
Journal of Object Technology | RESEARCH ARTICLE

Multi-Model Evolution through Model Repair
Patrick Stünkel1, Harald König2, 1, Adrian Rutle1, and Yngve Lamo1

1Western Norway University of Applied Sciences, Bergen, Norway
2University of Applied Sciences FHDW Hannover, Hanover, Germany

ABSTRACT Design and development of complex software systems usually comprises multiple inter-related models, i.e. abstract
representations of certain aspects of the underlying system. The relations between these models induce global consistency
conditions which the models collectively must fulfill. At the same time, these models are subject to frequent changes, and as
a result, maintaining their global consistency over time becomes an important issue in model management in general and
Model-Driven Software Engineering in particular.
In this paper, we present a comprehensive feature model providing an overview of the current state of the art of model
management. In this feature model, we further identify the central role of model repair as an implementation pattern for
(multi-)model evolution.

KEYWORDS Model Management, Model Co-Evolution, Multi-Modeling, Model Synchronization, Consistency Maintenance, Model Repair, Bidirectional

Transformations (bx), Update Propagation, Model Migration, Feature Model.

1. Introduction
In Model-Driven Software Engineering (MDE), models are the
primary artifacts in the software development process. This
promises several benefits, e.g. higher efficiency due to work-
ing on a high level of abstraction, improved involvement of
domain experts via Domain Specific Languages (DSLs), self-
documenting artifacts and many more. Developing a complex
system implies multi-modeling; i.e., the various aspects of the
system are represented as inter-related artifacts, which are sub-
ject to ongoing changes. Hence, researchers have identified
evolution as an important requirement for MDE (Paige et al.
2016; Lämmel 2014): A local model modification (e.g. due
to refinement, refactoring, new or obsolete requirements, etc.)
not only results in an update to that particular model but also
induces global modifications on related models such that the
final result is considered consistent, i.e. the collection of models
evolves together.

Model evolution has been studied from different angles in dif-
ferent communities using different terminology: coupled trans-

JOT reference format:
Patrick Stünkel, Harald König, Adrian Rutle, and Yngve Lamo. Multi-Model
Evolution through Model Repair. Journal of Object Technology. Vol. 20, No.
1, 2021. Licensed under Attribution 4.0 International (CC BY 4.0)
http://dx.doi.org/10.5381/jot.2021.20.1.a2

formations (Lämmel 2014), multi viewpoint modeling (Romero
et al. 2009), metamodel/model co-evolution (Gruschko et al.
2007), model migration (Narayanan et al. 2009), view mainte-
nance (Diskin et al. 2012), megamodeling (Favre & NGuyen
2005), macromodeling (Salay et al. 2009), bidirectional trans-
formations (bx) (Czarnecki et al. 2009), inter-model consistency
management (Diskin et al. 2011), model synchronization (Her-
mann et al. 2011), and model repair (Macedo et al. 2017).

The main contribution of this paper is a feature model, which
consolidates the findings and classifications from recent surveys
such as (Anjorin et al. 2019; Cicchetti et al. 2019; Hidaka et al.
2016; Hebig et al. 2017) in the above-mentioned domains. It
is based on the significant work published in the model repair
survey by Macedo et. al. (Macedo et al. 2017) comprising an
extended and more refined presentation with a focus on multi-
modeling. The feature model clearly separates between the
different aspects of model management, namely representation
of models, changes, consistency, multi-models, formats, and
repair. This enables comparison of tools and approaches from
originally separated research domains, e.g. multi-viewpoint
modeling and bx. Furthermore, we motivate the importance of
model repair as a universal implementation pattern for model
management operations (Diskin 2009).

An AITO publication

http://dx.doi.org/10.5381/jot.2021.20.1.a2

Outline This paper can logically be divided into two parts:
The first sections build up the required background on model
management and evolution starting with motivating examples
(section 2), explaining the core concepts (section 3), and even-
tually focusing on model repair locally (section 4) and globally
(section 5) as a core ingredient for evolution. Section 6 initi-
ates the second half of the paper, where we throughout several
subsections present our main contribution: the feature model.
Section 6.9 exemplifies an application of the feature model to a
selection of existing model management tools, section 7 gives a
summary of valuable insights gathered throughout our literature
study, and finally, section 8 concludes with an outlook on future
work.

2. Multi-Model Management Scenarios

First, we want to introduce models, their relationships and im-
portant aspects such as correctness, ambiguity, incremental-
ity etc. along a few motivating examples. Within MDE it
is common to adopt the imperative of “everything-is-a-model”
(Stevens 2020; Brambilla et al. 2017; Bézivin 2005). Thus, we
treat all artifacts ranging over requirements, designs, drawings,
source code, test cases etc. as models, i.e. abstract representa-
tions of (parts of) a real world software system. Our first toy
scenario, depicted in Fig. 1 comprises three models: A list of
requirements (M1), java code (M2), and unit tests (M3). Note
the (cyan-colored) links depicting relations between elements
across their model boundaries. These links have been referred
to under different names in the literature: Morphisms (Bernstein
2003), mappings (Bernstein 2003), traces (Aizenbud-Reshef et
al. 2006), traceability links (Feldmann et al. 2019), commonali-
ties (Klare & Gleitze 2019) or correspondences (Stünkel et al.
2018).

Furthermore, let us consider a requirement:

CR-1 Every method, which realizes a requirement must have an
associated test case and for every mandatory requirement
there has to be at least one test case.

The requirement CR-1 is an example of a consistency rule
and they are a common phenomenon in model management,
see e.g. (Feldmann et al. 2019). Such rules determine what
constellations of models and inter-relations are considered valid.
Thus, changing a model requires caution: Multiple models have
to (co)-evolve simultaneously to guarantee consistency.

As an example for such an evolution scenario in Fig. 1, as-
sume that a new mandatory requirement is added to M1. This
obviously invalidates CR-1 since there is no unit test for the
new requirement. There are multiple possibilities to resolve this
inconsistency: (1) adding a test stub, (2) letting an already exist-
ing test case refer to the new requirement, (3) making the new
requirement optional, or (4) deleting the new requirement again.
Option (4) is the least desirable one since it contradicts the idea
of evolution by reverting the original change, whereas option (1)
may be the most desirable solution since it is the “least intrusive”
modification. However, in general, a tool cannot know the in-
tention of the user. For instance, there may be situations where
the user prefers the more intrusive option (2) or even option (3)
—i.e. revising the original change. Furthermore, it is important
to note that some of these options come in (possibly infinitely)
many variations, e.g. there are almost unlimited choices of what
the concrete method body of the test stub should be. Many repair
approaches address this “disambiguation-challenge” by asking
the user during the process or by working with default values.
To make the situation even more interesting, assume that now
someone adds a method realizing the new requirement. This
also renders CR-1 inconsistent because the method is missing

M1

M2

M3

Requirements

Code

Tests

«realizes»

«tests»

«refersTo»

Figure 1 Scenario 1: Requirements - Code - Tests

2 Stünkel et al.

com::patient-referral::classes::referrer

PatientData

Patient
+ patientId: String
+ firstName: String
+ lastName: String
+ birthdate: Date
+ gender: Gender

Diagnosis
+ description: String
+ urgency: Boolean
- madeAt: Timestamp
- comment: String

of
1..1

1..1

Physician
+ practicionerId: String
+ speciality: String
+ address: String

1..1

0..*

1..*

Patient
 appeal

Patient
Consultation

Extract
Patient

Information

Select
Consultant

Send
Referral

Approval Referral
 Finished

PatientData

Reject(Diagnosis,
Urgency)

(practicionerId,
specialization)

C
on

su
lta
nt

Rejection Acceptance
Referral

by

generalPracitcioner

patient

medicalHistory

1..1

0..*

0..*

com::pateint-referral::classes:base

«import»

BPMN

UML-CD DMN

Figure 2 Scenario 2 - Referral Process: BPMN - UML-CD - DMN

a relation to a test case. Depending on the response to the first
change, the desired solution would not naively create yet an-
other test stub but instead link the previously created stub to the
new method.

base

referrer consultant

...
Process
Diagram

(Referrer)

Process
Diagram

(Consultant)
Select

Consultant

.java

.java

.java

...Patient

Diagnosis

BPMN

UML-CD

DMN

CODE
«implementation»

«sharedConcepts»

MOF

</>

</>

</>

UML-
MM

BPMN-
MM

DMN-
MM

BNF

Java
Language
Spec v. 7

«conformsTo»

«conformsTo»

«conformsTo»

«conformsTo»

Java
Language
Spec v. 8

«evolves»

«transformation»

Figure 3 Scenario 2: Model Spaces

The simple scenario above already demonstrates common
evolution challenges such as correctness, ambiguity and incre-
mentality. Let us now look at a real life scenario featuring a

patient referral process. A referral is “the act of sending a pa-
tient to another physician for ongoing management of a specific
problem with the expectation that the patient will continue see-
ing the original physician for coordination of total care” (Segen
1992). This scenario comprises both low-level java sources
(CODE) and high-level specifications given as process models
denoted in Business Process Model and Notation (BPMN) (Ob-
ject Management Group 2014), data models denoted as Unified
Modeling Language Class Diagrams (UML-CD) (Object Man-
agement Group 2015a), and decision tables given in Decision
Model and Notation (DMN) (Object Management Group 2019).
Fig. 2 shows a selection of the models in this scenario: A BPMN
process from the perspective of the referrer, a UML package
with data type definitions, and a DMN table defining the behav-
ior of the Select Consultant activity in the process diagram.
The overview of all the models in this scenario is shown in
Fig. 3. There is another process model for the perspective of
the consultant physician, additional UML packages with data
type definitions and several more decision tables, one for each
business rule activity.

