
Journal of Object Technology | RESEARCH ARTICLE

On the Precise Semantics of
the Software Layering Design Pattern

Bran Selić
Malina Software Corp., Canada

ABSTRACT Layering and layered system architectures are among the most common architectural styles in software engineering.
Despite its near ubiquity, it turns out that there has been very little theoretical work on a more precise definition of what constitutes
and what characterizes layering. This has had the unfortunate consequence that the layering style has been left open to
frequent misinterpretation and misuse. To gain a clearer understanding of the semantics of layering, this article first delves into
the origins of the concept, including a review of several key publications that popularized its application in the software domain.
Through focused analysis of these foundations, the characteristics that make layering unique are derived and then used to
provide a more precise definition of the semantics of layers and layer relationships. Along the way, some of the most common
misconceptions associated with layered software architectures are identified and reviewed. Finally, some high-level guidance is
provided to software architects and designers on when it is appropriate to use layering and how it should be applied.

KEYWORDS Layering patter, layering relationships, software architecture, virtual machines.

1. Introduction
There is a long history behind the notion of a vertical stack
of layers as a metaphor for capturing some kind of directed
progression of entities, starting from a foundational element at
the bottom and then progressing towards more goal-oriented
elements through a series of discrete levels (Figure 1). The ver-
tical orientation of the metaphor is intended to suggest both an
ordering of the individual levels as well as mutual dependence,
such that each higher layer is supported by the set of layers
below.

This metaphor is encountered quite frequently in software,
where it has been long recognized as a significant structural
design pattern (e.g., (Avgeriou & Zdun 2005; Buschmann et
al. 2008; Clements et al. 2003; Hofmeister et al. 2000; Sarkar
et al. 2009; Selic et al. 1994; Shaw & Garlan 1996)). Phrases
such as “layered software systems”, “layered architecture”, or
“layers of abstraction” appear frequently in numerous textbooks,
technical publications, and design discussions. While there is

JOT reference format:
Bran Selić. On the Precise Semantics of: the Software Layering Design
Pattern. Journal of Object Technology. Vol. 20, No. 2, 2021. Licensed
under Attribution - NonCommercial - No Derivatives 4.0 International (CC
BY-NC-ND 4.0) http://dx.doi.org/10.5381/jot.2021.20.2.a6

Figure 1 A generic layer stack

a shared general intuition about the intent and meaning of this
architectural style, to the best of the author’s knowledge, there
is no agreed-on definition of its precise meaning1.

1 This problem was first pointed out, to a certain extent, by David Parnas as
far back as 1974, in the article “On a ‘Buzzword”: Hierarchical Structure”
(Parnas 1978).

An AITO publication

http://dx.doi.org/10.5381/jot.2021.20.2.a6


This has had the unfortunate consequence that there is much
confusion about its semantics and how and when it should be
applied in practice. A primary objective of this article is to iden-
tify and critique the various fallacies and misunderstandings that
have arisen around this important architectural style. Another is
to address this by providing a more precise definition of its key
concepts along with an explanation of the core semantics that
uniquely distinguish it from some other architectural styles that
are often confused with it. We start with a review of the origins
of the concepts of layers and layering in the following section. It
describes several historically significant layered systems, which
have had major influence in popularizing the approach. These
systems are almost mythological, not only because of their huge
impact on software architecture in general, but also because,
over time, they have acquired numerous diverse and not neces-
sarily accurate interpretations. It is, therefore, useful to explain
what they really are, what is true about them, and what is “folk-
lore”. Starting from this foundation, a more detailed analysis of
the concepts of layers and layering in software is provided in
Section 3, along with a more precise definition of these concepts
and a description of their semantics. Based on this, Section 4
contains a few high-level guidelines on when it is appropriate
to use the layering architectural style and how it can or should
be used. Section 5 provides a critical review of notable related
work, although, given the sheer volume of publications that
discuss layering, it is likely that some important works have
been omitted. If so, any such omission is unintentional. Finally,
this article concludes with a short summary of the content and a
brief glimpse of what potential future work related to layering
and layered system architectures.

2. Origins
A wise man once remarked: “To truly understand something, we
need to know how it came to be.” In that spirit, this section con-
tains a review of several historically significant layered software
architectures. However, even before that, it is very helpful to
first look at where the inspiration for the layering architectural
style originated.

2.1. The Basic Software-Hardware Layering Relation-
ship

There is no doubt that the concept of software layering was
inspired by the relationship that exists between computing hard-
ware and the software that it runs. Strictly speaking, the software
is not physically separable from the hardware, since it actually
realized as a particular state of the storage elements of the hard-
ware. Nevertheless, the two are separated in Figure 2. This is
intended to convey the intuition that software is logically dis-
tinct from the hardware, since it is defined separately from the
hardware and is not inherently a part of it. On the other hand,
software requires hardware in order to achieve its purpose, so
the “vertical stack” rendering is used to imply this dependency.
The hardware acts as a platform for the software.
The following properties characterize the software-hardware
relationship:

1. Asymmetry: the dependency between the layers is strictly

Figure 2 The Core Software-Hardware Layering Relationship

directional; that is, the overall functioning of the upper
software layer depends fundamentally (and, in this case,
even existentially) on the lower hardware layer. In contrast,
both the existence and implementation of the lower layer
are independent of the content and structure of the upper
layer.

2. Client-server interaction: Software realizes its function-
ality by selectively invoking a set of instructions provided
by the hardware. The hardware then executes the invoked
instructions and thereby realizes the desired behavior. This
relationship can be viewed as an example of the well-
known client-server paradigm, if we consider the instruc-
tion set of the hardware as a set of “services” that are
invoked by the software “client”.

3. Interface-based interaction: The instruction set “services”
of the hardware are accessed by the software by refer-
ring to the instruction identifiers (i.e., a string of bits that
uniquely identifies a CPU instruction) along with any nec-
essary arguments. But the details of how the instructions
are implemented by the hardware are inaccessible to the
software (“information hiding”).

