
Journal of Object Technology | RESEARCH ARTICLE

Benchmarks and performance metrics for assessing
the migration to microservice-based architectures

Nichlas Bjørndal∗, Luiz Jonatã Pires de Araújo†, Antonio Bucchiarone‡, Nicola Dragoni∗,
Manuel Mazzara†, and Schahram Dustdar∗∗

∗Technical University of Denmark
†Innopolis University, Russia

‡Fondazione Bruno Kessler, Italy
∗∗Technische Universität Wien, Austria

ABSTRACT The migration from monolithic to microservice-based systems have become increasingly popular in the last decade.
However, the advantages of this type of migration have not been extensively investigated in the literature, to the best of the
authors’ knowledge. This paper aims to present a methodology and performance indicators to support better assessment on
whether the migration from a monolithic to microservice-based architecture is beneficial. A systematic review was conducted to
identify the most relevant performance metrics in the literature, validated in a survey with professionals from the industry. Next,
this set of metrics, including latency, throughput, scalability, CPU, memory usage, and network utilization - were used in two
experiments to evaluate monolithic and microservice versions of the same system. The results reported here contribute to the
body of knowledge on benchmarking different software architectures. In addition, this study illustrates how the identified metrics
can more precisely assess both monolithic and microservice systems.

KEYWORDS Benchmarking; Software Architecture; Monolith; Microservices; Software Engineering.

1. Introduction
Microservices are an architectural paradigm derived from
Service-Oriented Architectures (SOAs) (MacKenzie et al. 2006)
to bring in the small, or within an application, concepts that
worked well in the large (Balalaie et al. 2016; Dragoni et al.

JOT reference format:
Nichlas Bjørndal, Luiz Jonatã Pires de Araújo, Antonio Bucchiarone, Nicola
Dragoni,
Manuel Mazzara, and Schahram Dustdar. Benchmarks and performance
metrics for assessing the migration to microservice-based architectures.
Journal of Object Technology. Vol. 20, No. 3, 2021. Licensed under
Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2021.20.3.a3
JOT reference format:
Nichlas Bjørndal, Luiz Jonatã Pires de Araújo, Antonio Bucchiarone, Nicola
Dragoni,
Manuel Mazzara, and Schahram Dustdar. Benchmarks and performance
metrics for assessing the migration to microservice-based architectures.
Journal of Object Technology. Vol. 20, No. 3, 2021. Licensed under
Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2021.20.3.a3

2017; Pahl & Jamshidi 2016). Such an approach has demon-
strated to be suitable for cross-organization business-to-business
workflow. On the other hand, monolithic architectures follow a
modularization abstraction relying on sharing the same machine
(memory, databases, files), where the components are not inde-
pendently executable. The limitations of monolithic systems
include scalability and aspects related to change (Kratzke &
Quint 2017).

In the microservice paradigm, a system is structured of small
independent building blocks, each with dedicated persistence
tools and communicating exclusively via message passing. In
this type of architecture, the complexity is moved to the level
of services coordination. Each microservice is expected to
implement a single business capability, which is delivered and
updated independently. With this approach, discovering bugs
or adding minor improvements does not impact other services
and their releases. In general, it is also expected that a single
service can be developed and managed by a single team (Parnas
1972; Dragoni et al. 2017). The idea to have a team working on
a single microservice is rather appealing: to build a system with

An AITO publication

http://dx.doi.org/10.5381/jot.2021.20.3.a3
http://dx.doi.org/10.5381/jot.2021.20.3.a3


a modular and loosely coupled design, one should pay attention
to the organization structure and its communication patterns
as they, according to Conway’s Law (Conway 1968), directly
impact the produced design. Therefore, microservice-based
architectures promote more communication on both the team
and the entire organization, leading to improved software design
regarding modularity.

The study of methodologies addressing the adoption of mi-
croservices is a promising research area since several companies
are engaged in an extensive effort for refactoring their back-end
systems to implement this new paradigm. This study extends
previous research (Bucchiarone et al. 2018; Mazzara et al. 2018)
characterizing the software modernization of old systems by
migrating from a monolithic to a microservice architecture. This
paper addresses an interesting aspect that is often ignored in the
literature: the lack of methodology and performance indicators
to assess the monolithic-to-microservice redesign. This study
presents a methodology that integrates the literature into a single
framework and set of performance measurements for comparing
both monolithic and microservice-based implementations dur-
ing the migration. The proposed methodology is then validated
against two open-source systems.

The remaining of this paper is organized as follows. Section
2 presents a systematic literature review (SLR) on benchmarks,
metrics for evaluating software architectures, and examples in
the literature about the migration from monolithic to microser-
vice systems. Section 3 presents a survey conducted among
professionals in the industry to validate the selected metrics
used in this study. Section 4 presents a system especially de-
veloped for this study. Such a system has two versions: a
monolithic and a microservices-based architecture. Then, two
experiments were conducted to investigate how the performance
metrics previously selected differ when running a small-scale
system running on a local machine or a large-scale system run-
ning in the cloud. The results are shown in Section 5. Section 6
discusses the validity of the methodology and metrics to evalu-
ate the migration from monolithic to microservice architecture
for the investigated case studies. Finally, Section 7 summarises
the benefits of the proposed methodology and future research
directions.

2. Literature review
This section surveys the literature on methods and metrics for
evaluating software architectures. First, it presents the adopted
systematic for revising the literature (Section 2.1), then the
existing benchmarks (Section 2.2), metrics (Section 2.3) and
examples of migration reported in the literature (Section 2.4).

2.1. A systematic literature review
This study employs the PICO guidelines presented in (Petersen
et al. 2008, 2015) to query academic databases for addressing
the existing benchmarks and metrics in software engineering. In
the PICO methodology, a population, intervention, comparison
and outcomes are determined as follows:

– Population: Benchmarks used in the field of software
engineering.

– Intervention: Methodologies and metrics for benchmark-
ing in software engineering.

– Comparison: Their different benchmarking methodolo-
gies and metrics.

– Outcomes: A study presenting the different benchmarking
methodologies and metrics and insights into which tech-
niques are more suitable for monoliths and microservices.

Following this approach, the main keywords in the aspects
above were selected and used for querying the following aca-
demic databases: Scopus1, IEEE Xplore Digital Library2, and
ACM Digital Library3. Moreover, the following filter was ap-
plied to restrict the body of literature on user space applications
such as web servers.

– Articles with actual measurement and not predictions.
– Articles published between 2010 and 2019.
– Peer-reviewed articles.
– Article in English.
– Articles not focusing on CPU architectures.
– Articles not focusing on OS Kernels.
– Articles not focusing on algorithm benchmarks.

The articles that result from the querying and filtering are
shown in Table 1. Two metrics for measuring performance
appear in the studies presented in Table 1: CPU utilisation and
throughput. Therefore, this study will use these metrics as a core
element in the proposed benchmark design. It is noteworthy that
a similar concept is often referred to using different phraseology
such as ‘requests per second’ and ‘throughput’. In this example,
both studies would be categorised as using the same metric.

The following sections present the main benchmarks and
metrics in software engineering extracted from the papers in
Table 1.

2.2. Benchmark in software engineering
In software engineering, benchmarking can be divided into the
following categories: measurement, i.e. practical; analytical, i.e.
theoretical; a junction of both analytical and measurement; and
simulation. The latter category was ignored in this study since
it consists of predictions rather than a characterisation of the
actual system.

Some types of benchmarks are more recurrently used than
others. The ‘measurement’ type, for example, is most popular
and appear in 83.8% of the studies. This is not surprising
since collecting data from a real-world system is a suitable
way to understand the subject under consideration better. The
second most common category is ‘analytical’, appearing in
12.5% of the studies. The study of this type of benchmark can
be beneficial as it can enable creating a benchmark-suite by
investigating the source code directly. On the other hand, some
articles investigated benchmarking systems at design-time, i.e.,
performance metrics that can be calculated before the source-
code is written. Finally, the type ‘analytical and measurement’

1 https://www.scopus.com/search/form.uri?display=
basic

2 https://ieeexplore.ieee.org/
3 https://dl.acm.org/

2 Bjørndal et al.

https://www.scopus.com/search/form.uri?display=basic
https://www.scopus.com/search/form.uri?display=basic
https://ieeexplore.ieee.org/
https://dl.acm.org/


Metric type Articles

Performance (de Souza Pinto et al. 2018) (van Eyk et al. 2018) (Shukla et al. 2017) (Aragon et al. 2019) (Bermbach et al. 2017) (Bondi 2016)
(Martinez-Millana et al. 2015) (Tekli et al. 2011) (Vasar et al. 2012) (Franks et al. 2011) (Gesvindr & Buhnova 2019) (Ibrahim et
al. 2018) (Pandey et al. 2017) (Ferreira et al. 2016) (Ueda et al. 2016) (Hadjilambrou et al. 2015) (Amaral et al. 2015) (Brummett
et al. 2015) (Vedam & Vemulapati 2012) (Sriraman & Wenisch 2018) (Düllmann & van Hoorn 2017)

Availability (van Eyk et al. 2018) (Bermbach et al. 2017) (Bondi 2016) (Mohsin et al. 2017) (Düllmann & van Hoorn 2017)

Security (Elsayed & Zulkernine 2019) (Antunes & Vieira 2012) (Curtis et al. 2011)

Scalability (Bermbach et al. 2017) (Ueda et al. 2016) (Heyman et al. 2014) (Vedam & Vemulapati 2012)

Consistency (Bermbach et al. 2017) (Vedam & Vemulapati 2012)

Quality (Boukharata et al. 2019) (Cardarelli et al. 2019) (Ouni et al. 2018) (Aniche et al. 2016) (Dragomir & Lichter 2014) (Curtis et al.
2011)

Cost (van Eyk et al. 2018)

Table 1 Selected articles in the systematic literature review.

