
along with templates by a template engine to generate the target
code.

2.2. Languages
By using the MontiCore language workbench, we have devel-
oped textual representations for several modeling languages. As
language engineers, we are already familiar with the following
DSLs:

Class Diagrams for Analysis (CD4A) (Rumpe 2016) is a
DSL representing classes, their relations, attributes, and meth-
ods and is used for analysis purposes. Object Constraint
Languages (OCLs)/P (OCL/P) is an extension of the UML
OCL adapted for programming (Rumpe 2016). The Tagging
Language is a structural DSL used to modify and provide meta-
information for existing models (Greifenberg, Look, et al. 2015).
It is used to extend existing models in a separate model file with-
out modifying the original one. The tagging information can
be used to generate an implementation that has more context
and is platform-specific. The GUI-DSL (Gerasimov, Michael,
et al. 2020) is a language to define Graphical User Interfaces
(GUIs) and the data they display. A GUI-DSL model describes
a page of a web-application user interface. It is designed to
define views and connections to the business logic. These DSLs
are used in our generator framework for creating an EIS and are
included in our running example.

2.3. MontiGem Generator Framework
MontiGem (Adam et al. 2020) is a generator framework for
enterprise management applications, a tool for the iterative,
model-driven development of full-size real-world applications.
The framework takes models as an input and generates code into
a Run-time Environment (RTE), where the models are written
in modeling languages described in the previous section. CD4A
models are used as a base for the data structure and connection to
the user interface, GUI-DSL models define the GUI, a validation

infrastructure is generated from OCL/P models and attached
to the data structure and Tagging is used to generate additional
code to handle specifics of a domain.

Languages used in MontiGem are processed by MontiCore,
which generates parts of the generator framework such as lexers
and parsers. MontiGem can be extended by other MontiCore
products in different ways, e.g., by language composition (Höll-
dobler et al. 2018) or generator chains, where models are pro-
duced from generators using other models as input. One such
extension allows the derivation of GUI models from CD4A mod-
els, which enables the rapid building of functional prototypes
of an information system (Gerasimov, Michael, et al. 2020).

MontiGem

Generator

Model
Model
TS

Model
Model
HTML

Model
Model
GUI

▪▪▪

▪▪▪▪▪▪

Model
Model
CD4A

▪▪▪

▪▪▪▪▪▪

Models Generated code

CD4A
Domain

▪▪▪

▪▪▪▪▪▪

Model
Model
Java

Figure 1 Generation process of MontiGem

Generally, the models used in MontiGem serve as a basis
for the generation of code written in general-purpose languages.
Java and TypeScript code is generated for the implementation of
data structures as well as for data validation and communication
between the back-end and the user interfaces. TypeScript and
HTML code is generated for the implementation of GUIs.

2.4. Challenges of Using DSLs

While model-driven generative engineering reduces the
problem-implementation gap and enhances the adaptation of a
running EIS, some challenges, which are mostly of methodolog-
ical nature (France & Rumpe 2007; Bucchiarone et al. 2020;
Aniche et al. 2019), remain. The methodology proposed in Sec-
tion 3 aims to meet the following challenges, which are later
mentioned in corresponding activities.

Relating Models between Heterogeneous DSLs. One major
challenge arises from the fact that models of complex software
are heterogeneous (Aniche et al. 2019) and are often written
in multiple modeling languages. A sound generative approach
has to systematically relate these models, which is referred to
as the DSL-Babel challenge in (France & Rumpe 2007). These
relationships could be different in different development phases.
Implicitly, (France & Rumpe 2007) names two possibilities to
overcome this challenge:

– to explicate the relations between model elements in a
mega-model, or

– to implement a generator that combines the models accord-
ingly.

Supporting Evolution of Models and DSLs. Due to iterative
development, changing requirements, and bug fixes, models
evolve continuously during the development process (Aniche
et al. 2019; Maoz et al. 2010). Effective change management
still challenges MBSE. Advances in this area are divided into
syntactic differencing, e.g., (Taentzer et al. 2014), semantic dif-
ferencing (Langer et al. 2014), and hybrid approaches (Kautz
& Rumpe 2018; Maoz & Ringert 2016). Within generative
MBSE, the DSLs used are continuously improved and reused
for new problem aspects due to changing requirements or bug
fixes. The systematic relations between the models are therefore
also subject to continuous evolution. Adapting or implement-
ing code generators that implement these model relationships
require an integrated change management system for models
and generators.

Reusing DSLs and Generators. Another challenge is the def-
inition of criteria to be used when choosing an appropriate
language that can be reused in the context of the problem do-
main. As engineering DSLs and tooling, such as generators or
model analyses is a demanding process, efficient development
reuses existing implementations systematically (Bucchiarone
et al. 2020; Degueule et al. 2015). However, as DSLs are used
to describe solutions to particular problem aspects, reusing a
DSL strongly correlates to the decomposition of the problem do-
main into problem aspects: Decomposing the problem domain
restricts the DSLs that can be reused. Vice versa, choosing to
reuse a DSL requires that the problem domain is decomposed
in a way such that it comprises a problem aspect to which so-
lutions can be modeled in the respective DSL and that existing
generators produce implementations of solutions to (parts of)
the problem aspect. When retrofitting generative aspects into
existing EISs, an effective development methodology must offer
systematic criteria to choose DSLs and generators for reuse,
which take the decomposition of the problem domain into ac-
count.

3. Retrofitting Generative Aspects in Existing
Projects

MBSE envisions system development to rely on models that
serve as primary development artifacts (Selic 2003; Völter et al.
2013; France & Rumpe 2007). Nowadays, applications evolve
continuously, e.g., through improvements, or added functional-
ities (France & Rumpe 2007). Thus, agile, iterative processes
have emerged and are currently well established in the practice
of software engineering (Rumpe 2017). Among others, MBSE
enables automated code synthesis and is, therefore, highly ben-
eficial for agile development and applications that change con-
tinuously. Therein, models lift the level of abstraction used to
describe a (software) solution and generators implement the
mapping between these models and the solution. Automating
code synthesis for parts of a system already facilitates the ex-

tension of an existing application, which the lessons learned
from industrial generative, model-based engineering of EISs
published in (Adam et al. 2020) substantiate. These lessons
include the fact that MBSE improves efficiency when reusing
(and adapting) an existing generator, or when a generator de-
veloped in the setting of the project will be reused for other
projects. In turn, generators are capable of assuring consistency
between the generated artifacts, as they implement the mapping
from model to code. This allows one to assure efficiency and
correctness during the engineering process, because developers
obtain automatic and direct feedback.

The problem domain spanned by modern EISs comprises
multiple aspects of a highly variable nature (Möller et al. 2011;
France & Rumpe 2007). Thereby, a problem aspect does not
necessarily belong to one module of the system. Rather, one
problem aspect requires specific mechanisms to handle it and
may be solved across various modules of the implementation.
A modular architecture of the target system does not necessarily
aid in identifying the problem aspects that allow for reusing
generators or modeling languages.

So far, research lacks an overall approach that integrates
the engineering activities within all phases of the engineering
process. Existing methodologies often consider only parts of
the engineering process, e.g., dividing the implementation into
modules (Rogozov et al. 2020) or certain time phases such
as software language engineering (Combemale et al. 2018),
generator engineering, domain engineering (Kang et al. 1998) or
application engineering (Czarnecki 2005). Section 6 discusses
related methodologies in detail.

3.1. Agility, Phases and Iterations
The methodology assumes the existence of a running EIS and
substitutes the implementation step by step by generated parts.
The result is, again, a running EIS.

Our methodology covers three main phases: (Phase P) prob-
lem analysis and decomposition, (Phase L) domain-specific
language engineering, and (Phase A) application engineering
and operation. Whereas the first phase is more related to the
problem domain, the other two phases have a stronger relation
to the solution domain.

Figure 2 Agile development process with activities and
phases

The proposed methodology can be mapped to an agile devel-
opment process as follows: Starting with a hand-written product
or the result of a previous development cycle, the problem at
hand is analyzed and decomposed (phase P, activities A1 and
A2 in Section 3.3). Activities for domain-specific language
engineering, phase L, need to be applied (A3 to A8). Finally,
activities A9 to A13 are considered for Phase A, application
engineering, and operation of the product. Engineers might not
follow these activities consequently, e.g., they return to language
engineering or generator engineering activities if the generated
code is not sufficient for their problem aspect.

After completion of all necessary activities, a decision is
made together with experts from the problem domain whether
the product will be published or has to be refined. Upon release,
activities A14 and A15 may be performed for operation (part
of phase A). In case new problems arise and the product is
therefore not released, these new aspects have to be identified
and the process starts again at activity A1 with the updated
problem.

In practice, time synchronization of DSL and application
engineering is not mandatory. There exist heterogeneous de-
velopment teams for phase L and A, e.g., Clark et al. (Clark
et al. 2015) describes these two groups of engineers: language
engineers and integrators on the DSL side and system engineers
on the application side. The latter might even be several groups
of system engineers for different applications. Thus, such de-
velopment teams may carry out activities from phases L and A
independently from each other.

However, they are not entirely independent, as (intermediate)
results of an activity in phase A may require repeating activities
from phase L and vice versa. For example, engineering code
generators is an activity of phase A but is strongly related to
the activity of engineering DSLs, which is part of phase L. This
is because during MBSE with code generation, not only the
models evolve, but also the languages these models are written
in. Changing the implementation of a DSL in phase L requires
updating of the generators that process models of the evolved
languages in phase A. Findings in generator development in
phase A might lead to additions in the DSL in phase L.

3.2. Conceptual Model of the Main Concepts
The conceptual model in Figure 3 captures the main concepts ap-
plied in MBSE projects that utilize code generators. Following
the suggestion of Mayr and Thalheim (Mayr & Thalheim 2020)
to describe conceptual models, we discuss its notion space in
detail.

A problem describes the reasons why a specific application is
needed. It may comprise several problem aspects, which further
detail the problem and challenges. Problem aspects categorize
several users requirements, where one requirement may be cate-
gorized by multiple problem aspects. A problem aspect could
be handled by an existing library, handwritten code or can be
described by models. Therein, models describe a solution to (a
part of) a problem aspect. As problem aspects may overlap, one
model possibly describes solutions to (parts of) multiple prob-
lem aspects. A modeling language defines syntax and semantics
of a set of models, i.e., of those models that are written in the

Problem System
realizedBy 11

Problem

Aspect

Component

Model

*

*

generates
*

* Generator*uses

1

Requirement

*

*

* *handledBy
describedBy

Handwritten

Code

Generated

Code

Library/

RTE

handledBy
*

*
categorizes

realizedIn

*

1

isA

11

Language

*

1
defines

handledBy
*

*

Figure 3 Conceptual model of the main concepts

language and each model belongs to exactly one language. Code
generators use models defined by multiple languages and gen-
erate code in one or more programming languages. One model
may be processed by multiple generators, and for one language
there may exist multiple generators that process models of that
language. A system consists of components, libraries, and if
generated code is used typically also an RTE. Each component
may consist of handwritten and generated code.

The described problem decomposition allows for system-
atic reuse of not only the components of a system, but also the
techniques and tooling used to engineer them. The latter is
highly beneficial as it allows one to implement new systems or
components more efficiently, e.g., as pointed out in (Adam et
al. 2020). The development phases (Domain-Specific Language
Engineering and Application Engineering) map to the concepts
in Figure 3 as follows: The problem analysis and decomposition
phase is concerned with identifying the problem aspects and the
categorization (as well as the elicitation) of requirements. DSL
engineering identifies and possibly implements the modeling
languages for describing the identified problem aspects. During
the application engineering and operation phase engineers cre-
ate models that describe the problem aspects in the languages
identified in the previous phase. A generator uses these models
to generate the code of the system’s components which is then
finished using handwritten code that is also created in this phase.
Moreover, this phase includes choosing or developing libraries
and the RTE, as well as, e.g., system testing or deployment.

3.3. Methodology Activities
Figure 4 shows an overview of all 16 activities in our methodol-
ogy. Our methodology includes several decision points, where
alternatives exist, and an informed decision of an engineer is
needed. It allows us to handle the aforementioned challenges
using a divide-and-conquer approach. Optional activities are
marked with a dashed line.

The given numbering is not an explicit order in which they
must be performed but rather a recommendation. The method-

Problem

Division

Problem

Assessment

Problem Analysis and Decomposition

Language

Family

Identification

Time-Phase

Identification

Define Language

Interplay

Concrete

Language(s)

Decision

Migration

Maintenance

Example Model

Creation

Language

Engineering

Generator

Engineering

Model

Engineering

Generation and

Continuous Re-

generation

Creating

Handwritten

Additions

Testing

A1 A2

A3 A4

A6

A8

A10

A12

A14

A16

A5

A7

A9

A11

A13

Domain-Specific Language Engineering

Application Engineering and Operation

Continuous

Deployment
A15

Problem

Identification
A0

Figure 4 Overview of all 16 activities (optional ones with
dotted boarders)

ology defines the essential activities that have to be customized
in an agile engineering approach. Phase P includes activities
0-2, phase L activities 3-8 and phase A activities 9-16.