As noted later, these characteristics apply to all authentic lay-
ering relationships. To illustrate the critical role that hardware
plays in the implementation of software, an alternative “onion
peel” representation is often used, as shown in Figure 3. In
this case, the hardware is shown as being enclosed within the
software suggesting that, in effect, the hardware can be viewed
as a hidden internal component of the software.

Figure 3 The "Onion-peel" Rendering of the Core Software-
Hardware Layering Relationship

2 Selić



It is important to note that this “onion-peel” representation
can be somewhat misleading. Namely, it can be easily misin-
terpreted to mean that the hardware is somehow “contained”
within the software – which suggests that the hardware will be
terminated when the program terminates. But this is clearly not
the case here, particularly in situations commonly encountered
in practice whereby the same hardware is shared concurrently
by multiple software programs. For this reason, it is not quite
appropriate to claim that the hardware constitutes a part of the
implementation of the software. Instead, it is perhaps best char-
acterized as an independent extension of the implementation of
the software.

2.2. Dijkstra’s “T.H.E” Multiprogramming System
The architecture of the T.H.E. multiprogramming system, de-
signed and developed by Edsger Dijkstra and his team at the
Technological University in Eindhoven in the 1960’s (Dijkstra
1983), is probably one of the most influential works that led to
the broader adoption of the layered approach to the design of
complex software systems. Although the paper describing the
architecture of this system does not include an explicit graphi-
cal representation2 , it clearly suggests the 5-layer architecture
shown in Figure 4.

Figure 4 The layers of the "T.H.E." multiprogramming sys-
tem (Dijkstra 1983)

The software in Level 0 provided core support for concurrent
processes, each of which simulated a physical processor dedi-
cated to an individual program. This included the mechanism
for processor allocation (i.e., process scheduling). Level 1 was
used to hide the specifics of the persistent storage hardware (a
drum) by presenting them as a simple set of logical memory
segments. Support for interactions with the system console (a
teletype) was handled at Level 2. Level 3 handled interactions
between software and any other input-output devices, allowing

2 Dijkstra was famous for his aversion to the use of diagrams, claiming that:
“Whenever someone draws a picture to explain a program, it is a sign that
something is not understood”, to which Wolfram Bartussek responded: “Yes,
a picture is what you draw when you are trying to understand something or
trying to help someone understand” (as quoted in (Parnas & Lawton 1998)).

a unified interface model regardless of the actual type of device.
The top two levels were independent of the operating system:
User programs ran at Level 4, while Level 5 contained a special
system program by which a system operator could manage the
entire system. In essence, Levels 0 through 3 provided the de-
sired “logical” execution environment for the programs located
in Levels 4 and 5. The lower four levels jointly provide a soft-
ware foundation that transforms the single underlying computer
into a dynamic system that emulates a set of concurrently exe-
cuting independent computers. According to (Dijkstra 1983),
the primary motivation for this architecture was portability, that
is, the desire to protect applications from changes and idiosyn-
crasies of the underlying hardware by hiding it behind a set of
software layers. In addition, a graduated modular approach sim-
plified the design and implementation and also enabled stepwise
verification of the software. For example, once Level 0, was re-
alized and independently verified, Level 1 could then be verified
while taking for granted the correctness of the Level 0 – and so
on. This gradual build-up of functionality not only simplified
the task of verifying the correctness of the system, but it also
enabled modularized concurrent development of individual lev-
els. However, care must be taken not to interpret the hierarchy
represented by Figure 4 in a strict sense. That is, there is nothing
in this design that mandates that a higher level can only access
the services of the layer immediately below. In fact, the opposite
holds here, as shown in Figure 5. Thus, the concurrent process
facility provided by Level 0, is used to write the software of
all three higher levels of the operating system. Similarly, the
logical storage service of Level 1 is used by both Levels 2 and
3. Therefore, contrary to what might be (incorrectly) concluded
from Figure 4, this important precedent-setting system is not a
“strict” layered architecture. Bypassing levels to access levels
further down is sometimes referred to “layer jumping” and is a
practice that is considered by many as incompatible with “true”
layered architectures.

Figure 5 The uses relationships between layers of the T.H.E.
system.

Despite the layer jumping, it is possible to represent this
system by a system-wide vertical stack. This can be done by
hiding the four operating system layers within a single logical
layer as shown in Figure 6. It is important, however, to keep
in mind that this representation is only a selective view of the

On the Precise Semantics of the Software Layering Design Pattern 3



more complex actual layering structure.

Figure 6 A more abstract representation of the architecture of
the T.H.E. system.

The merged intermediate layer in Figure 6 encapsulates a
complex multi-layered software system. In addition to enabling
portability, it provides a customized execution environment
(or platform), whose services are semantically better suited
to support application-level semantics when compared to the
services of the “raw” hardware. For this reason, such a layer is
often referred to as a virtual machine. As explained later, this
concept is central to the layering architectural style.

2.3. The Open System Interconnection (OSI) Reference
Model

Another highly influential layered system is the Open System
Interconnection (OSI) reference model (Laguë et al. 1998). This
architecture was standardized by the International Standards
Organization (ISO) in the early 1980s, and contains one of the
most extensive descriptions of layering and layered systems. It
is represented by the 7-layer stack depicted in Figure 7. The
intent of this reference model was to provide a well-structured
conceptual framework for organizing and realizing communica-
tions services over a physically distributed network.

Figure 7 The ISO standard model for Open System Intercon-
nection (OSI)

2.3.1. The Basic Model of Communications Services
In contrast to Dijkstra’s T.H.E. system, this was designed to
be a strict hierarchy of layers. That is, each layer is allowed
to access only to the services of the layer directly below and

none other3. Each layer in this model provides a different and
complete set of communication-oriented services appropriate
for its scope. “Complete” here means that software in one layer
provides the full set of communication services needed by the
layer immediately above. Consequently, there is no need for
layer jumping.