Figure 1 Relative frequency of metric types’ appearances
among the studies.

appears in only 3.8% of the articles, even though such type of
benchmarking combines analytical and performance metrics for
a running system.

2.3. Benchmark metrics in software engineering

According to Bermbach et al. (2017), benchmark metrics can be
categorised into the following types: availability, consistency,
cost, performance, quality, scalability and security. The relative
frequency of these metrics’ appearance in the literature is shown
in Figure 1.

Not surprisingly, performance is the metric mostly used in
benchmarking studies in software engineering, appearing in
approximately 62.5% of the investigated papers. One factor for
its popularity is the preference by scholars for clearly measur-
able properties. Moreover, several related metrics can also be
classified as measurement types, such as, for example, CPU
performance.

The next three types of metrics in order of popularity among
the selected studies are availability (10.0%), quality (10.0%)
and scalability (8.8%). Availability refers to the capability of a
system to run over a long period. Quality is a subjective met-
ric that aims to assess the source-code, performance, and skill

level of the development team. Scalability refers to how well
a system scales as more computational resources are necessary
to accommodate increasing demand. This requires both hard-
ware, software architecture, and code to be designed to support
many users. Like quality, precise quantification of this metric
is subjective and complex. Among the metrics that appear less
frequently there is security (3.8%), data consistency (2.5%).
While some security-related metrics can be calculated based on
the source code’s characteristics, they still rely on subjective
evaluation.

It is noteworthy to examine some of the metrics that have
been categorised in the performance taxonomy since it is the
most frequently used in software engineering benchmarking.
The number of occurrences of these metrics is depicted in Figure
2. The remaining of this section presents the metrics and their
meaning in the context of software engineering.

Latency. It is the time delay between the request and the
response, which is essential in client-server communication.
This metric is mostly affected by network speed, latency, and
the server’s amount of time to process the request. Moreover, it
plays a significant role in the end-user experience, explaining
its popularity among the examined articles, as shown in Figure
2.

CPU utilization. It indicates how efficient the software system
is regarding the use of computational resources. It can also be
used to assess the efficiency of different implementations for
similar functionalities.

Throughput. It is a metric that informs the number of actions
and requests that a system can process given a fixed workload
and hardware resources. For example, a system that can process
100 requests per second performs is said to perform worse than
a system that can process 1,000 requests per second, given the
same computational resources.

Network. It indicates the number of networking resources
used by a system. This metric is relevant in scenarios in which
microservices communicate over HTTP/HTTPS, leading to high
usage of the network and affecting the system’s latency.

Benchmarks and performance metrics for assessing the migration to microservice-based architectures 3



Figure 2 Number of performance metrics’ occurrences in the selected studies.

Scalability. It is the capability of a system to handle an in-
creasing number of users while maintaining similar perfor-
mance. The scalability can be measured by the number of
requests that can be processed under a predetermined latency
threshold. For example, the number of requests that a system
can process before the latency rises is more than 200 ms. The
term elasticity is often used to refer to how fast a cloud system
can increase/decrease computing resources in the cloud to meet
the demand.

Memory. It indicates the amount of RAM used by the system.
It has gained increasing importance as virtualization (e.g. virtual
machines and containers) becomes more prominent.

Input/output (I/O). This metric quantifies the use of input/out-
put devices in the host machine. For example, how often the
targeted system performs read or write operations using hard
disks or network cards.

Fault tolerance. This umbrella term encompasses several met-
rics, including the following: failure or error rate, transaction
success, resilience or reliability, mean time between failures
(MTBF), and uptime. These metrics are usually measured by
the number of occurrences of errors, frequency, and the impact
on the target system.

Code quality. There have been some alternatives in the liter-
ature for assessing quality in the source-code. These include
interface quality, coupling, cohesion, complexity, changeability,
and quality index.

Security. This metric is often calculated by security experts
or pen testers4. In the examined articles, two security metrics
were found: security score and amount of vulnerabilities. The

4 https://www.doi.gov/ocio/customers/penetration
-testing

first metric is calculated according to acceptable architectural
and coding practices. The latter metric is calculated according
to metadata files and application byte code. The number of entry
points, call-backs, dependencies, and information flow during
the application’s life cycle are considered when quantifying the
number of vulnerabilities.

Consistency. This metric is often referred to as staleness or
ordering. For example, in a distributed database, there are repli-
cas of a data partition to improve performance and availability.
Staleness quantifies how outdated a data partition is compared
to the respective replicas. Ordering describes the order of oc-
curring system events is consistent. For example, the order of
the client-side events is the same as the order in which they are
processed by the server-side.

Hardware level. This is a CPU and hardware-level metric. For
example, how many CPU instructions are necessary to process
a request or the number of data cache misses.

Cost. This metric is often one of the primary factors when
stakeholders are making business decisions.

2.4. Monolithic to microservice migration
The selected literature contains some studies benchmarking the
migration from monolithic to microservice architectures (Ueda
et al. 2016; Villamizar et al. 2015; Zhou et al. 2018; Ren et al.
2018; Gan et al. 2019). For example, Ueda et al. proposed a
workload characterization for microservices, in which a mono-
lithic and microservice version the same system - which consists
of a Java application using Node.js5. The authors analyzed the
runtime and hardware-level performance of both systems ac-
cording to throughput, scalability, path-length (i.e., amount of
CPU instructions, the average amount of CPU clock cycles to

5 https://github.com/acmeair/acmeair

4 Bjørndal et al.

https://www.doi.gov/ocio/customers/penetration-testing
https://www.doi.gov/ocio/customers/penetration-testing
https://github.com/acmeair/acmeair


complete an instruction, data cache miss cycles, code execution
time per transaction.

Villamizar et al. (2015) evaluate monolithic and microservice
architectures for web applications in the cloud. The authors
presented a case study with a company to build a monolithic and
a microservice reference system to support two services. The
first service implemented a CPU bulky service with a relatively
long processing time. The second service read from a relational
database with a relatively short response time. Comparing these
two services analyzed the throughput, the average and maximum
response time for a set amount of requests per minute, and the
cloud hosting cost defined as cost per million requests. Like the
first study aforementioned, only a limited number of metrics
was used, and the most commonly used metrics in the literature
were assessed.

3. Relevant metrics for assessing monolithic-
to-microservice migration

The systematic literature review presented in Section 2.1 enables
identifying the most relevant metrics for assessing monolithic-
to-microservice migration. The most popular metrics and the
number of occurrences are shown in Table 2.

Metric Frequency

Latency 11

CPU 10

Throughput 8

Network 7

Scalability 5

Memory 5

I/O 5

Table 2 Frequency of the most popular metrics in the SLR.

The findings in Table 2 confirm the popularity of measure-
ment and performance mentioned in Section 2.3. The results
indicate that most of the metrics belong to both categories, indi-
cating that generally, performance-related metrics are favoured
by the research community. The authors have made the data
and statistics on benchmarks and metrics publicly available to
the software engineering community6 7.

3.1. Validating the relevant benchmarking metrics
This study surveyed to validate the choice of relevant metrics
for assessing monolithic-to-microservice migrations. This sur-
vey aims to gain insights from real-world stakeholders such as
customers and developers regarding these metrics’ usefulness.
Moreover, the survey enables the identification of which metrics

6 https://github.com/NichlasBjorndal/LibraryService
-Appendices/tree/master/SLR/Articles

7 https://github.com/NichlasBjorndal/LibraryService
-Appendices/tree/master/SLR/Metrics

are more relevant to each stakeholder role. Hence, an initial
question asked in a free-text form which metrics the stakehold-
ers perceived as the most important. Then, they were asked to
rank the most popular metrics identified in this study on a scale
from 1 to 5. The questions are shown as follows:

1. What is your role in the company?

2. Which metrics and qualities of a software system are most
important to you?

3. Some of the most popular metrics are listed here. Please
rank them according to how important you find them
regarding software systems: latency, CPU utilization,
throughput, network, scalability, memory usage, I/O, host-
ing cost, security, and code quality.