Activity 0: Problem Identification.
The following activities could be successfully applied if the

main requirements for the future system are identified during
the engineering process or have been analyzed in an already
existing system. This is Activity 0: Problem Identification. In
agile engineering processes the identification can be only par-
tially completed before starting with activity 1 but at least all
relevant requirements for one problem aspect should be identi-
fied. Waterfall-like processes allow one to identify requirements
more comprehensively.

Practical Application: An easy way to identify the main
problems is to investigate the requirements and system architec-
ture of the existing application. If software engineers apply our
method to an existing information system with a client/server

architecture the problem identification will largely result in the
same aspects mentioned in activity 1 in Section 4.

Activity 1: Problem Division. The problem has to be di-
vided into smaller problem aspects as they are easier to handle.
Figure 5 shows this general idea. Problem aspects (shown as
one or more related circles) relate to specific tasks, e.g., cal-
culate some values, handle user input, or communicate with
an endpoint. Moreover, there exist overarching tasks (areas in
dotted lines), e.g., run processes, display GUI, process data or
provide security, which could spread over several components
of the future system.

Solution

Modeling language(s)

to tackle this aspect of the problem

M2M1
uses

Concrete model(s)

Aspect of

the Problem

L2
uses

L1

Figure 5 Decomposition of problems

In MBSE, we assume that there exist one or more languages
to tackle an aspect of the problem (see Figure 5). Thus, some
concrete models could be created and used as input by one
or more generators to create parts of the resulting system. To
make this possible, further actions of our methodology have to
be applied, e.g., language engineering in activity 8 and model
engineering in activity 10.

Activity 2: Problem Assessment. In this activity, the de-
veloper has to decide if the problem could be handled using
(a) existing libraries, (b) models, (c) handwritten code, or a
combination of the above. A check if libraries which could
fulfill all requirements already exist (option a) is a good way
to improve an existing system or create a new one. For using
models and Generative Software Engineering (GSE) (option
b), it is important (i) to identify which handwritten parts are
to be replaced by generated ones, or (ii) to have experience in
identifying parts of a system that could be handled by models
and GSE efficiently. A good candidate for (i) is, e.g., repetitive
code (Völter et al. 2013). The decision about parts of a system
which could be handled by models and GSE (ii) is easier to
make for experts with more memorized development patterns

(a.k.a. ’experience’ (France & Rumpe 2007)). Variant (c), to
use or write handwritten code is the last option if (a) or (b) are
not feasible. This occurs, e.g., for business logic which is very
specific for an application domain.

Activity 3: Language Family Identification. Relevant lan-
guage families have to be identified. Languages typically aim
to model different kinds of system aspects. There exist lan-
guage families for describing the structure or behavior of a
system (Breu et al. 1998; Burgueño et al. 2019). Some ap-
proaches, e.g., (Pastor et al. 2001) also allow for the definition
of functional models or talk about information models (concep-
tual models) (Burgueño et al. 2019).

In practice, languages from all families are needed to model
an entire system. If we consider a system for organizing travel in
a company, information models help to advance the discussion
about the main concepts and provide a common understanding
among stakeholders. They are mainly used in the analysis
phase of a project and are, thus, not further discussed in the
later phases. Structure models are needed to describe data
structures, e.g., there are traveling employees, employees to
handle travel requests, destination of travel, travel dates, and
expenses. Behavior models describe processes, e.g., to make a
travel request or to handle travel accounts. Functional models
consider algorithms, e.g., to calculate refund of travel expenses
for the employee or to determine whether a bonus program of
a tour operator is advantageous. Identifying a language family
before choosing a concrete language helps to leave more options
open and to search for alternatives.

Activity 4: Time Phase Identification. The development
of a software system is typically divided into several phases.
For us, the following phases are relevant:

– Design time: Application developers write models and
code, e.g., the Class Diagram (CD) defining important con-
cepts or an algorithm to calculate travel expenses in Java.
Other approaches divide writing models and writing code
into different time phases (design and implementation).

– Compile time: The models are processed and their syntax is
checked using the grammar of the modeling languages, e.g.,
checking if a CD includes only concepts such as classes, re-
lations, and interfaces and only known types for attributes.
Some of the models are translated into source code which
is converted into byte-code, e.g., the classes in CDs are
used to generate data classes in Java. The concrete target
programming language depends on the templates used in
the generator.

– Deployment time: The built application including, e.g.,
byte-code, models, HTML code, is deployed to the exe-
cution environment handling the application, e.g., servers,
and databases. In this step, models could be used to support
the correct deployment on different machines, e.g., a UML
deployment diagram defines which software component
should run on which hardware component.

– Run time: The EIS is actually running, and e.g., a user
can log in, see, and edit data. Some of the models can be
interpreted at run time or even changed or supplemented
by the user. Run-time models may be used in this phase,

e.g., to handle allowed workflows.

The main focus of this publication is on compile- and run-
time (following (France & Rumpe 2007)), as our design time
models are used as artifacts for code generation and, thus, are
relevant for compile-time as well. Our methodology allows one
to utilize heterogeneous languages differently, depending on the
phase of development and specific problem aspects.

Time-Phase

Problem Aspect

Communication

Data Structure

User Interfaces

�

CD

Tagging
OCL

�

CD-model describing

the communication is

used at design-time

GUI-DSL

1

2
3

4

Figure 6 Models and their dimensions

The same language or even the same model could be used
for different problem aspects during different phases of devel-
opment. Figure 6 illustrates this with concrete examples: A CD
model (1) can be used to describe a communication infrastruc-
ture between the front-end and the back-end of a client-server
application and is used at design time. The same model (2)
can be used to describe the data structure at design time. OCL
models (3) define restrictions on the data structure and are used
at run-time to validate data inputs. Tagging models (4) add
platform-specific information for the data structure and are used
at compile time.

Activity 5: Concrete Language(s) Decision. In this ac-
tivity, we have to decide on one or more concrete modeling
languages to handle our problem. We have three options for this
decision (see the challenge in Section 2.4): (a) to choose one
or more specific languages to handle this aspect and/or (b) to
extend or adapt existing ones and/or (c) to create one or more
new DSLs.

For (a) multiple languages or language combinations would
typically be an option, e.g., suitable languages for modeling be-
havior are Business Process Model and Notation (BPMN), UML
activity diagrams, or Petri Nets (PNs). Before the decision for a
concrete language is done, information about the languages and
related tooling is needed, e.g., whether there exists a language to
create appropriate data structures and if it already comes with an
existing generator which could be reused or adapted in activity
9. Again, experiences from preceding projects or experienced
engineers help to shorten the time needed for this activity.

A language could be extended or adapted (b) if existing
concepts fit well, but some aspects are missing or need to be
further defined, e.g., an already created CD DSL includes no
method bodies or additional task types are needed in BPMN

models.
One or more new DSLs should be created (c) if existing

languages do not fit the intended purpose, another representation
is needed (graphical, textual), existing languages are too big
(especially GPLs) or specific concepts are needed, e.g., models
for the description of permissions and roles in an application.

This is also the right activity to identify if one or more models
have to be created dependent on the problem aspect, e.g., for
GUIs it would be feasible to create several models for each of
the graphical interfaces.

Activity 6 (Optional): Define Language Interplay. A
generative approach must handle a variety of problem aspects.
To model one component, several modeling languages are
needed to formally specify each aspect individually (France
& Rumpe 2007). For example, CDs model structural aspects of
a system while behavioral aspects are not considered. Therefore,
a generative approach must integrate models of heterogeneous
languages, which is reflected in the fact that GPLs, e.g., UML,
Systems Modeling Language (SysML) provide multiple lan-
guages for describing software systems (see challenge in Sec-
tion 2.4). Problem decomposition (activity 1) therefore makes
language composition necessary. To achieve language compo-
sition, techniques such as language aggregation, embedding,
inheritance, extension and restriction are needed (Haber, Look,
et al. 2015a; Hölldobler & Rumpe 2017).

– Language aggregation: Models of different languages
are used together to handle problem aspects. A model in
one language references a model in another language, e.g.,
types defined in CDs are referenced in OCL. The models
in this case are kept separate.

– Language embedding: One model may consist of several
sub-languages, which have been developed independently.
Thus, two or more languages are used in one model, e.g.,
Java method bodies in CDs to specify the implementation
of classes.

– Language inheritance: New languages are created based
on an existing language by the reuse and modification of
existing concepts, e.g., inheriting from a basic structural
language that describes the type and enriching it with CD
elements, such as method signatures and interfaces.

– Language extension: This is a conservative form of lan-
guage inheritance and leads to a higher degree of black-box
reuse. One language extends another language to be able to
use the language types, e.g., OCL is extended by additional
operators without overriding existing operators.

– Language restriction: One language restricts the set of
models of another language and, thus, only allows a subset
of models to provide better options for specific needs, e.g.,
forbid the usage of interfaces in a class diagram. This is a
non-conservative technique. Using restriction might allow
one to reuse the tooling and infrastructure of the other
language.

Figure 7 shows possible relations between different lan-
guages. One language could have different kinds of relations
to other languages, e.g., language 2 uses language 1 and can
be used to restrict language 5. Moreover, languages could be

transformed into other languages (with or without information
loss).

Language 2

Language 5Language 4

Language 3

uses

restricts

extends
uses

is transformable

to

Language 1

Figure 7 Relations between different modeling languages

As stated in (France & Rumpe 2007), the use of many lan-
guages requires to relate concepts across languages and a means
to ensure consistency of concept representations.

Activity 7: Example Model Creation The creation of ex-
ample models will help if (a) a new DSL should be developed
in the next activity, namely language engineering and (b) a gen-
erator will be adapted or newly developed in activity 9, namely
generator engineering. Having some example models helps in
the case of (a) because the engineering of a language needs
concrete examples, i.e., what kind of models should be possi-
ble in a language. It helps in case of (b) because a generator
needs models as inputs and has to know about the target code
architecture and the relations to information in models.

Not all resulting models have to be created in this activity as
it requires a high knowledge of the domain and thus, domain
experts should be considered. Moreover, different project mem-
bers may have the competencies and duties to handle model
engineering and generator engineering (Clark et al. 2015).

Following the definition of models from Stachowiak (Sta-
chowiak 1973), a model is an abstraction of an original made
and used for a purpose. The models created in this activity
have the purpose to support generator engineering for a con-
crete problem aspect. As MBSE and automated code generation
continuously work with the created models, the purpose of the
models may expand over time. Models are adapted iteratively
and are needed for the creation of the system’s components.

Activity 8 (Optional): Language Engineering. The deci-
sion to create a new language, or to extend or adapt an existing
one is made in activity 5. There exist several methodologies
on how to systematically design new DSLs, e.g., (Karsai et al.
2009; Frank 2013; Michael & Mayr 2015). They include as-
pects such as considering the language purpose, reusing existing
languages or language concepts and identification of relevant
concepts in common. For more details, we refer the reader to
publications about software language engineering, e.g., (Haber,
Look, et al. 2015a; Combemale et al. 2017; Hölldobler et al.
2018).

Activity 9: Generator Engineering. This activity, again,
has several decision points regarding the reuse of and the number
of generators to be developed.

Regarding generator engineering, we have three options:
(1) either an existing generator is fully reused, (2) reused with
adaptions or (3) newly developed. (1) is possible if the language,
time phase, problem aspect, and target language(s) are kept the

same and thus, the generated code is fully usable. (2) could
be considered if some of the main aspects are kept the same.
This will occur, e.g., if the technologies used are the same or the
same modeling languages are used in input models. Moreover,
generators have additional variation points, e.g., a change of
the templates to change the target language. The time needed
for adaptions is highly variable and depends on what parts
have to be changed. (3) has to be considered if a new DSL
was developed, a completely new problem aspect is tackled,
the target language changes or the time phase is different. In
practice, the reuse of a generator or generator parts (with or
without adaptations) is preferable as it is less time consuming
than developing a new one (Adam et al. 2020).

Generative approaches employ generators to handle models
from different languages. This can be done in two different
ways:

(a) One generator takes a variety of models in heterogeneous
languages as inputs or

(b) there exist multiple generators which produce compatible
outputs.

In case (a), the knowledge of how the models interrelate
is implemented as a part of the generator. The advantages of
this approach are that it supports conventional agile develop-
ment processes and the generator developer has all relevant
knowledge about the interplay of models.

In case (b), each generator implements the interrelations of
its input models to other models. Thus, the generator developer
must rely on the developers of the other generators to also assure
compatibility.

Depending on the use of the models, it could be sufficient to
create an interpreter for using the models instead of a generator.
This could occur, e.g., for behavior models such as business
process models or models which are defined by users at run-
time. Interpreters could, again, be fully reused, partially reused,
or developed from scratch.