The models in Fig. 3 are grouped into so-called homoge-
neous model spaces. This gives rise to different types of inter-
model relationships. In the scenario in Fig. 1, there are relations
between elements from disparate models visualized via cyan-
colored links. Scenario 2 also comprises this particular type of
inter-model relations, which we call correspondences: BPMN
process, UML class diagrams and DMN tables share concepts,
e.g. Diagnosis in Fig. 2, and UML classes have implementa-
tions in CODE. In addition to these correspondences, we have

Multi-Model Evolution through Model Repair 3

the green conformance-arrows in Fig. 3 which are relations be-
tween a whole model space and the metamodel of the modeling
language of the respective model space. (Favre & NGuyen
2005; Bézivin 2004) The upper half of Fig. 3 shows two model
spaces MOF (Object Management Group 2016b) and BNF (pro-
gramming language grammar definitions) whose members are
metamodels (displayed with shaded background) for the models
in the other model spaces BPMN, DMN, UML-CD, and CODE.

All these relations are again subject to consistency rules but
in this scenario, model repair has to consider even more aspects.
The first one is precedence, i.e. some models are more “im-
portant” than others. For instance, we may consider models in
UML-CD to have precedence over implementations in CODE
such that the latter can be automatically derived from the for-
mer. This transformation (code generation) is defined on the
metamodel level as evident from the correspondence between
MOF and BNF in Fig. 3. Still, the CODE-artifact should not
simply be overwritten upon modifications in UML-CD since
the source code can contain intermediate local changes. This
again alludes to the aspect of incrementality, i.e only repairing
the part of a model that is affected. This is a common issue
in code generation and round-trip engineering (Antkiewicz &
Czarnecki 2008). The situation becomes more complicated
when neither model has precedence over the other. Note, that
the precedence is most likely a partial order rather than a total
one, e.g. we neither consider BPMN, DMN nor UML-CD to have
precedence over the others. Thus, there is the aspect of concur-
rency: Multiple models can be modified in parallel resulting in
conflicting versions that need manual reconciliation. Finally,
one must consider different authorities, e.g. the metamodels
in MOF and BNF are outside of the influence of the patient
referral developers and when such external artifacts evolve (see
the orange-colored arrow representing the evolution from Java
7 into Java 8), the developers have to adapt their instances but
not the other way round.

3. Model Management

Since models are the primary artifacts in MDE, one needs tools
supporting the complete life cycle of a model. This concept is
known as model management (Bernstein 2003; Bézivin et al.
2005; Paige et al. 2009) and it was first proposed in the database
domain (Bernstein 2003). It was afterwards adopted in the
MDE domain (Favre & NGuyen 2005) resulting in the notion
of a megamodel (Bézivin et al. 2004), i.e. a model whose ele-
ments are in turn models and inter-model relations. In the MDE
domain, the Eclipse Modeling Framework (EMF) (Steinberg
et al. 2008), a meta-modeling and code generation framework
quickly became the de-facto technological foundation of the
MDE community. EMF alone does not provide much more than
a common exchange format (Ecore/XMI (Object Management
Group 2015b)) and generic model editors. Thus, building on
the model management idea, several tool-“ecosystems” evolved
around EMF; e.g., the ATL (Bézivin et al. 2005) model trans-
formation engine, the Epsilon framework (Paige et al. 2009), or
the graph-based eMoflon (Leblebici et al. 2014).

In the example of the previous section, we motivated consis-

co
nf
or
m
an
ce

change

co
rre
sp
on
de
nc
e

✔	

✔	

✔	

✔	

✔	

✗

✔	

✔	

✗

Figure 4 3D Space of Model Management

tency management, which is a central task in model management
(Finkelstein et al. 1992; Nuseibeh et al. 2000; Spanoudakis &
Zisman 2001; Sabetzadeh & Easterbrook 2005) comprising
consistency verification and consistency restoration. When con-
sistency restoration is applied in an integrated manner on a net-
work of models and inter-relations, one speaks of (co-)evolution
(Lämmel 2014; Mens et al. 2005; Di Ruscio et al. 2012), i.e.
changes on one model trigger changes on other models to main-
tain global consistency. Literature distinguishes between two
cases: Horizontal and vertical evolution. Horizontal evolution
is also known as update propagation in the cross-disciplinary
research domain bx (Czarnecki et al. 2009)—keeping two re-
lated sources of information consistent with each other—while
vertical evolution is known as model migration (Gruschko et al.
2007; Hebig et al. 2017)—restoring conformance of a model
w.r.t. to its metamodel when the latter is changed.

To provide a high-level overview of model management and
evolution, we adopt the conceptual framework for model man-
agement developed by Diskin, Maibaum and collaborators in
a series of publications, see (Diskin 2009; Diskin et al. 2012,
2013, 2015). The framework organizes model management into
a three-dimensional space comprising the dimensions change,
conformance and correspondence (see Fig. 4). It comprises
models denoted by capital letters (A, B, M, . . .) and inter-model
relations denoted as arrows going into respective dimensions
(see also Fig. 3). The conformance relation, colored green and
denoted by τ, expresses that one model is an instance of (meta-
)model, see Sect. 2. The change relation, colored orange and
denoted by δ, expresses a model modification, e.g. due to new re-
quirements, regulations, technologies, etc. The correspondence
relation, colored cyan and denoted by ρ, expresses connections
between elements from disparate models, see Fig. 1.

Besides models and relations, there is a notion of consistency,
which can be thought of as a boolean property (visualized as
check- and crossmarks) attached to relations τ, δ and ρ. Con-
sistency on a conformance represents the well-known notion of
intra-model consistency, i.e. a model adhering to all syntactical
and semantical consistency rules of the respective metamodel.
Consistency on a correspondence represents inter- or multi-

4 Stünkel et al.

model consistency (Diskin et al. 2011). The notion of consis-
tency on changes alone without further associated conformance
and correspondence is less common but one may interpret it
to express the notion of authorization and validity of changes.
The final ingredient in this framework is the so-called tiling
operations r1, r2 (Anjorin et al. 2019; Diskin 2009), depicted as
chevrons. Tiles take model relations as input and produce new
models and consistent relations as output. Many model manage-
ment operations can be modeled via tiling operations (Diskin
2009). In Fig. 4, we displayed the two instances of evolution:
The top part shows an evolution of M into M′ via change δ1
such that the instance A does not conform to M′ anymore (see
inconsistent τ′1. The tiling operation r1 expresses model mi-
gration. It takes conformance τ1 and change δ1 as input and
produces the change δ2 to A such that the resulting A′ conforms
to M′ via τ2. The bottom part shows an evolution of B into
B′ via δ3 such that the original correspondence is violated (see
inconsistent ρ′1). The tiling operation r2 models update propaga-
tion. It takes correspondence ρ1 (think multi-model comprising
A and B) and change δ3 as input and produces the change δ2
such that the resulting A′ is in correspondence ρ2 with B′. In the
following sections, we will demonstrate how these two tiling
operations can be implemented by a more generic operation
called model repair (Macedo et al. 2017).

4. Model Repair
We begin with an abstract formal definition of model repair
based on (Macedo et al. 2017). To clarify the notation: Sets will
by convention start with an uppercase letter (A, B, . . . , M, . . .)
and functions start with lowercase letters (f , g, . . .). With f :
A → B being a function, we call sets A and B domain and
codomain respectively. Furthermore, there are special sets:
N = {0, 1, 2, . . .}, i.e. the set of natural numbers, and B =
{>,⊥}, i.e. the set of boolean values true (>) and false (⊥).
The cartesian product of two sets A and B is denoted A× B,
an n-ary cartesian product over A is denoted An for n ∈ N

and the powerset of a set A, i.e. the set of all subsets of A,
is denoted ℘A. Note that every n-ary product A1 × ...× An
and its subsets (relations) come equipped with a family of n
projections denoted (π1 : A1 × . . .× An → A1), . . . , (πn :
A1 × . . .× An → An).