The survey was designed to be short and compact to moti-
vate people to participate in the survey while avoiding question
fatigue which could reduce the answer quality, which is a docu-
mented consequence of too long surveys (Lavrakas 2008). The
participants were selected from the author’s current employment
place and one of its clients. The survey can give insight through
empirical software engineering into metrics that the software
industry prefer.

The survey was given to four selected stakeholders: A sys-
tems architect, a product owner and two developers. These
stakeholders are in the same project developing an application
that serves the national prison system with approximately 4,000
registered users. While the survey asks about metrics in general,
it is assumed that survey participants carry some bias toward
the project they are currently working on. The survey data can
be seen at GitHub8.

The answers for the second question - metrics and qualities
perceived as the most important - the there were four answers:
latency, throughput, code quality and other metrics such as
user’s experience needs. These answers reinforce the impor-
tance of latency and throughput and stress code quality when
maintainability and development speed are essential require-
ments.

For the third question, in which the participants were asked
to rank the metrics, it can be seen that latency, throughput and
scalability were ranking highly. The average rating given to
each metric in the survey can be seen in Table 3. Interestingly,
security and code quality are also highly ranked metrics.

4. A case study
A benchmark experiment was conducted using the most rele-
vant metrics identified in Section 3 to compare monolith and
microservice-based software architectures. The experiment was
performed on reference systems designed and implemented for
this study using the targeted software architectures. The fact
that the authors had full access and control over all the soft-
ware artefacts addressed the limitations of analysing third-party
applications in previous migration experiences (Mazzara et al.
2018).
8 https://github.com/NichlasBjorndal/LibraryService
-Appendices/tree/master/Survey

Benchmarks and performance metrics for assessing the migration to microservice-based architectures 5

https://github.com/NichlasBjorndal/LibraryService-Appendices/tree/master/SLR/Articles
https://github.com/NichlasBjorndal/LibraryService-Appendices/tree/master/SLR/Articles
https://github.com/NichlasBjorndal/LibraryService-Appendices/tree/master/SLR/Metrics
https://github.com/NichlasBjorndal/LibraryService-Appendices/tree/master/SLR/Metrics
https://github.com/NichlasBjorndal/LibraryService-Appendices/tree/master/Survey
https://github.com/NichlasBjorndal/LibraryService-Appendices/tree/master/Survey


Metric Average Score

Security 5.00

Latency 4.75

Code Quality 4.33

Throughput 4.00

Scalability 3.33

Network 3.00

Memory 3.00

CPU 2.67

I/O 2.67

Table 3 Average ranking scores of the metrics in the survey.

Library System

User

uc LibrarySystem

Create Book

Book Acquisi�on

Loan Book

Sign up

<<extend>>

Figure 3 Use case diagram of the LibraryService system.

The first application developed for this experiment was a
library management system so-called LibraryService in both
monolithic and microservice-based versions. The differences
between the monolithic and microservice-based versions have
been kept to a minimum to enable an analysis of the perfor-
mance differences at an architectural level. Such a methodology
does not entirely prevent criticism regarding the validity of the
comparison between the architectures mentioned above. How-
ever, it is noteworthy that a similar strategy has been consistently
adopted in several studies in the literature (Flygare & Holmqvist
2017; Fan & Ma 2017; Taibi et al. 2017). The system can be
used by regular library users interested in registering and also
borrowing books. The following entities have been identified:
user, book, loan, author, physical book and order. These entities
will also drive the database design and service endpoints. The
system’s functionalities are described by the use case shown in
Figure 3.

This experiment focuses performance measurement metrics
since latency and throughput are among the most popular met-

rics in the literature (see Table 2) and also in the survey (see
Table 3). Other relevant metrics used in the experiment include
scalability, CPU, memory and network utilisation, security and
code quality.

4.1. Monolithic system version
The monolithic system follows standard enterprise systems in
which the entire application runs in one processor coupled to
one technology stack and connected to a single database. This
version of the LibrarySystem was built using ASP.NET Core9,
and Web API using .NET Core 310. This system is connected to
a SQL Server11 database. The interaction between the database
and the web API uses the Entity Framework12, which is an
object-relational mapping (ORM) tool, which provides the cre-
ate, read, update and delete (CRUD) operations.

4.2. Microservice system version
The second version for the proposed LibraryService decomposes
the domain model into several microservices via domain-driven
design. It consists of the following microservices: BookService,
UserService, LoanService, and OrderService.

The microservices were built in ASP.NET Core Web APIs
and Entity Framework. Each microservice has its own dedicated
SQL Server database to enable scaling-up or scaling-down their
respective data stores if necessary. The microservices run in
Docker13 containers, yielding a Docker image per microservice
which are stored in registries such as Docker Hub14 and Azure
Container Registry (ACR)15. This setup allows easy distribution
of the microservices by running in similar environments across
different machines and hosts. Kubernetes has been used to
orchestrate the microservices and allow easy horizontal scaling,
load balancing, health checks, among other requirements.

Each service has its deployment workload16, which is respon-
sible for metadata, pulling the Docker image from the registry,
internal and external communication and replication, ensuring
multiple pods17 to run. Then, each deployment is exposed to the
external network through a Kubernetes service18 that routes ex-
ternal traffic to Kubernetes pods, which can handle each request.
Kubernetes also supports load balancing (Iqbal et al. 1986),
which attempts to spread the load among the microservice repli-
cas. Each deployment is also configured to perform a periodic
liveliness check. If a replica fails, a liveness check Kubernetes
will shut down the pod and create a new one instance of the
microservice.

9 https://docs.microsoft.com/en-us/aspnet/
10 https://docs.microsoft.com/en-us/dotnet/core/about
11 https://www.microsoft.com/en-us/sql-server/
sql-server-2019

12 https://github.com/aspnet/EntityFrameworkCore
13 https://www.docker.com/
14 hub.docker.com
15 https://azure.microsoft.com/en-us/services/
container-registry/

16 https://kubernetes.io/docs/concepts/workloads/
controllers/deployment/

17 https://kubernetes.io/docs/concepts/workloads/pods/
pod/

18 https://kubernetes.io/docs/concepts/services
-networking/service

6 Bjørndal et al.

https://docs.microsoft.com/en-us/aspnet/
https://docs.microsoft.com/en-us/dotnet/core/about
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://github.com/aspnet/EntityFrameworkCore
https://www.docker.com/
hub.docker.com
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/services-networking/service
https://kubernetes.io/docs/concepts/services-networking/service


Locally, the load balancing is achieved by using Ingress19,
which is an alternative way for handling load balancing by
routing the external requests to inside the Kubernetes cluster. An
Azure Service Bus Message Queue20 is used for asynchronous
communication between Book Service and Order Service, and
to illustrate the effects of using message queues over HTTP(S)
communication between services. The standard structure of
a LibraryService microservice is an ASP.NET Core Web API
image containing all the dependencies required for its execution.
Each service connects to its own SQL Server database.

The microservice system version of the Library system is
built into an image through a Docker file21 and Docker Com-
pose22. Then, Kubernetes runs several instances of each mi-
croservices to handle redundancy, scalability, among other fea-
tures.

4.3. System Deployment
The LibraryService is deployed as a local version running on a
desktop computer and a cloud version running in Azure. This
section describes the technical details of both deployments.

4.3.1. Local Version A server is a desktop machine with
8GB DDR3 1600 MHZ RAM, an Intel i5-4590 @3.3 GHz quad-
core CPU and 250GB SSD. It runs both the web API and the
database server. The client machine is a laptop with 8GB DDR
3200MHZ RAM, an Intel i5-7300HQ @2.50 GHz quad-core
CPU, and 250GB SSD. The server and the client connected via
WLAN. The local version is deployed on a desktop computer
running Docker Desktop23 which also has a built-in version of
Kubernetes. All the images are hosted on Docker Hub registries
that are pulled down and executed by local Kubernetes. Kuber-
netes is configured through a series of deployment and service
files: one deployment and service file for each service.

An ingress solution by NGINX24 was used to achieve local
load balancing locally. For this to work locally, the Kubernetes
service is configured as NodePorts on port 80, which lets the
ingress controller route properly. The source code of the mono-
lith and microservice system version deployed locally can be
found at GitHub2526.

4.3.2. Cloud Version A professional-grade hosting solution
is necessary to support a large user base such as a data-centre or
a cloud service. This study uses Microsoft Azure27 the cloud
provider for easy integration and leverage from the authors’
expertise with the platform. Amazon’s cloud service28 AWS or

19 https://kubernetes.io/docs/concepts/services
-networking/ingress/

20 https://docs.microsoft.com/en-us/azure/service-bus
-messaging/service-bus-queues-topics-subscriptions

21 https://docs.docker.com/engine/reference/builder/
22 https://docs.docker.com/compose/
23 https://www.docker.com/products/docker-desktop
24 https://kubernetes.github.io/ingress-nginx/
25 https://github.com/NichlasBjorndal/LibraryService
-Monolith

26 https://github.com/NichlasBjorndal/LibraryService
-Microservice-DotNet

27 https://azure.microsoft.com/en-us/
28 https://aws.amazon.com/

Google’s cloud service Google Cloud29 pose as viable alterna-
tives.

