
Journal of Object Technology | RESEARCH ARTICLE

The Evolution of Software Design Practices Over a
Decade: A Long Term Study of Practitioners

Omar Badreddin∗, Khandoker Rahad†, Andrew Forward‡, and Timothy Lethbridge§

∗University of Texas, USA
†University of Texas, USA

‡University of Ottawa, Canada
§University of Ottawa, Canada

ABSTRACT We present the results of a survey of 248 software practitioners conducted in three phases ten years apart. The
goal of the study is to uncover trends in the practice of software design and the adoption patterns of modeling languages
such as UML. The first phase was conducted in April-December 2007 and included 113 responses. The second phase was
conducted in March-November 2017 and included 115 responses. The third phase is a post-survey study was conducted in
November 2018 and included additional questionnaires with 20 participants. All survey phases were conducted online, employed
identical solicitation mechanisms, and included the same set of questions. The survey results are analyzed within each phase
and across phases. We present the results and analysis of the data identifying upward and downward trends in design and
modeling practices. The results indicate a significant increase in the use of well-defined and formal modeling languages, as
well as a marked increase in the adoption of Domain-Specific Languages. This is also reflected in a significant increase in the
adoption of forward engineering methodologies. A key motivation for this uptake is a concern that programming languages and
platforms may become quickly outdated. Unfortunately, there has been a consistent dissatisfaction with modeling tools features,
particularly their ability to support effective communication and collaboration. This is mirrored by increasing dissatisfaction with
modeling tools usability and learnability. Future projections of this study suggest that diversity in modeling languages and tools
is likely to continue to grow, as well as the increase in reliance on models for automated artifacts generation. As such, model
and tool interoperability is likely to become an even greater concern for the years to come. The results of this study can help
researchers, practitioners, and educators to focus efforts on issues of relevance and significance to the profession. Specifically,
this research will advocate to build better software modeling tools and promote modeling to the educators.

KEYWORDS Software Design, Software Modeling, UML, Practices, Survey.

1. Introduction
The adoption of design in the software engineering spheres has
been far from uniform. In domains sensitive to deficiencies such
as safety-critical systems, software engineers have unreservedly
adopted development practices that ensure exceptionally high

JOT reference format:
Omar Badreddin, Khandoker Rahad, Andrew Forward, and Timothy
Lethbridge. The Evolution of Software Design Practices Over a Decade: A
Long Term Study of Practitioners. Journal of Object Technology. Vol. 20,
No. 2, 2021. Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2021.20.2.a1

levels of reliability and security. Those practices include 1) ex-
tensive use of model-driven engineering methodologies where
models generate all or most of the executable artifacts, and
2) model-driven testing methodologies where many test cases,
scenarios, and test oracles are automatically generated and exe-
cuted to achieve more efficient testing and enhanced coverage.
These approaches enable engineers to verify and validate soft-
ware systems even in absence of complete or executable code
and, in many cases, independently of the platform. Models
support advanced simulations of software and physical systems,
enabling the testing of rare scenarios that may otherwise be too

An AITO publication

http://dx.doi.org/10.5381/jot.2021.20.2.a1


expensive or risky to execute. Model-centered methodologies
ensure that potential vulnerabilities in software codes are discov-
ered early and are not obscured by arbitrary code complexities
(Hutchinson et al. 2011). It has been argued that dissemination
of model-centered methodologies would eventually make its
way to the main-stream practices (Anda et al. 2006a).

Despite the near consensus on the value-added of model-
centered methodologies (Budgen et al. 2011), many studies have
exposed fundamental deficiencies in model-centered approaches
(Badreddin et al. 2013). Arisholm et al. (Arisholm et al. 2006)
concluded that the major benefits of using modeling in the form
of UML diagrams are wiped out by the costs associated with
maintaining such models. Iivari (Iivari 1996) explored why
modeling tools are not used in general in software projects.
In their study of organizations that acquired software design
technologies and supporting tools, they report that 70 % of
modeling tools are never used after being available for one year,
25 % are used by only a single group, and only 5 % become
widely used. Usability of modeling tools has been recognized as
a possible factor limiting adoption (Agarwal et al. 2000) (Elaasar
et al. 2017) (Agarwal & Sinha 2003) . Investigations of software
engineering and computer science education programs suggest
limited attention to software design concepts, accompanied by
a general perception of lack of effectiveness of design notations
such as UML (Badreldin et al. 2015)(Liebel et al. 2017). Recent
studies of students’ perception suggest that counter intuitively,
students tend to view software design activities progressively
less effective as they advance in a typical computer science or
software engineering program (Iivari 1996).

Unfortunately, there is a lack of studies that investigate trends
in the practices of software engineering as it relates to design
and modeling activities. By understanding the trends over an
extended period of time, researchers can focus their efforts on
challenges that are the most relevant to practitioners and sug-
gest most impactful features for modeling tools providers. This
paper attempts to uncover the trends of adoption of software
design and modeling in practice. Towards this goal, we de-
signed a survey and collected data in three phases ten years
apart. All the phases were conducted online and employed iden-
tical solicitations and questions. This paper extends previous
work as follows (Badreddin et al. 2018). First, we designed
and executed a post-survey study questionnaire and collected
additional quantitative and qualitative data (Section 5.1), and
report on the post-survey results (Section 5.2). Participants in
the post-survey study were recruited from phase II. We also
extend the reported data and extend the results and analysis
of the study. This paper is organized as follows. In Section
2 we present related work covering related survey studies. In
Section 3 we present the study methodology, effort to minimize
bias and profiling summary data. In Section 4 we present the
results of the survey for both phases. Section 5 presents the
phase III post-study survey design and results. The data analysis
identifying trends in the practice are presented in Section 6. We
present threats to validity in Section 7. Finally, Discussion and
Conclusion are presented in Section 8.

2. Related Work

Whittle et. al. conducted a survey of 450 Model Driven Engi-
neering (MDE) practitioners to understand the extent to which
practitioners adopt model-driven development styles (Whittle et
al. 2014). Their survey results suggest that MDE adoption may
be more widespread than commonly believed. They found that
developers often do not use models to generate complete sys-
tems. Another survey conducted by de Silva aims at identifying
key concepts and terminologies in the model driven engineering
domain (Da Silva 2015a). Their goal is to provide answers
for fundamental questions such as; what constitutes a model?
what is the relationship between a model and a metamodel?
and what are the fundamental facets of modeling languages?
Another survey study of practitioners focused on practices in
Turkey (Garousi et al. 2015). The authors report a significant
level of UML use and design practices. They also found that
the waterfall process, despite being old-fashioned, is broadly
practiced.

In education, Badreddin et. al. collected 195 student re-
sponses from seven programs at four higher education institu-
tions (Badreldin et al. 2015). The goal of the study is to uncover
any trends in students’ perceptions of the effectiveness of UML
in software development. The authors found a consistent down-
ward trend in how students perceive UML effectiveness as they
progress towards their degree. In a similar study by Liebel that
included 218 student responses, the authors found that UML
modeling tool complexity to be a significant factor in education
(Forward & Lethbridge 2008). They recommend the use of
education-specific UML modeling tools to enhance students’
learning experiences. They also found that if the industrial
design and modeling tools were to be used in classrooms, a
dedicated tool support resource becomes necessary. In another
study that focused on embedded systems, the authors surveyed
275 engineers and found that model driven approaches enhance
productivity and the portability of the developed embedded soft-
ware (L. T. W. Agner et al. 2013). We summarize other survey
studies of design and modeling practices in Table 1.

3. Methodology

A three-phase survey is conducted to understand the practice
of software design and UML modeling which includes a post
study questionnaire. The goal of this phase III post-study survey
is to reflect on the phase I and phase II surveys key findings
with participants and to collect additional data. We present the
solicitation approach, survey structure and topics, efforts to min-
imize bias, and the demographics information of respondents.
A complete report on the set of questions, methods, and specific
measures taken to minimize threats to validity is published in
a separately attached artifact as a technical report (Badreddin,
Omar, Khandoker, Rahad, Forward, Andrew, Masmali, Omar,
Lethbridge Timothy C. 2017) (Badreddin, Omar, Khandoker,
Rahad, Forward, Andrew, Masmali, Omar, Lethbridge Timothy
C. 2020).

2 Badreddin et al.



Scale/Region Year Paticipant Type Count Medium Goal/focus area Key Findings

(Anda et al. 2006a) ABB 2016 Professionals 16 Online Interview Assessment of UML based development Evaluation of UML adoption in a specific project

(Forward & Lethbridge 2008) Global 2007 Professionals 113 Online
Characterization of code-centric versus

model-centric development methodologies

Identification of key benefits and challenges with

model-centric development

(Garousi et al. 2015) Turkey 2015 Professionals 202 Online software engineering practices in Turkey
On average, design related activities consumed

12% of total project effort

(Badreldin et al. 2015) U.S, Canada, Israel 2015 Students 195 Online Trends in students’ perceptions
Students graduate with overall negative perceptions

of the effectiveness of UML

(Liebel et al. 2017) U.S, Canada, Sweden 2017 Students 218 Paper Case study in Model Driven Engineering Pedagogies Tool complexity reduces MDE pedagogy effectiveness

(L. T. W. Agner et al. 2013) Brazil 2013 Professionals 275 Online
Use of UML modeling and model-driven approaches

for embedded software

Model-driven approaches provide productivity and

portability of embedded software systems

(Dobing & Parsons 2008) Global 2008 Professionals 284 Online Different dimensions of UML usage
This study suggests several aspects of UML adoption and

there is no standard approach to using UML within a group

(Badreddin et al. 2018) Global 2018 Professionals 228 Online Uncover software design and modeling practices

The results suggest some increase in formal and

informal modeling and identify key

challenges with modeling platforms and tools.