Definition 1 (Model Repair). A model repair problem R is a
triple:

R = (MS, CR, rep) (1)

comprising

– A model space MS = (M, E, src, trg), i.e. a directed
multi-graph (transition system) with a set of models M
(states) and concrete edits E (transitions) where src, trg :
E → M assign to each edit e ∈ E the model prior src(e)
and post trg(e) to the edit. Every model space gives rise to
edit sequences E∗ (think paths in MS), i.e. ordered tuples
of updates or changes u = 〈e1, . . . , ek〉 ∈ E∗ with k ∈N

obeying the condition

∀ej, ej+1 : trg(ej) = src(ej+1) (0 ≤ j < k) (2)

� �′
�

�′

1

�′
�

�1

��

«repair»

...
Figure 5 Model Repair

The functions src and trg can be lifted to E∗ as follows:
src(u) = src(e1) and trg(u) = trg(ek) Note, that there is
a family of empty edit sequence 〈〉m ∈ E∗ for all m ∈ M
(src(〈〉m) = m = trg(〈〉m)) representing an idle update
on m.

– A system of consistency rules CR = (P, J_K) with P being
a set of predicates a.k.a. constraints and J_K : P → ℘M
being a function that assigns to each constraint p ∈ P
the set of valid instances JpK ⊆ M (semantics). This
gives rise to derived functions check : M × P → B

(check(m, p) = > ⇔ m ∈ JpK) and violations : M →
℘P (violations(m) := {p ∈ P | check(m, p) = ⊥})

– A repair function rep : E∗ → ℘E∗ that assigns to an input
edit sequence u (change) a set { f1, . . . , fl} (l ∈N) of edit
sequences (fixes).

A repair problem R is called well-behaved iff it does not
introduce new constraint violations, i.e ∀u ∈ E∗ : ∀ f ∈
rep(u) : violations(trg(f)) ⊆ violations(trg(u)). It is
called consistency improving iff the fix produces a “less-
inconsistent” result, i.e. ∀u ∈ E∗ : ∀ f ∈ rep(u) :
violations(trg(f)) \ violations(trg(u)) 6= ∅, and iff addi-
tionally the result shows no inconsistency, i.e. ∀u ∈ E∗ : ∀ f ∈
rep(u) : violations(trg(f)) = ∅, it is called fully consistency
restoring (Macedo et al. 2017).

Fig. 5 provides a graphical intuition for Def. 1: Models are
depicted as rectangles and edit sequences are depicted as orange
arrows. The repair function is shown as a fat shaded arrow. In
general, the repair should not produce arbitrary fixes for a given
update but strive to produce consistent results (note the coloring
of the models: red for inconsistent and green for consistent)
— hence the notion of well-behaved, consistency improving
and fully consistency restoring. They have been introduced in
(Macedo et al. 2017) as the three stages of correctness, the core
property of model repair.

Furthermore, note that the codomain of the repair function
is a powerset. Thus, a repair may produce no result (empty
set), exactly one result (singleton set), or many results; see the
discussions about ambiguity in Sect. 2. Ambiguity and uncer-
tainty (Eramo et al. 2015) usually necessitate human interaction,
policies, metrics and/or randomness in the repair process. A
repair function is said to be complete (Hermann et al. 2011)
when for any input at least one result is produced, i.e. there
are no non-repairable models. Moreover, model management
in practice involves repeated invocations of the repair function,
i.e. multiple instances of Fig. 5. Results of later repair invoca-
tions can depend on the results of previous invocations; see e.g.
the Scenario 1 in Sect. 2 where the outcome of the first repair

Multi-Model Evolution through Model Repair 5

step affects the repair in the second step. Thus, incrementality
(Egyed 2007; Diskin et al. 2010) is an important issue in model
repair. A model repair function may further be composed of
other repair functions. Compositionality (Foster et al. 2007;
Diskin et al. 2019), i.e. preservation of properties from elemen-
tary model repair functions under composition is another aspect
of model repair that has been a focus of many theoretical studies
in this area, such as (Johnson & Rosebrugh 2017, 2016).
Remark 1 (State-Based vs. Delta-Based). Our Def. 1 is con-
sidered delta-based (Diskin et al. 2010) since rep works with
changes as inputs and outputs. Alternatively, we could have
provided a state-based definition of model repair, which takes
an inconsistent model as input and produces possible consistent
models as output. The state-based notion is popular especially
among implementations that are based on model finding and
logical solvers (Eramo et al. 2012; Kleiner et al. 2010). How-
ever, the delta-based setting is “richer” because it provides full
traceability. Moreover, the state-based setting is subsumed
by Def. 1 when considering MS to be strongly connected, i.e.
E = M×M, src = π1, trg = π2 and the existence of a spe-
cial empty model 0 ∈ M such that inputs to rep are of the form
(0, m) ∈ E for any m ∈ M.

We can already use the notion of Def. 1 to implement model
migration: A metamodel can be interpreted as a system of
consistency rules and conformance is given when the instance
satisfies all rules. Updating the metamodel means changing
the consistency rule set. To co-evolve the instance, we apply
the model repair operation with respect to the new consistency
rule set. Usually, conformance also comprises structural typing,
which requires additional treatment and we will discuss this
further in Sect. 6.6. The other evolution operation in model
management—update propagation—cannot be modeled directly
by Def. 1 and requires an extension of the theoretical framework,
which we discuss in the following section.

5. Generalization: Multi-Model Repair
The repair function defined in the previous section cannot di-
rectly be applied to our scenarios in Sect. 2. The obvious mis-
match is that a multi-model is based on a multi-ary correspon-
dence relation comprising a collection of models m1, . . . , mn
(n ∈N) while the repair function is based on a single model.

The abstract formal framework proposed by Stevens (Stevens
2008), which is considered the foundation of bx research disci-
pline, extends model repair to a binary setting:

Definition 2 (Pairwise Model Synchronization). A pairwise
model repair (synchronization) problem is a quintuple

S = (S, T, R, fRep, bRep) (3)

comprising

– A source model space S = (MS, ES, srcS, trgS).
– A target model space T = (MT , ET , srcT , trgT).
– A correspondence relation R ⊆ MS ×MT .
– A forward repair (propagation) function f Rep : E∗S ×

MT → ℘E∗T such that ∀u ∈ E∗S, t ∈ MT : ∀ f ∈
fRep(u, t) : srcT(f) = t.

– A backward repair (propagation) function bRep : MS ×
E∗T → ℘E∗S such that ∀u ∈ E∗T , s ∈ MS : ∀ f ∈
bRep(s, u) : srcS(f) = s.

When comparing Def. 2 to Def. 1, the local consistency rules
CR are replaced by a global correspondence relation R. Pred-
icates and their semantics can be seen as a unary relation on
M. Thus, we can derive the function checkR : MS ×MT → B.
Furthermore, there are two repair functions. The idea is that a
local update happening in S or T violates the consistency of a
pair (s, t) ∈ MS ×MT , which is resolved by calculating a fix
for the related model space. Correctness and other model repair
properties can be seamlessly transferred to pairwise model syn-
chronization. However, there is a new aspect because one now
has to work with different paradigms (Diskin et al. 2011) due
to heterogeneous model spaces.

In general, for n ≥ 2, the above notion becomes infeasible
since it requires forward/backward repair functions for each
pairing over the n models and not every n-ary relation can be
factored into a binary relation, see (Klare et al. 2019; Stevens
2017). As a result, there has been an increased interest in keep-
ing more than two models consistent, see e.g. (Cleve et al. 2019).
One generic alternative approach resulting from these recent
research activities is a reification of correspondence relations
(Diskin et al. 2019), i.e. a global system, which internalizes
models and correspondences:

Definition 3 (Multi-Model Synthesis, see Fig. 6). Let k ∈ N

and MS1, . . . , MSk a set of local model spaces, CR1, . . . , CRk
local consistency rules on these model spaces. Furthermore, let
R ⊆ M1 × . . .× Mn an n-ary correspondence relation with
n ∈N. A multi-model synthesis w.r.t. R is a sextuple

MR = (MS+, CR+, glob, proj, rules, comb, deriv) (4)

comprising

– A global model space MS+ = (M+, E+, src+, trg+)
comprising all local model spaces, i.e MS1 ⊆
MS+, . . . , MSk ⊆ MS+.