4.3.3. Monolith Cloud Deployment The monolith cloud
version was built with Azure App Service30 to host the web-
server. App Services generally allows running between one
and 30 instances of the web server, depending on the virtual
machine hosting it. The app service instances connect to an
Azure SQL Database31, which is configured as serverless rather
than running in a dedicated virtual machine to reduce the cloud
credits that are spent. The database is configured to run with six
virtual CPU cores (vcores32), 32 GB of storage and a maximum
of 18 GB of memory. This version was hosted on two different
hosting configurations33. The first configuration is a P1V2 ser-
vice plan with one CPU core, 3.50 GB memory and 12 server
instances. The second configuration is a P3V2 service plan with
four CPU core, 14 GB memory and 30 instances (maximum
amount of instances). Figure 4 presents the monolithic app run-
ning on Azure’s App Service in multiple instances. The source
code of the monolith system deployed in the cloud has been
made available34 publicly by the authors.

<App Service Instance>

LibraryService1

<SQL Database>

LibraryService Database

<App Service Instance>

LibraryServicen

Azure

Azure App Service

...

Figure 4 Monolithic version deployed on the cloud.

4.3.4. Microservice cloud deployment The microservice
version is built with Azure Kubernetes Service35 (AKS) to man-
age Kubernetes and associated containers. The container images
are hosted on Azure registry ACR, from where AKS pull the

29 https://cloud.google.com/
30 https://azure.microsoft.com/en-us/services/
app-service/

31 https://azure.microsoft.com/en-us/services/
sql-database/

32 https://docs.microsoft.com/en-us/azure/sql
-database/sql-database-service-tiers-vcore

33 https://azure.microsoft.com/en-us/pricing/details/
app-service/windows/

34 https://github.com/NichlasBjorndal/LibraryService
-Monolith-Cloud

35 https://azure.microsoft.com/en-us/services/
kubernetes-service/

Benchmarks and performance metrics for assessing the migration to microservice-based architectures 7

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-queues-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-queues-topics-subscriptions
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/compose/
https://www.docker.com/products/docker-desktop
https://kubernetes.github.io/ingress-nginx/
https://github.com/NichlasBjorndal/LibraryService-Monolith
https://github.com/NichlasBjorndal/LibraryService-Monolith
https://github.com/NichlasBjorndal/LibraryService-Microservice-DotNet
https://github.com/NichlasBjorndal/LibraryService-Microservice-DotNet
https://azure.microsoft.com/en-us/
https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/en-us/services/app-service/
https://azure.microsoft.com/en-us/services/app-service/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers-vcore
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers-vcore
https://azure.microsoft.com/en-us/pricing/details/app-service/windows/
https://azure.microsoft.com/en-us/pricing/details/app-service/windows/
https://github.com/NichlasBjorndal/LibraryService-Monolith-Cloud
https://github.com/NichlasBjorndal/LibraryService-Monolith-Cloud
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/


containers images. The databases are configured with similar
resources to those shown in Section 4.3.3. The microservice
version was hosted on two different configurations36. The first
configuration consists of two DSv2 virtual machines nodes
which each has two CPU cores, 3.50 GB memory. The second
configuration consists of five DSv2 virtual machine nodes. Each
service has its external IP, mapped to a subdomain37 where the
load balancer distributes incoming requests amongst the nodes
and their pods. Figure 5 summarises the microservice version
deployed in the cloud and presents the similarity to the locally
deployed microservice version38. Unlike the previous setup,
there are multiple nodes, while Kubernetes services use Azure’s
load balancer to route traffic.

5. Results
The metrics selected in Section 3 are used to compare the perfor-
mance and features of the implemented versions of the Library-
Service. Two benchmarking experiments were performed: one
running locally, another in the cloud resembling a real-world
system. The data collected during the experiments have been
publicly available39. The metrics collected during the experi-
ments are measured as follows:

– Throughput: number of successful requests per second
over a period. In this study, a successful request is defined
as the HTTP response code 2xx40 with latency lower than
or equal to 200 ms. The higher throughput, the better the
system.

– Latency: the difference in milliseconds between the mo-
ment when the client sends the HTTP request and receives
the HTTP response. The lower the latency, the better the
system.

– Scalability: the ratio between the percentage of additional
throughput and the percentage of additional resources
(Bermbach et al. 2017). The higher the scalability, the
better the system.

– CPU, memory and network: These hardware-related met-
rics are calculated according to their use in the host system.

5.1. Experiment 1: Local deployment
This experiment consists of testing both versions of the Library-
Service deployed on regular consumer-grade hardware. The
benchmark uses two synthetic workloads - a simple and a com-
plex. A workload in this benchmark is defined as a series of
HTTP requests at a steady rate, e.g. 100 requests per minute.
The workloads are generated and executed by Apache JMe-
ter41 (JMeter) on the client. JMeter uses a constant throughput
timer to calculate the number of desired requests over a minute,

36 https://docs.microsoft.com/en-us/azure/virtual
-machines/windows/sizes-general

37 https://tools.ietf.org/html/rfc1034#section-3.1
38 https://github.com/NichlasBjorndal/LibraryService
-Microservice-DotNet-Cloud

39 https://github.com/NichlasBjorndal/LibraryService
-Appendices/tree/master/Benchmarking%20Data

40 https://www.w3.org/Protocols/rfc2616/rfc2616-sec10
.html

41 https://jmeter.apache.org/

HTTP responses, latency and other metrics used to determine
the throughput and scalability. The server uses Window built-in
monitoring app and performance monitor to record the CPU
utilization, memory usage and network traffic.

The so-called ‘simple workload’ consists of two actions:
collecting data about a specific book and creating a new user.
Getting the information about a book generates an HTTP GET
request that results in a read operation database. Creating a new
user generates an HTTP POST request that results in a write
operation in the database. The ‘complex workload’ consists
of collecting information about a specific loan and create an
order and a physical book. Retrieving a loan generates an
HTTP GET request that requires a join of several tables in the
monolithic version and multiple HTTP GET requests for the
microservice version. Creating an order generates an HTTP
POST request that has write operations on multiple tables. A
microservice requires communication between the Order service
and Book service using a message queue to create the order and
the physical book.

The workloads were implemented on the server running the
monolithic and microservice version separately, meaning that
only one version of the LibraryService is running at a time.
Each version of the LibraryService is tested against many re-
quests per minute. The samples are collected in batches of 2500
requests per minute until the average latency rises above 200 ms,
indicating that the system has achieved maximum throughput
(also referred to as break-off point). While the pre-determined
batch size allows finding patterns, it is not considerably time-
consuming. In each test iteration, latency, memory usage, CPU
utilization, and network usage are measured.

The monolith system is executed in release mode through
the dotnet run42 command in PowerShell43. The microservice
version is deployed on a locally running instance of Kubernetes
through Docker Desktop. Each microservice is replicated to
three running instances, using a ReplicaSet44 configured to run
four CPU cores and 3GB RAM. During a workload, the mi-
croservices were configured with nine pods, and unused services
were configured with three pods. This experiment collected
15,000 entries through the Entity Framework, a number consid-
erably higher while it prevents stack overflow exceptions during
database migration.

5.1.1. Latency results Figure 6 presents the results regard-
ing latency metric. Both simple workloads and complex mono-
lithic workload perform similarly. However, the simple mi-
croservice workload crosses the 200ms threshold much earlier
than the monolithic counterpart. The monolith workload has
a higher latency than the simple workload, but they still fol-
low each other until approximately 15,000 requests per minute.
Lastly, it might be noted that the microservice system handles
the complex workload significantly worse as the average is many
times higher than the three other workloads. The microservice
system was also only able to handle the first two requests sizes.

42 https://docs.microsoft.com/en-us/dotnet/core/tools/
dotnet-run?tabs=netcore30

43 https://docs.microsoft.com/en-us/powershell/
44 https://kubernetes.io/docs/concepts/workloads/
controllers/replicaset/

8 Bjørndal et al.

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-general
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-general
https://tools.ietf.org/html/rfc1034#section-3.1
https://github.com/NichlasBjorndal/LibraryService-Microservice-DotNet-Cloud
https://github.com/NichlasBjorndal/LibraryService-Microservice-DotNet-Cloud
https://github.com/NichlasBjorndal/LibraryService-Appendices/tree/master/Benchmarking%20Data
https://github.com/NichlasBjorndal/LibraryService-Appendices/tree/master/Benchmarking%20Data
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://jmeter.apache.org/
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-run?tabs=netcore30
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-run?tabs=netcore30
https://docs.microsoft.com/en-us/powershell/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/


Azure

Azure Kubernetes Service

BookService 
Load Balancer

BookService Pod1

<Containerized ASP.Net 
Core App>

BookService1

BookService Podn

<Containerized ASP.Net 
Core App>

BookServicen

Node1

LoanService Pod1

LoanService Podn

...