(Agarwal & Sinha 2003) USA 2003 Students N/A Paper An empirical study aimed at assessing the usability of UML

Developers gave very low score for UML usability.

On the other hand, novice developers have

positive perceptions of the usability of UML.

(Dobing & Parsons 2006) Global 2006 Professionals 182 Online Assess the perception of UML usage.

More extensive educational programs are needed, both to increase

the number of analysts familiar with UML, and provide

ongoing support to help them make fuller use of its capabilities.

(Cherubini et al. 2007) Microsoft 2007 Professional 350 online
To understand the perception of using

whiteboard drawing by the developers

One of the major findings of this study is that developers use informal

notation to support face-to-face communication and existing tools

do not have support to externalize their mental models of code.

(LaToza et al. 2006) Microsoft 2006 Professional 1000 online
To understand developers’ typical tools, activities,

and practices and their satisfaction level

The study finds that face-to-face communication is beneficial

and developers spend a significant amount amount

of time recalling their mental model.

Table 1 Summary of survey studies of design and modeling practices

3.1. Solicitation

The survey was conducted online (Rahad Khandoker and Omar
Badreddin 2017). We sent targeted solicitations to a wide va-
riety of organizations and posted the survey on many forums,
including Javaranch (Programming Forum 2017c), Javaforum
(Programming Forum 2017b), Dream in code (Programming Fo-
rum 2017a), several UML user groups, and agile methodology
user groups. We posted the survey on technological websites,
such as digg.com and dzone.com. We also posted the survey
in different Facebook programming groups such as JavaScript,
Php Programming, and others. We identified these Facebook
programming group’s popularity in phase II by the total num-
ber of members and ensured that these groups are active. The
venues such as digg.com, dzone.com, Javaforum, Javaranch,
UML user groups were popular in both phases. We followed
identical solicitation venues, techniques, and frequencies for
both phases of the study.

3.2. Survey Structure

The survey consisted of nine topics. Each topic is explored by a
set of questions with possible answers varying from a 5-point
Likert scale, to open-ended free text questions. The Likert scale
range is from SD (Strongly Disagree) to SA (Strongly Agree).
The abbreviations of ’D’ and ’A’ are respectively Disagree and
Agree. Some questions included additional options of Never,
Always, and Not Applicable. Only complete responses were
included in the analysis, but participants were able to skip some
questions based on their answers. For example, participants
who did not have experience with a specific approach were able
to skip all related sub-questions. In total, the survey included
18 questions. The survey is expected to take about 60 minutes

for completion. The survey topics are as follows.
Topic 1 (fundamentals): This topic constructs a character-

ization on what constitutes a software design activity and a
software model. Various options were presented ranging from
class diagrams, use cases, to source code. The objective is to
uncover any perceived notions of what constitutes a design or
modeling activity.

Topic 2 (basic characterization of the practices): This topic
explores the basic characteristics of the practice, including how
the modeling and designing activity is accomplished and when,
and what notations are used in the course of software design.
The objective of this topic is to develop a basic understanding
of the state of the practice.

Topic 3 (life cycle): This topic investigates the activities
involved across various development phases from requirements,
design, testing, and documentation. The goal is to characterize
the various activities performed throughout the entire software
life cycle.

Topic 4 (platform): This topic explores the specific tools,
methods, technologies, and platforms used in the software de-
velopment activities. This topic also documents the characteris-
tics of the nature of the software applications that participants
develop.

Topic 5 (efficacy): This topic investigates specifics about the
design and modeling practices. The questions under this topic
explore the various activities and inquire about the efficacy of
the various approaches for the task at hand.

Topic 6 (code versus model centrism): This topic explores
perceived challenges in code-centric software development ap-
proaches and perceived challenges in model-centric develop-
ment approaches.

The Evolution of Software Design Practices Over a Decade: A Long Term Study of Practitioners 3



Topic 7 (open-ended and optional contact information): This
topic includes an open ended set of questions and comments
about the software design practices and questions about the
survey itself. This includes optional questions where the par-
ticipants can voluntarily provide contact information for follow
up.

Topic 8 (demographics): Demographics question with sub-
questions that include country of residency, education level, and
years of experience of the participant.

3.3. Minimization of Bias
To minimize bias, we employed two survey techniques; random-
ization of questions and balancing positive/negative questions.
Randomization was applied to the order of questions to en-
sure that possible participant fatigue is distributed across survey
questions. Specifically, the following question order was ran-
domized: question 2 to question 5 inclusive, and question 7 to
question 17 inclusive. To minimize bias in question wording,
we adopted neutral question wording whenever possible. In
cases where neutral wording was not possible, we balanced
the number of positive and negative phrases. For example,
questions that explore the advantages of a specific design and
modeling activity are balanced by questions about the advan-
tages of code-centric approaches. Moreover, in multiple steps in
the survey, we stated additional information so that participants
could consistently answer a set of questions, as an example:

"For the remainder of the survey, please assume that any
reference to a software model refers to an artifact that repre-
sents an abstraction of the software you are building. A model
can typically be viewed as a set of diagrams and/or pieces of
structured text. It can be recorded on a whiteboard, paper, or
using a software tool. A model could use formal syntax and
semantics but this is not necessary. We will consider the final
source code of the system, and requirements written in natural
language to not be models, although models can be embedded
in a requirements document." Since the goal of this study is to
discover trends, any biases inherited in the survey structure and
questions will be present in three phases, and therefore will be
largely minimized in the course of trends analysis.

3.4. Demographics
The survey collected demographics information related to years
of experience, the level of education of participants, their geo-
graphical location, and the nature of their professional software
engineering role and activities they perform, and the nature of
application they develop. Sub-sample analysis is conducted
and is reported in the included artifacts and technical report. In
Table 2, we present the demographics summary data for phase I
and phase II separately.

4. Results
We present the results of the survey as follows. All questions un-
der the same topic are combined within the same table whenever
possible. For brevity, we only show the combined values for
Strongly Agree and Agree, and combined values for Strongly
Disagree and Disagree. We also list the mean value for phase I

and phase II separately. Mean values are calculated by convert-
ing the Likert scale to a vector of values from 5 corresponding
to Strongly Agree, to 1 corresponding to Strongly Disagree.
For each topic, we also show the mean gap, calculated by the
difference between the mean value for phase I and phase II. A
significant mean gap is shown in bolded and underlined font
in each table. The null hypothesis is that the two values of
phase I and phase II come from the same sample. We made
an assumption that when two snapshots mean difference is 0.4
and above, we consider this a significant difference. A signif-
icant difference would indicate divergence (either upward or
downward) in the survey data.

4.1. Topic 1: Fundamentals
The primary objective of questions in this topic is to ensure
that participants have a general agreement on what constitutes
a model. This topic included questions about class diagrams,
deployment diagrams, picture by a drawing tool, textual use
case, whiteboard drawing, picture by hand, source code, source
code comments, and others.

The results of this topic are shown in Table 3. The perception
of modeling is slightly changed downward recently in terms of
picture by drawing tool, textual Use Case, whiteboard drawing,
and picture by hand (Table 3).

4.2. Topic 2: Characterization of Practices
This topic focuses on uncovering how participants perform
their modeling and design activities, and how they learn about
various aspects related to modeling. Participants are asked
about the methods they use to create models and are provided
with choices that include whiteboard drawing, diagramming
tool, word processor, word of mouth, hand written material,
comments in source code, modeling or CASE tool, drawing
software, and others. On how participants learn about modeling,
the questions focused on the type of artifacts they referred to
and how they go about their learning activities.

The results for this topic is shown in Table 4 and 5. Recently,
"word of mouth" is less used by the practitioners whereas com-
ments in source code, modeling tools, and drawing software are

Category
Phase I Phase II

N % N %

All participants (complete responses only) 113 100 115 100

Participants in U.S/Canada 63 55.7 47 41

Participants in EU 13 11.5 3 2.6

Participants outside US/Canada and EU 14 12.5 16 13.8

Participants with >12 years of experience 60 53.47 55 46.9

Participants with PhD 9 8 12 12.1

Participants with Masters 40 35.4 34 36.4

Participants with Bachelor 35 31 12 12.1

Participants without degrees 29 25 23 19.1

Table 2 Demographic data

4 Badreddin et al.



Responses for Topic 1: What is a software model

Entity that might be a model
Phase I Phase II

Mean Gap
% SA+A % SD+D Mean %SA+A %SD+D Mean

Class Diagram 88.4 2.7 4.3 87 4.9 4 -0.3

UML Deployment Diagram 77.5 5.4 4.1 72 17.5 3.8 -0.2

Use Case Diagram 82.1 9.8 4 80 13.5 3.8 -0.3

Picture By Drawing Tool 85.6 7.2 4 62 20.3 3.5 -0.5

Textual Use Case 78.8 10.6 4 59 18.4 3.5 -0.5

Whiteboard Drawing 78.8 8.8 3.9 63 20 3.6 -0.4

Picture By Hand 57.1 9.8 3.9 61 13.4 3.5 -0.4

Source Code 46.8 38.7 3.2 47 38.7 3.1 -0.1

Source Code Comment 33.9 41.1 2.9 44 39.9 3 0.1

Table 3 What is a software model?

frequently used as a medium and methods of modeling (Table
4). Software practitioners are more inclined to use models for
brainstorming possible designs. However, there is a decline in
using models as a prototype (Table 5).

Another set of questions are related to the type of artifacts
the developers refer to as shown in Table 6. Table 6 depicts a
contradictory result between phase I and phase II data on using
word processor and diagramming tool as a reference.

The last set of questions in this topic explores participant’s
daily activities as shown in Table 7. This result shows a positive
perception of using modeling in daily activities such as fixing
bugs and write/maintain test scripts in phase II.