At the bottom is the Physical layer, which covers the net-
work and all the hardware needed to realize communications.
Directly above it is the Datalink layer, which uses the services
of the Physical layer to provide point-to-point communications
between two directly linked network nodes. At this level there
is still no notion of a network. That first appears at the Network
layer, whose scope encompasses the full network of nodes and
physical connections between them, and which provides ser-
vices such as routing. The Transport layer includes mechanisms
for creating and removing end-to-end connections between
nodes in the network. The Session layer transforms these end-
to-end chains of links into logical point-to-point connections
between two or more logical connectable entities, known as
communication end points (CEPs). The Presentation layer pro-
vides an extended set of services that are useful in a distributed
environment, such as options for secure communications, proto-
col adaptation, and data compression. Finally, the Application
layer may also include a “sub-layer” of application-specific
services in addition to the actual communicating application
elements.

The OSI standard was introduced at a time when computer-
to-computer communication over networks was becoming a
practical reality. Because of its conceptually clean design, be-
cause it was well documented, and because it was adopted as an
international standard, it received a great deal of attention. In
particular, it inspired many software system designers, who saw
in it a general architectural style to be emulated for structuring
complex software systems.

2.3.2. The Extended OSI Model What is often overlooked,
however, is that the OSI model deals exclusively with commu-
nications services. In other words, it is not an overall system
architecture, but only an architecture for structuring distributed
communication services. It says nothing about how other types
of virtual machine services should be structured. For example,
as explained in (Zimmermann 1980), there is another function
in this model having to do with network management. This
is represented by an element that is placed orthogonally rela-
tive to the 7-layer communications services stack, suggesting a
separate layering dimension4 (Figure 8).

Moreover, neither Figure 7 nor Figure 8 cover all the func-
tionality needed in such a system. For example, the entire
structure in Figure 8, would likely need the services of an un-
derlying operating system. This requires yet another layering
dimension, one that is independent of the layering structure
of the communications services. This type of structure can be
represented by the 3-dimensional diagram in Figure 9.
3 However, it should be noted that one of the primary authors of the OSI model,

Hubert Zimmermann, suggested that it should be possible to “allow bypassing
of sublayers” (Zimmermann 1980). By “sublayers” he meant internal layers
within layers.

4 This notation is referred to as a “sidecar” notation (see Section 3.2.2)

4 Selić



Figure 8 The OSI model, with the network management
function represented by a “sidecar” notation

Figure 9 The multidimensional nature behind the OSI refer-
ence model

But, even this 3-D rendering is a simplification of the full
layering structure of such a system. As demonstrated by Dijk-
stra’s T.H.E. system, an operating system is likely to have its
own internal layering structure, adding yet more hidden layering
dimensions. This challenging issue of how to represent such
systems is discussed in Section 3.2.2.

2.3.3. The OSI Service Access Point (SAP) Concept
One very important feature of the OSI model is its explicit
formalization of inter-layer relationships, via the concept of a
Service Access Point (SAP). This is an abstract representation
of the client-server relationship between an entity in the upper
layer and a service provisioning entity in the layer immediately
below (Figure 10). SAPs were introduced in the OSI model
to deal with the fact that, in communications applications, it
may be necessary to distinguish between individual connection
end points corresponding to different communicating entities
within a given location. However, the concept is generally
useful in the context of layering, since it provides an abstract
model of the mechanism by which any inter-layer interactions
occur5. In concrete cases, SAPs can be realized by a variety
of technology-specific mechanisms. For example, a SAP can
represent a straightforward call to an application programming
interface (API) of a service in the supporting layer.

A SAP represents a directed relationship that crosses the
boundary between layers. Its source end is located in the service-

5 This aspect is often overlooked, particularly in numerous theoretical treatments.
Namely, they often abstract out the potentially disruptive effects, such as
resource sharing conflicts, that a supporting layer may have on its upper layer
entities (Selic 2020). This is discussed further in Section 3.2.5.

invoking upper layer entity, while its target end terminates on
the interface of the entity that provides the service. Crucially, a
SAP relationship is created and used by the implementation of
the upper layer entity. As noted in Section 2.1, the lower layer
entity can be considered as an extension of the implementation
of the upper layer entity.

Figure 10 OSI Service Access Points

SAPs are one convenient way of describing the virtual ma-
chine nature of inter-layer relationships: the implementation
code of upper layer entities initiate the interactions by invoking
the appropriate services (i.e., “instruction set”) of the lower
layer, analogous to the way that a software program “invokes”
the instructions of the CPU.

Note that although SAP-based interactions can flow in both
directions, they are invariably initiated by entities in the upper
layer. Thus, a response to a synchronous service request may
flow from the lower layer back up to the upper layer, but that
was initiated by the service request made in the upper layer.
Similarly, an upper layer entity may subscribe to a service of
the lower layer, which could result in a series of asynchronous
upward bound communications from the lower layer. But, yet
again, the initiative for this originates in the upper layer.

2.4. The UNIX Operating System
Another highly influential layered architecture is that of the
UNIX operating system. It is often cited as a distinctive example
of a well-structured system. The architecture of one UNIX
variant, System V, is shown in Figure 11.

Note that, similar to the way that Dijkstra’s T.H.E. operating
system was represented as single vertical stack in Figure 4, this
complex structure can also be represented in abstract form as a
simple three-layer stack, consisting of an Application Layer, a
Kernel Layer, and a Hardware layer (not shown in the diagram).
However, its actual internal layering structure is more complex.
It can only be folded into a simple vertical layer with loss of
accuracy.

3. The Semantics of Layering
The examples discussed in the preceding section demonstrate
that layering is a more complex design pattern than a simple
vertical layer stack suggests. To understand the true meaning

On the Precise Semantics of the Software Layering Design Pattern 5



Figure 11 The layering architecture of the UNIX System V operating system (adapted from (Avgeriou & Zdun 2005)).

of layering and how to apply it, it is first necessary to provide
clear and precise definitions of its key concepts. There are,
in essence, just two core concepts involved: layer and layer
(usage) relationship. Before defining them more precisely, it
is first necessary to clarify the difference between two distinct
interpretations of what layering represents.