...

UserService Pod1

UserService Podn

...

OrderService Pod1

OrderService Podn

... Noden

LoanService 
Load Balancer

OrderService 
Load Balancer

UserService 
Load Balancer

<SQL Database>
BookServiceDb

<SQL Database>
LoanServiceDb

<SQL Database>
UserServiceDb

<SQL Database>
OrderServiceDb

...

Figure 5 Summary of the microservice system deployed in the cloud.

Figure 6 Average latency per workload in experiment 1.

It can be observed that it is not always favourable migrating to a
microservice architecture if it is not done correctly. The general
lower latency of the monolithic system shows that the monolith
performs better for this metric.

5.1.2. Throughput results Figure 7 presents the through-
put for different workloads, which apparent to mirror the latency
in Figure 6 regarding the break-off points. The selected work-
loads perform similarly until 10,000 requests per minute, except
by the complex microservice. The monolith system handled
more than 1.5 times successful requests for the simple work-
load than its microservice counterpart. On the other hand, the
microservice system underperformed during the complex work-
load according to metrics trend. Higher throughput in both
simple and complex workloads favour the monolith architecture
for the setup used in this experiment.

5.1.3. Scalability results In this experiment, the increase
in performance is measured by the number of requests per

Figure 7 Throughput per workload in experiment 1.

minute a system can handle with an average latency of 200
ms. The two workloads were benchmarked a second time,
only granting the two reference systems access to 2 CPU cores,
and the scalability will be calculated as the ratio between the
increase of requests per minute and the increase in hardware
capacity. Figure 8 shows the two workloads being run on a
2 and 4 CPU core on the monolith system. The results show
an extensive range of latency values. Moreover, the simple
monolith workload with four cores performs the best, and the
complex workload with two cores performs the worst, as one
could expect. Interestingly, the simple monolith workload with
two cores performs similar to the complex workload with four
cores.

Figure 9 shows the performance of two workloads being
executed on a 2 and 4 CPU core on the microservice system. It
can be seen that the simple workload with four cores is the only
setup that the microservice system can handle at higher than
2,500 requests per minute. The worst performance comes from

Benchmarks and performance metrics for assessing the migration to microservice-based architectures 9



Figure 8 Scalability for the monolith system in experiment 1.

Figure 9 Changes in the response time per number of re-
quests for the microservice system in the experiment 1.

the complex workload of two cores, where the peak latency is
9,011 ms at 5,000 requests per minute, which indicates that the
microservice is not suited to handle a complex workload on a
setup as the one used in this experiment.

Exponential regression has been applied to generate trend-
lines, which will be used to calculate the number of requests that
can be handled given the maximum latency of 200 ms. However,
there is a limitation to this exponential growth - at some point,
the server will completely unable to process the load causing a
crash. The number of requests per minute a system can handle
with a max average latency of 200 ms, with a given hardware
configuration and workload can then be calculated. The results
are presented in Table 4 and Table 5.

The scalability is calculated as the ratio between the increase
in requests per minute and increase in CPU cores. For simple
workload, the microservice scales approximately three times
better than the monolith system, as expected by the hypothe-

Workload Requests/min

Simple Monolith 4 cores 19,708

Simple Monolith 2 cores 12,059

Complex Monolith 4 cores 12,383

Complex Monolith 2 cores 9,341

Table 4 Number of requests per minute of the monolith sys-
tem under 200 ms latency.

Workload Requests/min

Simple Microservice 4 cores 8,579

Simple Microservice 2 cores 2,611

Complex Microservice 4 cores 2,561

Complex Microservice 2 cores 2,290

Table 5 Number of requests per minute that the microservice
system can support under 200 ms latency

Workload Request CPU Cores Scalability

Increase Increase

Monolith Simple 7,649 2x 0.32

Monolith Complex 3,042 2x 0.16

Microservice Simple 5,968 2x 1.14

Microservice Complex 271 2x 0.06

Table 6 Scalability rate per workload.

sis mentioned in Section 1. The results shown in Table 6 also
suggest that Kubernetes/Docker only having access to two desk-
top CPU cores is not adequate and lead to under-performance,
reducing the number of requests per minute it can handle.

5.1.4. CPU results Figure 10 presents the CPU utilisation
under different workloads. It can be seen that the monolithic
version uses less CPU for handling the same amount of requests
per minute than the microservice version. The CPU usage of the
simple monolith, complex monolith and simple microservice
increases until it reaches maximum throughput. The simple mi-
croservice workload decreases after 10,000 requests per minute
when it reaches its maximum throughput, indicating that other
factors but the CPU impose limitations on its performance. It is
noteworthy that the use of 12 pods to improve CPU utilization
caused the system to halt with 100% usage at a relatively low
to medium amount of requests per minute, between 7,500 and
10,000 requests.

The results also showed that the simple microservice work-
load reduces CPU utilization when it reaches instead of increas-
ing like the three other workloads. A similar trend is observed
for network usage, as shown in Figure 12. These indicate that
the microservice system, possibly the load balancer or Kuber-
netes/Docker network service, is overloaded and, as a result,
stops being able to handle more network requests. It can also
be noted that the complex workload reaches nearly 80% CPU
usage, preventing the system from handling more than 5,000
requests per minute. Therefore, the CPU usage of the mono-
lithic system is lower, which is another metric in favour of the
monolith.

5.1.5. Memory results Figure 11 presents the memory uti-
lization under different workloads. Both monolithic and mi-
croservice systems use approximately the same memory, with

10 Bjørndal et al.



Figure 10 CPU utilization per different workloads in experi-
ment 1.

Figure 11 Memory utilisation per workload in experiment 1.

the latter using approximately 2 GB more of memory. This
results from the overhead caused by virtualization since Con-
tainerization/Kubernetes require additional resources. Interest-
ingly, the memory consumption remains approximately constant
throughout the workload, except for the complex monolith work-
load (see Section 5.1.7).

5.1.6. Network results The network usage of the different
workloads can be seen in Figure 12. The network usage in-
creases to approximately 10,000 requests per minute, except for
the complex microservice workload. The complex workload
shows the network impact of a microservice that requires much
communication with other services 45 and requires higher net-
work usage. The decline in the network usage for the complex
microservice workload at 5,000 requests per minute is another
indicator that the system is overloaded and cannot process all
the requests.

5.1.7. Threat to validity Some design decisions and infras-
tructure used in experiment 1 can offer some threats to the

45 https://docs.microsoft.com/en-us/dotnet/
architecture/microservices/architect-microservice
-container-applications/communication-in
-microservice-architecture

Figure 12 Network utilisation per workload in experiment 1.

results’ validity. First, the use of the monolithic library’s do-
main model does not comply with a domain-drive design and
might incur threats to the current approach. Such a threat will
be addressed in future research. Second, the desktop machine
did not run the two LibraryService systems in complete isola-
tion. Other background processes executed in the background,
affecting CPU and memory baseline in experiment 1. Compu-
tationally expensive services not related to the Library system,
i.e., those requiring more than 5% CPU and 100 MB, were in-
terrupted. However, many low demand processes could slightly
affect the performance metrics, mainly CPU and memory usage.
Finally, network communication was based on a local 2.4 GHz
WiFi network, resulting in higher latency and a higher risk of
packet loss than a wired connection. This setup can impact the
average latency and throughput.

5.2. Experiment 2: Cloud Deployment
The second benchmarking experiment consists of testing the
two versions of LibraryService running on production-grade
hardware - a medium to large scale experiment. In this experi-
ment, Azure’s Performance Testing tool46 will be used to test
the two systems at scale with different VM configurations. It is
determined that it was only feasible to measure the three most
important metrics that are automatically captured: throughput,
latency and scalability. Differently from experiment 1, through-
put is defined as all the successful requests for a given interval.

5.2.1. Benchmark Design The performance testing tool al-
lowed only HTTP GET requests. As a result, the workload used
in this experiment was a lighter version of the simple work-
load from experiment 1. Both versions of the LibraryService
(monolithic and microservice) are configured with two different
hardware configurations. The monolithic version is first con-
figured with one CPU core, 3.50 GB memory, and 12 server
instances. An alternative configuration had four CPU cores, 14
GB memory, and 30 server instances, i.e., a four times increase
in resources. The latter configuration is the highest possible
configuration for the Azure subscription.

46 https://docs.microsoft.com/en-us/azure/azure
-monitor/app/performance-testing

Benchmarks and performance metrics for assessing the migration to microservice-based architectures 11

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://docs.microsoft.com/en-us/azure/azure-monitor/app/performance-testing
https://docs.microsoft.com/en-us/azure/azure-monitor/app/performance-testing


Figure 13 Latency for low configuration in experiment 2.