Activity 10: Model Engineering. We have to create models
needed for the resulting application. In practice, not all mod-
els are created sequentially. The generators include developer
support to check if a model is syntactically correct (using the
grammar defining the language and additional information, e.g.,
context conditions). Thus, it is useful to continuously regen-
erate the code (activity 11) during model engineering. During
this activity, model evolution management including syntac-
tic (Alanen & Porres 2003; Kehrer et al. 2011) and semantic
model differencing (Maoz et al. 2010; Kautz & Rumpe 2018;
Acher et al. 2012; Langer et al. 2014; Maoz & Ringert 2016) en-
ables monitoring changes to the represented system. Semantic
differencing, in particular, enables one to decide, whether the
modeled system has been changed to include undesired prop-
erties, e.g., (Drave, Kautz, et al. 2019). It might be possible
to reuse existing models without changes for another problem
aspect, e.g., a class diagram for the generation of the data struc-
ture and the communication infrastructure. However, this must
be considered on a case-by-case basis.

Activity 11: Generation and Continuous Regeneration.
The application code is generated using one or more models

as input. The parser of a language checks the input model for
syntactical correctness. Additional context conditions perform
model checking, i.e., loading referenced models to check if a
concept exists.

As mentioned before, in agile approaches models are con-
stantly adapted to new needs. Thus, a continuous regeneration
of the application is needed.

Activity 12 (Optional): Creating Handwritten Additions.
Handwritten code may be needed in addition to generated code.
In practice, handwritten code could be necessary, e.g., when
the implementation needs a specific business logic, which is
easier to implement directly. In a brown-field approach, the
needed code might already exist and could be only adapted in
this activity. Further maturing of the used DSLs could allow for
replacement of previously handwritten code.

Activity 13: Testing. The components as well as the whole
system have to be tested. This includes the systematic inte-
gration of components, system and user acceptance tests. The
first three types have the potential for automation. MBSE ap-
proaches could again be used to create the test cases as well as
the tests themselves (Rumpe 2003). The last type, user tests,
will have to be done mostly manually together with users of the
application.

Activity 14: Migration. Changes in the application create a
need for (a) system migration and optional (b) data migration.
System migration (a) includes version changes and changes to
the architecture. Data migration (b) is necessary if the EIS’s data
structure has changed or the storage technology was replaced.

Activity 15: Continuous Deployment. Changes in the ap-
plication have to be regularly deployed. This leads to continu-
ous delivery (including manual tasks) or continuous deployment
(could be fully automatic).

Activity 16: Maintenance. The models, DSLs, generators
or interpreters, and the application have to be maintained. This
includes the repetition of formerly mentioned activities. The
maintenance includes the correction of faults and the develop-
ment of additional functionality.

Use in practice. We have introduced 16 activities within our
methodology for retrofitting generative aspects in existing ap-
plications. For a better understanding of how to use the method-
ology in practice, we show its use and lessons learned within
the development of an EIS on several problem aspects.

4. Validation by example

We apply our methodology on the MaCoCo application, an EIS
for financial management and controlling of university chairs
and institutes (Gerasimov, Heuser, et al. 2020). EISs have to
accomplish a variety of tasks, e.g., process data, run processes,
provide a GUI and assure security. Generative engineering of
such systems, thus, requires systematic addressing of these tasks.
For our approach, we designed and reused DSLs tailored for
EISs in heterogeneous problem domains. This section maps
the DSLs to the problem domain(s) they address and describe
the strategy to integrate them within a generative engineering
approach.

Hand-Written

App

�

CD

Generated

Code

Hand-Written

Code

CD

Generated

Code

Hand-Written

Code

CD

OCL

Generated

Code

Hand-Written

Code

Back end:

app. 55.000 LOC

Front end:

app. 60.000 LOC

Back end:

app. 250.000 LOC

Front end:

app. 140.000 LOC

Models:

app. 9.000 LOC
CD

OCL

GUI-DSL

Generated

Code

Hand-Written

Code

Figure 8 Development of MaCoCo using the proposed methodology

The aim of the MaCoCo project (Adam et al. 2018; Gerasi-
mov, Heuser, et al. 2020) is to create software for financial
management and controlling. We used MontiGem to retrofit
generative aspects in the first version, which was a handwritten
application, and further evolved the application to create new
functionalities and to include further DSLs. The project started
as a purely handwritten application and was adapted to incor-
porate the MontiGem generator framework. The development
process follows an agile approach and includes strong user par-
ticipation. The application is still being developed during its
operation.

MaCoCo 2 is a web-based EIS which handles finances, hu-
man resources and projects. The functionality in the financial
area includes financial planning, accounting, budgeting for re-
search projects, and quarterly funding requests for approved
projects. MaCoCo allows for staff administration regarding con-
tracts, permanent positions, and organizing student assistants.
Further supported processes are the completion and submission
of project timesheets, requesting vacations, or staff planning on
projects regarding time expenses and costs. In our project, devel-
opers hold one or more of the following roles: The Language
Engineer defines the DSLs used by the Application Modelers.
The latter create models that represent solutions to dedicated as-
pects in the problem domain of the application. The Generator
Engineer develops new generators which automatically derive
an implementation from the models in the DSLs. A Genera-
tor Customizer maintains and configures existing generators.
The Tool Provider configures and maintains the libraries and
components used in the implementations of the run-time en-
vironment, the application, and the generator. Handwritten
additions are handled by an Application Programmer.

The MaCoCo application started as an entirely handwritten
prototype (Figure 8). In the first iteration of the development
process, the data structure was modeled and a generator was
developed to continuously generate both data structure and
persistence of the application. Development of the front-end
required data transfer between client and server. Thus, the

2 Project Website: https://www.se-rwth.de/projects/MaCoCo.php

generator was extended to provide the code implementing the
communication. A rise in the complexity of the data model
and implemented business logic resulted in the inclusion of
OCL to validate data sets. In the next iteration, the GUI-DSL
was developed and incorporated in the generator-cycle of the
application, in order to standardize and speed up front-end
development. Currently, other problem aspects are identified
and both languages and models are enhanced to be able to
generate new aspects which are written by hand.

Currently, about 78% of the complete application is gen-
erated. The code that still needs to be handwritten includes
application-specific logic and run-time environment implemen-
tation and configuration. This includes only the lines of code in
the application itself, the generator, which is used in a multitude
of projects, has about 18.000 lines of code that are written by
hand and <1.000 lines of generated code. Extraction of the
general run-time could further save efforts for the hand-written
code and enable the reuse of common implementations.

The lines of code of the current state of the application in
Figure 8 differentiate between the back-end and front end. These
numbers show that approximately 390.000 lines of code (78%)
are generated from the models. The goal is to use domain-
specific languages as much as possible to reduce the creation
effort for domain experts. The graphic shows that about 9.000
lines of domain-specific models are the base for 390.000 lines
of generated code.

In the following, we take a closer look on the application of
the previously defined activities to the MaCoCo project.

4.1. Activity 0: Problem Identification
The original problem, which led to the development of the Ma-
CoCo application, was that no appropriate application existed
for the financial and staff controlling of small and medium
university chairs. Existing accounting software included only
some parts of the needed aspects for chair controlling and the
Enterprise Resource Planning (ERP) system of the central uni-
versity administration does not include chair-specific processes
and planning possibilities. Thus, chairs used various complex

https://www.se-rwth.de/projects/MaCoCo.php

spreadsheets or different smaller self-developed applications
which were error-prone, did not cover all needs for project
and staff controlling, and required a lot of manual effort for
double-checking bookings.

The solution for this problem was an enterprise information
system for data management with a database, communication
interfaces to external applications and user-friendly GUIs. We
have collected the requirements for the system in an agile ap-
proach by defining each use case together with future users.

Developing this system by hand was time-consuming and
required a lot of testing effort to keep all parts of the system
consistent. Thus, we decided to replace parts of it step by step
with generated code.

4.2. Activity 1: Problem Division
Within this activity, we can divide the problem into different
smaller problem aspects to further specify each of the applica-
tion’s parts, e.g.,

– Architecture
– Communication
– (Domain) Data

Structure (a)
– Data Validation (b)
– GUI (c)

– Persistence
– Privacy
– Security
– Technical

Infrastructure (d)
– Tests

In the following, we focus on four problem aspects within the
context of the MaCoCo project and discuss them in detail: data
structure, data validation, GUI, and technical infrastructure.

a) Domain concepts which lead to the data structure of the
application are one of the most important parts of data-centered
systems. The data structure consists of multiple classes (in
object-oriented programming languages) which describe the
structure of the objects the application is handling. The data
structure also includes classes that are used for the interaction
with external libraries and a domain model. In this context,
the domain model characterizes the information necessary to
describe the actual user data. As a financial system, the MaCoCo
project domain model includes classes like Account and Budget.

b) Validation is needed to ensure the validity of data which
is handled by the application. In particular, user inputs must be
validated to make sure the data is correct. The validity can have
multiple levels:

(1) The check if an input matches the expected type, e.g., the
application expects a number for an account balance.

(2) The validity of a single value, e.g., the length of an account
name should be between two and fifty characters.

(3) The validity of a complete object or even a set of objects,
e.g., a sum of budgets that belong to the same account
cannot be negative.

c) A GUI facilitates interactions with the users of an EIS.
The roles of a GUI include visualization of the application’s data
and options for the user to interact with the system, e.g., clicking
a button or writing text. MaCoCo provides a rich user interface
to view and operate with financial data, which includes web

pages for account creation, dashboards for viewing statistics,
etc.

d) The technical infrastructure, such as a web server which
runs the MaCoCo web application is an important part of the
application itself, but is usually not directly seen by the users
of the system. The technical infrastructure can have an influ-
ence on the possible functionality of the application and future
extensibility or scalability.

Practical Application: Each problem aspect is related
to one or more requirements, therefore problem division
is practically done by categorizing requirements. For ex-
ample, the requirements to create, read, update and delete
data in a database are together one problem aspect, namely
ensuring persistence. Similar architectures such as our
client-server application will have mainly the same prob-
lem aspects as specified at the beginning of this section.

4.3. Activity 2: Problem Assessment
During problem assessment, we categorize the problem aspects
from activity 1 and discuss if those could be handled using mod-
els, handwritten code, or existing libraries, or a combination of
the above. The problem assessment should be done for each of
the problem aspects. Even when some of the aspects are similar,
they could be handled using different approaches. Following is
a definition of the approaches for the aforementioned problem
aspects:

a) The data structure of MaCoCo project includes the
classes which represent the domain objects themselves. Each
such data class can have additional classes such as a builder.
This structure qualifies for generation due to its systematic pat-
tern.

b) To ensure consistent data validation in the back end and
the front end of the MaCoCo application, a validation logic can
be modeled and used as a source for both parts.

c) For the definition of GUI parts, it is necessary to rely on
existing libraries to streamline the overall process of displaying
and interacting with GUI elements. As a result, the definition of
(custom) GUI elements in MaCoCo is done completely within
the bounds of the GUI libraries. On the other hand, GUI also
has a strong relation to the data structure, since one of the main
purposes of a user interface is to display data. In the MaCoCo
case, this relation is expressed in models to ensure consistency
between a GUI and a data structure.

d) For the web server setup, the MaCoCo project utilizes
libraries designed for this problem specifically, thus it is not
necessary to model or implement a web server by hand. From
this point on we will not consider this problem aspect as it is
irrelevant in most of the further activities.

Practical Application: Libraries are well-suited for
building code to be used in run-time environments or
framework-specific library components, such as a specific
communication infrastructure between server and client.
The models are useful if the code to be generated has a spe-

cific pattern, but it is not easily replaceable by an existing
component.

4.4. Activity 3: Language Family Identification
The identification of feasible language families for each aspect
of the problem allows for a reduction of the number of languages
used. In the following, we inspect what language types could
handle each aspect, and if a modeling language should be used
at all. In order to analyze the problem aspects identified in
Section 4.3 more precisely, Table 1 represents an assignment to
the language families.

language

problem aspects structure behavior

Architecture 3 3

Communication 3 P

(Domain) Data Structure (a) 3 7

Data Validation (b) P P

GUI (c) 3 P

Persistence 3 P

Privacy P 3

Security 7 P

Technical Infrastructure (d) 3 7

3= fully suitable, 7= not suitable, P = partially suitable

Table 1 Suitability of structure and behavior languages for
different purposes.

To provide a detailed explanation of some specific cases in
Table 1, we further discuss modeling the data structure, data
validation and GUI pages in MaCoCo.

a) The (domain) data structure of the MaCoCo project is a
static model, and it is used by the other parts of the application.
The basic data structure is fixed so that the rest of the applica-
tion can rely on it during run-time. The data structure already
indicates the use of a structural language.

b) To describe data validation, we use expressions to define
a valid state of an object. To enable the modeling of each of
the invariants, a language has to have both: a structure part,
where new invariants can be defined, and a behavior part, where
the expressions for the validation are written. Using only one
language family’s characteristics is not enough to fulfill this
requirement, thus we use a language, which can combine both,
but a combination of the languages could also be used. This is
expressed in Table 1 by the fact that both language families are
marked as partially suitable.

c) GUI pages of the MaCoCo application assume that the
structure of the data which should be shown is defined. A GUI
language thus has to indicate which data should be used and
how it is visualized. Both of those requirements can be handled

by structure languages. Specific logic, e.g., hiding elements,
if the user does not have the required permission, has to be
written in some kind of behavior language. To handle both
aspects simultaneously, a language that has traits of structure
and behavior language families is used in the MaCoCo project.