3.1. Run-time versus Compile-time Interpretations of
Layering

In the literature, layering has been discussed and interpreted in
two very different contexts. The compile-time interpretation
deals with file-system artifacts that specify the source code of
the system. This covers source code modules, their associated
directory structures, and their compilation dependencies. As
illustrated by the simple 2-layer example in Figure 12, it is
possible to get a general sense of the layering relationships by
tracing through the compilation dependencies between source
code files. However, not all compilation dependencies nec-
essarily represent inter-layer relationships. For example, the
uses relationships that both the Application Layer package and
Services Layer package have with the Shared Source Code Def-
initions package (e.g., containing header file declarations), do
not represent inter-layer relationships, but merely static compi-
lation dependencies. Moreover, the compile-time interpretation
is missing important dynamic information that is only known
at run time, such as the number of run-time entities and the dy-
namics of their relationships at a given point in the execution of

a program. Consequently, the compile-time view is usually an
inadequate and ambiguous method of describing layered system
architectures — despite the fact that it is often used and, in some
cases, even recommended (Eeles 2002).

Figure 12 A compile-time representation of a simple layered
system

In contrast, the run-time interpretation focuses on layering
relationships between executing software units. This interpre-
tation is certainly more consequential, since it represents the
actual system in operation. It covers the dynamic state of a
running system, the currently active objects and data structures
as well as the links between them - information that can only
be partially inferred from compile time specifications. The run
time is what ultimately defines the actual (versus potential) be-
havior of a system and, therefore, it is what really matters to
its users and designers. For that reason, the terms “layer” and

6 Selić



“layering” throughout this text refer exclusively to their run-time
manifestations.

3.2. The Essential Semantics of Layer Uses Relation-
ships

Clements et al. (Clements et al. 2003) point to the “allowed-
to-use” relationship as the defining feature of layering. This is
an asymmetric relation between a pair of run-time entities such
that one entity can use another but not the other way around.
The term “use” is defined here as a relationship whereby the
correct operation of the using module depends on the correct
operation of the used module. While “allowed-to-use” cap-
tures the essential asymmetric nature of layering, it is still not
sufficient to fully characterize the semantics of the layering
relationship. For example, consider the two systems shown in
Figure 13. Both are cases of asymmetric usage, with Comp A
depending on Comp B, whereas Comp B does not depend on
Comp A. Nevertheless, in most graphical renderings, the system
on the right is shown using a vertical arrangement suggesting a
layering relationship between the two components, in contrast
to the system on the left, where the two are drawn as “peers”
situated “in the same layer”. So, is there something more to
layering "uses" relationship than merely a discretionary matter
of graphical rendering?

Figure 13 The two types of “uses” relationships between
software modules: (a) between “peer” elements in the same
layer, and (b) between elements in a layering relationship.

3.2.1. The Distinguishing Semantics of Layering There
are two fundamental semantic differences between the two sys-
tems depicted in Figure 13:

– Existential dependence. In the “peer” case (Figure 13(a)),
Comp A is not existentially dependent on Comp B. That
is, if Comp B fails or becomes unavailable for whatever
reason, Comp A may not be able to function correctly,
although it might still continue to execute. For instance,
it could initiate a failure recovery action of some type.
However, in a layering relationship (Figure 13(b)) the up-
per layer is existentially dependent on the lower layer, as
explained in Section 2.1.

– Implementation dependence. In case of the “peer” rela-
tionship, the implementations of the two components are
mutually independent. That is, as long as the interfaces
between the two remain unchanged, each component can
change its implementation without affecting the implemen-
tation of the other. In the case of layering, however, the

lower layer is an extension of the implementation of the
upper layer.

One important consequence of implementation dependence
is that an application program can usually safely assume the
existence of the lower layer. Unlike the “peer” case, in most
practical situations it does not need the run-time address of
the lower layer to bind to it and access its services6. This
is because the binding of an application with its underlying
virtual machine layer is typically done at compile time, with the
possible exception of some distributed systems.

These two distinguishing characteristics of layer relation-
ships, existential dependence and implementation dependence,
are both encompassed by the virtual machine essence of sup-
porting layers. Many software frameworks, such as .NET7 or
Eclipse8 as well as the interpreters of interpreted languages such
as Basic and Java, are examples of virtual machines of this kind.

3.2.2. Layering as a Multi-Dimensional Structure The
practical examples described in Section 2 all suggest that, in
real-world systems, layered system architectures are rarely (if
ever) accurately represented in graphic form by a simple system-
wide vertical layer stack, such that each layer spans across the
entire system. To deal with this unpleasant reality, various
notational tricks have been attempted, such as the examples
shown in Figure 14. Unfortunately, these are usually futile,
because they are attempts to present what is, in the general case,
a multidimensional structure by means of a limiting two- or
three-dimensional representation.

Figure 14 Different multidimensional representations of
layered systems.

This is not to say that such simplified representations should
be avoided, since they can be useful for didactic purposes. Such
as, for example, the simplified representation of the T.H.E. sys-
tem shown in Figure 6 or the OSI model in Figure 7. However, it
should always be made clear that these only represent selective
views of a system.

3.2.3. On the Layer Jumping “Problem” “Layer jump-
ing”, “layer bridging” or “skip calls” all refer to the practice
whereby an application in one layer bypasses the layer immedi-
ately below in order to access a service in a layer that further
down. This is often considered as a serious violation of archi-
tectural integrity and something to be avoided if at all possible.
However, this is based on the idealistic assumption that the en-
tire architecture of a practical system can be realized as a single

6 The exception might be communication services where it may be required to
access a specific SAP representing a specific communication end point. But,
even in those cases, what is addressed is an interface and not the layer itself.