– Global consistency rules CR+ = (P+, J_K+), which
encompasses all local consistency rules, i.e. P1 ⊆
P+, . . . , Pk ⊆ P+ and JpKj ⊇ JpK+, for all p ∈ Pj(1 ≤
j ≤ k).

– A global view function glob : R → M+ that reifies a
correspondence relation as a global model.

– A projection function proj : MS+ → R that restores the
underlying correspondence relation of a global model such
that:

∀r ∈ R : proj(glob(r)) = r. (5)

– A function rules : R→ P+ that translates the underlying
semantics of a correspondence relation into a representa-
tion as global consistency rules.

– An edit combination function comb : R × (E∗)n →
(E+)∗ that translates a collections of edits on multi-model
components into a global representation such that it holds:

∀r ∈ R, (u1, . . . , un) ∈ (E∗)n : glob(r) =

src+(comb(r, u1, . . . , un)).
(6)

6 Stünkel et al.

...

«combination»

«repair» & «disambiguation»

«globalView» «projection»
«derivation»

(II)

(III)

(I) (III)

Figure 6 Global and Local Notions of Repair

– A function deriv : (E+)∗ → (E∗)n that derives a local
representation as a family of n updates from a global up-
date such that it holds

∀u+ ∈ (E+)∗, 1 ≤ i ≤ n :

πi(proj(src+(u+))) = srci(πi(deriv(u+))) ∧
πi(proj(trg+(u+))) = trgi(πi(deriv(u+)))

(7)

To illustrate Def. 3 consider Fig. 6: On the bottom left there is
a collection of n models grouped into k model spaces and among
them is a correspondence r. The whole collection forms a multi-
model. Now, we consider a family (u1, . . . , un) of updates
(some of them probably being idle) on this multi-model. Using
comb, we construct a global representation u+ of this family of
updates. Thus, we can reuse an existing repair mechanism on
MS+ w.r.t. CR+ to produce fixes on the global view. Given
that this repair produces at least one correct result and there is a
disambiguation procedure (e.g. user interaction), we get a fix f+

resulting in m?. Finally, we can use deriv to derive a family of
fixes (f1, . . . , fn) resulting in an updated correspondence (multi-
model) r′. This allows us to implement the update propagation
via classical model repair leveraging multi-model synthesis.

Synthesis shows well-behaved compositional properties,
which were theoretically investigated in (Diskin et al. 2019),
and allows reuse of existing research on model repair (Macedo
et al. 2017). Still, it is dependent on several technical and con-
ceptual premises. On the technical side, one has to consider
that the models are generally based on heterogeneous modeling
formalisms (Diskin et al. 2011). Thus, there is a hidden re-
quirement for a common metalanguage (Stünkel et al. 2020) to
serve as an underlying carrier format. Another technical aspect
that is often neglected is communication: There are different
ways to facilitate information exchange, e.g. file transfer, shared
databases, remote procedure calls (RPC), or messaging (Hohpe
& Woolf 2012). Model management often assumes that all mod-
els are accessible in a single data store. On the conceptual side
one has to consider that there may be authority, privacy and
concurrency issues, which are hidden by the construct in Def. 3.

In Sect. 2, we shortly discussed authority and precedence of
some model (spaces) over the others. Thus, repair has to take
into account that some models (elements) are rather allowed
to change than others. Privacy restricts the degree of informa-
tion that can be shared globally, which aggravates consistency
verification and model repair. Finally, the members of a multi-
model may be subject to concurrent updates where each update
is consistent in itself but in parallel it results in an inconsistent
state. Thus, multi-model synchronization (Antkiewicz & Czar-
necki 2008) shows similarities to optimistic replication (Saito
& Shapiro 2005) in distributed systems, which has only been
investigated by a minor number of publications (Xiong et al.
2013; Hermann et al. 2012) while the majority of publications
pertains to a serial (Diskin et al. 2019; Hermann et al. 2011)
setting where changes only happen on one model at a time. We
will investigate these details in greater detail in Sect. 6.5.

6. State of the Art
In the previous sections we have introduced the core concepts
of model management, i.e. models, the three relations change,
conformance and correspondence, as well as the repair opera-
tion, which is central for implementing model (co-)evolution.
The remainder of the paper will provide an overview of existing
work and approaches. There are several existing surveys in
different sub-domains, i.e. model repair (Macedo et al. 2017),
update propagation (bx) (Anjorin et al. 2019; Hidaka et al. 2016;
Diskin et al. 2016), multi-view modeling (Cicchetti et al. 2019;
Bruneliere et al. 2019; Knapp & Mossakowski 2018), and model
migration (Hebig et al. 2017). Naturally, there are several over-
laps between these surveys both w.r.t. references and feature
models, which are used to classify findings.

To provide a comprehensive overview of the state of the art,
we develop a feature model that accommodates for the findings
in the above surveys and is aligned with the model management
framework depicted in Fig. 4. The top layer of our feature
model is depicted in Fig. 7, where clouds are used to relate the
topmost abstract features to the respective model management

Multi-Model Evolution through Model Repair 7

Model
ManagementModels

ConsistencyChanges

Repair

Multi-ModelsFormats

Approaches

Resolutions

✔	 ✗

Figure 7 Feature Model Overview

concept (the legend applies for all the following figures). In the
following subsections, we will provide a detailed explanation
of each abstract feature.

6.1. Survey Method
Our literature study is not a systematic literature review or
systematic mapping study (secondary study) as described e.g.
in (Kitchenham et al. 2007) but instead a meta-analysis (tertiary
study) of the existing surveys mentioned above. We started by
reading those surveys, collecting and reviewing the contained
references, and finally comparing the feature models from each
survey. Afterward, we identified the common features and
developed our comprehensive feature model in alignment with
the model management concepts from Sect. 3, which is based
on the model repair feature model in (Macedo et al. 2017).

6.2. Models Feature
Models are the elementary artifacts in model management and
thus a core feature (it was termed Domains in (Macedo et al.
2017)) which mainly distinguishes technological space (con-
crete syntax (Cicchetti et al. 2019)) and formal (abstract syntax)
representation (see Fig. 8).

Technological Space Model management in the database do-
main, e.g. schema migrations and view updatability (Roddick
1992; Bancilhon & Spyratos 1981), is based on SQL. Some ap-
proaches are specific for a certain programming language (PL).
Most common choices are JVM languages (Buchmann 2019;
Leblebici et al. 2014), the .NET framework (Hinkel & Burger
2019), Haskell (Ko et al. 2016) and Prolog (Pinna Puissant et al.
2012). Arguably, the majority of tools uses XML, where we can
further classify free form or custom schema approaches (Nen-
twich et al. 2003) and specific XML schemas (Reder & Egyed
2012) such as XMI, which is the OMG standard for encoding
UML and MOF models. The popular EMF framework (Stein-
berg et al. 2008) is based on a simplified MOF metamodel and
utilizes XMI to encode metamodels and models. Remaining
technologies, such as e.g. the graph language DOT (Hidaka et
al. 2011), constitute only a small share grouped as Other.

Formal Representation Arguably, the most simple modeling
formalism is to consider a model as a set of its elements (Foster
et al. 2007). Research in the database domain (Bancilhon &
Spyratos 1981) naturally utilizes the relational model (Codd

1970) as a formal underpinning. A different, but formally equiv-
alent, approach is to consider a model as a set of facts i.e. logical
sentences. This is the standard formalism for tools based on
solvers (Macedo & Cunha 2016; Cicchetti et al. 2011). In func-
tional programming (Ko et al. 2016), the metamodel is defined
via abstract datatypes, which abstractly represent trees. Strictly
more general than trees are graphs (Hidaka et al. 2011), which
allow for cyclic relationships between elements and are consid-
ered a standard means for depicting structured information in
Computer Science. The object oriented (OO) formalism (Reder
& Egyed 2010; D. Kolovos et al. 2008) combines aspects of
both graphs and relational formalisms and adds additional fea-
tures such as inheritance and constraints. The most abstract for-
malism (Hinkel & Burger 2019; Boronat & Meseguer 2010) is
given through concepts borrowed from Category Theory (Barr &
Wells 1990), which generalize all of the above, see e.g. (Diskin
& Wolter 2007; Rutle et al. 2012)

6.3. Changes Feature
There is no evolution without changes, a core feature shown in
detail in Fig. 9. Models and changes together are featured as
model spaces in Def. 1 .