Practical Application: Structure languages are chosen
to model, e.g., data, elements, architectures, classes. Be-
havior languages could be further divided into aspects
of behavior, e.g., states, processes, or communication se-
quences. Functional languages are mainly used to describe
algorithmic information.

In our approach, we have started with structural aspects,
as they seemed to provide us with the greatest reduction
of handwritten code.

4.5. Activity 4: Time Phase Identification

Another aspect to be considered is the point in time when the
models of the language are to be processed. This depends
partially on the problem aspect, as shown in the following ex-
amples:

a) The data structure of our information system is static, i.e.,
it is already available at run-time and does not change. There-
fore, corresponding models are processed during the compile-
time of the application.

b) The validation is performed during the run-time of an
application and it makes sense to evaluate validation models at
the time when the check needs to be performed. However, in our
MaCoCo example, the validation infrastructure is connected to
a data structure, which is generated at compile-time. Thus, it is
easier to ensure consistency of data types used in the validation
infrastructure if models are processed at compile-time.

c) The GUI of the web application is static, and the func-
tionality it provides has to be available at run-time. Although
scenarios in which parts of the user interface model are inter-
preted at run-time are feasible, we choose code generation at
compile-time to simplify GUI development of the MaCoCo
application.

Practical Application: Some languages, e.g., process
models, can be used for generation at compile-time but
also during run-time if they are interpreted. The decision
which time phase fits more influences the technological
needs for changeability of the system architecture. The
use of generators results in the need for re-generation if
changes occur. This means a need for high changeability
of the models would require a high degree of automation
for the generation, deployment, and operation process. To
interpret models at run-time influences the system archi-
tecture, as interpretation would require a process engine.

If handling models of a language during run-time does
not bring an advantage, such models are to be processed at
compile-time, which makes it easier to implement and test
the end product.

4.6. Activity 5: Concrete Language(s) Decision

Once the problem is assessed and multiple language families are
known, we can choose DSLs that best match our requirements.

a) The primary language for the modeling of the data struc-
ture in MaCoCo is CD4A. It is specifically designed to define
the domain objects and associations between them. In general,
models of other structure languages also have the potential to
be used as a source for the generation of the data structure, e.g.,
GUI-DSL can be used to generate classes describing data to be
shown on a web page.

b) The validation rules in MaCoCo are best expressed with
OCL/P, as the language allows one to define constraints on the
domain objects and their relations.

c) For modeling the GUI, we did not find an appropriate
textual modeling language. Thus it was clear, that we had to
proceed with defining some example models showing what
we would need (activities 7), implementing the DSL (activity
8), and defining the relationship between these models and
already existing ones (activity 6). This process included several
iterations in-between these activities.

Practical Application: There are standardized languages,
such as UML or SysML, which are good candidates to
choose from. Trying to sketch solutions for some use
cases with models of these languages helps to understand
whether the language is expressive enough to tackle a
problem.

4.7. Activity 6: Define Language Interplay

In this particular step, several languages are observed at the
same time, and the focus lies on their interaction.

For problem aspect a), domain objects in MaCoCo are de-
scribed in a data structure modeled in the CD4A language. The
data validation aims to assure that elements of data types defined
in a CD4A model fulfill certain properties that need verification
before the migration of new data. This causes an overlap of
the problem aspects a) (data structure) and b) (data validation).
Therefore, models in OCL/P reference data types defined in
the data structure modeled in CD4A, which we achieved using
language aggregation. Thereby, OCL/P constraints can be ap-
plied to the already defined domain objects. Figure 9 shows a
simple class diagram with three attributes and an OCL/P invari-
ant which defines that a person object is in a valid state if the
age attribute is greater or equal to zero, and if the value of the
birthday attribute is after today.

Person

name: String

age: int

birthday: Date

CD with OCL

«invariant»

{ self.age >= 0 &&

self.birthday.after(now()) }

Figure 9 Example class diagram with a person class and OCL
constraints

The user interface of the MaCoCo application, problem as-
pect c), which is generated from models in the GUI-DSL is
based on the Model-View-ViewModel (MVVM) pattern (Garo-
falo 2011). As the user interface needs to provide or retrieve
data information from the user, the problem aspects a) (data
structure) and c) overlap. We solved the overlap by defining
the View of the MVVM in a GUI-DSL model that references
elements of the CD4A model representing the data structure,
i.e., the solution to problem aspect a). To this effect, the GUI-
DSL utilizes language aggregation to enable GUI developers to
reference elements of a CD4A model. A model transformation
derives the ViewModel of the MVVM from the CD4A model.

Practical Application: An analysis based on a use case
example helps in identifying possibilities to define lan-
guage interplay. Discovered shortcomings of existing lan-
guages can be resolved by a model of the other language
or by an extension of the language.

Our experiences have shown, that it is important to
keep the models as simple as possible and try to avoid
duplication of information to reduce the development effort
for developers.

4.8. Activity 7: Example Model Creation
Having executed previous steps, one can create models to de-
scribe the target system. A set of example models needs to
represent solutions covering most of the elements of the corre-
sponding problem domain.

a) The CD4A models describe classes and associations spe-
cific to an application domain. In the MaCoCo application,
such models describe e.g., accounts, budget classes, and the
associations between them.

b) Similarly, the example OCL models define validation rules,
e.g., budget balance has to be higher than a certain threshold.

c) A GUI model defines the appearance of the application,
the arrangement of visualization components, and how they are
linked to the data structure of the application. For example, GUI
models define web interfaces for account management or the
navigation bar.

Practical Application: Example models should cover as
many different scenarios as possible to explore the usage of
a language. Within retrofitting approaches, these different
scenarios can be identified by using different code snippets.

Our experiences with retrofitting alongside adding new
functionalities to the application have shown, that it is not
impossible to cover all scenarios with example models.
However, the time spent on example models is not lost
within generative or interpretative approaches, as they are
reused and further evolved into the finally used models.

4.9. Activity 8: (Optional) Language Engineering
The example models serve as a source for creating a grammar,
which defines a language.

a) Granted that the DSL CD4A already exists, we focus more
on a language extension. For example, in the MaCoCo project,
the CD4A domain model defines a database schema, which

has a direct mapping from the class diagram in the case of a
relational database. The classes and associations of the model
spawn database tables, which store data about domain objects
and their relations respectively. The entries of the tables can
be dependent on each other and can be configured to observe
changes in other entries to be updated or to ignore the changes.
This information is not present in CDs, therefore, the language
is extended to include this information using annotations. An
annotation is a string with a specific, identifying syntax, which
can be attached to associations, in this example to specify the
database configuration.

c) Another example from the MaCoCo application is the
creation of the GUI-DSL. The GUI of the MaCoCo displays a
multitude of different data sets but uses a limited set of GUI-
components to do so. Therefore, the GUI-DSL was built to
reduce the implementation of the user interface to a simple
definition of both layout and the data source of the components
within a model.

Practical Application: Our experiences have shown that
the reuse of existing languages is important to be able
to have a maintainable set of languages in the long run.
Creating modular languages allows for creating extensions
for specific needs. However, if these languages have to
be changed or somehow ’misused’, it is a better idea to
create a new DSL for a certain purpose as we had to do it
for describing the GUI.

4.10. Activity 9: Generator Engineering
To process the models and to produce the application code, the
generator has to be implemented or reused.

For example, a generator for a validation infrastructure, prob-
lem aspect b), had to be defined for MaCoCo in addition to
our generator for creating a data structure (Adam et al. 2020),
problem aspect a). The validation infrastructure consists of the
classes and their methods, which define the validation logic.
To produce such code, we had to create additional templates
describing classes, methods and method bodies, as well as a
data structure describing these entities. Such templates and data
structure are reused from the data structure generator, since it
also produces classes and methods. Parts, which are specific for
the validation infrastructure, such as validation logic, are not
present in the generator for the data structure, and require addi-
tional implementation in form of new templates and generator
code.

Regarding problem aspect c), we also had to implement a
generator for the GUI and respective templates for the frontend
of the application. As the code for the frontend already existed,
these code parts were used as a basis for the creation of the
templates. The generator engineer had to ensure that the gen-
erated code fits together with the generated code from the data
structure generator.

Practical Application: A generator usually consists of
the same parts, such as a model parser, AST transfor-
mations, and templates. Specific implementations vary
from case to case but it helps the generator engineer to

learn from existing generator code. The generator for the
GUI-DSL, problem aspect c), was newly implemented as
nothing similar existed before (Gerasimov, Michael, et
al. 2020). Our experiences have shown that the reuse of
generators or generator parts (with or without adaptations)
is preferable as it is less time consuming than developing
a new one (Adam et al. 2020). Developing a modular
generator increases its reusability or at least of parts of it.
For detailed lessons learned during generator engineering
whilst developing MaCoCo, we refer the readers to (Adam
et al. 2020).

4.11. Activities 10-16
Example models created during Activity 7 are used as a basis for
the model engineering (Activity 10). The example models for
the MaCoCo application were extended to become fully-fledged
models used in the application. In this activity, new models are
produced or existing ones adapted.

Practical Application: Creating a model is an iterative
process, where each step consists of refining the model
and regenerating the code. In the practical application
within the MaCoCo application we have seen, that ad-
ditions to models are less time-consuming than changing
them. Changing models results in additional changes in the
handwritten code and, especially changes in the data struc-
ture model, result in the need for data migration within the
running application in a new release.

A complete model is used as an input for a generator
(Activity 11), which produces code. The model is processed by
one or multiple generators, which can handle respective DSLs.
For example, in MaCoCo the CD4A domain model is used as
an input for the data structure, GUI models are handled by GUI
generator to output code for the web pages, etc.

Practical Application: As model engineering (activity
10) is an iterative process, the input models will change
during the development of an application. This requires
continuous re-generation and checking the generated code
and the running application. Thus, it is important to pro-
vide fast generation cycles and a high degree of automa-
tion.

If the generated code does not provide all of the necessary
functionality, it needs to be further extended by handwritten
code (Activity 12). In our example the data structure is en-
hanced with custom getters and setters for the classes, imple-
menting more complex business logic, and a user interface has
extended functionalities to handle complex logic behind user
interactions.

Practical Application: The generation process has to en-
sure, that handwritten additions are not overwritten when
regenerating the application. One-shot generation is not
useful for agile engineering processes, as most applications
and their models evolve over time.

To create real-world applications, in our experience, al-

ways needs handwritten additions as specific user require-
ments within the business logic are not generated com-
pletely and will not be replaced by models in the future,
as generation makes only sense if there exists repetitive
code.

The individual components, as well as the combination
of components and the whole system, are tested afterward
(Activity 13). In MaCoCo, tests are also a subject for gen-
eration and are used alongside handwritten tests. For example,
aside from the web page components, GUI models are used
as a source for the generation of simple unit tests for these
components.

Practical Application: The usage of existing models can
ease the manual effort, as the tests or useful infrastructure
for testing can be generated. This reduces the time needed
for adaptions as changes in the models and handwritten
code result in the need for changing hand-written tests.

Our experiences have shown that a certain amount of
hand-written tests together with a refactoring process to
improve the existing ones was needed at the beginning.
This helped in gaining more experience in what common
infrastructure aspects were needed for the tests. The gen-
eration of these infrastructure aspects was then done in a
second step.

Changes in the code, including the models, languages, or the
generator result in the need for migration of a system (Activity
14). Depending on what has been changed, different parts of
the migration process can be affected. Changes in the models
describing the data structure of an application may trigger data
migration, e.g., if a CD4A model is used to generate a database
schema, the data needs to be transformed when the model is
changed.

Practical Application: Until now, we did not fully au-
tomate this step and are still in the process of improving
it. A high degree of automation is surely desirable but
the amount of manual effort increases with the increasing
complexity of the changes, especially for migrating data.

Since we already have models that describe, e.g., the
schema in a database, we use them to facilitate the migra-
tion process. We use delta modeling to represent differ-
ences of system variants or versions (Haber, Hölldobler, et
al. 2015). Thus it is easier for us to identify changes and as-
pects which need to be migrated. In practice, the problem
lies in the nitty-gritty which means that each migration pro-
cess is accompanied by manual checks and additions to the
proposed data migration code, as well as a comprehensive
backup strategy.

A continuous deployment process (Activity 15) is often de-
scribed in a model such as a configuration file, which defines
phases of deployment and additional information for executing
the phases, e.g., a gitlab configuration file describing continuous
integration workflow template. Other model-like configuration
files can be used on individual deployment phases. For example,

MaCoCo uses Dockerfiles (Docker Inc. n.d.) to set up containers
for compiling and running the application.