4.3. Topic 3: Lifecycle
Questions in this topic focus on modeling and design activities
as it relates to the project lifecycle. The first set of questions
explore when design activities take place in relation to coding.
The choices for this question include before coding, during
coding, after coding, and only on request.

The second set of questions in this topic explores the various
activities that are performed by the participant. These activities
included searching, requirements, design, modeling, testing,
coding, transfer, develop tests, and documentation.

The third set of questions investigates the daily activities
of participants. The survey provided choices that participants
could choose from and included additional fields where par-
ticipants could identify additional activities. The choices that
were provided include think about a software system, run or
attend meetings, explain software design to others, design a
software system, lead software project, conduct a search about
a software system, model a software system, write new code,
maintain existing code, fix bugs, perform manual testing, write
or maintain requirements, general administration, and write or

maintain test scripts. The data for this question is used primarily
in sub-sample analysis.

Software modeling and various activities during project life
cycle are shown in Table 8 and 9. Table 8 data shows that ac-
tivities in the project life cycle such as searching design testing,
knowledge transfer, documentation are less performed in phase
III compared to phase II. Table 9 significantly shows that models
are only created on request supported by phase III data.

4.4. Topic 4: Platforms

For the platform topic, we explore the modeling notations that
participants use. Some choices that were provided to partic-
ipants in the survey included UML (any version), UML 2.*,
SQL, Structured Design models, UML 1.*, ERD, Well-defined
DSL (DSL that has concrete unambiguous semantics), ROOM /
RT for UML, SDL, Formal (e.g. Z, OCL), BPEL, and others.
This topic also explores the use of various modeling tools, such
as Eclipse, Visual Studio, Rational RSx, Rational XDE, and
others. The topic also explores various related technologies and
platforms, such as Java, PHP / Perl, ASP.Net, Ruby / Python, C
/ C++*, and others.

Summary results of different platform usages are shown in
Tables 10, 11 and 12. Table 10 data shows that older version of
UML usages declined among practitioners. However, there is
a significant increase in using domain-specific languages and
formal modeling such as OCL in phase II. Table 11 provides
contradictory results on Eclipse usages as a development tool.
The result shows that the Eclipse platform usages decreased over
time. Table 10 data depicts that Java programming language
was used often in phase I whereas Ruby/Python is being used
more frequently (phase II data).

The Evolution of Software Design Practices Over a Decade: A Long Term Study of Practitioners 5



Topic 2: Medium and methods of modeling

Medium or methods used to model
Phase I Phase II

Mean Gap
% Never&Sometimes % Very Often Mean % Never& Sometimes % Very Often Mean

Whiteboard drawing 33.3 45.0 3.2 40 57.9 2.9 -0.3

Diagramming tool (e.g. Visio) 42.3 36.9 2.9 43 43.2 2.8 -0.1

Word processor / text 45.5 26.8 2.8 42 55.3 2.7 -0.1

Word of mouth 42.3 27.0 2.8 54 46.1 2.4 -0.4

Handwritten material 51.4 22.5 2.6 49 51.3 2.6 0.0

Comments in source code 51.4 21.6 2.5 49 37.8 2.6 0.1

Modeling tool/CASE 58.9 29.5 2.4 55 29.0 2.5 0.1

Drawing software 72.1 12.6 2.1 68 29.0 2.3 0.2

Table 4 Medium and methods of modeling by survey participants

4.5. Topic 5: Software Development Domain
This topic presents the software that participants develop in
their profession. The participant selected one of the following
options for each sub-question listed: Never, Sometimes, Mod-
erately often, Very often, and Always. We combined Never
and Sometimes together and Often and Very often together and
presented the results in Table 13.

The software built by practitioners and software developers
includes Computational-dominant software (e.g., Simulation,
Scientific, Image Processing, Machine Learning), Business soft-
ware (e.g., Bank Transaction Processing, Financial Analysis,
GIS, Software Tools), Consumer software (e.g., Word Proces-
sors, Spreadsheets, Browsers, Games), Information display and
transaction entry (e.g., Search Engines, Maps, Weather, News),
Operating systems (e.g., Mac, Windows, Linux), Middleware
and system components (e.g., Database servers, Virtual Ma-
chines), System Support utilities (e.g., Security, Anti-Virus,
Spam Filter, Encryption), Website content management, Servers
(e.g., Email, IM, Proxies, Load Balancers), Malware (e.g. Virus,
Spyware, Spam), Embedded real-time software (e.g., Firmware,
Routers), Industrial control software (e.g., Air Traffic Control),
Design and engineering software (e.g., Testing tools, Devel-
opment environments, Database / Reporting, Modeling Tools)
etc.

Summary results of Table 13 regarding the type of softwares
that are built by practitioners show that most often is related to

business (phase II data).

4.6. Topic 6: Efficacy
This topic presents questions related to the suitability of the
modeling tools for the targeted activities, i.e. developing a de-
sign, transcribing a design into digital format, generating code
where code is accessible and editable, prototyping a design,
brainstorming possible designs, generating all code (no manual
coding), and others (Table 15). The topic also explores partici-
pants’ perceptions of key characteristics of modeling tools (i.e.
modeling tools suitability as a medium of communication with
other developers, ease and speed to create models, suitability for
model-based analysis, support for collaborations, visualization
of different aspects of the models, generate code, embed parts
of models in documents, etc.) shown in Table 14.

There is a positive mean gap for generating all the code from
the model between phase I and phase II which implies that
modeling tools are suitable at this task in recent years (Table
15). However, the performance of modeling tools at developing
a design is decreased in phase II. Similarly, a positive mean gap
is visible for the ability to view different aspects of a model and
information density in Table 14.

4.7. Topic 7: Code Versus Model Centralism
This topic investigates in-depth perceptions of participants
on when coding approaches versus modeling and design ap-

Topic 2: What models are used for?

Activity
Phase I Phase II

Mean Gap
% Never & Sometimes % Very Often Mean % Never & Sometimes % Very Often Mean

Developing a design 26.6 48.4 3.3 28 55.1 3.2 -0.1

Transcribing a design into digital format 32.8 39.1 3.1 41 51.7 2.9 -0.2

Prototyping a design 53.1 32.8 2.7 24 32.2 2.2 -0.5

Brainstorming possible designs 54.7 23.4 2.6 34 44.8 3 0.4

Generating code (code editable) 65.1 17.5 2.2 66 34.4 2.2 0

Generating all code 76.6 14.1 1.8 66 31 2.1 0.3

Table 5 What models are used for

6 Badreddin et al.



Responses for Topic 2: Reference materials

Refer to material created by/as
Phase I Phase II

Mean Gap
% Never and Sometimes % Very Often Mean % Never and sometimes % Very Often Mean

Word of mouth 22.3 54.5 3.4 40 60.5 3.1 -0.3

Word processor / text 30 48.2 3.3 29 54 2.9 -0.4

Diagramming tool 32.4 42.3 3.1 70 36.9 2.7 -0.4

Whiteboard drawing 34.5 41.8 3 37 48.6 2.7 -0.3

Comments in source code 42 30.4 2.9 55 47.3 2.7 -0.2

Drawing software 57.8 13.8 2.6 32 39.5 2.4 -0.2

Modeling tool/CASE 55.9 31.5 2.5 85 28.9 2.3 -0.2

Handwritten material 56 20.2 2.4 27 29.7 2.3 -0.1

Table 6 Reference materials

proaches are more suitable to perform various activities. These
activities include fixing a bug, creating efficient software, cre-
ating a system as quickly as possible, creating a prototype,
creating a usable system for end-users, modifying a system
when requirements change, creating a system that most accu-
rately meets requirements, creating a re-usable system, creating
a new system, comprehending a system’s behavior, explaining
a system to others etc. The answer choices for these questions
ranges from much easier in models, to much easier in code. The
summary results of this topic are shown in Table 16.

Table 16 results show a positive mean gap between phase
I and phase II data in creating reusable systems. This implies
respondents perception regarding creating reusable system re-
mains easier in code centric approach according to the phase II
survey study.

Table 17 and Table 18 results depict problems with model and
code centric approach respectively. Table 17 reports that there
is a positive mean gap regarding model and code consistency
between phase I and phase II data. This refers that models and
code consistency is a major concern for software practitioners
recently. Additionally, programming languages likely to become
obsolete is a concern in phase II (Table 18).

4.8. Open ended and follow up questions
This topic included multiple open-ended questions about model-
ing and coding, questions about the survey, and optional contact
information for follow up questions. Those who provided their
contact information from the phase II survey were contacted
with summaries of the survey results and were provided the
option for additional feedback on the survey itself and on the

Responses for Topic 2: Daily activities of participants

Available tasks
Phase I Phase II

Mean Gap
% Never&Sometimes % Very Often Mean % Never& Sometimes % Very Often Mean

Think about s/w system 9.4 77.1 4.1 12 41.2 4.1 0

Run / attend meetings 19.8 60.4 3.6 14 68.6 3.5 -0.1

Explain s/w design to others 15.8 51.6 3.5 26 65.7 3.2 -0.3

Design a s/w system 18.8 57.3 3.5 34 54.3 3.3 -0.2

Lead software project 29.2 53.1 3.3 23 65.7 3.2 -0.1

Search about s/w system 31.2 46.2 3.2 31 51.4 3.2 0

Model a s/w system 30.2 45.8 3.2 37 45.8 3.1 -0.1

Write new code 37.5 49 3.1 29 54.3 3.3 0.1

Maintain existing code 37.5 40.6 3 26 60 3.3 0.3

Fix bugs 39.4 39.4 3 23 48.6 3.5 0.5

Perform manual testing 35.1 34 2.9 37 51.4 3.1 0.2

Write / maintain requirements 41.1 40 2.9 34 48.6 3.1 0.2

General administration 40.4 29.8 2.8 43 54.3 2.8 0

Write / maintain test scripts 58.3 17.7 2.4 47 44.1 2.8 0.4

Table 7 Daily activities of participants

The Evolution of Software Design Practices Over a Decade: A Long Term Study of Practitioners 7



Topic 3: When do you perform the following tasks?