7 https://dotnet.microsoft.com/
8 https://www.eclipse.org/org/

On the Precise Semantics of the Software Layering Design Pattern 7



strictly vertical layer stack. But, when the multidimensional
nature of layering is recognized, then this so-called “problem”
often disappears. It is not a matter of bypassing layers but
simply accessing a service that belongs to a different layering
hierarchy, or, what is referred to here as a different layering
dimension. To fully understand why, consider the example in
Figure 15, which depicts a fragment of the internal structure of
the Kernel Layer in the UNIX System V architecture (Figure
11).

Figure 15 Fragment of the internal structure of the UNIX
System V kernel layer.

If this structure was viewed as a single system-wide vertical
stack, then the structure would consist of a 3-layer stack consist-
ing of the System Call Interface on top, followed by the Process
Control Subsystem, and, finally, the File Subsystem. The lat-
ter is at the bottom because it is used by the Process Control
Subsystem. However, it is also used directly by the System Call
Interface. This results in what appears as a case of undesirable
layer jumping since it violates the strict layering rule, which
dictates that a layer should only access the services of the layer
below. On the other hand, we cannot put the File Subsystem
and the Process Control Subsystem in a common layer, since
the implementation of the Process Control Subsystem depends
on the File Subsystem.

It would not make sense for the top-layer System Call Inter-
face to access the File Subsystem services by accessing them
through “pass through” interfaces so that they appear as if they
are provided by the underlying Process Control Subsystem. This
is illustrated by the example in Figure 16, where — to avoid
layer jumping — the interface of FS Service X (a service that
is actually realized and provided by the File Subsystem), is
propagated upwards “through” the Process Control Subsystem.
This would not only result in needless performance overhead,
but, even worse, it would force the Process Control Subsystem
layer to incorporate the interface of a “phantom” service that
has nothing to do with its own function. This would be exac-
erbated if a supporting layer had to support multiple different
applications with different service needs.

This is why the direct usage link from the System Call In-
terface to the File Subsystem should not be perceived as an
architecture-corrupting “layer jump”. Instead, it is a usage rela-
tionship based on a different layering dimension from the one
to the Process Control Subsystem. The layering structure of
services-providing layers should be based on the functional
needs of the services themselves, as opposed to the needs of
applications that use them.

Figure 16 The problem of “pass-through” services.

3.2.4. Practical Layered Architectures The ultimate lay-
ering structure of most practical systems is a non-trivial directed
acyclic graph (DAG) rather than a simple vertical stack (Figure
17). These layers may be acyclically interdependent, as was
the case of the Process Control Subsystem, which uses the File
Subsystem. Of course, all of these different software layering
dimensions ultimately converge on the single hardware layer. A
vertical service-specific virtual stack can always be extracted by
tracing one top-to-bottom path through the graph. For instance,
a vertical stack of this type for Service A is indicated by the
shaded contour in Figure 17. As can be seen here, such “clean”
representations are almost invariably just selective partial views
of the full system architecture.

To be clear: system-wide layers that underlie all software do
actually occur in practice. One obvious example is the hardware
layer, since a major semantic and technological discontinuity
occurs at the layer boundary here. Another common example is
an operating system, whose “system space” interface is designed
to protect it from application programming errors, such as the
System Call Interface of the UNIX system.

However, both of these are exceptions rather than the rule.
In practice, an application should have the freedom to define
a virtual machine that is most suitable for its purpose. It does
this by choosing a combination of different domain-specific
virtual machines, each providing a subset of the services that the
application needs. In the example in Figure 17, we see that the
Application Layer creates its own virtual machines by means
of a combination of three different virtual machines: Service
A.1, Service B. 1, and Service C.1. The private internal layering
structures and dependencies of these three virtual machines are
not of concern to the application.

This is particularly applicable nowadays, when many soft-
ware applications take advantage of various specialized open-
source or proprietary software libraries that are available, many
of which are designed independently. In most cases, library
software specializes in providing a specific set of related util-
ities, such as communications service stacks or user-interface
capabilities.

Finally, inappropriate layer jumping can and does occur, but
this is a much less common issue than is widely recognized.
Such a layer jump can can take place in case of strict service-

8 Selić



Figure 17 A realistic layered system architecture with a selective vertical stack view.

specific vertical stacks, such as the one in the OSI model. For
example, if software implementing the Network layer were to
directly access a Datalink layer service.

3.2.5. The Problem of Shared Virtual Machines One of-
ten overlooked problem of layers that support multiple con-
current applications is that unintended or undetected coupling
can occur between the applications. For example, in Figure 17,
Service A.3, Service B.1, and Service C.2 all share the same
hardware layer. It may be the case that all three application
take advantage of the same physical resources, such as the CPU,
memory storage, internal busses, etc. In these situations unan-
ticipated resource contention conflicts can occur, which can
have a perceptible and undesirable impact on the behavior of
the applications (e.g., slow response, deadlocks, buffer capacity
overflow). This type of interference is often difficult to detect,
not only because it depends on implementation details hidden
behind layer interfaces, but also because the applications in-
volved may have been conceived and designed independently
of each other.

One potential approach for mitigating or avoiding the prob-
lem of shared implementation resources is described in (Selic
2020). It advocates clearly identifying inter-layer interaction
points (i.e., SAPs) as explicit interfaces, so that the impact of
shared resources can be properly accounted for when verifying
a design.

3.2.6. Sidebar: On the Widely Used Term “Layers of Ab-
straction” Note that a software layer not only hides the hard-
ware, but it also transforms it into a different machine. If we
define abstraction as the process of generalizing or omitting
detail, then, strictly speaking, a virtual machine layer on top of
hardware does not provide a more abstract representation of the
underlying hardware. Instead, it uses the hardware to realize a
new and different machine, which hides the actual hardware.

The same reasoning applies in cases where software multiple
layers are stacked one on top of the other. Each layer transforms
its supporting layers into a new and different virtual machine.
Consequently, it hardly makes sense to talk about “layers of

abstraction”, since virtual machines are not abstractions of any-
thing9. Moreover, as pointed out by Parnas (Parnas 1978) and
others (Clements et al. 2003), there is no ranking of abstraction
here10. Instead, layers of virtual machines would be a more
appropriate term.