Practical Application: Typically continuous deployment
pipelines support fully automated deployments including
steps such as build, test, and deployment (Humble & Farley
2010). Again, there exist MBSE approaches for supporting
this activities (Ferry & Solberg 2017).

Maintenance (Activity 16) is a collective activity, which
potentially includes all other activities and is continuously per-
formed to keep the state of a system operational. The activities
A1 to A15 are used to form the agile development process as
shown in Figure 2.

Practical Application: Within MBSE approaches, this
would also include the maintenance of the languages and
generators created. Aspects such as version changes of
the underlying language workbench and used DSLs might
become important at a certain stage of a project, e.g., if a
new version would allow expressing more in models as a
previous version. The benefits of it must be well assessed
together with the time required for the change, as it does
not mean an increase in functionality for users in the first
step within an evolving system.

To sum up, our experiences from this development process
have shown that it is highly complex to replace existing code
with generated code. However, in the long run, aspects that
could be reached by using generators, e.g., automatic consis-
tency between backend and frontend of an application or a
modular system architecture, also increase the quality of an
application and ease extensions and maintenance.

5. Discussion, Limitations and Threats to Va-
lidity

To the best of our knowledge, currently, there does not exist a
concrete methodology for retrofitting generative aspects into
ongoing projects at any development phase. Retrofitting gen-
erative aspects in this context means integrating and deploying
implementations into an existing EIS that are generated from
models. Our methodology proposes criteria, based on which
one can decide whether new modeling languages have to be
introduced into the ongoing development, existing languages
need to be adapted or reduced to create models from which the
code can be generated. These criteria give a guideline on how to
choose languages in a way that minimizes the effort of changing
implementations of modeling languages or tooling such as code
generators and aims to maximize the reuse of such implementa-
tions. Furthermore, our approach also considers integration and
deployment efforts of generated implementations into existing
EIS and provides guidelines on how to minimize these efforts.

Validation method & Limitations. To evaluate our approach
we have identified the “validation by example” method (Shaw
2003) as the only appropriate method. We apply the method-
ology to a real-world application. Because of the large scale
and several years of development, approaches using compar-
ison are not feasible for us: (1) It is not possible to time the

development of the same application by two teams in parallel
where one team applies the methodology and the other team
does not. (2) To use two different applications and apply them
on one and not on the other is again not comparable due to the
differences in application sizes and complexity. (3) To apply it
on several applications after each other would be meaningful,
but it is unrealistic due to the long time needed for this inves-
tigation. Furthermore, human factors, such as changing team
members, might lead to bias in long-term analyses. To validate
it by experiment (Wohlin et al. 2003) was not appropriate, as we
do not consider the methodology in a laboratory setting or were
able to assign subjects to different treatments at random. To
validate it by a case study (Wohlin et al. 2003; Runeson & Höst
2009) is also inappropriate, as it is not feasible to collect data
for statistical analyses from developers, who helped to improve
the methodology itself and are thus biased.

Artifacts & Limitations. It was not possible to provide larger
application artifacts as the code of the application is not open
source, subject to the intellectual property rights (IPR) of our
clients, and the application is only reachable via an internal
network due to security reasons. The IPR includes the code
as well as the models, thus, it is not possible to provide such
artifacts. Former publications, e.g., (Gerasimov, Heuser, et al.
2020) and (Gerasimov, Michael, et al. 2020) also do not provide
complete models, but give some short examples of used models.

We have shown the use of our methodology in case the sys-
tem or a part of the system already exists and should be replaced
using generative approaches (brown-field). If the system to be
created does not exist (green-field), examples for the code to be
generated (needed in step 8) are also not available. This makes
the engineering process of the generator more time-intensive
but still possible.

Relationship between reuse of DSLs and effort. If the DSLs
already exist, their application is easier and less time-consuming
than creating a new DSL and all needed tooling. Also, the gen-
erator which can handle the models needs to be created using
this new DSL. Dependent on the domain and languages used,
the effort for writing a generator is quite high. In our experience
with the development of new languages and generator infras-
tructure, we calculate comparable time for writing a generator,
as it would have been for writing the application (see (Adam et
al. 2020)).

External validity. Within this paper, we have only shown
the feasibility of our methodology for one application and only
for one specific type of system, namely EISs. We have applied
the methodology to a full-size real-world project (Gerasimov,
Heuser, et al. 2020) from the finance and controlling domain.
Although only a specific case has been evaluated, our methodol-
ogy provides a general description of the activities, necessary
for retrofitting generative aspects into an existing application.
We can provide a general description since each activity can
be individually observed in other types of projects, where the
experience is gathered and further compiled to be used in our
example, presented in this work. We expect that our methodol-
ogy could be easily applied to other domains, e.g., information
systems for Cyber-Physical System (CPS), smart production
systems, or energy systems. However, this needs to be investi-

gated further.
Technology restriction. We use the language workbench

MontiCore for all used DSLs and for defining new DSLs. It al-
lows us to integrate languages in a very convenient way (France
& Rumpe 2007). Thus, the ”enhanced tooling challenge” is
less important for our application of the methodology described
in Section 4. MontiCore provides an efficient meta-toolset for
each DSL and, thus, facilitates language engineering activities.

To use languages without tooling that supports language
composition and includes common infrastructure is more time-
intensive but still allows one to make use of our methodology.
In this case, to use only one modeling language for a restricted
problem domain might be an option but full generative support
of large parts of the system will not be possible in this case.

Team size limitations. As discussed before, there are differ-
ences in language engineering and application engineering. In
larger companies, these two parts are typically developed by
different teams. In Figure 4, we have discussed different roles
required for these parts. Therefore it is easier to fill these roles
when you have larger development teams. In smaller devel-
opment teams, one person has to take over several tasks. Our
methodology has no restrictions on the size of the development
team(s). Our methodology can be applied flexibly in such a way
that any activities can be carried out as needed. Thus, there are
no restrictions on the repetition of activities.

Our methodology helps in overcoming some challenges for
MBSE, e.g., in (France & Rumpe 2007; Bucchiarone et al.
2020), namely

– Relating models from heterogeneous DSLs (DSL-Babel
challenge): In activity 6, developers have to define the
language interplay and systematically consider the rela-
tionships between models of same and different DSLs on a
conceptual level. This includes methods to ensure consis-
tency between related models. The interplay has to result
in respective generator engineering within activity 9.

– Support Evolution of Models and DSLs: When evolving a
model, the relations of this model to models of another DSL
have to be updated. By defining the language interplay, it
becomes clear which models have to be updated. During
the generation process, the developer can be informed if
models are not consistent anymore. A further extension
could be the use of model change management within the
toolchain, including semantic and syntactic differencing
on models.

– Reusing DSLs and generators: Reuse is an important as-
pect of DSL engineering and application engineering. In
Activity 5, DSLs which already exist can be chosen or
existing ones may be extended. We provide ideas on how
to make this decision. Activity 9 provides some ideas
for when the reuse of generators or reuse with adaptions
should be considered. This reduces the development effort.

To conclude, our example has shown that our method is ap-
plicable for retrofitting generative approaches into data-centered
client/server architectures. The proposed conceptual model and
methodology can be used to evaluate further retrofitting for
similar or other system architectures.

6. Related Work

To the best of our knowledge, there exist no concrete method-
ologies for retrofitting implementations generated from models
into a project. In particular, there exist no methodological con-
siderations on how and when new or adaptations of existing
modeling languages have to be introduced into a development
process. (Paige et al. 2017) present four steps of a quasi typical
model-driven engineering process: to construct, or to select
modeling languages, to build, persist, and manage models. This
suggested process is limited to the handling of models and lacks
concrete activities for problem decomposition and assessment,
as well as DSL engineering and generator engineering.

The literature review presented in (Neis et al. 2019) summa-
rizes the state of the art of MBSE in software engineering for
power systems applications. Even though the targeted research
questions aim to reveal how source models are processed into
target models or code, none of the approaches mentioned pro-
duce fully functional software applications. The review aims to
signpost modeling languages used in context of the application
domain of power systems, which is possibly helpful during Ac-
tivities 3-5. The problem domain and mappings to the solution
domain are considered in more detail in (Czarnecki 2005). This
approach targets software product lines in general and empha-
sizes a strong relation to MBSE. Our methodology on the other
hand is tailored to engineering business information systems by
generating fully functional applications from a variety of model-
ing languages processed by a set of connected code generators.
The method proposed in (Rogozov et al. 2020) modularizes the
system into functions according to the enterprise’s setup. The
approach utilizes generative or model-driven techniques.

Several publications address one or more steps of our method-
ology in detail.

Activity 1: Problem Division. As pointed out in (Tarr et
al. 1999), complex systems need decomposition along multiple
dimensions. Decomposing a problem domain is a state of the art
practice in requirements engineering (Maiden & Sutcliffe 1996).
There exist approaches to automatically classify requirements
as functional (FR) and non-functional (Kurtanović & Maalej
2017), distinguish between requirements and information (Win-
kler & Vogelsang 2016), by using WiKis to elicit, semantically
structure and classify requirements (Riechert & Berger 2009).

To the best of our knowledge, approaches so far cluster exist-
ing requirements according to problem aspects. Additionally,
many approaches exist that aim to systematize identifying mod-
ules of a system, e.g., (Parnas 1972; Rogozov et al. 2020). A
need for a system to be modular is an aspect of a problem and
has to be addressed by suitable modeling languages, such as
e.g., Architecture Description Languages (ADLs) (Butting et al.
2017; Medvidovic & Taylor 2000; Medvidovic et al. 2007).

Activity 2: Problem Assessment. A methodology
that utilizes aspect orientation to overcome the problem-
implementation gap is proposed in (Elrad et al. 2002). The
approach proposes decomposing the problem, which serves as a
means to identify functional components of the system, whereas
in our approach, the problem decomposition serves as a means
to identify mechanisms to handle the problem, such as e.g.,

models, or libraries.
Activity 3: Language Family Identification. The literature

review in (Neis et al. 2019) investigated, among others, a re-
search question regarding which modeling languages are used in
model-driven and generative approaches of applications in the
power systems domain. The languages found are classified into
different language categories. However, the result is more of
an overview of the modeling languages used in that application
area and the selection of a language family is not embedded
into an extensive methodology for generative model-driven en-
gineering.

Activity 4: Time-Phase Identification. The software de-
velopment life-cycle is divided into different phases, such as
design-time, compile-time or run-time (Pusztai et al. 2019).
Time-phases are also considered within software product line
engineering. The field of software product lines commonly
divides the engineering process into two major phases, i.e., do-
main engineering, and application engineering (Apel & Kästner
2009; Czarnecki 2005; Böckle et al. 2005; Kang et al. 1998).
In (Czarnecki 2005), reusable DSLs and respective generators
are created or identified as a part of the domain engineering
phase. Our approach however, details the engineering of DSLs
in activities 3 to 6, which enables systematic reuse or creation
of DSLs in general. The approach focuses on the generation of
members of a system family expressed as a model, but does not
necessarily make models the primary development artifacts as
is the case in our approach. Our methodology aims to enable
systematic retrofitting of generated aspects into already running
systems, which may be a part of a system family developed
using (Czarnecki 2005). An approach to interpret feature mod-
els according to a development phase has been proposed in the
context of semantic differencing in (Drave, Kautz, et al. 2019),
which addresses the fact that changes conducted at early devel-
opment stages have a different intent than at later development
stages.

Activity 5: Concrete Language(s) Decision. To the best
of our knowledge, there exists no publication discussing
which DSL to choose based on problem aspects. For EISs,
e.g., (Kolovos et al. 2019) present three interweaving DSLs for
the design, deployment and manipulation as well as querying,
evolving, and analyzing heterogeneous databases. Another ex-
ample is (Brambilla et al. 2016) proposing a modeling language
for designing web and mobile languages at once that enables the
propagation of the evolution of an application’s user interface
across all platforms equally. For power system applications, the
survey in (Neis et al. 2019) reveals many approaches that utilize
such systems.

Such literature presenting custom DSLs, profiling, or the
direct application of general-purpose languages such as UML or
SysML to tackle specific problem domains or problem aspects
of specific problem domains is common, however, respective
publications often fail to point out the criteria that enable the
reuse of proposed languages. These are only implicitly given
by describing the problem domain or the aspects of the problem
domain.

Activity 6: Define Language Interplay. Language interplay
within model-driven generative engineering may be defined on

the language level, by mechanisms such as language aggrega-
tion, embedding, and inheritance (Haber, Look, et al. 2015a).
However, the interplay may also take place on the artifact or
model level, as identified in (Méndez Fernández et al. 2019;
Butting et al. 2018)

Activities 7 and 10: Example Model Creation and Model
Engineering. Model management is crucial during this activ-
ity and faces many challenges (Bucchiarone et al. 2020). For
agile development, and to assure proper functioning of code
generators, automation of e.g., model consistency is of crucial
importance. An approach based on a conceptual meta-model
and relations between meta-models of the utilized languages is
proposed in (Klare & Gleitze 2019).