Available tasks
Phase I Phase II

% Gap
Mode % Mode %

Searching Constantly 64.5 Constantly 36.1 -28.4

Requirements Start 60 Start 72.2 12

Design Start 53.8 Start 44.4 -9.4

Modeling Start 46.5 Start 66.7 20.2

Perform testing Constantly 44.1 Constantly 42.9 -1.2

Coding Constantly 41.7 Constantly 31.4 -10.3

Knowledge transfer Constantly 41.7 Constantly 30.6 -11.1

Develop tests Constantly 40.2 Constantly 34.3 -5.9

Documentation End 38.7 End 27.8 -10.9

Table 8 Various activities throughout the project lifecycle

results. The following are itemized summaries of analysis of the
text collected in open-ended and follow up questions for both
survey phases (phase I and II). We removed the repetitive infor-
mation from the original free text without changing the main
content of the respondents’ response. We adopted a similar cod-
ing technique from the grounded theory (Anda et al. 2006b) in
the process of analyzing the qualitative data. When we reached
theoretical saturation: the point where we have sampled and
analyzed our data until we have uncovered all the data. After
reaching out the saturation point we ignored repetitive texts in
qualitative data.

Adopted Technique:

1. The participants often expressed themselves in many
words, so some of the sentences from the participants were
simplified to facilitate the rest of the analysis.

2. All sentences related to possible software modeling and
deigning practices were sorted into positive and negative
perspectives.

3. Participants’ background is checked by identifying their
years of experience in software engineering and software
modeling.

– I have taken courses on UML and software design, but the
"culture" here has not yet adopted these concepts. They try
to use UML, but merely for analysis, not development. We
do not yet have case tools or modeling tools.

– In "the real world" it’s necessary to cut these models down
to the bare basics. Adding too much details to a model
takes too much time, and can potentially confuse develop-
ers when it comes to implementation.

– Modeling using a tool is good for documenting a model,
but otherwise a piece of paper/whiteboard works better
and is more flexible.

– Modeling should be used to validate and share your design
ideas. If your model works, you can build it too; and others
can learn it more easily. Anything more is a waste of time,
anything less will cost you more time in the long run.

– There are a time and cost associated with producing the
model upfront, but that time is more than gained back
during development and, especially, maintenance.

– Now if the [modeling] tools were actually developed by
modelers they’d be much better! The tools are often too
code centric.

– Code wins over models every time when it comes to rev-
enue. Working and tested code with business value can
be sold. Models don’t sell, well, unless you are in a huge
defense contracting world.

– Model based systems tend to be far more reliable.
– One day there will be no need for learning languages to

develop systems.
– Modeling using documentation / plain English is great.

Modeling using any formal language or tool has been
proven useless for all of my applications.

– First, we have to model the software according to the
requirements fulfilling of end-user [needs/requirements].

– I love modeling but our team does not have a culture of
doing it and it is primary because they do not think we
have enough time. Inevitably we waste lots of time because
of our lack of models.

– I’ve been a professional in the industry since 1981. CASE
tools were popular and successful in limited domains, but
are hard to maintain.

– I have done a fair bit of software modeling but it’s been
informal. I have no experience with design programs and
only academic experience with things like UML.

– Modeling and coding both should work together.

5. Post-survey study
Following the survey, we conducted a post-survey (phase III)
study with a subset of survey participants (Rahad Khandoker
and Omar Badreddin 2018) from phase II. The study included
eighteen open-ended questions under three categories; modeling
tools and platforms, the practices of modeling, and follow-up
and profiling questions. Each question included a Likert-scale
and an open-ended component to solicit qualitative data. In this
section, we present the post-survey design and the results.

5.1. Post-Survey Study Design
The goal of this post-study questionnaire is to reflect on the
surveys (phase I and phase II) key findings with participants and
to collect additional quantitative and qualitative data. As such,
this study was designed after the survey data was collected and
analyzed.

We solicited participation from the pool of survey partici-
pants who provided their contact information and indicated a
willingness to participate in the follow-up study from phase II.
Twenty participants’ responses are included in the study. In each
solicitation, we presented the participant with a brief summary
of the key study results and findings.

5.2. Post-Survey Study Results
We contacted 150 software practitioners for the post-survey
study from phase II. We received twenty complete responses.

8 Badreddin et al.



Topic 3: When is modeling performed?

Timeline
Phase I Phase II

Mean Gap
% Never&Sometimes % Very Often Mean %Never & Sometimes % Very Often Mean

Before coding 18.8 59.8 3.7 16 54 3.7 0

During coding 33.3 36 3.1 41 51.3 2.8 -0.3

After coding 60.4 19.8 2.5 54 37.8 2.5 0

Only on request 78.5 10.3 1.9 59 32.4 2.3 0.4

Table 9 When is modeling performed?

More than half of post-survey study responses (56%) reported
their role as a software designer, and 20% software developers
and 25% reported their role as an educator. The following Table
19 summarizes how much software design and modeling those
participants have performed in the last year. In the following,
we present the phase III post-study quantitative and qualitative
data.

5.2.1. Quantitative Data The most prominent result in the
post-study survey is the concerns about future support for both
modeling tools and development platforms. More than 80%
reported being strongly concerned that modeling tools may
not be supported in the future in Table 20. This is related to
significant concerns regarding the interoperability of modeling
tools and the reusability of their models. More than half of
the participants reported having increased their use of Domain-
Specific Languages and code generation for all or parts of the
software system (Table 20). This is consistent with the findings
of phase I and II survey data.

The post-study data did not indicate that modeling tools are
complex, difficult to learn, or difficult to use productively in a
software development project. For example, 93% did not find

modeling tools difficult to learn (Table 20). We attribute this
unexpected result to the fact that those who opted to participate
in the post-study survey are more experienced heavy users of
advanced modeling tools. This is evident by the fact that a
significant portion of those participants reported using formal
modeling and Domain-Specific Languages in their development
activities. Phase III post-survey study results are summarized in
Table 20 and 19.

5.2.2. Qualitative Data Each question included an open-
ended section where the participants were able to provide ad-
ditional free-text responses to the questions. The responses are
taken from the phase II respondents who participated in post
survey study (phase III).

Responses reflect broad and diverse experiences with soft-
ware design and modeling, from very informal and casual mod-
eling practices to formal and DSL-based experiences. A recur-
rent theme is the lack of support from senior developers and
managers for acquiring and supporting software design tools.
The lack of commitment from senior developers and manage-
ment is that modeling incurs significant upfront costs associated
with technology and tools acquisition and personnel training.

Topic 4: Modeling notations and tools

Modeling notations
Phase I Phase II

Mean Gap
% Never&Sometimes % Very Often Mean % Never & Sometimes % Very Often Mean

UML (any version) 30.9 51.8 3.3 46 33.4 2.9 -0.4

UML 2.* 52.1 34.4 2.6 53 34.4 2.5 -0.1

SQL 55.6 29.6 2.5 49 34.3 2.7 0.2

Structured Design models 58.8 21.6 2.5 50 38.2 2.7 0.2

UML 1.* 54.8 28 2.4 73 26.7 1.9 -0.5

ERD 63.2 20.8 2.3 46 40 2.9 0.6

Well-defined DSL 78.8 5.8 1.7 62 32.3 2.4 0.7

ROOM / RT for UML 85.9 7.1 1.5 79 15.2 1.8 0.3

SDL 89.2 3.2 1.3 68 25.8 2.2 0.9

Formal (e.g. Z, OCL) 93.9 2 1.3 75 18.8 1.9 0.6

BPEL 92.8 3.1 1.3 87 13 1.6 0.3

Table 10 Modeling notations and tools

The Evolution of Software Design Practices Over a Decade: A Long Term Study of Practitioners 9



Topic: Development Tools Phase I Phase II

Available options Never and Sometimes Very Often Mean Never and Sometimes Very Often Mean Mean Gap

Eclipse 43.9 40.8 3.0 71 20.0 2.1 -0.9

Visual Studio 56.7 32.0 2.4 63 25.7 2.3 -0.1

Rational Rose 76.5 17.3 1.8 85 14.7 1.5 -0.3

Rational RSx 85.7 10.2 1.4 94 5.8 1.2 -0.2

Rational XDE 89.7 5.2 1.4 94 5.7 1.2 -0.2

Table 11 Development tools

Technology options
Phase I Phase II

Mean Gap
% Never& Sometimes % Very Often Mean %Never & Sometimes % Very Often Mean

Java 46.3 31.6 2.4 80 11.5 1.8 -0.6

PHP / Perl 74.2 19.4 2 74 14.3 2.2 0.2

ASP.Net 79.4 14.4 1.8 74 14.3 2 0.2

Ruby / Python 88.3 8.5 1.6 77 17.2 1.9 0.3

C / C++* 60 30 2.4 65 25 2.3 -0.1

Table 12 Technology

These upfront costs are difficult to justify particularly that the
pay-off typically occurs later in the development cycles during
maintenance and post-deployment.

Interestingly, developers who work on long-living software
code bases tend to be strongly in favor of modeling and de-
sign. With those developers, the primary concern has been the
sustainability of the technology in face of tool and platform
changes. We also observed significant interest in modeling to
aid in documentation and communication. In these cases, casual
informal modeling tools were favored.

Another recurrent theme, pertaining to modeling tool us-
ability, is the need for tool customization. We infer that those
customizations are beyond what can be achieved by end-users
or by manipulating basic tool options. This emerges as a reason
for the lack of adoption of technology in several cases.