Figure 14 Latency for high configuration in experiment 2.

The microservice system’s first configuration has two nodes
of 2 CPU cores, 7 GB memory, 24 BookService pods, and
three pods for each of the other services. The second setup
had five nodes of similar capacity and 144 BookService pods,
representing a 2.5 times increase in computational power. The
five nodes with 10 CPU cores in total and 30 pods per node were
the maximum capacity allowed by the Azure subscription used
for this experiment. The lower hardware configurations, which
consist of P1V2 or two DSv2 VMs, were tested with 2,500,
5,000, and 7,500 concurrent users generating GET requests
BookService API endpoint for 2 minutes. The high hardware
configurations, which consist of P3V2 or five DSv2 nodes VMs,
were tested with 10,000, 15,000 and 20,000 concurrent users
for 1 minute (to conserve the cloud credits) reaching the same
API endpoint.

5.3. Latency results

The average latency for the lower config is shown in Figure 13.
The graph shows that the monolith version performs better in
the beginning. However, the difference number between the two
systems decreases while the amount of requests increases.

Figure 14 shows that both systems present similar average la-
tency for the high configuration. However, the monolith version
performs slightly better for 20,000 concurrent users.

Figure 15 Throughput for low configuration in experiment 2.

Figure 16 Throughput for high configuration in experiment 2.

5.4. Throughput results
The throughput for the lower configuration can be seen in Figure
15, which shows that, like with the latency, the monolithic
system performs better than the microservice system.

The throughput for the higher configuration can be seen in
Figure 16 where the monolith again initially performs better.
However, both systems have similar throughput as the number
of concurrent users increases.

5.5. Scalability results
The ration between the number of concurrent users while main-
taining an average latency of no more than 200 ms was deter-
mined by the cloud systems scalability. This study used poly-
nomial regression to determine the number of users a system
and hardware configuration can handle. Figure 17 and Figure
18 show the polynomial trend lines with respective R2 values.

Table 7 presents the number of concurrent users a system
can handle while maintaining a maximum average latency of
200 ms for the given hardware configuration.

The scalability is calculated by the ratio between the increase
in concurrent users and the resultant increase in hardware power.
The results before and after the increase are shown in Table
8. The microservice system’s scalability ratio is over six times
bigger than the monolith system, indicating that the microser-
vice version scales considerably better with increased hardware

12 Bjørndal et al.



Figure 17 Scalability for low configuration in experiment 2.

Figure 18 Scalability for high configuration in experiment 2.

resources.

5.5.1. Threat to validity The first threat to validity is the
number of pods/app service instances used in experiment 2.
It was challenging to collect the specific CPU and memory
utilisation to optimise the exact amount of pods/instances, which
required preliminary testing. App Service and Kubernetes auto
horizontal scaling features based on CPU and memory usage
were used. However, Azure requires a fair amount of time for
the auto-scaler to reach the ideal performance, with the system
properties only being sampled once a minute. Another threat to
validity is the allocation of cloud resources. The databases are
serverless, requiring no additional resources when they have not

Hardware configuration Result 1 Result 2

P1V2 6,713 621

2 x DSv2 2,939 9,410

P3V2 10,470 26,747

5 x DSv2 9,046 40,954

Table 7 Number of concurrent users that each configuration
can handle under 200 ms average latency.

System Type Users Increase Resource Increase Scalability

Monolith 3757 4x 0.14

Microservice 6107 2.5x 0.83

Table 8 Scalability ratio for the monolith and microservice
systems.

been used in a while. However, there is an initial startup period
where the resources must re-allocated.

6. Discussion
The results presented in this study demonstrate that the mono-
lith system performed better for all the selected metrics, except
scalability. Several factors can cause this outcome, such as, for
example, the reference systems are not enterprise-sized, Kuber-
netes/Docker overhead, and the hardware configurations used
for experiments. Abbott & Fisher (2015) describe the three
main implementations for scalability: running multiple copies
of an application load-balanced across servers; running iden-
tical copies of code across multiple servers with each server
responsible for only a subset of the application; breaking the
application into components and microservices. Moreover, up-
scaling microservices require handling several components and
services, which should be done simultaneously or by identifying
individual components to upscale (Dragoni et al. 2017).

The reference systems are relatively small compared to large
enterprise systems consisting of millions of code lines and heavy
use of libraries/other dependencies. Hence, executing instances
of a monolithic web server often comes with higher resource
costs than the microservice equivalent. However, there is no
significant difference in scaling up the resource cost. This leads
to the second point being that Docker and Kubernetes come with
an extra resource overhead. Hence, the overhead of executing
an additional microservice instance might be more costly than
adding a monolithic server instance.

Experiment 1 showed an increased overhead to provide a
similar, or even lower, throughput for the microservice than the
monolith version. One of the reasons for the higher resource
utilisation is the SQL server bottleneck (Wescott 2013) as it
did not have access to enough system resources to perform
correctly. The under-performing database is also a likely reason
for the microservices in experiment 1 performing worse than
having a separate machine as a dedicated database server like in
experiment 2.

The metrics of resource utilisation in experiment 1 were not
surprising, considering that Kubernetes is appropriate for a clus-
ter rather than a single computer. However, the overhead for
managing a cluster comes with better scalability as the microser-
vice scaled three times better in experiment 1 and six times in
experiment 2 compared to the monolith system. This indicates
that, despite the increased resource cost, the microservice ar-
chitecture is suitable when it requires several concurrent users.
Experiment 2 was a simpler version of experiment 1 since it
used a lighter version of the simple workload. Although this
setup gives a less nuanced picture of the system’s overall perfor-

Benchmarks and performance metrics for assessing the migration to microservice-based architectures 13



mance, it allowed testing the scalability better with more and
faster hardware while handling a much higher load.

While analysing the results reported here, the reader should
bear in mind the study’s limitations. Sections 5.1.7 and 5.5.1
presented threats to validity, which include some design de-
cisions and infrastructure, and the difficulty measuring some
performance indicators for remote computer resources. Firstly,
the results show that a small to medium-sized monolith system
generally uses less computational resources while performing
better than its microservice counterpart. However, the microser-
vice architecture redeems itself with its scalability, allowing it to
more straightforward scale-up. It also showed the risks involved
in a microservice migration, such as the complex microservice
workload underperformed across the board. In the case of the
complex microservice, it is essential to design the microservices
with well-bounded contexts to avoid communication between
services unless necessary.

Second, the experiments conducted in this study demon-
strated that the selected performance metrics are valuable to
benchmark different software architectures. Some metrics are
beneficial for evaluation, including latency, throughput and scal-
ability. CPU, memory and network are additional performance
indicators that explain a system’s latency, throughput and scala-
bility. An automatic auto-scale for App Service instances and
Kubernetes instead of a manual tuning could leverage from the
collection of these features, leading to optimized configurations.

7. Conclusion
This study demonstrated the different performances obtained
during the migration from a monolith architecture to a microser-
vice architecture. An extensive and structured literature review
was conducted to identify the most relevant performance indica-
tors to be considered in such a type of project. Also, a survey
conducted among professionals in the real-world confirmed the
relative importance of these features. Then, two experiments
were conducted to compare the performance of both a mono-
lithic and microservice-based version of a system developed
for this study. The results stressed the relevance of the fol-
lowing metrics for assessing architecture migration: latency,
throughput, scalability, CPU, memory and network utilization.

Two reference systems were developed for the benchmarking,
a monolithic and a microservice-based version of the Library-
Service. Then, two experiments were performed - the first using
a local desktop machine and the second being cloud-based. In
the first experiment, the monolith outperformed the microser-
vice version, especially for complex workloads. However, the
microservice system had a three times higher scalability ratio
compared to its monolith counterpart, demonstrating a scenario
in which the migration is strongly recommended. In the second
experiment, the monolith had better performance leveraging
from more robust IT infrastructure. However, the microser-
vice system again had a better scalability ratio compared to the
monolith system.

In summary, the monolithic architecture appears to perform
better for small to medium-sized systems as used in this article.
However, the much higher scalability ratio of the microservice

system indicates that microservice-based architectures outper-
form monolith-based architectures for systems that must support
many concurrent users.

Future work can explore how the metrics assess real-world
(i.e. complex and large) systems used in the industry. Another
research direction is to investigate the effects of using a polyglot
microservice architecture, i.e., which performance metrics are
mostly affected by diverse programming languages. Lastly, a
significant extension would be adding security as a requirement.
Currently, the system neither uses encryption nor authentication.
Ideally, all communication would go through TSL47.

References

Abbott, M. L., & Fisher, M. T. (2015). The art of scalability:
Scalable web architecture, processes, and organizations for
the modern enterprise. Addison-Wesley Professional.