3.3. Layering Concepts Defined
Taking into consideration the analyses of the semantics of layer
relationships, we can now provide more precise (albeit informal)
definitions of the core concepts associated with layering.

A layer is a logical or physical grouping of related
run-time services realized either in software or hard-
ware that jointly provide an execution environment
that can be utilized for implementing one or more
software applications.

This encompasses both real physical computer layers as well
as software-based virtual machines, and it emphasizes the core
semantics of layers — which is why the word “implementing” is
critical. The above definition is supplemented by the following
definition:

A layer service is a run-time mechanism that realizes
a specific utility function and which can be activated
through its interface by a software application execut-
ing on top of the layer that owns the service.

The term “activated” is used here is generic and covers different
kinds of technology-specific mechanisms. Depending on the
context, activation can be realized by means of synchronous
API calls, asynchronous message-based communications, or
implicit CPU instruction activations (for hardware layers). From
a conceptual viewpoint, these services represent a logical or
physical instruction set.
9 This may be due to the fact that virtual machines are sometimes also called

“abstract machines. However, in that context, “abstract” simply denotes that a
virtual machine is realized by software rather than hardware.

10 An example of true “layers of abstraction” is a progression such as: John —
Male — Human — Mammal — Animal. Each level here is an abstraction of
the same unique entity (John).

On the Precise Semantics of the Software Layering Design Pattern 9



Note that the definition of a layer does not necessarily cover
the topmost “application layer”, since not all applications nec-
essarily realize virtual machines for other applications11.

Finally, layering relationships are defined by:

A layering relationship represents a mechanism by
which an executing software application can activate
one or more services of its supporting layers. Ac-
tivation of a supporting layer service is exclusively
controlled by the application.

The second part of this definition captures the key asymmet-
rical and acyclical properties of true layering relationships.

Crucially, since a virtual machine is just a special kind of
software application, layering can be applied recursively, re-
sulting in a hierarchy of software layers. However, it is worth
emphasizing here that, contrary to “common wisdom”, this po-
tential for creating multi-layer stacks is not an essential feature
of the layering architectural style.

4. When and How to Define Layers
The primary dilemma facing software architects and designers
is summarized by the two different options depicted in Figure
13. Which of the two alternatives should be used in given
circumstances? When is it appropriate to define layers?

Hubert Zimmermann, one of the original authors of the OSI
reference model, provided a list of 13 principles for designing
layers and layered architectures (Zimmermann 1980). These
include principles that specify when to provide layers and prin-
ciples that explain how layers should be defined and realized.
However, as noted earlier, the OSI model was dedicated exclu-
sively to distributed communications services.

In light of the virtual machine essence of layering noted in
this text, the “when to define layering” question can be refor-
mulated as: under what circumstances would it be effective to
insert a new virtual machine between an application and the
currently available platform (or platforms)? This leads to the
following mutually inter-dependent criteria:

– Semantic inadequacy: This occurs when the services pro-
vided by the available execution environment (platform)
are semantically too far removed from the semantics of
the core concepts of the application domain. In such case,
the role of the new layer is to construct new service primi-
tives using the services of the available platform, such that
the new services directly provide the appropriate domain-
specific semantics. For many simple applications, either
the hardware itself or the operating system provide all the
run-time services they need. However, in more complex
cases, implementation can be greatly simplified and made
more reliable if the corresponding program can be written
using domain-specific concepts as first-class primitives.

– Technology independence (i.e., need for portability): If
there is a possibility that the interface of the services pro-
vided by the available platform may change or vary (e.g.,

11 Although it could be fairly argued that even the top-level software layer
provides a virtual machine for its users.

by different hardware platforms), then it is appropriate to
add a virtual machine layer that provides services whose
interfaces are independent of such effects.

– Reuse: The benefits of the effort of constructing a new
virtual machine are multiplied if it can be reused for mul-
tiple different applications that encompass12 the domain
supported by the virtual machine.

The matter of how layers should be realized, is determined
by the client-server nature of the relationship between an ap-
plication and its platform/virtual machine: This includes some
characteristics of layers discussed previously:

– Asymmetry: Interactions between a virtual machine and its
application layer should be initiated exclusively by action
of the application. (Note, however, that this applies only
to steady-state operation, since there may be cases during
system start up, shut down, or failure recovery, where the
virtual machine may need to initiate the action.)

– Interface-based interactions: All interactions between ap-
plications and a layer should occur via the interface of
the layer. This interface should provide services that are
well-suited for implementing applications that encompass
its domain. Furthermore, the interface should be stable
even if the implementation of the virtual machine might be
subject to change.

– Domain-specific services grouping: The set of services
realized by a virtual machine, should be selected based on
the domain or domains of the applications it is intended to
support.

From a pragmatic programming point of view, there are dif-
ferent ways in which virtual machines can be implemented.
The most obvious and most direct is to provide interpreter-like
mechanisms, which, in combination with the hardware, directly
execute the upper-layer application programs. Another is to
realize them through domain-specific libraries, which are bound
to the application at run time. For more complex application
domains, complete application frameworks, such as Eclipse or
.NET, may be more appropriate.

So, when is it appropriate to create layer stacks? The answer
is quite simple: when the implementation of a particular vir-
tual machine itself needs its own domain-specific platform or
platforms. After all, a virtual machine is just another applica-
tion. But it is worth recalling here yet again that an application,
including a virtual machine, may span multiple domains so
that it may be supported by multiple virtual machines. Hence,
the result will not necessarily be a single-dimensional stack,
especially if some of those lower virtual machines may have
layering relationships among themselves.