The following are itemized summaries of analysis of the text
collected in open-ended questions in phase III. We removed
the repetitive information from the original free text without
changing the main content of the respondents response. The
phase III free text analysis technique is similar to the phase II
approach which is discussed in detail in section 4.8.

– We use a modeling tool that we developed in-house. Our
DSL generates Scala that I never inspect. In fact, I do not
really know Scala. That is why I am not concerned about
the code generation or synchronization between the model
and the code. But we have test cases against the generated
code.

– I tend to develop rather simple models. The modeling tools
may be difficult to learn if I were to develop more complex
models with different notations. But for my needs, the mod-

eling tool we use [Papyrus] is not difficult to learn. Note
that documentations are scarce and frequently outdated.
This will make it difficult for new users.

– I use modeling tools primarily to share ideas and design
with my colleagues. Even though our code is open source,
we almost never share models in the open-source. If we do,
how can [other developers] use it or edit the model? Also,
the model is usually different than the implementation, so
we do not want to confuse those who want to commit code.
We could share models as an image, but then it is static
and will become obsolete fairly soon. I guess from that
perspective, interoperability with other modeling tools is
important.

– We would use much more modeling and invest more in
tools and training if we can have a business case. How can
we show that it is [design activities and modeling] useful?
It is only useful when maintenance becomes significant and
that usually happens many years after development.

– I deal with long term projects and we know [the value
or usefulness] of these tools. We recently changed all
the modeling tools we use, who knows what will happen
next. Marketing of design tools is weak and it is difficult to
convince others.

– As a consultant, I see how companies always change their
programming languages. [Programming languages] al-
ways change. With models it is much more stable [because]
you can always recreate the model in another tool. It takes
some time but that is much less than code.

– Models are generally a product of the design process
which includes brainstorming activities.

10 Badreddin et al.



Topic: What types of software do you build? Phase I Phase II

Available options % Never & Sometimes % Very often Mean %Never&Sometimes %Very Often Mean Mean Gap

Business 44.8 45.8 2.9 30.4 75.1 4.12 1.22

Design and Engineering 60.4 25 2.4 50.23 46.2 2.57 0.17

Website Content Management 62.1 23.2 2.3 67.2 27.9 2.11 -0.19

Information Display (Search / News) 66 26.8 2.2 64.3 36.1 2.41 0.21

Middleware 67 23.7 2.2 70.2 38.1 2.44 0.24

Consumer 67.7 21.9 2.1 60 28.1 2.07 -0.04

Operating Systems 74.00 21.90 2.00 69.30 26.80 2.48 0.48

Computational 76.6 11.7 1.9 80.7 33.7 2.37 0.47

Servers 75.3 12.4 1.9 60.4 17.9 1.49 -0.41

Embedded Real-Time 76.8 14.7 1.8 104.7 16 2.1 0.3

System Utilities 84.2 7.4 1.6 80.2 21.4 1.69 0.09

Industrial Control 89.5 9.5 1.5 79.5 16.9 1.59 0.09

Malware 92.7 2.1 1.2 103.7 17.9 1.83 0.63

Table 13 Software development

– The modeling tool I use is very easy to learn.
– There are models that we could not create without cus-

tomization of the tool. We had to change the tool and
customize boxes and elements.

– The benefits of modeling is long term.
– Models are the best way to communicate with clients. But

for tools, some tools are easy some are not.
– Code generated from models is reusable.
– Modeling tools are most effective for requirements elicita-

tion and analysis.
– I just started with MDE a few years ago.
– I have not increased my use of DSLs (in the last few years),

I have been using them quite a lot.

– I love coding. I feel I will not start using code generation
tools.

– It has become easier to use code generation [recently].
– We did use whiteboards it was more practical for brain-

storming. Once we had the idea we used a digital modeling
tool.

– (synchronization between the model and the code) has
become better for sure, but it is still a concern. [I am]
giving up.

– Sometimes modeling if not done right can be different than
the code. As we code new solutions to problems can emerge
and the model might change.

What are the desired attributes of a modeling tool?

Modeling tools attributes
Phase I Phase II Mean Gap

Rank Mean SD Rank Mean SD

Communicate to others 1 5 4 1 4.2 4 -0.8

Readability 2 5 4 2 4.5 3 -0.5

Ease and speed to create 3 3 2 3 3.3 3 0.3

Ability to analyze 4 3 3 4 3.1 3 0.1

Collaborate amongst developers 5 3 2 5 4 3 1

Ability to view different aspects of a model 6 2.3 2 6 3 3 0.7

Generate code 7 3 2 7 3 2 0

Information density 8 3.2 2 8 3.9 3 0.7

Embed parts of model in documentation 9 3 2 9 2.8 2 -0.2

Table 14 Modeling tools

The Evolution of Software Design Practices Over a Decade: A Long Term Study of Practitioners 11



6. Analysis
We provide the analysis of the results as follows. We present
the upward and downward trends as exhibited in the survey
results over the ten-year period. We also present what can be
considered as a positive trend and a negative trend. We then
summarize the expected and unexpected results. Finally, we
present persistent challenges and emerging opportunities.

6.1. Upward and Downward Trends
We present the analysis of the data based on upward and down-
ward trends as it is manifested in the change between the data
set for phase I and phase II.

Upward Trends. There is a significant uptake in the use of
well-defined and formal modeling languages, such as OCL, as
well as well-formed Domain-Specific Languages (DSLs) [Well-
defined and well-formed DSL refers that DSL has concrete
unambiguous semantics]. This is also consistent with signifi-
cantly more participants reporting generating all system code
automatically from models (forward engineering), as well as
more participants reporting not editing the generated code. This
claim also reflects by participants from phase III data.

In cases where all code is automatically generated, there
is less of a concern about the synchronization between the
models and code as the system continues to evolve. This is
evident in a significant decrease in participants’ concerns about
model and code becoming out of synchronization. This is also
supported by the sub-sample analysis showing a high correlation
between participants who reported generating all or most of
the code and their responses showing little or no concern about
code/model synchronization. This claim is consistent with phase
III survey data where practitioners agreed that code generation
and synchronization became easier recently. However, He et
al. found that maintaining the synchronization between models
and code is a challenging task during evolving Model-Based
projects (He et al. 2016). They further reported that because of
the poor support for model-code synchronization, when a piece
of generated code is modified, it becomes inconsistent with the
model. This makes the modified generated code can only be
maintained manually by developers. This is an indication of

perception change regarding synchronization between model
and code among software practitioners. The interpretation is
that now, software practitioners are more inclined to use the
MDE approach for code generation because of refined modeling
tools.

The creation of complete fully-executable models often in-
volves a number of modeling notations and languages and re-
quires the specification of multiple aspects of the system under
design and development. This is reflected by the results in Ta-
ble 14 where significantly more participants reported that it is
very important that the modeling tool be able to view multiple
aspects of the model under development.

Another significant, and related, upward trend is participants
reporting that one of their most desired features in modeling
tools is an ability to provide a high level of information density
(Table 14). This phenomenon is also supported by Kleppe et
al. (Kleppe et al. 2003) where the authors explained abstraction
is the primary use of models. Further, the authors discussed
that the creation of machine-readable, highly abstract models
that are developed independently of the implementation technol-
ogy and stored in standardized repositories. Our survey results
are also supported by recent study (Khelladi et al. 2020) that
discusses software modeling which aims to tackle increasing
software development complexity by using abstraction. Abstrac-
tion is achieved by creating and reasoning on various models
expressing various concerns of a software system, e.g., struc-
tural, behavioral, requirements, and business aspects.

There is also evidence for the significant increase in the use
of data modeling using ERD models (Table 10). There are more
participants who reported creating models ’only’ upon request.

We are living through a significant flux in middleware, plat-
forms, and technologies. This fact seems to be reflected in two
ways in Table 17; 1) a significant increase in participants con-
cern about tool providers not continuing to provide support for
their modeling tools, and 2) a significant increase in concerns
related to programming languages and related technologies be-
come quickly obsolete. The modeling tools learning curve
is also high which is iterated several times in the post-survey
study qualitative data. Similarly, Mohagheghi et al. found that

How good are modeling tools for?

Available activities
Phase I Phase II

Mean Gap
% Poor % Good Mean % Poor % Good Mean

Developing a design 16.9 47.9 3.4 11 53.6 2.9 -0.5

Transcribing a design into digital format 24.6 42 3.2 25 60.7 3.3 0.1

Generating code (code is editable) 39.1 29 2.9 32 64.3 3 0.1

Prototyping a design 41.2 29.4 2.9 25 71.4 3.1 0.2

Brainstorming possible designs 45.1 32.4 2.8 18 74.7 3.1 0.3

Generating all code (no manual coding) 79.7 8.7 1.9 50 42.9 2.5 0.6

Table 15 Modeling tools good at

12 Badreddin et al.



Topic 6: Available activities
Phase I Phase II

Mean Gap
% Easier in Models % Easier in Code Mean % Easier in Models % Easier in Code Mean

Fixing a bug 28.9 43.3 3.2 19 40.6 3.2 0

Creating efficient software 35.9 43.5 3.1 27 50 3.2 0.1

Creating a system as quickly as possible 46.7 42.4 3 31 56.2 3.2 0.2

Creating a prototype 43 32.6 2.9 44 37.5 2.7 -0.2

Creating a usable system for end users 42.4 22.8 2.7 49 27.3 2.4 -0.3

Modifying a system when requirements change 54.9 24.2 2.5 41 37.5 2.8 0.3

Creating a system that most accurately meets requirements 67 19.8 2.2 56 26.4 2.3 0.1

Creating a re-usable system 63 15.2 2.2 42 30.4 2.6 0.4

Creating a new system overall 68.5 20.7 2.2 64 24.2 2.3 0.1

Comprehending a system’s behaviour 71.9 15.7 2 75 15.7 1.9 -0.1

Explaining a system to others 81.8 7.6 1.7 66 15.6 1.9 0.2

Table 16 Tasks are better in a model centric versus code centric approach

user-friendliness of modeling tools and the provision of fea-
tures for managing models of complex systems are crucial for
wider industrial adoption of modeling tools (Mohagheghi et al.
2013). Companies have not yet started to apply model-driven
approaches due to the associated cost and risks (heavy changes
to the software development process are required), the lack of
expertise, “immature” tools, or the lack of insight into the con-
texts in which the approach can give useful results. Additionally,
the authors argued that tools must be improved regarding usabil-
ity, multi-user support, versioning of models, and diff/merge
possibilities.