Representation and Definition In Remark 1 in Sect. 4, we
discussed the two paradigms for representing changes: Either
a change is identified with its result (Bancilhon & Spyratos
1981; Foster et al. 2007) (state-based) or a change is an entity
on its own right (Bergmann et al. 2012; Diskin et al. 2010)
(delta-based). A delta can be represented in a structural or
operational way (Anjorin et al. 2019). Structural deltas (Diskin
et al. 2010; Hermann et al. 2011) are traceability links depicting
which elements are added, which are deleted, and which remain
unchanged. Operational deltas (Hofmann et al. 2012) are the
actual method invocations being executed. Another feature
aspect is the distinction whether the set of edits is undefined1

(when any kind of modification is a valid change), fixed (Reder
& Egyed 2012) or customizable (Macedo & Cunha 2016) by
composition of elementary built-in operation. Note that a state-
based change representation does not always imply an undefined
edit set: See e.g. (Macedo & Cunha 2016), which presents
changes in a state-based manner but allows the definition of
custom changes to influence the model finding process. Another

1 Strictly speaking it is not undefined: In this case it holds E = M×M.

8 Stünkel et al.

approach is to consider changes being implicitly derived from
the respective metamodel (Kehrer et al. 2016).

Types and Recording An approach may optionally consider
different types of changes to be possible/allowed. We distin-
guish between atomic (indivisible) and complex (compositions
of atomic) changes. The majority of model management frame-
works supports the elementary operations: Insert, Update and
Delete. Note, that it is important to consider Rename as a sep-
arate operation even though it could be modeled as a delete
followed by an insert, since it can cause rather different side
effects, especially in model migration (Hebig et al. 2017). Some
researchers also consider more elaborate atomic changes such
as Move, Copy and Merge (Hebig et al. 2017). Most com-
plex changes are represented as a sequence of atomic changes.
However, there are approaches that also consider changes hap-
pening in parallel (Xiong et al. 2013) or even contingency plans
(Pinna Puissant et al. 2015), which account for different possi-
bilities.

Changes are recorded either offline (statically presented to
the tool) or online, i.e. the tool actively records the changes
itself. This can happen intrusively (i.e. the user has to use a
special interface to record changes) or non-intrusively (i.e. the
user remains unaware). The advantage of online recording is
its ability to immediately represent the change. Offline change
recording may provide insufficient information, e.g. only pro-
viding the new model state. In this case, Change Identification
(Alanen & Porres 2003; D. S. Kolovos et al. 2009; Rivera &
Vallecillo 2008) is necessary to identify the type of the change
and calculate the change representation. Change Identification
is a sophisticated problem on its own, a good starting point for
further reference is found in (Hebig et al. 2017).

Meta-Information The most common example of change
meta-information is some sort of version history, e.g. the previ-
ous state of the model before the change. A delta-based change
representation implies that this information is always available.
Additionally, the model management tool may have access to

the complete version history of a model. Furthermore, each
change can provide environment information, e.g. user cre-
dentials, the date and time of when the change happened, a
reference to external documents etc.

6.4. Consistency Feature
Fig. 10 depicts the consistency feature. Abstractly, consistency
is given by a set of rules, see CR-1 in Sect. 2 and CR in Def. 1.
Consistency rules are generally attached to conformance re-
lations (intra-model consistency) or correspondence relations
(inter-model consistency).

Definition The set of consistency rules is either builtin (Reder
& Egyed 2012), customizable via combinator libraries (Ko et
al. 2016; Foster et al. 2007), grammars (Hermann et al. 2011),
logical theories (Eramo et al. 2012; Macedo & Cunha 2016),
and/or defined externally (Pinna Puissant et al. 2015; Nuseibeh
et al. 2000). Combinator libraries are primarily utilized in
functional programming based synchronization tools, where the
notion of consistency is implicitly derived from the semantics
of a set of builtin predicates and composition operators. In
Grammar-based approaches such as algebraic graph grammars
(AGG) (Ehrig et al. 2006; Biermann et al. 2008) and triple
graph grammars (TGG) (Schürr 1994; Hermann et al. 2011;
Leblebici et al. 2014) consistency arises as the set of (multi-
)models that can be derived through applications of grammar
rules. The implementation of the consistency check is thus
based on pattern matching (Macedo et al. 2017). Formally,
graph grammars are equally expressive as variants of first-order
logic (FOL) (Courcelle 1997; Habel & Pennemann 2009). A
common formulation of consistency is by utilizing is a logical
theory such as FOL (Huth & Ryan 2004). In MDE, the Object
Constraint Language (OCL) (Object Management Group 2012)
is a widely used formal language to define domain-specific
consistency rules that cannot be expressed by means of the
modeling language. Externally defined consistency rules are
outside of the reach of the model management tool, i.e. they
rely on external tools or user interaction.

Models

Tech-
Space

XML

SQL

Free
Form

XSD

XMI

EMF

PL

Other
JVM

.NET

Haskell

Prolog

Formalism

Set-
based

Logical

Trees

Relations

Graphs

Object
Oriented

Category
Theory

Figure 8 Models Feature

Multi-Model Evolution through Model Repair 9

Changes

Representation Definition

Types Recording Meta-
Information

State-
Based

Delta-
Based

Structural
Delta

Operational
Delta

Undefined

Fixed

Customizable

Atomic

Complex Offline Online

Intrusive Non-
Intrusive

Change
Identification
Procedure

HistoryEnvironment
Data

Rename

Insert

Update

Delete

Move

Merge

Copy Sequence Parallelism Contingency
Plans

Previous
State Complete

Figure 9 Changes Feature

Checking A consistency check may be performed on on-
demand (Leblebici et al. 2014; Eramo et al. 2012) (i.e. the
user explicitly invokes a check function) or event-based (Hinkel
& Burger 2019; Macedo & Cunha 2016). The check is per-
formed automatically or manually, e.g. if definition of the
consistency rules is external. The information contained in the
consistency report differs from tool to tool. The plainest type
is a boolean (Ko et al. 2016) saying if the model is consistent
or not. More instructive than a boolean is a number telling how
many constraints are violated. The most insightful report addi-
tionally associates violated consistency rules with the elements
(Reder & Egyed 2012) that are violating it. Another option is
to directly point to the goal for the subsequent repair process
(Pinna Puissant et al. 2015).

Inconsistency Levels and Meta-information One may further
consider different levels of consistency rules. An example is
a distinction between proper constraints (mandatory) and cri-
tiques (optional) (D. Kolovos et al. 2008). The number of such
levels is either fixed by the framework or customizable.

Finally, consistency rule can be augmented with different
meta-information. One type of such meta-information is the
scope (arity) (Diskin & Wolter 2007; Rutle et al. 2009) of the

consistency rule, i.e. the elements affected by a certain rule.
This can be used to implement efficient checking via localization
(König & Diskin 2017). In rule-based repair approaches, there
is a tight relationship between the definition and consistency
rules, see Sect. 6.7. This means that a consistency rule already
provides information about how it can be resolved in case of
inconsistency. We name this principle repair hints and they
can be quite blatant (Ko et al. 2016; Hinkel & Burger 2019;
Samimi-Dehkordi et al. 2018) (explicitly telling how to fix
the inconsistency) or rather subtle as in the TGG framework
(Hermann et al. 2011). A notable example of such subtle hints
are constructive axioms, i.e. consistency rules defined as a horn
clause (e.g. grammar rules), which can be directly translated
into a repair rule (Cohn 1965).

6.5. Multi-Models Feature

In general, model management also implies multi-modeling,
i.e. one has to deal with a collection of models and relations
between them. Multi-Models are a central research object in
megamodeling (Favre & NGuyen 2005; Stevens 2020), multi-
viewpoint modeling (Cicchetti et al. 2019; Bruneliere et al.
2019) and model synchronization (bx) (Anjorin et al. 2019).

ConsistencyDefinition Check

Meta-
Information

Inconsistency-
LevelsBuiltin

Customizable

External

Combinator-
Library

Grammar

Logical
Theory

FOL

OCL

...

Execution

Invocation

Reporting

Manual

Automatic

On-
Demand

Event-
Based

Boolean

Rules
ElementsGoals

Unmodifiable Modifiable

Scope Repair-
Hints

Figure 10 Consistency Feature

10 Stünkel et al.

Multi-
Models

Correspondence

Paradigms

Precedence/
Authority

Privacy

Communication

Concurrency

Homogeneous

Heterogeneous

Typing

Tech
Spaces

Formalisms

Arity

Binary Multi-ary

Informational
Overlaps

Asymmetric Symmetric

Representation

Trans-
formations

Traceability
Links

System
Model

Model
Enrichment

Definition

PredefinedCustomizable

Formulas/
Rules Keys External Matching

Procedure

Properties

SynthesisMerging

Language-
Extension

Preexisting

Constructed

Serial

Parallel

Model
Space
Level

Model
Level

Element
Level

Figure 11 Multi-Models Feature

Naturally, they form one of the core features, which is detailed
in Fig. 11.