5. Related Work
The topics of layers and layering in software-based systems are
covered in numerous textbooks as well as journal or conference
publications. In particular, they are discussed in publications

12 As noted in Section 3.2.1, an application may cover more than one domain,
each with its own set of services.

10 Selić



that deal with general software architecture (e.g., (Avgeriou &
Zdun 2005; Bass et al. 2003; Buschmann et al. 2008; Clements
et al. 2003; Hofmeister et al. 2000; Shaw & Garlan 1996; Vo-
gel et al. 2011). However, in practically all cases, the topic is
discussed in the context of hypothetical or highly abstracted
architectures consisting of a system-wide vertical layer stack.
As explained in Section 3.2.4, these rarely – if ever – accurately
represent the system architectures of real-world systems. Only
a few of these works delve into the core semantics of the layer-
ing relationship to distill its virtual machine essence. An early
example is found in the work of Parnas on hierarchical struc-
ture (Parnas 1978), which equates layer-like structures with the
concept of “abstract machine”. Subsequently, Clements et al.
(Clements et al. 2003) explicitly note the semantic equivalence
between layers and virtual machines and focus on the “allowed-
to-use” relationship. But, as argued in Section 3.2, although
necessary, it is not sufficient to uniquely capture the semantics
of layering.

One of the most extensive treatments of layering is provided
in the work of Zimmermann (Zimmermann 1980). This was
intended primarily to provide a justification of the OSI reference
model and, therefore, focused almost exclusively on the com-
munications domain. Herzberg and Broy do provide a precise
and formal model of layering relationships, but, yet again, only
for the specific case of distributed communications services,
based on OSI-like layering (Herzberg & Broy 2005). Another
effort that deals with the semantics of layering is included in
the aforementioned work of Parnas (Parnas 1978). The focus
here is more on layer hierarchies (i.e., layer stacks) rather than
inter-layer semantics that are at the core of the virtual machine
paradigm.

To the best of the author’s knowledge, no prior published
work has explicitly identified the two fundamental semantic
differentiators of layering, which are described here in Section
3.2.1: existence dependence and implementation dependence.
In addition, the multidimensional nature of layering has not
been fully recognized in published literature. This is evidenced
by numerous publications that treat “layer jumping” as a trouble-
some violation of core architectural principles (e.g., (Bourquin
& Keller 2007; “ISO/IEC 7498-1:1994:1: Information Technol-
ogy – Open Systems Interconnection – Basic Reference Model:
The Basic Model” 1994; Sarkar et al. 2009; Zdun & Avgeriou
2005)).

The layering pattern is long-established as a significant archi-
tectural style. Despite that, no widely-used programming lan-
guage includes either layers or layering as first-class language
constructs. Instead, layer relationships are usually captured
indirectly by means of compilation dependency directives. In
Section 3.1, it was explained that these only capture a static view
of what is fundamentally a run-time relationship. To overcome
this, a number of research efforts have focused on attempt-
ing to derive the dynamic view of layering by static analysis
of program code (e.g., (Belle et al. 2016; Bourquin & Keller
2007; Laguë et al. 1998; Sarkar et al. 2009)). This is greatly
complicated by the fact that not all compilation dependencies
necessarily represent layer relationships.

The author is aware of only one relatively widely used com-

puter language that does provide direct support for layering: the
Unified Modeling Language (UML) (OMG 2017). In its second
major release, UML includes explicit support for a port-like
layer interface inspired by the SAP concept of the OSI model.
This is realized through a special Boolean attribute of the UML
port concept called “isService”. If the value of this attribute
is set to “false”13, the corresponding port represents a private
interface that can only be accessed by the internal behavior of
an object. It is used as a gateway for accessing a corresponding
service of the virtual machine below. Unfortunately, the text
of the standard does not sufficiently explain the purpose of this
concept, so that it has mostly escaped the attention of users. The
origins of this unique UML feature can be traced to the Real-
time Object-Oriented Modeling (ROOM) language (Selic et al.
1994). This was one of the rare (only?) computer languages
that captures the concept of layering as a first-class language
construct.

6. Summary and Conclusions
The concepts of layers and layered system architectures ap-
pear frequently in numerous software engineering projects and
contexts. While there is a shared general intuition about the
meaning of these concepts, they are not defined with sufficient
precision. This has led to some serious misunderstanding on
what it actually represents, and when and how it can and should
be used. For example, it is argued here that the much-discussed
problem of “layer jumping” is not a real issue, but actually a
misinterpretation of the essential nature of layering.

The layering architectural style was inspired by the basic
relationship between hardware and software, in which the for-
mer serves as a platform supporting the latter. This relationship
was generalized by early work of software pioneers such as
Dijkstra and Parnas, leading to the concept of a virtual machine.
A virtual machine is a software layer that stands between an ap-
plication and an underlying hardware or software platform. Its
purpose is to provide both portability and a customized execu-
tion environment. Such an environment can greatly simplify the
implementation of an application and, consequently, increase
its reliability. This is because the “instruction set” of a virtual
machine comprises a set of services that directly realize key
concepts from the targeted application domain.

The essential semantics of the layering relationship, which
distinguish it from other similar relationships, can be reduced
to just two related characteristics: existential dependence and
implementation dependence of an application on its virtual ma-
chine(s). Layering is fundamentally a binary relationship be-
tween two adjacent layers, although it can be applied recursively
to create layer hierarchies. Such hierarchies are typically orga-
nized around the services provided and the lower-level services
needed to do that. This means that the virtual machine of a
complex application will typically itself be based on multi-
ple, possibly interdependent stacks. Consequently, contrary

13 Unfortunately, there is a potential for confusion here; the word “service” here
should not be confused with the term “service” in “service access point”. A
“true” value of the “isService” attribute means that the port represents a port
through which an object provides services to its peer clients. In other words it
is exactly the opposite of a SAP.

On the Precise Semantics of the Software Layering Design Pattern 11



to widespread “folk wisdom”, the architecture of a real-world
software system will hardly ever be represented accurately by
a single vertical stack of layers such that each one spans the
full system. Instead, the actual architectural relationships in
such systems are normally represented by possibly non-trivial
directed acyclic graphs of virtual machines.