Amaral, M., Polo, J., Carrera, D., Mohomed, I., Unuvar, M.,
& Steinder, M. (2015, Sep.). Performance evaluation of
microservices architectures using containers. In 2015 ieee
14th international symposium on network computing and
applications (p. 27-34). doi: 10.1109/NCA.2015.49

Aniche, M., Treude, C., Zaidman, A., v. Deursen, A., & Gerosa,
M. A. (2016, Oct). Satt: Tailoring code metric thresholds for
different software architectures. In 2016 ieee 16th interna-
tional working conference on source code analysis and ma-
nipulation (scam) (p. 41-50). doi: 10.1109/SCAM.2016.19

Antunes, N., & Vieira, M. (2012, Nov). Detecting vulnera-
bilities in service oriented architectures. In 2012 ieee 23rd
international symposium on software reliability engineering
workshops (p. 134-139). doi: 10.1109/ISSREW.2012.33

Aragon, H., Braganza, S., Boza, E., Parrales, J., & Abad, C.
(2019). Workload characterization of a software-as-a-service
web application implemented with a microservices architec-
ture. In Companion proceedings of the 2019 world wide web
conference (pp. 746–750). New York, NY, USA: ACM. doi:
10.1145/3308560.3316466

Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016). Microser-
vices architecture enables devops: Migration to a cloud-native
architecture. IEEE Software, 33(3), 42–52.

Bermbach, D., Wittern, E., & Tai, S. (2017). Cloud service
benchmarking: Measuring quality of cloud services from a
client perspective. doi: 10.1007/978-3-319-55483-9

Bondi, A. B. (2016). Incorporating software performance
engineering methods and practices into the software devel-
opment life cycle. In Proceedings of the 7th acm/spec on
international conference on performance engineering (pp.
327–330).

Boukharata, S., Ouni, A., Kessentini, M., Bouktif, S., & Wang,
H. (2019). Improving web service interfaces modularity
using multi-objective optimization. Automated Software En-
gineering, 26(2), 275–312.

Brummett, T., Sheinidashtegol, P., Sarkar, D., & Galloway, M.
(2015, Nov). Performance metrics of local cloud computing
architectures. In 2015 ieee 2nd international conference on

47 https://tools.ietf.org/html/rfc8446

14 Bjørndal et al.

https://tools.ietf.org/html/rfc8446


cyber security and cloud computing (p. 25-30). doi: 10.1109/
CSCloud.2015.61

Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S. T., &
Mazzara, M. (2018). From monolithic to microservices: An
experience report from the banking domain. Ieee Software,
35(3), 50–55.

Cardarelli, M., Iovino, L., Di Francesco, P., Di Salle, A., Mala-
volta, I., & Lago, P. (2019). An extensible data-driven
approach for evaluating the quality of microservice architec-
tures. In Proceedings of the 34th acm/sigapp symposium on
applied computing (pp. 1225–1234). New York, NY, USA:
ACM. doi: 10.1145/3297280.3297400

Conway, M. E. (1968). How do committees invent. Datamation,
14(4), 28–31.

Curtis, B., Sappidi, J., & Subramanyam, J. (2011, May). An
evaluation of the internal quality of business applications:
does size matter? In 2011 33rd international conference
on software engineering (icse) (p. 711-715). doi: 10.1145/
1985793.1985893

de Souza Pinto, R., Botazzo Delbem, A., & Monaco, F. (2018).
Characterization of runtime resource usage from analysis of
binary executable programs. Applied Soft Computing Journal,
71, 1133-1152. doi: 10.1016/j.asoc.2017.12.040

Dragomir, A., & Lichter, H. (2014, Dec). Towards an archi-
tecture quality index for the behavior of software systems.
In 2014 21st asia-pacific software engineering conference
(Vol. 2, p. 75-82). doi: 10.1109/APSEC.2014.97

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M.,
Montesi, F., Mustafin, R., & Safina, L. (2017). Microservices:
yesterday, today, and tomorrow. Present and ulterior software
engineering, 195–216.

Düllmann, T. F., & van Hoorn, A. (2017). Model-driven gener-
ation of microservice architectures for benchmarking perfor-
mance and resilience engineering approaches. In Proceedings
of the 8th acm/spec on international conference on perfor-
mance engineering companion (pp. 171–172). New York,
NY, USA: ACM. doi: 10.1145/3053600.3053627

Elsayed, M., & Zulkernine, M. (2019). Offering security di-
agnosis as a service for cloud saas applications. Journal
of Information Security and Applications, 44, 32-48. doi:
10.1016/j.jisa.2018.11.006

Fan, C.-Y., & Ma, S.-P. (2017). Migrating monolithic mobile
application to microservice architecture: An experiment re-
port. In 2017 ieee international conference on ai & mobile
services (aims) (pp. 109–112).

Ferreira, C. H. G., Nunes, L. H., Pereira, L. A., Nakamura,
L. H. V., Estrella, J. C., & Reiff-Marganiec, S. (2016,
June). Peesos-cloud: A workload-aware architecture for
performance evaluation in service-oriented systems. In 2016
ieee world congress on services (services) (p. 118-125). doi:
10.1109/SERVICES.2016.25

Flygare, R., & Holmqvist, A. (2017). Performance characteris-
tics between monolithic and microservice-based systems.

Franks, G., Lau, D., & Hrischuk, C. (2011). Performance mea-
surements and modeling of a java-based session initiation pro-
tocol (sip) application server. In Proceedings of the joint acm
sigsoft conference–qosa and acm sigsoft symposium–isarcs

on quality of software architectures–qosa and architecting
critical systems–isarcs (pp. 63–72).

Gan, Y., Zhang, Y., Cheng, D., Shetty, A., Rathi, P., Katarki,
N., . . . others (2019). An open-source benchmark suite
for microservices and their hardware-software implications
for cloud & edge systems. In Proceedings of the twenty-
fourth international conference on architectural support for
programming languages and operating systems (pp. 3–18).

Gesvindr, D., & Buhnova, B. (2019, March). Paasarch: Quality
evaluation tool for paas cloud applications using generated
prototypes. In 2019 ieee international conference on software
architecture companion (icsa-c) (p. 170-173). doi: 10.1109/
ICSA-C.2019.00038

Hadjilambrou, Z., Kleanthous, M., & Sazeides, Y. (2015,
March). Characterization and analysis of a web search bench-
mark. In 2015 ieee international symposium on performance
analysis of systems and software (ispass) (p. 328-337). doi:
10.1109/ISPASS.2015.7095818

Heyman, T., Preuveneers, D., & Joosen, W. (2014, Aug). Scal-
ability analysis of the openam access control system with
the universal scalability law. In 2014 international confer-
ence on future internet of things and cloud (p. 505-512). doi:
10.1109/FiCloud.2014.89

Ibrahim, A. A. Z. A., Wasim, M. U., Varrette, S., & Bouvry,
P. (2018, July). Presence: Performance metrics models for
cloud saas web services. In 2018 ieee 11th international
conference on cloud computing (cloud) (p. 936-940). doi:
10.1109/CLOUD.2018.00140

Iqbal, M. A., Saltz, J. H., & Bokhart, S. (1986). Performance
tradeoffs in static and dynamic load balancing strategies.

Kratzke, N., & Quint, P.-C. (2017). Understanding cloud-native
applications after 10 years of cloud computing-a systematic
mapping study. Journal of Systems and Software, 126, 1–16.

Lavrakas, P. J. (2008). Encyclopedia of survey research methods.
Sage Publications.

MacKenzie, M. C., Laskey, K., McCabe, F., Brown, P. F., Metz,
R., & Hamilton, B. A. (2006). Reference model for service
oriented architecture 1.0. OASIS Standard, 12.

Martinez-Millana, A., Fico, G., Fernández-Llatas, C., & Traver,
V. (2015). Performance assessment of a closed-loop system
for diabetes management. Medical & biological engineering
& computing, 53(12), 1295–1303.

Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta, A.,
Larsen, S. T., & Dustdar, S. (2018). Microservices: Mi-
gration of a mission critical system. IEEE Transactions on
Services Computing.

Mohsin, A., Naqvi, S. I. R., Khan, A. U., Naeem, T., & AsadUl-
lah, M. A. (2017, April). A comprehensive framework
to quantify fault tolerance metrics of web centric mobile
applications. In 2017 international conference on commu-
nication technologies (comtech) (p. 65-71). doi: 10.1109/
COMTECH.2017.8065752

Ouni, A., Wang, H., Kessentini, M., Bouktif, S., & Inoue, K.
(2018, December). A hybrid approach for improving the
design quality of web service interfaces. ACM Trans. Internet
Technol., 19(1), 4:1–4:24. doi: 10.1145/3226593

Pahl, C., & Jamshidi, P. (2016). Microservices: A systematic

Benchmarks and performance metrics for assessing the migration to microservice-based architectures 15



mapping study. In Closer (1) (pp. 137–146).
Pandey, A., Vu, L., Puthiyaveettil, V., Sivaraman, H., Kurkure,

U., & Bappanadu, A. (2017, July). An automation framework
for benchmarking and optimizing performance of remote
desktops in the cloud. In 2017 international conference on
high performance computing simulation (hpcs) (p. 745-752).
doi: 10.1109/HPCS.2017.113

Parnas, D. L. (1972). On the criteria to be used in decomposing
systems into modules. In Pioneers and their contributions to
software engineering (pp. 479–498). Springer.