Managing model evolution both syntactically and semanti-
cally enables version control and stepwise refinement of model
artifacts during the development process, e.g., (Maoz et al. 2010;
Alanen & Porres 2003; Fahrenberg et al. 2011; Drave, Kautz, et
al. 2019).

Another way is to derive models from existing code. Model-
Driven Reverse Engineering (MDRE) (Fontana et al. 2020)
starts from the source code or data base (Ristić 2017) and creates
models. These can be analyzed and/or used for model-based
processes in forward engineering.

Activity 8: Language Engineering. Language engineering
consists of many different parts, including language aggregation,
embedding, inheritance, extension, and restriction (Hölldobler
& Rumpe 2017).

Extend or adapt a DSL. Concepts that generalize reusing
DSLs, possibly through extensions are still in their infancy. The
approach presented in (Combemale et al. 2018) formalizes a no-
tion of language concerns that modularizes the implementation
of a DSL and provides meaningful concepts for its extension.
The extendability and adaptability of a DSL strongly depend on
the structure of its definition and its infrastructure. Thus, reuse
must already be considered when creating a DSL.

Create a DSL. Designing DSLs is an effortful task, for
which (Karsai et al. 2009) gives a detailed list of guidelines,
and emphasize reusing existing languages or parts of languages.
There exists a variety of publications about Software Language
Engineering (Kleppe 2009; Hölldobler et al. 2018), and on how
to design new DSLs that fit specific purposes. Several papers
discuss how best to combine concrete languages such as UML
CD and OCL. A framework for model composition is provided
in (Kienzle et al. 2019), which provides mechanisms that en-
able elaborate reuse of modeling languages and adaptation for
specific problem aspects.

None of these approaches integrate the reuse or composition
of models, or modeling languages in a model-driven generative
methodology that aims to automatically produce fully functional
business information systems from models of heterogeneous
languages using a generator framework such as MontiGem.

Activity 9: Generator Engineering. Using example mod-
els and code examples as a reference when engineering code
generators have proven efficient in full-size real-world MBSE
projects (Adam et al. 2020), which is why we consider model
creation and generator engineering to go hand in hand. The
approach presented in (Eikermann et al. 2019) utilizes transfor-

mations and templates for systematic reuse of code generators.
Another example presented in (Sujeeth et al. 2013) demonstrates
reuse of a code generator infrastructure and related functional
libraries in a form of a framework, which transforms models of
different DSLs into a common representation. The code gen-
erator can also be structured to process the models in several
phases and to enable model-to-model transformation, which has
shown to be beneficial for generator reusability (Brambilla et al.
2016).

Activities 11 and 12: Generation and Handwritten Addi-
tions. In (Grönniger et al. 2006) we discuss mechanisms (TOP-
mechanism) to enable a repetitive generation which still keeps
generated and handwritten code separated, while integrating
them into the product. There are also other techniques and
mechanisms that allow the adaption and adjustment of gener-
ated code (Greifenberg, Hölldobler, et al. 2015).

Activity 13: Testing. Our methodology is model-based and
utilizes code generators to automatically generate large parts
of the EIS under development. Therefore, our methodology
employs Model-Based Testing (MBT) during the testing ac-
tivities. Existing techniques for MBT can be applied in this
activity to generate test suites and test data from design models,
or specified test models.

MBT utilizes models for the definition of test cases (Rumpe
2003; Dalal et al. 1999). Due to the model-based nature of our
approach, MBT integrates very well with the proposed method-
ology, also mentioned in Section 3.3 and 4.11. Therefore, not
only generating code but also test cases is a possible extension.
In the literature, various techniques for MBT exist. A survey
for techniques published between 1990 and 2007 is provided
in (Dias Neto et al. 2007). These classify into techniques that

1. annotate design models to enable test case genera-
tion (Rumpe 2003; Vieira et al. 2006; Dai et al. 2004),

2. utilize DSLs to model test cases (Hartman & Nagin 2005;
Briand & Labiche 2002), and

3. utilize intermediate models from which test cases are gener-
ated (Pretschner & Philipps 2005; Utting & Legeard 2007;
Wieczorek & Stefanescu 2010).

The approach proposed in (Wieczorek & Stefanescu 2010)
utilizes MBT for testing GUIs in service-oriented EIS. A process
that utilizes a customized UML to specify business processes to-
gether with MBT techniques for generating test cases from these
design models is introduced in (Mlynarski 2010). Approaches
that apply MBT to generate test cases from behavioral diagrams
such as UML’s or SysML’s activity diagrams or statecharts
are, e.g., proposed in (Drave, Greifenberg, et al. 2019; García-
Domínguez et al. 2013; Wang et al. 2004; Kim et al. 2007;
Shirole et al. 2011; Offutt & Abdurazik 1999). Test case genera-
tion from OCL specifications is proposed, e.g., in (Brucker et al.
2011). Most of these approaches use code generators to obtain
executable test cases. Managing test data is a major challenge
in testing EISs. An MBT approach for providing test data is e.g.,
proposed in (Wieczorek & Stefanescu 2010). Another approach
that utilizes OCL specifications to generate test data is given
in (Brucker et al. 2011).

Activity 14: Migration. Adaptations during the development
cycles could cause the need to migrate different parts of the
application. Changes in external dependencies may make it
necessary to change the infrastructure, e.g., the database tech-
nology, or the RTE. The evolution of the used languages and
generators could lead to a migration of used models (Schonbock
et al. 2015). Changes in the models need to be considered (Cic-
chetti et al. 2013), e.g., when the database schema depends on a
given data structure, meaning the schema and the existing data
needs to be migrated (Herrmann et al. 2018).

Activity 15: Continuous Deployment. Continuous deploy-
ment is ”the practice of continuously deploying good software
builds automatically to some environment, but not necessarily
to actual users” (Fitzgerald & Stol 2014). Continuous deploy-
ment is advantageous for growing projects (Savor et al. 2016)
and has found several model-based approaches. For example,
continuous deployment models are used in Cloud-based (Ferry
& Solberg 2017) and IoT systems (Ferry & Nguyen 2019) to
support dynamic provisioning, deployment, and adaptation of a
system.

Activity 16: Maintenance. Maintenance effort can make up
half of the total effort invested in a software system over its
total lifespan (Rehman et al. 2018). Multiple projects evaluate
methodologies on how to incorporate agile development meth-
ods, not only in the initial software engineering process, but
also in the following maintenance phase (Rehman et al. 2018;
Polo et al. 1999). (Lenarduzzi et al. 2017) give an overview on
the usage of model-based approaches to maintain software of
the last forty years.

7. Conclusion and Future Work

To evolve applications during their lifetime, continuous delivery
and deployment in an agile way is in any case challenging
(Riungu-Kalliosaari et al. 2016). If engineers want to integrate
generative aspects in already existing applications, they benefit
from a supporting methodology, which leads through a variety
of decisions.

This paper introduces a methodology for retrofitting the
model-based approach into existing systems with three phases,
namely problem analysis and decomposition, DSL engineering
as well as application engineering and operation. The proposed
activities start with the division of large, complex problems into
smaller problem aspects to be handled by DSLs or GPLs. Each
problem aspect is assessed, the right language family and time
phase is identified and a concrete language chosen. After defin-
ing the language interplay and creating some example models
new DSLs have to be created or existing ones are extended. The
next steps consider application engineering and operation of the
resulting systems, including generator and model engineering.

This methodology helps to overcome the problem-
implementation gap which is especially challenging for complex
and large software systems. To use a divide-and-conquer ap-
proach for complex problems supports developers to make the
right decisions when using model-based software engineering
and code generators.

References

Acher, M., Heymans, P., Collet, P., Quinton, C., Lahire, P.,
& Merle, P. (2012). Feature Model Differences. In Ad-
vanced Information Systems Engineering (CAiSE’12) (Vol.
7328 LNCS, pp. 629–645). Springer. doi: 10.1007/978-3
-642-31095-9_41

Adam, K., Michael, J., Netz, L., Rumpe, B., & Varga, S. (2020).
Enterprise Information Systems in Academia and Practice:
Lessons learned from a MBSE Project. In 40 Years EMISA
(EMISA’19) (Vol. P-304, pp. 59–66). Gesellschaft für Infor-
matik e.V.

Adam, K., Netz, L., Varga, S., Michael, J., Rumpe, B., Heuser,
P., & Letmathe, P. (2018). Model-Based Generation of
Enterprise Information Systems. In Enterprise Modeling and
Information Systems Architectures (EMISA’18) (Vol. 2097,
pp. 75–79). CEUR-WS.org.

Alanen, M., & Porres, I. (2003). Difference and union of models.
, 2863 LNCS, 2–17. doi: 10.1007/978-3-540-45221-8_2

Aniche, M., Yoder, J., & Kon, F. (2019). Current challenges in
practical object-oriented software design. In 41st Int. Conf.
on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER’19). IEEE. doi: 10.1109/ICSE-NIER.2019
.00037

Apel, S., & Kästner, C. (2009). An Overview of Feature-
Oriented Software Development. Journal of Object Technol-
ogy, 8(5), 49–84.

Böckle, G., Pohl, K., & van der Linden, F. (2005). A Framework
for Software Product Line Engineering. In Software Product
Line Engineering: Foundations, Principles, and Techniques
(p. 19-38). Springer. doi: 10.1007/3-540-28901-1_2

Brambilla, M., Mauri, A., Franzago, M., & Muccini, H. (2016).
A model-based method for seamless web and mobile experi-
ence. In (p. 33-40). doi: 10.1145/3001854.3001857

Breu, R., Grosu, R., Huber, F., Rumpe, B., & Schwerin, W.
(1998). Systems, Views and Models of UML. In Proceedings
of the Unified Modeling Language, Technical Aspects and
Applications (pp. 93–109). Physica Verlag, Germany. doi:
10.1007/978-3-642-48673-9_7

Briand, L., & Labiche, Y. (2002). A UML-Based Approach to
System Testing. Software and Systems Modeling, 1(1), 1–57.
doi: 10.1007/s11334-005-0006-0

Brucker, A. D., Krieger, M. P., Longuet, D., & Wolff, B.
(2011). A specification-based test case generation method
for UML/OCL. In Models in Software Engineering (MOD-
ELS 2010) (Vol. 6627 LNCS, pp. 334–348). Springer. doi:
10.1007/978-3-642-21210-9_33

Bucchiarone, A., Cabot, J., Paige, R. F., & Pierantonio, A.
(2020). Grand challenges in model-driven engineering: an
analysis of the state of the research. Software and Systems
Modeling, 19. doi: 10.1007/s10270-019-00773-6

Burgueño, L., Ciccozzi, F., Famelis, M., Kappel, G., Lambers,
L., Mosser, S., . . . Wimmer, M. (2019). Contents for a Model-
Based Software Engineering Body of Knowledge. Software
and Systems Modeling, 18(6), 3193–3205. doi: 10.1007/
s10270-019-00746-9

Butting, A., Greifenberg, T., Rumpe, B., & Wortmann, A.

(2018). On the Need for Artifact Models in Model-Driven
Systems Engineering Projects. In Software technologies: Ap-
plications and foundations (Vol. 10748 LNCS, pp. 146–153).
Springer. doi: 10.1007/978-3-319-74730-9_12

Butting, A., Haber, A., Hermerschmidt, L., Kautz, O., Rumpe,
B., & Wortmann, A. (2017). Systematic Language Exten-
sion Mechanisms for the MontiArc Architecture Descrip-
tion Language. In Europ. Conf. on Modelling Foundations
and Applications (ECMFA’17) (pp. 53–70). Springer. doi:
10.1007/978-3-319-61482-3_4

Cicchetti, A., Di Ruscio, D., Iovino, L., & Pierantonio, A.
(2013). Managing the evolution of data-intensive Web ap-
plications by model-driven techniques. Software & Systems
Modeling, 12(1), 53–83. doi: 10.1007/s10270-011-0193-0

Clark, T., van den Brand, M., Combemale, B., & Rumpe, B.
(2015). Conceptual Model of the Globalization for Domain-
Specific Languages. In Globalizing Domain-Specific Lan-
guages (pp. 7–20). Springer. doi: 10.1007/978-3-319-26172
-0_2

Combemale, B., Kienzle, J., Mussbacher, G., Barais, O., Bousse,
E., Cazzola, W., . . . Wortmann, A. (2018). Concern-Oriented
Language Development (COLD): Fostering Reuse in Lan-
guage Engineering. Computer Languages, Systems & Struc-
tures, 54, 139 - 155. doi: 10.1016/j.cl.2018.05.004

Combemale, B., Mernik, M., & Rumpe, B. (Eds.). (2017).
Software Language Engineering (SLE’17). Vancouver: ACM
Sigplan.