Participants reported a significant increase in the need for
creating reusable designs and systems and a significant increase
in using models in brainstorming sessions.

There also seems to be a broadening in the methods to ap-
proach modeling as evident in increase in casual modeling using
pen and paper which is consistent across all three phases. This

is accompanied by participants reporting generally a stricter
definition of what constitutes a model (i.e. more participants
view that a textual use case is not considered a model).

There is also a positive trend of more participants viewing the
generated code as being suitable for their end purposes and its
quality matches or exceeds their expectations. There seem to be
two factors that may be behind participants’ increase satisfaction
with the generated code. First, the increase in adoption of DSLs
often suggests more use of customized generated code, which is
more likely to match the developers’ particular needs. Second,
it is possible that modeling tools in general have improved their
code generation.

We investigated the specific modeling tools that were re-
ported in the survey as part of answers to a specific question (i.e.
questions under topic 4: Platforms) as well as tools mentioned
in the free text and open-ended questions. These tools include
Papyrus, PlantUML, txtUML, MagicDraw, and others. It is

Topic 6: Problems with Model-Centric Approaches
Phase I Phase II

Mean Gap
% Slight Problem % Bad Problem Mean % Slight Problem % Bad Problem Mean

Models become out of date and inconsistent with code 16.3 68.5 3.8 25 40.6 3.2 -0.6

Models can not be easily exchanged between tools 26.4 51.6 3.3 19 40.7 3.3 0

Modeling tools are ’heavyweight’(install,learn,configure,use) 31.5 39.1 3.1 41 37.6 3 -0.1

Code generated from modeling tool not of the kind kind I would like 39.6 38.5 3 44 31.3 2.7 -0.3

Cannot model in enough detail-must write code 43.8 36 2.8 47 28.1 2.6 -0.2

Creating and editing model is slow 43.5 22.8 2.7 38 34.4 3 0.3

Modeling tools change, models become obsolete 44.6 32.6 2.7 31 34.4 3 0.3

Modeling tools lack features I need or want 44.9 21.3 2.6 44 18.8 2.6 0

Modeling tools hide too many details(fully visible in source) 44.6 23.9 2.6 34 31.3 2.9 0.3

Modeling tools are too expensive 46.7 26.7 2.6 38 15.7 2.7 0.1

Modeling tools cannot be analyzed as intended 51.1 25.6 2.5 56 21.9 2.5 0

Semantics of models different from prog. language 56.7 23.3 2.4 48 16.2 2.5 0.1

Modeling languages are not expressive enough 54.9 17.6 2.4 50 15.7 2.5 0.1

Modeling languages are hard to understand 62.6 9.9 2.2 58 15.2 2.3 0.1

Have had bad experience with modeling 63.7 16.5 2.2 61 16.2 2.2 0

Do not trust companies will continue to support their tools 67.4 10.1 2 41 15.7 2.6 0.6

Table 17 Problems with model centric approach

The Evolution of Software Design Practices Over a Decade: A Long Term Study of Practitioners 13



Topic 6: Problems with Code-Centric Approaches

Potential problems
Phase I Phase II

Mean Gap
% Slight Problem % Bad Problem Mean % Slight Problem % Bad Problem Mean

Hard to see overall design 13.8 66 3.8 12 67.7 3.8 0

Hard to understand behaviour of system 19.1 60.6 3.6 30 45.4 3.2 -0.4

Code becomes of poorer quality over time 28.3 55.4 3.4 34 43.8 3.2 -0.2

Too difficult to restructure system when needed 22.6 51.6 3.4 22 53.1 3.4 0

Difficult to change code without adding bugs 22.6 50.5 3.4 38 40.6 2.9 -0.5

Changing code takes too much time 39.4 27.7 2.8 44 21.9 2.6 -0.2

Our prog. language leads to complex code 51.1 20.2 2.5 41 28.1 2.7 0.2

More skill than available to develop high quality code 53.8 22 2.5 47 31.3 2.7 0.2

Prog. Languages not expressive enough 64.8 14.3 2.1 69 18.8 1.9 -0.2

Organization culture does not like code-centric 72.8 14.1 1.9 78 6.3 1.7 -0.2

Our prog. language likely to become obsolete 75.3 9.7 1.9 56 28.1 2.4 0.5

Table 18 Problems with code centric approach

Software modeling you have done in the last year %

Less than 10 hours 0.0

More than 10 hours but less than 40 25.0

More than 40 hours but less than 200 31.3

More than 200 hours 43.8

Table 19 Profiling information

possible that code generation improvements in these tools are
reflected in participants’ responses.

Another important trend is the increase in recognition that
programming languages and related technologies and platforms
could become quickly obsolete. This trend is particularly posi-
tive as it is a motivation for adopting model-centric approaches
that tend to provide better support for platform independence.
This claim is confirmed by the practitioners’ perception in phase
III post-survey study. Further, recent studies by Aldrich et al.
supports this claim by adopting model-based development in
robotics software projects where it can be more easily adapted
to different hardware, tasks, and environments (Aldrich et al.
2019). They reported that models enable robots to automatically
explore potential adaptations to the system architecture and
code. This indicates that model-based approach and software
modeling is adopted in cross-platform positively.

Downward Trends. There is a significant decrease in par-
ticipants’ satisfaction with the modeling tools they have or are
using, as follows. More participants reported that 1) modeling
tools are less capable of supporting communications with other
developers and designers; 2) there is inadequate support for
maintaining code and model in sync; 3) there is inadequate
support for prototyping, and 4) modeling tools are not suitable
for creating software designs in general. This is also reflected in
a lower frequency of using and reusing models created by other
developers.

There is a decrease in participants’ satisfaction with model-
ing tools as evident by the data showing more participants find
modeling tools to be overly complex, to require a significant
learning curve, and to be difficult to use (phase III data). These
issues are also reflected in the open-ended survey questions. The
decrease in satisfaction with modeling tools is recurrent in the
literature. A few recent studies have uncovered similar trends.
Most notably, Anger et al. conducted a survey of the use of
modeling tools and found that mostly used modeling tools lack
feedback, being slow to use, difficulty drawing the diagrams,
not interacting well with other tools, and being complex to use
(L. T. Agner et al. 2019).

Eclipse, the open-source development platform, demon-
strated a significant decline in use by the survey participants.
UML version 1.* has decreased significantly, as to be expected
due to more participants using the newer UML versions which
are reflected in Table 10.

A large majority of the negative trends seem to be related
to the perception of modeling tools in terms of usability and
suitability for performing many tasks and activities. More par-
ticipants find modeling tools increasingly difficult to learn and
report the learning curve to be a significant challenge confirmed
by phase III survey results. This analysis is also supported by
Liebel et al. who reported on a modeling tool usability survey
and found that students’ perception tends to be more negative
when the tool provides negative feedback, such as compiler
errors in the generated code (Liebel et al. 2017).

There is also a general decline in the perception of modeling
tools support for activities that involve communication and
collaboration with others which reflects in Table 14. This may
explain why more participants reported creating models upon
request only and often using a pen and paper and whiteboards as
a modeling platform. Moreover, responses indicate less re-use
of existing models. This dissatisfaction with modeling tools
is repeatedly mentioned in the free text responses across all
three phases of survey data. Many participants argued that time
investments in model creation and maintenance are not justified.
Others argued that casual informal modeling (often without

14 Badreddin et al.



Q Question Text SA +A N DA + SD Mean

1 It is a significant concern to me that the modeling tools I use may not continue to be supported in the future. 81.3 12.5 6.3 4.3

2 It is a significant concern to me that the some of the programming languages I use may become obsolete. 81.4 11.8 12.5 3.9

3 It is important to be able to reuse modeling artifacts. 50.1 31.3 18.8 3.5

4 It is important to be able to work with models in brainstorming sessions. 81.3 12.5 6.3 4.2

5 Modeling tools are generally difficult to learn. 6.3 50.0 43.8 2.4

6 Modeling tools are generally difficult to use productively for software development. 25.0 43.8 31.3 2.9

7 Modeling tools are generally not good at communicating information about software to other team members. 25.0 25.0 50.1 2.6

8 Modeling tools in general do not provide adequate support for generating executable systems. 18.8 56.3 25.0 2.8

9 Code generated by modeling tools is generally not reusable. 25.1 25.0 50.1 2.8

10 Modeling tools are most effective in the requirements phase. 43.8 31.3 25.1 3.2

11 I have significantly increased my use of formal modeling using languages such as OCL. 43.8 31.3 25.1 3.2

12 I have significantly increased my use of domain-specific languages in the last few years. 50.1 31.3 18.8 3.4

13 I have significantly increased my use of code generation in the last few years. 50.1 25.0 25.1 3.4

14 My colleagues and I make significant use of informal drawing of models by hand, e.g. on whiteboards. 37.5 43.8 18.8 3.3

15 Synchronization between models and code has become less of a concern for users of modeling tools. 26.7 66.7 6.7 3.3

Table 20 Post survey study summary

using a modeling tool) is much more effective.
The data also shows a trend of a declining number of partici-

pants reporting performing the task of transcribing a model from
an informal source (such as the whiteboard) to a modeling tool
which is further supported by Silva et al. (Da Silva 2015b). The
author implied that models are not just documentation artifacts,
but also central artifacts in the software engineering field, al-
lowing the creation or automatic execution of software systems
starting from those models. This could be interpreted as both
positive and negative perceptions. The positive interpretation is
that more participants are creating the models on modeling tools,
and hence not requiring the transcribing task. Alternatively, this
trend can be interpreted negatively in that participants do not
find the modeling tool flexible enough to support their need for
sketching and creating models in an agile and quick fashion.