Correspondences The most important sub-feature of multi-
models is the correspondence relation, which sets a collection
of models in relation. The majority of approaches consid-
ers correspondences to be structurally represented (Bernstein
2003; Aizenbud-Reshef et al. 2006; Feldmann et al. 2019; Klare
& Gleitze 2019; Stünkel et al. 2018; Schürr 1994) in some
way but it is also possible to consider correspondences as a
black box that is handled outside of the model management
framework (Stevens 2020). Based on the findings in (Knapp &
Mossakowski 2018; Klare & Gleitze 2019; de Lara et al. 2018)
we identify four primary ways of expressing correspondences.
Multi-viewpoint modeling (Atkinson et al. 2010; ISO/IEC JTC
1/SC 7 Software and systems engineering 2011) distinguishes
between projective and synthetic view modeling, where projec-
tive means that there exists a single underlying system model
and every view model is a projection from parts of this model.
Thus, such system models establish correspondences. In the syn-
thetic approach there is no such pre-existing system model and
correspondences have to specified differently. One of the most
common approaches is based on traceability links (Feldmann et
al. 2019; Samimi-Dehkordi et al. 2018; Aizenbud-Reshef et al.
2006) also known under the terms: mappings (Bernstein 2003),
cross-references (de Lara et al. 2018), commonalities (Klare &
Gleitze 2019), or correspondences (Stünkel et al. 2018; Schürr
1994). It means to augment models with an external storage of
links, which relate elements from different models. These links
can have different semantical interpretations (e.g. similarity,
generalization, aggregation, dependency etc.) and may have
their own type system (Feldmann et al. 2019; El Hamlaoui et

al. 2018). Most programming-based model synchronization
approaches (Ko et al. 2016; Foster et al. 2007; Hinkel & Burger
2019) chose a different approach that is called heterogeneous
transformations in (Knapp & Mossakowski 2018). Model cor-
respondences are not explicitly reified in a system model or as
traceability links but implicitly via transformation functions be-
tween each pair of models, which translate one model in another,
see Def. 2. The fourth and final representation, we call for model
enrichment (Engels et al. 2000; Knapp & Mossakowski 2018).
It is based on augmenting models and/or their metamodels (de
Lara et al. 2018) locally with elements from other models.

The correspondences itself may either be predefined (a clas-
sic example is the UML metamodel itself (Reder & Egyed
2012)), customizable or a mix of both. For customization
means, we distinguish between external, formulas, and keys.
External correspondence definitions are given to the model man-
agement tool from the outside (Samimi-Dehkordi et al. 2018),
while formulas provide a logic based interface to flexibly define
correspondences. An example is the QVT-r language (Object
Management Group 2016a; Macedo & Cunha 2016), where de-
velopers can define correspondences with the expressive power
of OCL. Keys are a less-expressive but are a very efficient vari-
ant, where elements are set in relation based on the value of a
certain property (often their name). It is often used in combina-
tion with a system model based correspondence representation.
To retrieve a correspondence representation w.r.t. a correspon-
dence definition, a model matching procedure (Ehrig et al. 2008;
Barbosa et al. 2010; Brunet et al. 2006) may be required; see
change identification in Sect. 6.3. This can be a complicated en-
deavor as it is an NP-complete problem (Rubin & Chechik 2013)
and often requires human interaction. Furthermore, since corre-
spondences involve multiple models this may require multiple

Multi-Model Evolution through Model Repair 11

stakeholders to agree. An interesting approach to this problem
uses collaborative decision making is found in (Bennani et al.
2019).

Characteristic properties of correspondences are arity and in-
formational overlaps. Traditionally bx research has focused on
binary correspondences (Foster et al. 2007; Stevens 2008), but in
practice multi-ary relations are common too, which sparked in-
creased interest in the scientific community on this topic (Cleve
et al. 2019; Diskin et al. 2018; Stevens 2020). One possibility is
to model multi-ary correspondences through a network of binary
ones but there are multi-ary relations that cannot be factored
this way (Stevens 2017; Klare et al. 2019). Informational over-
laps were thoroughly investigated in (Diskin et al. 2016) which
used the terminology symmetric vs. asymmetric, which in turn
stems from the lens framework (Johnson & Rosebrugh 2017).
An asymmetric lens describes a situation where all information
in one (view) model can completely be derived from another
(source) model, whereas in symmetric lens each model contains
information which is not also present in the respective other.

Paradigms and Synthesis One has to consider that the mem-
bers of a multi-model stem from different model spaces and
thus are based on heterogeneous modeling paradigms, i.e. differ-
ent technologies and/or formalisms. Early model management
approaches (Sabetzadeh & Easterbrook 2005) required a ho-
mogeneous setting, i.e. all models are members of the same
model space. A middle ground treats models heterogeneously
typed (Diskin et al. 2011), i.e. one can encode them as arti-
facts conforming to different metamodels but using a common
meta-language, e.g. a standard exchange format such as Ecore-
metamodels or a universal formalism such as e.g. (attributed)
type graphs.

Another aspect is whether the model management environ-
ment considers an explicit synthesis, see Def. 3, i.e. a way of
representing a whole multi-model as a single artifact. Note that
in case of projective multi-viewpoint modeling, this artifact is
already present. In the synthetic case, one may construct it using
one of the two following alternatives that have been identified
in the literature: Merging (Pottinger & Bernstein 2003; Sabet-
zadeh & Easterbrook 2005; Brunet et al. 2006) and Language
Extension (Stünkel et al. 2020; Feldmann et al. 2019; Rabbi et
al. 2014). Intuitively, merging means to collect the elements
from all models into a new model wherein corresponding ele-
ments are identified. This construction was fully formalized in
a series of papers (Diskin et al. 2011; König & Diskin 2016,
2017) based on the categorical concept of a colimit. A difficulty
with model merging is that different multi-models may result in
the same merge, which leads to problem if one wants to restore
the multi-model representation from a merge. The language
extension approach was formally investigated under the name
comprehensive systems in (Stünkel et al. 2020). Here, elements
from all models are collected like in the merge approach but
instead of identifying elements, the correspondences are in-
ternalized as structural links by means of the representation
language, which may require a linguistic extension (Atkinson &
Kühne 2001) of the modeling language to express the structural
correspondences, see e.g. (Rabbi et al. 2014). This approach is

heavily used in practice, however, in a formally less rigorous
way, see e.g. (Feldmann et al. 2019).

Authority, Privacy, Communication and Concurrency Sce-
nario 2 in Sect. 2 showed that multi-modeling involves a no-
tion of precedence/authority. It was thoroughly investigated in
(Diskin et al. 2016) where it was termed organizational sym-
metries, i.e. change propagation is only allowed in certain
directions. The easiest variant defines precedence on the level of
model spaces (Stevens 2018) but we may also have to consider a
precedence hierarchy among models inside a model space. The
most fine-grained but also most complicated notion is to define
precedence on the level of model elements.

The importance of Privacy (Johnson & Stevens 2018) has
been identified in bx recently and it was pointed out that it so
far has received less attention in the literature. However, in
practice it plays a major role in many scenarios with strict legal
privacy requirements, e.g. the health care sector. Concretely,
this means that not all information contained in a model is
actually accessible for consistency checking and/or repair. It
necessitates additional filtering/obfuscation and increases the
degree of manual activities due to approval processes.

Technical communication issues among multiple systems
(=models) (Hohpe & Woolf 2012) are traditionally not inves-
tigated in the model management literature since most works
abstract away from these technical aspects. These problems be-
long to the research field of distributed computing (Tanenbaum
& Steen 2007) but may be necessary to take into consideration
when working with models, which are only accessible behind
web service interface

Finally, concurrency is an important and challenging aspect,
i.e. changes can happen to multiple models and approaches may
require them to be serialized (Diskin et al. 2019) (on at a time)
or allowed to happen in parallel (Xiong et al. 2013; Hermann et
al. 2012), see complex change types in Sect. 6.3. Authority can
play an important role in coordinating conflicts, which however
can lead to overwritten changes and information loss.

6.6. Formats Feature
Every model has to conform to a specific format, otherwise
it would not be possible to process them electronically. The
respective core feature is detailed in Fig. 12.

Conformance Conformance is the relation between a model
(the instance) and its metamodel (format). It is generally ex-
pressed via rules (Paige et al. 2016) also called constraints in
this context to ensure that the instance is semantically valid,
see Sect. 6.4. In addition, most notions of conformance com-
prise typing, i.e. every instance-element is assigned to an an
element (concept) from the format. This is sometimes referred
to as an abstract syntax representation (Cicchetti et al. 2019).
Furthermore, a format may already come equipped with a con-
crete syntax, which can be a textual notation or a graphical
visualization. Thus, conformance also refers to this aspect.