Czarnecki, K. (2005). Overview of Generative Software Devel-
opment. In Unconventional Programming Paradigms. doi:
10.1007/11527800_25

Dai, Z. R., Grabowski, J., Neukirchen, H., & Pals, H. (2004).
From Design to Test with UML. In (pp. 33–49). Springer.
doi: 10.1007/978-3-540-24704-3_3

Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott,
C. M., Patton, G. C., & Horowitz, B. M. (1999). Model-
based testing in practice. In 21st Int. Conf. on Software
Engineering (ICSE’99) (Vol. 2, pp. 285–294). ACM Press.
doi: 10.1145/302405.302640

Degueule, T., Combemale, B., Blouin, A., Barais, O., &
Jézéquel, J. M. (2015). Melange: A meta-language for
modular and reusable development of DSLs. In Proc. ACM
SIGPLAN Int. Conf. on Software Language Engineering (SLE
2015) (pp. 25–36). ACM. doi: 10.1145/2814251.2814252

Dias Neto, A. C., Subramanyan, R., Vieira, M., & Travassos,
G. H. (2007). A Survey on Model-based Testing Approaches:
A Systematic Review. In 1st ACM Int. Workshop on Em-
pirical Assessment of Software Engineering Languages and
Technologies (WEASELTech’07), at ASE’07. ACM Press. doi:
10.1145/1353673.1353681

Docker Inc. (n.d.). Dockerfile reference. Retrieved from https://
docs.docker.com/engine/reference/builder (last accessed:
8.7.2020)

Drave, I., Greifenberg, T., Hillemacher, S., Kriebel, S., Kus-
menko, E., Markthaler, M., . . . Wortmann, A. (2019).
SMArDT modeling for automotive software testing. Soft-
ware: Practice and Experience, 49(2), 301–328. doi:
10.1002/spe.2650

Drave, I., Kautz, O., Michael, J., & Rumpe, B. (2019). Semantic
Evolution Analysis of Feature Models. In Int. Systems and
Software Product Line Conference (SPLC’19) (pp. 245–255).
ACM. doi: 10.1145/3336294.3336300

Eikermann, R., Hölldobler, K., Roth, A., & Rumpe, B. (2019).
Reuse and Customization for Code Generators: Synergy by
Transformations and Templates. In Model-Driven Engineer-
ing and Software Development (pp. 34–55). Springer. doi:
10.1007/978-3-030-11030-7_3

Elrad, T., Aldawud, O., & Bader, A. (2002). Aspect-Oriented
Modeling: Bridging the Gap between Implementation and
Design. In Generative Programming and Component Engi-
neering. Springer. doi: 10.1007/3-540-45821-2_12

Fahrenberg, U., Legay, A., & Wąsowski, A. (2011). Vision
Paper: Make a Difference! (Semantically). In Model Driven
Engineering Languages and Systems. doi: 10.1007/978-3
-642-24485-8_36

Ferry, N., & Nguyen, P. (2019). Towards Model-Based Contin-
uous Deployment of Secure IoT Systems. In 22nd Int. Conf.
on Model Driven Engineering Languages and Systems Com-
panion (MODELS-C’19). doi: 10.1109/MODELS-C.2019
.00093

Ferry, N., & Solberg, A. (2017). Models runtime for continuous
design and deployment. In Model-Driven Development and
Operation of Multi-Cloud Applications (p. 81-–94). Springer.
doi: 10.1007/978-3-319-46031-4_9

Fitzgerald, B., & Stol, K.-J. (2014). Continuous software
engineering and beyond: trends and challenges. In 1st Int.
Workshop on Rapid Continuous Software Engineering. doi:
10.1145/2593812.2593813

Fontana, F. A., Bruneliere, H., Müller, H. A., & Raibulet, C.
(2020). Guest editors’ in-troduction to the special issue on
Model Driven Engineering and Reverse Engineering: Re-
search and Practice. Journal of Systems and Software, 159.
doi: 10.1016/j.jss.2019.110446

Fowler, M. (2010). Domain Specific Languages. Addison-
Wesley Professional.

France, R., & Rumpe, B. (2007). Model-driven Development
of Complex Software: A Research Roadmap. Future of
Software Engineering (FOSE’07), 37–54. doi: 10.1109/
FOSE.2007.14

Frank, U. (2013). Domain-Specific Modeling Languages: Re-
quirements Analysis and Design Guidelines. In Domain
Engineering. doi: 10.1007/978-3-642-36654-3_6

García-Domínguez, A., Medina-Bulo, I., & Marcos-Bárcena,
M. (2013). An Approach for Model-Driven Design and Gen-
eration of Performance Test Cases with UML and MARTE.
Communications in Computer and Information Science, 303,
136–150. doi: 10.1007/978-3-642-36177-7_9

Garofalo, R. (2011). Building Enterprise Applications with
Windows Presentation Foundation and the Model View View-
Model Pattern. Microsoft Press.

Gerasimov, A., Heuser, P., Ketteniß, H., Letmathe, P., Michael,
J., Netz, L., . . . Varga, S. (2020). Generated Enterprise Infor-
mation Systems: MDSE for Maintainable Co-Development
of Frontend and Backend. In Comp. Proc. of Modellierung
2020 Short, Workshop and Tools & Demo Papers (pp. 22–30).

https://docs.docker.com/engine/reference/builder
https://docs.docker.com/engine/reference/builder

CEUR-WS.org.
Gerasimov, A., Michael, J., Netz, L., Rumpe, B., & Varga, S.

(2020). Continuous Transition from Model-Driven Prototype
to Full-Size Real-World Enterprise Information Systems. In
25th Am. Conf. on Information Systems (AMCIS 2020) (pp.
1–10). AIS.

Greifenberg, T., Hölldobler, K., Kolassa, C., Look, M., Mir
Seyed Nazari, P., Müller, K., . . . Wortmann, A. (2015).
A Comparison of Mechanisms for Integrating Handwritten
and Generated Code for Object-Oriented Programming Lan-
guages. In Model-Driven Engineering and Software De-
velopment Conference (MODELSWARD’15) (pp. 74–85).
SciTePress.

Greifenberg, T., Look, M., Roidl, S., & Rumpe, B. (2015).
Engineering Tagging Languages for DSLs. In Conf. on Model
Driven Engineering Languages and Systems (MODELS’15)
(pp. 34–43). ACM/IEEE. doi: 10.1109/MODELS.2015
.7338233

Grönniger, H., Krahn, H., Rumpe, B., & Schindler, M. (2006).
Integration von Modellen in einen codebasierten Softwareen-
twicklungsprozess. In Modellierung 2006 conference (pp.
67–81).

Haber, A., Hölldobler, K., Kolassa, C., Look, M., Müller, K.,
Rumpe, B., . . . Schulze, C. (2015, October). Systematic
Synthesis of Delta Modeling Languages. Journal on Software
Tools for Technology Transfer (STTT), 17(5), 601–626. doi:
10.1007/s10009-015-0387-9

Haber, A., Look, M., Mir Seyed Nazari, P., Navarro Perez, A.,
Rumpe, B., Völkel, S., & Wortmann, A. (2015a). Com-
position of Heterogeneous Modeling Languages. In Model-
Driven Engineering and Software Development (Vol. 580, pp.
45–66). Springer. doi: 10.1007/978-3-319-27869-8_3

Haber, A., Look, M., Mir Seyed Nazari, P., Navarro Perez,
A., Rumpe, B., Völkel, S., & Wortmann, A. (2015b). In-
tegration of Heterogeneous Modeling Languages via Exten-
sible and Composable Language Components. In Model-
Driven Engineering and Software Development Conference
(MODELSWARD’15) (pp. 19–31). SciTePress. doi: 10.5220/
0005225000190031

Hartman, A., & Nagin, K. (2005). The AGEDIS tools for model
based testing. In UML Modeling Languages and Applications
(Vol. 3297 LNCS, pp. 277–280). doi: 10.1007/978-3-540
-31797-5_33

Herrmann, K., Voigt, H., Rausch, J., Behrend, A., & Lehner, W.
(2018). Robust and simple database evolution. Information
Systems Frontiers, 20(1), 45–61. doi: 10.1007/s10796-016
-9730-2

Hölldobler, K., & Rumpe, B. (2017). MontiCore 5 Language
Workbench Edition 2017. Shaker Verlag.

Hölldobler, K., Rumpe, B., & Wortmann, A. (2018). Software
Language Engineering in the Large: Towards Composing
and Deriving Languages. Computer Languages, Systems &
Structures, 54, 386–405. doi: 10.1016/j.cl.2018.08.002

Humble, J., & Farley, D. (2010). Continuous delivery: reli-
able software releases through build, test, and deployment
automation. Pearson Education.

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., & Huh, M.

(1998). FORM: A Feature-Oriented Reuse Method with
Domain-Specific Reference Architectures. Annals of Soft-
ware Engineering, 5(1). doi: 10.1023/A:1018980625587

Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler,
M., & Völkel, S. (2009). Design Guidelines for Domain
Specific Languages. In Domain-Specific Modeling Workshop
(DSM’09) (pp. 7–13). Helsinki School of Economics.

Kautz, O., & Rumpe, B. (2018). On Computing Instructions
to Repair Failed Model Refinements. In Conf. on Model
Driven Engineering Languages and Systems (MODELS’18)
(pp. 289–299). ACM. doi: 10.1145/3239372.3239384

Kehrer, T., Kelter, U., & Taentzer, G. (2011). A Rule-Based
Approach to the Semantic Lifting of Model Differences in
the Context of Model Versioning. In Int. Conf. on Automated
Software Engineering (ASE’11). doi: 10.1109/ASE.2011
.6100050

Kienzle, J., Mussbacher, G., Combemale, B., & Deantoni, J.
(2019). A unifying framework for homogeneous model
composition. Software and Systems Modeling, 18(5). doi:
10.1007/s10270-018-00707-8

Kim, H., Kang, S., Baik, J., & Ko, I. (2007). Test cases
generation from UML activity diagrams. In 8th ACIS Int.
Conf. on Software Engineering, Artificial Intelligence, Net-
working, and Parallel/Distributed Computing (SNPD’07) (pp.
556–561). IEEE. doi: 10.1109/SNPD.2007.525

Klare, H., & Gleitze, J. (2019). Commonalities for Preserving
Consistency of Multiple Models. In 22nd Int. Conf. on Model
Driven Engineering Languages and Systems Companion
(MODELS-C’19). doi: 10.1109/MODELS-C.2019.00058

Kleppe, A. (2009). Software language engineering: Creat-
ing domain-specific languages using metamodels. Addison-
Wesley.

Kolovos, D., Medhat, F., Paige, R., Di Ruscio, D., Van Der
Storm, T., Scholze, S., & Zolotas, A. (2019). Domain-specific
languages for the design, deployment and manipulation of
heterogeneous databases. In 11th Int. Workshop on Modelling
in Software Engineering (MiSE ’19) (pp. 89–92). IEEE. doi:
10.1109/MiSE.2019.00021

Kurtanović, Z., & Maalej, W. (2017). Automatically Classi-
fying Functional and Non-functional Requirements Using
Supervised Machine Learning. In 25th Int. Requirements En-
gineering Conference (RE). IEEE. doi: 10.1109/RE.2017.82

Langer, P., Mayerhofer, T., & Kappel, G. (2014). A Generic
Framework for Realizing Semantic Model Differencing Op-
erators. In PSRCMoDELs (Vol. 1258). CEUR-WS.org.

Lenarduzzi, V., Sillitti, A., & Taibi, D. (2017). Analyzing
forty years of software maintenance models. In 39th Int.
Conf. on Software Engineering Companion (ICSE-C’17) (pp.
146–148). doi: 10.1109/ICSE-C.2017.122

Maiden, N., & Sutcliffe, A. (1996). A computational mecha-
nism for parallel problem decomposition during requirements
engineering. In 8th Int. Workshop on Software Specification
and Design. doi: 10.1109/IWSSD.1996.501160

Maoz, S., & Ringert, J. O. (2016). A framework for relating
syntactic and semantic model differences. Software & System
Modeling, 17(3). doi: 10.1007/s10270-016-0552-y

Maoz, S., Ringert, J. O., & Rumpe, B. (2010). A Manifesto for

Semantic Model Differencing. In Int. Workshop on Models
and Evolution (ME’10) (pp. 194–203). Springer. doi: 10
.1007/978-3-642-21210-9_19

Mayr, H. C., & Thalheim, B. (2020). The triptych of conceptual
modeling. Software and Systems Modeling.