6.2. Expected and Unexpected Trends
The primary expected trend is the decline in the use of older
UML versions. This was expected since the two phases of this
study span a significant period of time. This result suggests
that respondents were careful in their replies and increases our
confidence in the validity of the results. Other expected results
in the continuing dissatisfaction with modeling tools capabilities,
usability, and support for collaboration and communication also
confirmed by the phase III post-study survey qualitative data.
This result was expected to us based on our personal experiences
with a broad range of software modeling and design tools.

The first unexpected result is an increase in the practices
of modeling and design despite the decrease in participant’s
satisfaction with modeling tools. The increase in the practices of
modeling is muted, especially when compared to the increase in
the size and complexity of the software being developed. While
this is an unexpected result, it is one that this study highlights;

practitioners’ adoption of modeling and design practices is not
on par with the increase in code size and its complexity. Studies
found that larger projects might be expected to make wider
use of UML diagram types, but this is generally not the case
(Anda et al. 2006b). Further, Anda et al. reported that when
the system size and complexity increase the associated cost of
UML modeling is also elevated (Anda et al. 2006b).

Another important unexpected result is the sizable decline
in satisfaction with modeling tools especially with respect to
their support for communication and collaboration. This high-
lights the need for a broad and diverse set of design tools, from
lightweight informal modeling to fully-fledged model-centered
tools.

Further, unexpected result is related to the increase in the
adoption of formal modeling and domain-specific modeling
languages (DSLs) even though we sought participants from de-
velopment venues where we wouldn’t expect that DSLs and
formal modeling to be broadly adopted. This result is consistent
with all three survey phase data. We interpret this that practition-
ers tend to value software design and modeling more favorably
depending on how the models are deployed productively in
and throughout their development endeavors. Clearly, formal
models contribute to test and code generation, and DSLs tend
to be uniquely designed to the developers’ domains. We also
interpret this unexpected result by the increase in the availability
and capability of DSL development platforms. These platforms
reduce barriers for the development of usable DSLs and broaden
the user-base of such specialized development technologies.

6.3. Persistent Challenges and Emerging Opportunities
We identify persistent challenges as those issues in modeling
and design that are found to be problematic in all the phases
with little or no improvement. Many of these challenges man-

The Evolution of Software Design Practices Over a Decade: A Long Term Study of Practitioners 15



ifest themselves in modeling tools’ complexity, their required
learning curve, and their inadequate support for flexibility.

Another persistent challenge is related to the practice of de-
veloping executable models or relying on models to generate
all code and executable artifacts. This challenge, despite being
slightly reduced, remains a significant limiting factor for broader
adoption. The need to modify the generated code because it
is incomplete, or because of the need to add functionality in-
troduces a whole set of challenges, including managing the
synchronization between code and models. Model-generated
code has side effects that are discussed in the study by He et
al. who investigated code quality and technical debt of model
based projects (He et al. 2016). The authors in this study (He et
al. 2016) demonstrated that MDE code generators incur more
associated cost than handwritten code. This influences signifi-
cantly the maintenance of model-based software development
practices.

A third challenge is the limited scope of modeling activities
in terms of their occurrences in the project lifecycle, or along
with the various activity disciplines. It is only in the require-
ments phase that more than half of the participants reported
using modeling frequently. Across other activities, modeling
remains rather low. Moreover, almost all of the potential prob-
lems with model-centric approaches identified by participants
have remained or declined only slightly.

A fourth challenge that emerged and also confirmed from
the phase III survey qualitative data is the need to perform tool
customization. We infer that the needed customization is beyond
what tools offer. This is often a challenge for tool developers;
more customization available for end-user often results in an
increase in tool complexity that often impedes broader adoption.

A fifth and important challenge pertains the lack of support
from managers and senior developers for adopting modeling
tools. Participants in this study argue that modeling tools incur
significant upfront costs and the pay-off materialize often at
maintenance and post-deployment phases. As such, it is in-
creasingly more difficult to build a business case to convince
leaders and senior developers to invest in tool and technology
acquisition.

The key emerging opportunity is the significant increase in
modeling activities in general, and particularly the increase
in the adoption of Domain-Specific Modeling Languages and
formal modeling.

7. Threats to Validity
The primary threats to validity of this study are summarized
below. We have also outlined the steps we have taken to help
mitigate these threats.

Question interpretation. Respondents may have misunder-
stood the intended meaning of our questions. We took two steps
to reduce the ambiguity of the questions. First, five independent
researchers reviewed the survey (phase II) structure, wording,
and questions. Second, we piloted the survey and reviewed any
ambiguities, and implemented the suggested comments. Both
activities helped to improve the overall survey prior to go-live.
Since the primary goal of this study is to uncover trends, we ex-

pect that bias inherits in the survey to be present in both phases
and its effects would be largely minimized.

Researcher bias. Many of the survey questions attempt to
uncover trends related to both model-centric and code-centric
approaches. A potential bias could be introduced if our sur-
vey appeared to be overly negative towards either modeling or
software coding. To reduce the chance of bias we aimed to
be objective whenever we referring to both code-centric and
model-centric questions, as well as presenting the questions in
random order. We also maintained the same questions and word-
ing for the two phases to minimize the effects of any potential
bias. We also piloted the survey and collected feedback from
the participants. We revised the wording to ensure consistent
interpretation of questions.

Non-randomized sample and representation. To help en-
sure that our sample was based on a representative collection
of software practitioners, we approached both open and closed
forums for participation. In particular, we submitted survey
links to Digg.com, and Dzone.com - two popular technology
and news sites. We submitted email requests to UML user
groups, agile user groups, Java user groups, and process user
groups. Our demographics results indicate that we do have
representation from most regions of the world, most educa-
tional backgrounds, most software industries, and most types
of developers. However, the sample size of Europe-based par-
ticipants is relatively small. Therefore, we do not claim that
the list of participants’ domain and demographics is complete.
We also conducted extensive sub-sample analysis that included
analyzing sub-samples of participants, their educational and
experience profiles, as well as sub-sample analysis of software
application domains to ensure adequate representation.

A related threat pertains to self-selection. Those who opt to
participate in the study may be already those who are enthu-
siastic about software design and modeling. We consistently
recruited participants in the two phases. Therefore, any bias in
selection would have an equal or similar impact. This impact
would be canceled out since the results and analysis are based
on gaps between the two phases of the study.

The sample size of phase III post-study survey is relatively
small. The goal of the post-study survey is not to uncover
additional trends, but rather to clarify and help interpret the
trends uncovered by the study. Secondly, the post-study survey
included significant open-ended questions and would require
significant time from participants to complete the study.

Participant Fatigue. This survey study included about 18
questions many with multiple choices and open-ended questions
with free text. We estimate that the survey takes about one hour
to fully answer all questions. Hence, there is a risk of participant
fatigue which may affect data validity. We did the following to
minimize this risk. First, the survey and our solicitations clearly
stated the expected duration of the survey. Second, we included
many cues in the survey to inform the participant of progress
and the remaining sections. Third, we allowed participants to
skip sub-questions based on their responses. Fourth, we only
included complete responses in the data analysis.

16 Badreddin et al.



8. Conclusion

This paper reports on a survey conducted on three phases ten
years apart. The goal of the survey is to contribute to uncovering
trends in the practices of software design and modeling. The
survey solicited 248 participants and included 18 questions.

The survey analysis characterizes trends in the practice, in-
cluding upward, downward, positive, negative, and unexpected
trends. The survey suggests some level of increase in the adop-
tion of the broad practices of modeling as well as an increase
in the adoption of domain-specific and formal modeling. We
also observed an increase in the practices of casual modeling
using whiteboards and pen and paper approaches. The data
also suggests a persistent dissatisfaction with software model-
ing tools. Participants find modeling tools to be inadequate in
their support for collaboration and communication. Participants
also consistently reported inadequacy of the generated code for
their development purposes and needs. Many participants ar-
gued that modeling cannot be justified due to the learning curve,
modeling tool complexity, and inadequacy for delivering exe-
cutable artifacts. The phase III post-survey study confirms the
main findings of the study and highlights concerns about future
support for both modeling tools and development platforms.

The three phases of the survey draw a picture of the practices
and how they are changing over time. Our goal is to help re-
searchers, educators, practitioners, and modeling tools providers
to focus on important aspects of relevance to the profession.

References

Agarwal, R., De, P., Sinha, A. P., & Tanniru, M. (2000). On the
usability of oo representations. Communications of the ACM,
43(10), 83–89.

Agarwal, R., & Sinha, A. P. (2003). Object-oriented modeling
with uml: a study of developers’ perceptions. Communica-
tions of the ACM, 46(9), 248–256.

Agner, L. T., Lethbridge, T. C., & Soares, I. W. (2019). Student
experience with software modeling tools. Software & Systems
Modeling, 18(5), 3025–3047.

Agner, L. T. W., Soares, I. W., Stadzisz, P. C., & SimãO, J. M.
(2013). A brazilian survey on uml and model-driven practices
for embedded software development. Journal of Systems and
Software, 86(4), 997–1005.

Aldrich, J., Garlan, D., Kästner, C., Le Goues, C., Mohseni-
Kabir, A., Ruchkin, I., . . . others (2019). Model-based
adaptation for robotics software. IEEE Software, 36(2), 83–
90.