Representation Since models are represented using different
technological spaces and formalisms, formats come in different
shapes as well. Hence, our usage of the neutral term format

12 Stünkel et al.

Formats Migration

Modifications

Representation
Free

Restricted

Predefined

Customizable

Manual

ExecutionConformance

Typing

Constraints

Semi-
Automatic

Automatic

CoExistence
Period

Concrete
Syntax

Type
System

BNF
Grammar

Relational
Schema MetamodelType

Graph
Algebraic
Signature

Knowledge
Base

Conservative
Copy

Figure 12 Format Dimension

instead of common terms such as metamodel, type or schema to
avoid confusion with the concrete characteristics of the represen-
tation feature. In the technical space of programming languages,
the format is expressed as a BNF grammar (Vermolen & Visser
2008). In the database world, relational schemas are used (Ban-
cilhon & Spyratos 1981). When using a logical representation,
the format may be represented as a knowledge base (Pinna Puis-
sant et al. 2015), i.e. collection of facts, and instances are those
sentences that can be derived from the knowledge base. Type
systems are common for approaches based on functional pro-
gramming (Ko et al. 2016). Algebraic signatures are yet another
formal format (Boronat et al. 2009). Type graphs are used as
the format representation in graph based formalisms (Biermann
et al. 2008), i.e. a distinguished graph is selected as the type
and all graphs possessing a structure-preserving mapping into
the type graph are valid instances. Finally, many works in MDE
work with metamodels, which formally combine aspects of a
type graph with (OCL) rules. An important feature is that a
metamodel is a model itself, which conforms to yet another
metamodel thus allowing concepts such as deep metamodeling
and multi-level modeling (Kühne 2006).

Migration Some model management approaches may support
migration, i.e. allowing the format to be changed as well (Hebig
et al. 2017; Rose, Herrmannsdoerfer, et al. 2014; Rose, Kolovos,
et al. 2014). Here, we can first distinguish between the types
of modifications that are possible on the format. If we can
apply the same changes on formats as we do on instances, we
will call them free otherwise restricted. These restrictions may
either be predefined or customizable, e.g. the developer can
specify allowed metamodel modifications (and how to react on
them) beforehand (Mantz et al. 2015). Next, there are different
ways of how the migration is executed. To the extremes, it
may either be a complete manual or automatic process. Most
commonly it is a combination of both, where the first step of
the migration can be executed automatically (e.g. removing all
elements typed over deleted elements) followed by a second
step, which requires human interaction and/or supervision. In
(Rose, Kolovos, et al. 2014), the authors identified a concept
called conservative copy, i.e. a part of the current instance that
is unaffected by changes happening on the format. In this case,

the migration can be executed by first taking a conservative
copy and then invoking multiple rounds with model repair on
the invalid parts to eventually yield a valid instance. Finally,
migration may involve a period of co-existence between the old
and new version of the format. This is especially common for
databases, which are used by many client systems that need to
be granted a transition period towards the new format (Ambler
& Sadalage 2006).

6.7. Repair - Approaches Feature
The most important part of the repair approaches feature dimen-
sion, depicted in Fig. 13, is the abstract sub-feature Implementa-
tion: The vast-majority of approaches can be classified into two
main paradigms: Rule-based and Search-based.

Search-based Solutions The generic search-based approach
is intuitively described as letting the procedure figuring out a so-
lution by “trial-and-error”. A repair problem is easily conceived
as a search problem: The model space represents a transition
system by definition (see Sect. 4). It comprises a state space
given by the set of all models M. The transitions are given by
the set of all edits E. The start state is given by the input (trg(u))
and the consistency rules define goal states, i.e. those models
m ∈ M which are considered consistent (violations(m) = ∅).

The strength of this approach is its domain independence
and it can easily be adapted to new or changed scenarios. The
weakness and thus the biggest challenge of this approach is
its computational complexity. Already for a small input, the
naive atomic search (Silva et al. 2010; Kessentini et al. 2019)
quickly runs out of time and/or memory. It is well known,
that so called heuristics can improve the efficiency of search
algorithms to make complex problems tractable (Pearl 1981).
However, finding a suitable heuristic function remains tricky.
One may think of generic heuristic function such as the number
of violations, however, domain specific knowledge tends to
provide even more effective heuristics.

A common variation of the naive atomic search is to consider
the problem as a constraint satisfaction problem (CSP) problem:
In CSP, search space states are not atomic but have an internal
structure. This structure is given by a set of variables, where
each variable can take one value from a given domain and every
variable is subject to one or more constraints. This factored

Multi-Model Evolution through Model Repair 13

Approaches

Implementation

Search
Based

Rule
Based

Universal
Solutions

Heuristics Engine

Atomic
Search CSP Solver

SAT SMT ASP Optimizer

Operational Declarative

Syntactical Semantical Generative Analysis

Human
Interaction

Upfront

Default
Values

Cost
Declaration

Policy
Declaration

Interactive

Result
Selection

Enter
Values

Strategy
Selection

Learning

Incrementality

Invocation

Manual

Automatic

Rule
Declaration

Figure 13 Repair - Approaches Feature

presentation allows for a much more effective search because
searching means to vary the value of those variables, which are
affected by a constraint violation.

Yet another approach is Satisfaction (SAT) solving. It actu-
ally represents a special case of a CSP where all variables are
boolean and all constraints must be formulated as propositions.
The so-called SAT-solvers represent their own research domain,
which has produced remarkable results and performance im-
provements that can be exploited for implementing model repair.
The translation of a whole problem domain together with its
behavior and constraints into representation solely consisting of
boolean variables and propositions quickly leads to a prolifera-
tion of variables and propositions. Thus, a more convenient and
high-level way is to use a Satisfaction Modulo Theories (SMT)
solver, which offers a more abstract interface by providing a set
of built-in theories, e.g. arithmetics on integers, manipulations
of character-strings, etc. These theories have their own highly
optimized translation into the underlying SAT-presentation. An
example of an SMT-solver that is often used in the context of
object-oriented modeling is Alloy (Jackson 2016), which offers
a built-in relational theory that in turn resembles object-oriented
design and notation. SMT-solvers are a popular choice for
model repair and used in a wide number of approaches, e.g.
(Kleiner et al. 2010; Straeten et al. 2011; Macedo & Cunha
2016).

The technique used in SAT and SMT solving is called model
checking, i.e. enumerating all possible models until a solution
is found. Instead of using model checking, one can alternatively
use syntactical reasoning: The dynamics (possible changes) of
the domain are encoded in logical statements and the repair is
formulated as a query asking whether a consistent model state
can be reached by a sequence of changes. When the query
can be fulfilled in the present knowledge base by syntactical

reasoning, a repair is found. Implementations of this approach
are Logic Programming (LP), Constraint Logic Programming
(CLP) and Answer Set Programming (ASP) (Pinna Puissant et al.
2015; Eramo et al. 2012; Cicchetti et al. 2011) . Due to its nature
there are certain restrictions on the type of logical sentences that
can be used, e.g. they must be quantifier free, do not contain
negation (in case of LP), etc. Another solver-based approach
is to formulate the problem as an optimization problem and to
use an appropriate algorithm to find the result (Leblebici et al.
2017).

Rule-based Solutions Rule-based solutions explicitly tell the
program how to fix an inconsistency. These instructions are
given as rules in the form: IF condition THEN action. A con-
dition represents a specific constraint violation and action is
a sequence of edits fixing this inconsistency. Thus, in rule-
based approaches the definition of consistency and repair rules
is often tightly connected. It heavily depends on the domain
expert to define the right set of rules. Thus, rule-based solutions
are not universal and cannot easily adapt to varying scenarios.
The strength of this approach, however, is its efficiency: When
the rule, which shall be applied, is found (match), the repair
itself happens in constant time. Finding the right rule, how-
ever, can be challenging, i.e. finding rule-matches becomes a
search-problem of its own (Gomes et al. 2014).

Rule-based solutions can be classified into operational
(Samimi-Dehkordi et al. 2018; Nentwich et al. 2003; Xiong
et al. 2009) and declarative (Hermann et al. 2011; Reder &
Egyed 2012). Operational rules are procedures or functions
written in a programming language. In general, operational
rules provide no guarantee that they actually lead to the de-
sired result and it is up to the user to define the rule correctly.
Thus, researchers came up with declarative rules (Mens & Van
Der Straeten 2007), which actually can be statically analyzed.