Medvidovic, N., Dashofy, E. M., & Taylor, R. N. (2007). Mov-
ing architectural description from under the technology lamp-
post. Information and Software Technology, 49(1), 12–31.
doi: 10.1016/j.infsof.2006.08.006

Medvidovic, N., & Taylor, R. N. (2000). A classification and
comparison framework for software architecture description
languages. IEEE Transactions on Software Engineering, 26.
doi: 10.1109/32.825767

Méndez Fernández, D., Böhm, W., Vogelsang, A., Mund, J.,
Broy, M., Kuhrmann, M., & Weyer, T. (2019). Artefacts in
Software Engineering: A Fundamental Positioning. Softw.
Syst. Model., 18(5). doi: 10.1007/s10270-019-00714-3

Michael, J., & Mayr, H. (2015). Creating a Domain Spe-
cific Modelling Method for Ambient Assistance. In Interna-
tional Conference on Advances in ICT for Emerging Regions
(ICTer2015). doi: 10.1109/ICTER.2015.7377676

Mlynarski, M. (2010). Holistic model-based testing for Busi-
ness Information Systems. In 3rd Int. Conf. on Software
Testing, Verification and Validation (ICST’10) (pp. 327–330).
doi: 10.1109/ICST.2010.35

Möller, D., Legner, C., & Heck, A. (2011). Understanding IT
transformation - an explorative study. In 19th Europ. Conf.
on Information Systems (ECIS’11).

Neis, P., Wehrmeister, M., & Mendes, M. (2019). Model
Driven Software Engineering of Power Systems Applications:
Literature Review and Trends. IEEE Access, 7. doi: 10.1109/
ACCESS.2019.2958275

Offutt, J., & Abdurazik, A. (1999). Generating tests from
UML specifications. In «UML»’99 — The Unified Modeling
Language (Vol. 1723 LNCS, pp. 416–429). Springer Verlag.
doi: 10.1007/3-540-46852-8_30

Paige, R. F., Zolotas, A., & Kolovos, D. (2017). The changing
face of model-driven engineering. In Present and Ulterior
Software Engineering (pp. 103–118). Springer. doi: 10.1007/
978-3-319-67425-4_7

Parnas, D. (1972). On the Criteria To Be Used in Decomposing
Systems into Modules. Communications of the ACM, 15. doi:
10.1145/361598.361623

Pastor, O., Gómez, J., Insfrán, E., & Pelechano, V. (2001).
The OO-method approach for information systems mod-
eling: from object-oriented conceptual modeling to auto-
mated programming. Information Systems, 26(7). doi:
10.1016/S0306-4379(01)00035-7

Polo, M., Piattini, M., Ruiz, F., & Calero, C. (1999). MAN-
TEMA: A software maintenance methodology based on the
ISO/IEC 12207 standard. In Int. Software Engineering Stan-
dards Symposium and Forum (ISESS’99) (pp. 76–81). doi:
10.1109/SESS.1999.766580

Pretschner, A., & Philipps, J. (2005). 10 Methodological
Issues in Model-Based Testing. In Model-Based Testing of
Reactive Systems (pp. 281–291). Springer. doi: 10.1007/
11498490_13

Pusztai, T., Tsigkanos, C., & Dustdar, S. (2019). Engineer-
ing Heterogeneous Internet of Things Applications: From
Models to Code. In 5th Int. Conf. on Collaboration and In-
ternet Computing (CIC) (p. 222-231). IEEE. doi: 10.1109/
CIC48465.2019.00036

Rehman, F. u., Maqbool, B., Riaz, M. Q., Qamar, U., & Abbas,
M. (2018). Scrum Software Maintenance Model: Efficient
Software Maintenance in Agile Methodology. In 21st Saudi
Computer Society National Computer Conference (NCC’18).
doi: 10.1109/NCG.2018.8593152

Riechert, T., & Berger, T. (2009). Leveraging semantic data
Wikis for distributed requirements elicitation. In ICSE Work-
shop on Wikis for Software Engineering. doi: 10.1109/
WIKIS4SE.2009.5069992

Ristić, S. (2017). How to apply model-driven paradigm in
information system (Re)engineering. In 14th Int. Scientific
Conference on Informatics (p. 6-11). IEEE. doi: 10.1109/
INFORMATICS.2017.8327212

Riungu-Kalliosaari, L., Mäkinen, S., Lwakatare, L. E., Tiihonen,
J., & Männistö, T. (2016). DevOps Adoption Benefits and
Challenges in Practice: A Case Study. In Product-Focused
Software Process Improvement (pp. 590–597). Springer In-
ternational Publishing. doi: 10.1145/3210459.3210465

Rogozov, Y., Kucherov, S., Lipko, J., Belikov, A., Maakot, A.,
& Belikova, S. (2020). Method of designing the modular
structure of the information system. Journal of Physics:
Conference Series, 1457. doi: 10.1088/1742-6596/1457/1/
012014

Rumpe, B. (2003). Model-Based Testing of Object-Oriented
Systems. In Symposium on Formal Methods for Components
and Objects (FMCO’02) (pp. 380–402). Springer. doi: 10
.1007/978-3-540-39656-7_16

Rumpe, B. (2016). Modeling with UML: Language, Concepts,
Methods. Springer International.

Rumpe, B. (2017). Agile Modeling with UML: Code Generation,
Testing, Refactoring. Springer International. doi: 10.1007/
978-3-319-58862-9

Runeson, P., & Höst, M. (2009). Guidelines for conducting
and reporting case study research in software engineering.
Empirical Software Engineering, 14(2), 131–164. doi: 10
.1007/s10664-008-9102-8

Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., &
Stumm, M. (2016). Continuous deployment at Facebook
and OANDA. In 38th Int. Conf. on Software Engineering
Companion (ICSE-C’16) (p. 21-30). doi: 10.1145/2889160
.2889223

Schmidt, D. C. (2006). Model-driven engineering (Vol. 39)
(No. 2). doi: 10.1109/MC.2006.58

Schonbock, J., Etzlstorfer, J., Kapsammer, E., Kusel, A., Rets-
chitzegger, W., & Schwinger, W. (2015). Model-Driven
Co-evolution for Agile Development. In 48th Hawaii Int.
Conf. on System Sciences (HICSS) (pp. 5094–5103). IEEE.
doi: 10.1109/HICSS.2015.603

Selic, B. (2003). The pragmatics of model-driven devel-
opment. IEEE software, 20(5), 19–25. doi: 10.1109/
MS.2003.1231146

Shaw, M. (2003). Writing good software engineering research

papers. In 25th Int. Conf. on Software Engineering (ICSE’03)
(p. 726-736). doi: 10.1109/ICSE.2003.1201262

Shirole, M., Suthar, A., & Kumar, R. (2011). Generation of
improved test cases from UML state diagram using genetic
algorithm. In 4th India Software Engineering Conference
(ISEC’11) (pp. 125–134). ACM Press. doi: 10.1145/1953355
.1953374

Stachowiak, H. (1973). Allgemeine Modelltheorie. Springer
Verlag.

Sujeeth, A., Rompf, T., Brown, K., Lee, H., Chafi, H., Popic,
V., . . . Olukotun, K. (2013). Composition and Reuse with
Compiled Domain-Specific Languages. In Object-Oriented
Programming (ECOOP’13) (Vol. 7920 LNCS). doi: 10.1007/
978-3-642-39038-8_3

Taentzer, G., Ermel, C., Langer, P., & Wimmer, M. (2014). A
fundamental approach to model versioning based on graph
modifications: from theory to implementation. Software &
Systems Modeling, 13(1). doi: 10.1007/s10270-012-0248-x

Tarr, P., Ossher, H., Harrison, W., & Sutton, S. M. (1999).
N Degrees of Separation: Multi-Dimensional Separation of
Concerns (Tech. Rep.). doi: 10.1145/302405.302457

Utting, M., & Legeard, B. (2007). Practical Model-Based
Testing. Elsevier. doi: 10.1016/B978-0-12-372501-1.X5000
-5

Vieira, M., Leduc, J., Hasling, B., Subramanyan, R., &
Kazmeier, J. (2006). Automation of GUI Testing Using
a Model-driven Approach. In Int. Conf. on Software Engi-
neering (ICSE’06) (pp. 9–14). ACM Press. doi: 10.1145/
1138929.1138932

Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M.,
Kats, L. C. L., . . . Wachsmuth, G. (2013). DSL Engineer-
ing - Designing, Implementing and Using Domain-Specific
Languages. dslbook.org.

Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S., Czarnecki,
K., & von Stockfleth, B. (2013). Model-Driven Software De-
velopment: Technology, Engineering, Management. Wiley.

Wang, L., Yuan, J., Yu, X., Hu, J., Li, X., & Zheng, G. (2004).
Generating test cases from UML activity diagram based
on gray-box method. In Asia-Pacific Software Engineer-
ing Conference (APSEC’04) (pp. 284–291). IEEE. doi:
10.1109/APSEC.2004.55

Wieczorek, S., & Stefanescu, A. (2010). Improving testing
of enterprise systems by model-based testing on graphical
user interfaces. In 17th Int. Conf. and Workshops on the
Engineering of Computer-Based Systems (ECBS ’10) (pp.
352–357). doi: 10.1109/REW.2016.021

Winkler, J., & Vogelsang, A. (2016). Automatic Classification
of Requirements Based on Convolutional Neural Networks.
In 24th Int. Requirements Engineering Conference Workshops
(REW). doi: 10.1109/REW.2016.021

Wohlin, C., Höst, M., & Henningsson, K. (2003). Empirical
Research Methods in Software Engineering. In R. Conradi
& A. I. Wang (Eds.), Empirical Methods and Studies in Soft-
ware Engineering: Experiences from ESERNET (pp. 7–23).
Springer. doi: 10.1007/978-3-540-45143-3_2

Yin, R. (2003). Case Study Research: Design and Methods.
SAGE.

About the authors
Imke Drave received her Master’s Degree at Technical Univer-
sity Munich in 2017. Since then, she has been a research assis-
tant at the Chair of Software Engineering (SE) at the RWTH
Aachen University. Her main research interests lie in formal
methods for model evolution and consistency analysis and agile
methodologies for Model-Driven Systems Engineering. Further-
more, she represents SE in the Center for Systems Engineering,
of whom the chair is a founding member. You can contact the
author at drave@se-rwth.de or visit www.se-rwth.de.

Arkadii Gerasimov is a PhD student at the Software Engi-
neering chair. Among his main research interests are web-
engineering and generation of data centric enterprise applica-
tions using different modeling languages. You can contact the
author at gerasimov@se-rwth.de or visit www.se-rwth.de.

Judith Michael is PostDoc at the Software Engineering chair
and leader of the Model-Based Assistance and Information Ser-
vices (MBAIS) team. Her PhD thesis at Universität Klagenfurt
was about cognitive modeling for assistive systems. Her re-
search focus is model-driven software engineering and software
architectures, domain-specific languages, and (conceptual) mod-
eling in a variety of domains and applications. Recent work
deals with software architectures of assistive and information
systems, digital twins and digital shadows in the production
domain, privacy-preserving system design, smart assisted living,
and human behavior goal modeling. You can contact the author
at michael@se-rwth.de or visit www.se-rwth.de.

Lukas Netz is a PHD student at the Software Engineering Chair
of the RWTH Aachen University. His main research interests
are about language and corresponding generator development,
that support rapid prototyping and iterative evolution of web
applications. You can contact the author at netz@se-rwth.de or
visit www.se-rwth.de.

Bernhard Rumpe is heading the Software Engineering depart-
ment at the RWTH Aachen University, Germany. Earlier he
had positions at INRIA Rennes, Colorado State University, TU
Braunschweig, Vanderbilt University, Nashville, and TU Mu-
nich. His main interests are rigorous and practical software
and system development methods based on adequate modeling
techniques. This includes agile development methods as well as
model-engineering based on UML/SysML-like notations and
domain specific languages. He also helps to apply modeling,
e.g. to autonomous cars, human brain simulation, BIM en-
ergy management, juristical contract digitalization, production
automation, cloud, and many more.

He is author and editor of 34 books including "Agile Mod-
eling with the UML" and "Engineering Modeling Languages:
Turning Domain Knowledge into Tools". You can contact the
author at rumpe@se-rwth.de or visit www.se-rwth.de.

Simon Varga is a PhD student at the Software Engineering chair.
His PhD thesis is about the generation of data centric enter-
prise applications using different modeling languages and con-

mailto:drave@se-rwth.de?subject=Your paper "A Methodology for Retrofitting Generative Aspects in Existing Applications"
www.se-rwth.de
mailto:gerasimov@se-rwth.de?subject=Your paper "A Methodology for Retrofitting Generative Aspects in Existing Applications"
www.se-rwth.de
mailto:michael@se-rwth.de?subject=Your paper "A Methodology for Retrofitting Generative Aspects in Existing Applications"
www.se-rwth.de
mailto:netz@se-rwth.de?subject=Your paper "A Methodology for Retrofitting Generative Aspects in Existing Applications"
www.se-rwth.de
mailto:rumpe@se-rwth.de?subject=Your paper "A Methodology for Retrofitting Generative Aspects in Existing Applications"
www.se-rwth.de

figurable target environments. You can contact the author at
varga@se-rwth.de or visit www.se-rwth.de.

mailto:varga@se-rwth.de?subject=Your paper "A Methodology for Retrofitting Generative Aspects in Existing Applications"
www.se-rwth.de