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008).
Systematic mapping studies in software engineering. In Ease
(Vol. 8, pp. 68–77).

Petersen, K., Vakkalanka, S., & Kuzniarz, L. (2015). Guidelines
for conducting systematic mapping studies in software engi-
neering: An update. Information and Software Technology,
64, 1–18.

Ren, Z., Wang, W., Wu, G., Gao, C., Chen, W., Wei, J., & Huang,
T. (2018). Migrating web applications from monolithic
structure to microservices architecture. In Proceedings of the
tenth asia-pacific symposium on internetware (pp. 1–10).

Shukla, A., Chaturvedi, S., & Simmhan, Y. (2017). Riotbench:
An iot benchmark for distributed stream processing systems.
Concurrency and Computation: Practice and Experience,
29(21), e4257.

Sriraman, A., & Wenisch, T. F. (2018, Sep.). µ suite: A
benchmark suite for microservices. In 2018 ieee international
symposium on workload characterization (iiswc) (p. 1-12).
doi: 10.1109/IISWC.2018.8573515

Taibi, D., Lenarduzzi, V., & Pahl, C. (2017). Processes, motiva-
tions, and issues for migrating to microservices architectures:
An empirical investigation. IEEE Cloud Computing, 4(5),
22–32.

Tekli, J. M., Damiani, E., Chbeir, R., & Gianini, G. (2011).
Soap processing performance and enhancement. IEEE Trans-
actions on Services Computing, 5(3), 387–403.

Ueda, T., Nakaike, T., & Ohara, M. (2016, Sep.). Workload
characterization for microservices. In 2016 ieee international
symposium on workload characterization (iiswc) (p. 1-10).
doi: 10.1109/IISWC.2016.7581269

van Eyk, E., Iosup, A., Abad, C. L., Grohmann, J., & Eismann,
S. (2018). A spec rg cloud group’s vision on the performance
challenges of faas cloud architectures. In Companion of
the 2018 acm/spec international conference on performance
engineering (pp. 21–24). New York, NY, USA: ACM. doi:
10.1145/3185768.3186308

Vasar, M., Srirama, S., & Dumas, M. (2012). Framework
for monitoring and testing web application scalability on the
cloud. In (p. 53-60). doi: 10.1145/2361999.2362008

Vedam, V., & Vemulapati, J. (2012, July). Demystifying cloud
benchmarking paradigm - an in depth view. In 2012 ieee
36th annual computer software and applications conference
(p. 416-421). doi: 10.1109/COMPSAC.2012.61

Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca,
L., Casallas, R., & Gil, S. (2015). Evaluating the monolithic
and the microservice architecture pattern to deploy web ap-
plications in the cloud. In 2015 10th computing colombian

conference (10ccc) (pp. 583–590).
Wescott, B. (2013). Every computer performance book: How to

avoid and solve performance problems on the computers you
work with. CreateSpace Independent Publishing Platform.

Zhou, X., Peng, X., Xie, T., Sun, J., Xu, C., Ji, C., & Zhao,
W. (2018). Poster: Benchmarking microservice systems for
software engineering research. In 2018 ieee/acm 40th inter-
national conference on software engineering: Companion
(icse-companion) (pp. 323–324).

About the authors
Nichlas Bjørndal received his B.Eng in Information Technology
at Aarhus Universty, Aarhus, Denmark in 2017 and a M.Sc.Eng
in Computer Science and Engineering from the Technical of
Denmark (DTU), Copenhagen, Denmark in 2020. The author
has also studied abroad at Temple University, Philadelphia, PA,
USA and University of Massachusetts Amherst, Amherst, MA
USA. He currently works as an software developer at NNIT
A/S, working on a similar migration as the one described in this
article. You can contact him at s173086@student.dtu.dk.

Luiz Jonatã Pires de Araújo has a PhD in Computer Science
at the University of Nottingham (UK), where he integrated
the Computational Optimisation and learning (COL) lab. Cur-
rently, Dr Araujo is an Assistant Professor at Innopolis Uni-
versity, Russian Federation, in the Machine Learning and
Knowledge Representation lab. Areas of interest include op-
timisation, evolutionary algorithms, meta-learning and algo-
rithm selection, cutting and packing, three-dimensional irregular
packing in 3D Printing applications. You can contact him at
l.araujo@innopolis.university.

Antonio Bucchiarone is a senior researcher in the Motivational
Digital Systems (MoDiS) research unit of FBK in Trento, Italy.
His main research interests are: Self-Adaptive Systems, Do-
main Specific Languages for Socio-Technical System, and AI
planning techniques for Automatic and Runtime Service Com-
position. He has been actively involved in various research
projects in the context of Self-Adaptive Systems, Smart Mobil-
ity and Constructions and Service-Oriented Computing. He is
an Associate Editor of IEEE Software, IEEE Transactions on
Intelligent Transportation Systems, and IEEE Technology and
Society Magazine. You can contact him at bucchiarone@fbk.eu.

Manuel Mazzara is a professor of Computer Science at Innopo-
lis University (Russia) with a research background in software
engineering, service-oriented architectures and programming,
concurrency theory, formal methods and software verification.
Manuel received a PhD in computing science from the Univer-
sity of Bologna and cooperated with European and US industry,
plus governmental and inter governmental organizations such
as the United Nations, always at the edge between science and
software production. The work conducted by Manuel and his
team in recent years focuses on the development of theories,
methods, tools and programs covering the two major aspects
of software engineering: the process side, describing how we

16 Bjørndal et al.

mailto:s173086@student.dtu.dk?subject=Your paper "Benchmarks and performance metrics for assessing the migration to microservice-based architectures"
mailto:l.araujo@innopolis.university?subject=Your paper "Benchmarks and performance metrics for assessing the migration to microservice-based architectures"
mailto:bucchiarone@fbk.eu?subject=Your paper "Benchmarks and performance metrics for assessing the migration to microservice-based architectures"


develop software, and the product side, describing the results of
this process. You can contact him at m.mazzara@innopolis.ru.

Nicola Dragoni is Professor in Secure Pervasive Computing at
DTU Compute, Technical University of Denmark and, part-time
Professor in Computer Engineering at Centre for Applied Au-
tonomous Sensor Systems, Örebro University, Sweden. He is
also affiliated with the Copenhagen Center for Health Technol-
ogy (CACHET) and the Nordic IoT Hub. He got a M.Sc. Degree
(cum laude) and a Ph.D. in Computer Science at University of
Bologna, Italy. His main research interests lie in the areas of per-
vasive computing and security, with focus on Internet-of-Things,
Fog computing and mobile systems. He has co-authored 100+
peer-reviewed papers in international journals and conference
proceedings, he has edited 3 journal special issues and 1 book.
He is active in a number of national and international projects.
You can contact him at ndra@dtu.dk.

Schahram Dustdar is Full Professor of Computer Science head-
ing the Research Division of Distributed Systems at the TU
Wien, Austria. He holds several honorary positions: University
of California (USC) Los Angeles; Monash University in Mel-
bourne, Shanghai University, Macquarie University in Sydney,
and University of Groningen (RuG), The Netherlands (2004-
2010). From Dec 2016 until Jan 2017 he was a Visiting Profes-
sor at the University of Sevilla, Spain and from January until
June 2017 he was a Visiting Professor at UC Berkeley, USA. He
is founding co-Editor-in-Chief of the new ACM Transactions
on Internet of Things (ACM TIoT) as well as Editor-in-Chief
of Computing (Springer). He is an Associate Editor of IEEE
Transactions on Services Computing, IEEE Transactions on
Cloud Computing, ACM Transactions on the Web, and ACM
Transactions on Internet Technology, as well as on the edito-
rial board of IEEE Internet Computing and IEEE Computer.
Dustdar is recipient of the ACM Distinguished Scientist award
(2009), the IBM Faculty Award (2012), an elected member of
the Academia Europaea: The Academy of Europe, where he is
chairman of the Informatics Section, as well as an IEEE Fellow
(2016). You can contact him at dustdar@dsg.tuwien.ac.at.

Benchmarks and performance metrics for assessing the migration to microservice-based architectures 17

mailto:m.mazzara@innopolis.ru?subject=Your paper "Benchmarks and performance metrics for assessing the migration to microservice-based architectures"
mailto:ndra@dtu.dk?subject=Your paper "Benchmarks and performance metrics for assessing the migration to microservice-based architectures"
mailto:dustdar@dsg.tuwien.ac.at?subject=Your paper "Benchmarks and performance metrics for assessing the migration to microservice-based architectures"