Anda, B., Hansen, K., Gullesen, I., & Thorsen, H. K. (2006a).
Experiences from introducing uml-based development in a
large safety-critical project. Empirical Software Engineering,
11(4), 555–581.

Anda, B., Hansen, K., Gullesen, I., & Thorsen, H. K. (2006b).
Experiences from introducing uml-based development in a
large safety-critical project. Empirical Software Engineering,
11(4), 555–581.

Arisholm, E., Briand, L. C., Hove, S. E., & Labiche, Y. (2006).
The impact of uml documentation on software maintenance:

An experimental evaluation. IEEE Transactions on Software
Engineering, 32(6), 365–381.

Badreddin, O., Khandoker, R., Forward, A., Masmali, O., &
Lethbridge, T. C. (2018). A decade of software design and
modeling: A survey to uncover trends of the practice. In
Proceedings of the 21th acm/ieee international conference on
model driven engineering languages and systems (pp. 245–
255).

Badreddin, O., Lethbridge, T. C., & Elassar, M. (2013). Model-
ing practices in open source software. In Ifip international
conference on open source systems (pp. 127–139).

Badreldin, O., Lethbridge, T., Sturm, A., Dixon, W., Hamou-
Lhadj, A., & Simmons, R. (2015). The effects of education
on students’ perception of modeling in software engineering..

Budgen, D., Burn, A. J., Brereton, O. P., Kitchenham, B. A., &
Pretorius, R. (2011). Empirical evidence about the uml: a sys-
tematic literature review. Software: Practice and Experience,
41(4), 363–392.

Cherubini, M., Venolia, G., DeLine, R., & Ko, A. J. (2007).
Let’s go to the whiteboard: how and why software developers
use drawings. In Proceedings of the sigchi conference on
human factors in computing systems (pp. 557–566).

Da Silva, A. R. (2015a). Model-driven engineering: A sur-
vey supported by the unified conceptual model. Computer
Languages, Systems & Structures, 43, 139–155.

Da Silva, A. R. (2015b). Model-driven engineering: A sur-
vey supported by the unified conceptual model. Computer
Languages, Systems & Structures, 43, 139–155.

Dobing, B., & Parsons, J. (2006). How uml is used. Communi-
cations of the ACM, 49(5), 109–113.

Dobing, B., & Parsons, J. (2008). Dimensions of uml dia-
gram use: a survey of practitioners. Journal of Database
Management (JDM), 19(1), 1–18.

Dreamincode. (2017a). Retrieved from http://www
.dreamincode.net/forums/

Elaasar, M., Noyrit, F., Badreddin, O., & Gerard, S. (2017).
Reducing uml modeling tool complexity with architectural
contexts and viewpoints..

Forward, A., & Lethbridge, T. C. (2008). Problems and op-
portunities for model-centric versus code-centric software
development: a survey of software professionals. In Pro-
ceedings of the 2008 international workshop on models in
software engineering (pp. 27–32).

Garousi, V., Coşkunçay, A., Betin-Can, A., & Demirörs, O.
(2015). A survey of software engineering practices in turkey.
Journal of Systems and Software, 108, 148–177.

He, X., Avgeriou, P., Liang, P., & Li, Z. (2016). Technical
debt in mde: a case study on gmf/emf-based projects. In
Proceedings of the acm/ieee 19th international conference on
model driven engineering languages and systems (pp. 162–
172).

Hutchinson, J., Whittle, J., Rouncefield, M., & Kristoffersen,
S. (2011). Empirical assessment of mde in industry. In
Proceedings of the 33rd international conference on software
engineering (pp. 471–480).

Iivari, J. (1996). Why are case tools not used? Communications
of the ACM, 39(10), 94–103.

The Evolution of Software Design Practices Over a Decade: A Long Term Study of Practitioners 17

http://www.dreamincode.net/forums/
http://www.dreamincode.net/forums/


Javaforum. (2017b). Retrieved from https://www.java-forums
.org/forum.php

Javaranch. (2017c). Retrieved from https://javaranch.com/
Khelladi, D. E., Combemale, B., Acher, M., & Barais, O. (2020).

On the power of abstraction: a model-driven co-evolution
approach of software code. In Proceedings of the acm/ieee
42nd international conference on software engineering: New
ideas and emerging results (pp. 85–88).

Kleppe, A. G., Warmer, J., Warmer, J. B., & Bast, W. (2003).
Mda explained: the model driven architecture: practice and
promise. Addison-Wesley Professional.

LaToza, T. D., Venolia, G., & DeLine, R. (2006). Maintaining
mental models: a study of developer work habits. In Pro-
ceedings of the 28th international conference on software
engineering (pp. 492–501).

Liebel, G., Badreddin, O., & Heldal, R. (2017). Model driven
software engineering in education: A multi-case study on
perception of tools and uml. In Software engineering educa-
tion and training (csee&t), 2017 ieee 30th conference on (pp.
124–133).

Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez, M. A.,
Nordmoen, B., & Fritzsche, M. (2013). Where does model-
driven engineering help? experiences from three industrial
cases. Software & Systems Modeling, 12(3), 619–639.

Professional coding and modeling practices,. (2017). Retrieved
from https://goo.gl/bQV9Ph

Professional coding and modeling practices: Post survey study,.
(2018). Retrieved from https://goo.gl/TbYmUY

Technical report tr-2018-01: A decade of software design prac-
tices: A survey to uncover trends of the practice. accessed
july 2018. (2017). Retrieved from https://figshare.com/s/
b54ca33b8717c0fa1d3d

Technical report tr-2019-01: The evolution of software design
practices over a decade: A long term study of practitioners.
accessed july 2018. (2020). Retrieved from https://doi.org/
10.6084/m9.figshare.12593270

Whittle, J., Hutchinson, J., & Rouncefield, M. (2014). The
state of practice in model-driven engineering. IEEE software,
31(3), 79–85.

About the authors
Omar Badreddin is a software
design professional and re-
searcher. He is a faculty
member in Computer Science
at University of Texas. He
has authored several books
and scientific articles on soft-
ware design and reengineer-
ing. He has contributed to
many prominent open and
closed source software that has
reached global user base, in-
cluding the Eclipse platform.
He is an active open source
contributor and an advocate for

sustainable software engineering practices. Dr. Badreddin is
the primary author of Susereum (www.Susereum.com), the
blockchain platform that establishes immutable credit for code
authors and contributors. You can contact him at obbadred-
din@utep.edu or visit https://badreddin.com.

Khandoker Rahad is a Ph.D.
candidate in computer science
at the University of Texas. He
is working as a research and
PhD teaching assistant in the
computer science department
(2016-2020).His research inter-
est lies in the area of software
design, UML modeling and
open source mining. His cur-
rent research focuses on inves-
tigating the practices of soft-
ware designs to uncover pat-

terns of practices, and systematically evaluate the potential ben-
efits of model-driven development. This includes investigating
open source repositories, analyzing code bases, and conducting
surveys to better understand current practices and uncover any
emerging trends. You can contact him at rahadiit@gmail.com.

Andrew Forward is a part-time
professor at the University of
Ottawa teaching a wide range
of topics on software engi-
neering, computer science and
project management. Dr. For-
ward’s research interests are
in software quality, automa-
tion, documentation and soft-
ware modelling. Andrew also
works as a Software Engineer
at CrossFit, a world leading
platform for health, happiness
and performance. You can con-

tact him at aforward@uottawa.ca.

18 Badreddin et al.

https://www.java-forums.org/forum.php
https://www.java-forums.org/forum.php
https://javaranch.com/
https://goo.gl/bQV9Ph
https://goo.gl/TbYmUY
https://figshare.com/s/b54ca33b8717c0fa1d3d
https://figshare.com/s/b54ca33b8717c0fa1d3d
https://doi.org/10.6084/m9.figshare.12593270
https://doi.org/10.6084/m9.figshare.12593270
mailto:obbadreddin@utep.edu?subject=Your paper "The Evolution of Software Design Practices Over a Decade: A Long Term Study of Practitioners"
mailto:obbadreddin@utep.edu?subject=Your paper "The Evolution of Software Design Practices Over a Decade: A Long Term Study of Practitioners"
https://badreddin.com
mailto:rahadiit@gmail.com?subject=Your paper "The Evolution of Software Design Practices Over a Decade: A Long Term Study of Practitioners"
mailto:aforward@uottawa.ca?subject=Your paper "The Evolution of Software Design Practices Over a Decade: A Long Term Study of Practitioners"


Timothy Lethbridge is a vice
dean and professor of software
engineering and computer sci-
ence at the University of Ot-
tawa, where he has taught for
30 years. His research focuses
on usability of software en-
gineering tools, including his
own tool Umple, as well as
on software engineering edu-
cation and enterprise architec-
ture. He has published 150 sci-

entific papers and one textbook on software engineering. He
is a professional engineer and has held several volunteer roles
in the IEEE and the Canadian Information Processing Soci-
ety. He received the IEEE Computer Society TCSE Outstand-
ing Educator Award in 2016. You can contact him at timo-
thy.lethbridge@uottawa.ca or visit https://uniweb.uottawa.ca/
members/119/profile?embed=2.

The Evolution of Software Design Practices Over a Decade: A Long Term Study of Practitioners 19

mailto:timothy.lethbridge@uottawa.ca?subject=Your paper "The Evolution of Software Design Practices Over a Decade: A Long Term Study of Practitioners"
mailto:timothy.lethbridge@uottawa.ca?subject=Your paper "The Evolution of Software Design Practices Over a Decade: A Long Term Study of Practitioners"
https://uniweb.uottawa.ca/members/119/profile?embed=2
https://uniweb.uottawa.ca/members/119/profile?embed=2