It is hoped that the analysis and definitions provided in this
work could serve as a basis for a more systematic treatment and
application of the layering concept in the future. This could
replace the current highly unsystematic, semantically loose and
ambiguous, and often confused application of the architectural
style. One possible research direction would be to develop a
more comprehensive theory of layers (i.e., when and how to use
them). Another is to provide additional technological support,
such as providing automated support for creating optimized
configurations of virtual machine platforms. In addition, it
would be useful to provide a theory on how to construct domain-
and application-specific virtual machine layers — similar to
what has been done with the design of language interpreters.

Acknowledgments
The author would like to thank Prof. Henry Muccini and the
anonymous reviewers of this document for their most helpful
comments and suggestions. In addition, the author would partic-
ularly like to express his gratitude to Prof. Alfonso Pierantonio
for his substantianal and most unselfish efforts in preparing this
manuscript for publication.

References
Avgeriou, P., & Zdun, U. (2005). Architectural patterns

revisited-a pattern language.
Bach, M. J., et al. (1986). The design of the unix operating

system (Vol. 5). Prentice-Hall Englewood Cliffs.
Bass, L., Clements, P., & Kazman, R. (2003). Software archi-

tecture in practice. Addison-Wesley Professional.
Belle, A. B., El Boussaidi, G., & Kpodjedo, S. (2016). Combin-

ing lexical and structural information to reconstruct software
layers. Information and Software Technology, 74, 1–16.

Bourquin, F., & Keller, R. K. (2007). High-impact refactoring
based on architecture violations. In 11th european conference
on software maintenance and reengineering (csmr’07) (pp.
149–158).

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., &
Stal, M. (2008). Pattern-oriented software architecture: A
system of patterns, volume 1 (Vol. 1). John wiley & sons.

Clements, P., Garlan, D., Little, R., Nord, R., & Stafford, J.
(2003). Documenting software architectures: views and be-
yond. In 25th international conference on software engineer-
ing, 2003. proceedings. (pp. 740–741).

Dijkstra, E. W. (1983). The structure of “THE”-
multiprogramming system. Communications of the ACM,
26(1), 49–52.

Eeles, P. (2002). Layering strategies. Rational Software White
Paper, TP, 199(08), 01.

Herzberg, D., & Broy, M. (2005). Modeling layered distributed
communication systems. Formal Aspects of Computing,
17(1), 1–18.

Hofmeister, C., Nord, R., & Soni, D. (2000). Applied software
architecture. Addison-Wesley Professional.

ISO/IEC 7498-1:1994:1: Information technology – open sys-
tems interconnection – basic reference model: The basic
model. (1994).

Laguë, B., Leduc, C., Le Bon, A., Merlo, E., & Dagenais,
M. (1998). An analysis framework for understanding lay-
ered software architectures. In Proceedings. 6th interna-
tional workshop on program comprehension. iwpc’98 (cat.
no. 98tb100242) (pp. 37–44).

OMG. (2017). Unified Modeling Language™ - (OMG UML),
version 2.5.1, omg doc. no. formal/2017-12-05.

Parnas, D. L. (1978). On a “buzzword”: hierarchical structure.
In Programming methodology (pp. 335–342). Springer.

Parnas, D. L., & Lawton, A. (1998). Precisely annotated
hierarchical pictures of programs. Communications Research
Laboratory, McMaster University.

Parnas, D. L., & Madey, J. (1995). Functional documents for
computer systems. Science of Computer programming, 25(1),
41–61.

Putman, J. (2001). Architecting with rm-odp. Prentice Hall
Professional.

Sarkar, S., Maskeri, G., & Ramachandran, S. (2009). Discovery
of architectural layers and measurement of layering violations
in source code. Journal of Systems and Software, 82(11),
1891–1905.

Selic, B. (2020). The forgotten interfaces: A critique of
component-based models of computing. J. Object Technol.,
19(3), 3–1.

Selic, B., Gullekson, G., Ward, P. T., et al. (1994). Real-time
object-oriented modeling (Vol. 2). John Wiley & Sons New
York.

Shaw, M., & Garlan, D. (1996). Software architecture: perspec-
tives on an emerging discipline. Prentice-Hall.

Vogel, O., Arnold, I., Chughtai, A., & Kehrer, T. (2011). Soft-
ware architecture: a comprehensive framework and guide for
practitioners. Springer Science & Business Media.

Zdun, U., & Avgeriou, P. (2005). Modeling architectural pat-
terns using architectural primitives. ACM SIGPLAN Notices,
40(10), 133–146.

Zimmermann, H. (1980). Osi reference model-the iso model of
architecture for open systems interconnection. IEEE Trans-
actions on communications, 28(4), 425–432.

About the author
Bran Selić Bran Selić is President of Malina Software Corp.,
a Canadian company that provides consulting services to cor-
porate clients and government institutions worldwide. He is
also Director of Advanced Technology at Zeligsoft Limited in
Canada, and a Visiting Scientist at Simula Research Laborato-
ries in Norway. In 2007, Bran retired from IBM Canada, where
he was an IBM Distinguished Engineer responsible for setting
the strategic direction for software development tools. In addi-
tion, he is an adjunct professor at the University of Sydney (Aus-
tralia) and regular lecturer at INSA (Lyon, France). With over
40 years of practical experience in designing and implementing

12 Selić



large-scale industrial software systems, Bran has pioneered the
application of model-based engineering methods and has led
the definition of several international standards in that domain,
including the widely used Unified Modeling Language (UML).
In 2016, he was presented with a lifetime Career Award by the
steering committee of the IEEE/ACM MoDELS conference in
recognition of his contributions to model-driven technologies
and practice. You can contact him at selic@acm.org.

On the Precise Semantics of the Software Layering Design Pattern 13

mailto:selic@acm.org?subject=Your paper "On the Precise Semantics of\ the Software Layering Design Pattern"