14 Stünkel et al.

The most popular declarative rule-based framework is algebraic
graph transformation (Ehrig et al. 2006), which offers powerful
means to statically analyze concurrency, confluence, conflicting
and termination properties of the rule set. An example of a
rule-based approach combining graph transformation and user
interaction is found in (Nassar et al. 2017, 2018). Another fea-
ture of the declarative approach is that it is able to generate
(Reder & Egyed 2012; Ehrig et al. 2007) rules automatically,
which significantly reduces the manual effort. It is usually based
on grammars (i.e. abstract rule sets), which can be classified into
syntactic (Reder & Egyed 2012) and semantic (Schürr 1994;
Hermann et al. 2011) categories. The syntactic category ex-
ploits the fact that (modeling) languages are generally defined
in terms of a grammar, which can be used to derive potential
changes. The semantic category additionally requires the con-
sistency rules to be defined in terms of a grammar as well, see
Sect. 6.4.

Universal Solutions A third category of implementations is
identified in BX domain. Cicchetti et. al. (Cicchetti et al. 2019)
termed this approach proxy-based but we will call it universal
solutions due to the underlying concept from category theory
(Barr & Wells 1990). Intuitively it can be described by replac-
ing a part of a (view) model with the content from another
(source) model and leaving the rest unchanged. The replaced
part is determined by a function, the so-called view definition.
This principle a.k.a. constant complement was first identified
in databases (Bancilhon & Spyratos 1981) and later inherited
by the programming language community, which formalized
it as an algebraic design pattern known as lens (Foster et al.
2007). The framework was developed further by category the-
orists (Johnson et al. 2010; Johnson & Rosebrugh 2007) who
identified further applications of universal properties, which
practically imply removing specific elements or freely adding
missing elements. Universal solutions play an important role in
a class of programing based multi-model repair tools compris-
ing BiGUL (Ko et al. 2016), Boomerang, GRoundTram (Hidaka
et al. 2011) (Foster et al. 2007) and NMF (Hinkel & Burger
2019).

Human Interaction Several researchers (Reder & Egyed 2012;
Nassar et al. 2017; Ludovico et al. 2020) have argued that the
user should play a leading role in the model repair process. We
distinguish several ways of human interaction, coarsely grouped
into upfront (performed before the repair invocation) and in-
teractive (performed during the repair) measures. A classical
example of an upfront measure is the definition default values
to be used when new elements are created during the repair. An
upfront measure with less obvious implications are cost defini-
tions (Macedo & Cunha 2016), which associate a cost with edit
operations thus influencing the repair results because the tool
will try to minimize these costs. Another sophisticated tool is
policies. A policy can be compared to consistency rules: they
declaratively require some properties to hold, e.g. avoid deletion
in M1 in Fig. 1. The difference to consistency rules is that they
are invoked later in the process to disambiguate between multi-
ple valid choices. The predestined example for an interactive
measure is result selection: The tool calculates all possibilities

resulting in a consistent model and presents it to the user, who
has to pick his preferred choice. The interactive equivalent of
default values is to request the user to enter values for missing
attribute values on the way. Strategy selection is similar to result
selection with the difference that the outcome is unclear, i.e.
the tool presents the user with possible edit sequences and the
user picks one that he considers reasonable without knowing
whether this actually results in a consistent model or the desired
model.

Learning, Incrementality and Invocation “Learning is the
ability of a program to improve its performance on a given task
over time” (Russell & Norvig 2010). It appears to be promising
enhancement for improving the performance of search-based
approaches (Barriga et al. 2018) and can help to identify hidden
policies and user preferences (Barriga et al. 2020; Ludovico et
al. 2020).

The feature incrementality refers to the ability of the repair
function to make use of the (side) results of previous invocations.
This has been a goal works in the model repair domain, (Reder &
Egyed 2012; Giese & Wagner 2009; Mens et al. 2007; Cicchetti
et al. 2012).

A repair may be invoked on-demand or event-based,
e.g. upon every manual change, see also the classification
restoration-based vs. propagation-based in (Anjorin et al. 2019).

6.8. Repair - Resolutions Feature
The other important abstract sub-feature of Repair are Resolu-
tions, depicted in Fig. 14.

Results An important property is the size of the produced re-
sult set. A repair producing at most a single result is considered
automatic. In the light of ambiguity, this means that the tools
have to make decisions on its own, based on policies, metrics
or randomness. Multiple results imply user interaction in the
form of result selection, see Sect. 6.7. The tool can leverage
this activity by ordering (Macedo et al. 2017) the results. This
requires an underlying metric to compare results, e.g. induced
by edits’ costs, policies, or inconsistency levels. An interesting
approach is taken in JTL (Cicchetti et al. 2011), which is able
to work with multiple results simultaneously over time. The
result may be presented either as a change, see Sect. 6.3, or
in a simplified form by only presenting the final state of the
model. Optionally, the result may be abstract in a sense that it
contains placeholders (e.g. for attribute values of newly created
elements). In the database jargon they are termed labeled nulls
(Arenas et al. 2014) as indication for the user to take further
actions.

Properties Arguably, the most important property of a repair
approach is correctness. Its three stages, originally defined
in (Macedo et al. 2017), were formally described in Sect. 4:
well-behaved (the results do not add new inconsistencies), con-
sistency improving (the results are less inconsistent than the
input), and fully consistency restoring (the results are com-
pletely consistent). The repair is called complete (Hermann
et al. 2011) when the repair function produces at least one result
for every input. The principle of hippocraticness goes back to

Multi-Model Evolution through Model Repair 15

ResolutionsResult

Size

Presentation

Single

Multiple

Unordered

Ordered

Change

State

Labelled
Nulls

Properties
Completeness

Correctness

Hippocratic

Compositionality

Optimality

Artifacts
Least
Change

Least
Surprise

Complexity

Minimal
Invocations

Linear

Polynomial

Exponential
Procedure

Well
Behaved

Consistency
Improving

Full

Figure 14 Repair - Resolutions Feature

Stevens (Stevens 2008) describing that when repair invoked on
a consistent (multi-)model it produces the idle update (“does no
harm”). Compositionality, which plays a central role in many
theoretical considerations and the lens framework (Foster et al.
2007; Diskin et al. 2010; Johnson & Rosebrugh 2016), refers to
the preservation of repair properties when they are composed
into bigger repair functions. Finally, we distinguish between
two aspects of optimality, i.e. concerning the produced artifacts
on the one hand and the procedure itself on the other hand. In
Sect. 4, we identified ambiguity as a core challenge in repair.
Both fully automatic and semi-automatic tools thus require a
metric to compare the quality of results beyond consistency.
Least Change is a quantifiable metric proposed in (Macedo &
Cunha 2016) based on the edit distance between two models.
Since least change arguably not always coincide with the pre-
ferred choice, (Cheney et al. 2015) proposed the qualitative
notion of least surprise. Optimality of the procedure is usually
tantamount with efficiency. In computer science it is common
to compare algorithms based on complexity w.r.t. runtime and
memory consumption. Another notion of optimality was re-
cently given in (Stevens 2020), which considers a composite
repair procedure optimal when it requires a minimal invocation
of elementary repair actions.

6.9. Feature Model Application: Existing Tools

Finally, we want to apply our feature model. For this we selected
four model management tools (eMoflon (Leblebici et al. 2014),
Echo (Macedo et al. 2014), Epsilon (EVL+Strace approach)
(Samimi-Dehkordi et al. 2018), and NMF (Hinkel 2018)) and
classified them using our feature model. The result is shown in
Tab. 1, where each row contains the concrete characteristics for
the respective abstract feature and tool.

We picked these four tools as an exemplary selection be-
cause they have recent publications and are actively maintained.
Furthermore, they are based on rather different theoretical foun-
dations and methodologies.

The tool eMoflon is the most recent culmination of tool
development in the TGG research domain (Schürr 1994; Giese &

Wagner 2009; Hermann et al. 2011). It is a chosen representative
for the class of graph transformation based tools such as MoTe
(Giese & Wagner 2009), Henshin (Biermann et al. 2008), etc.

Echo is model transformation and synchronization tool based
OCL and QVT-r syntax built on top of the Alloy model finder. It
was one of the representative examples of the study in (Macedo
et al. 2017) and it is a representative for solver-based tools such
as e.g. JTL (Cicchetti et al. 2011), mediniQVT (Anjorin et al.
2017), etc.

Epsilon (Paige et al. 2009) is a model management frame-
work for EMF comprising a set of DSLs for various model
management tasks. The foundation is an object-oriented lan-
guage for model manipulation called Epsilon Object Language
(EOL). Consistency and repair facilities are provided by the
Epsilon Validation Language (EVL) (D. Kolovos et al. 2008),
which allows to define consistency rules declaratively in an
OCL-like language and optionally augment them with quick
fixes, i.e. procedural EOL programs. In (Samimi-Dehkordi et
al. 2018), the authors developed a rigorous process for multi-
model repair with EVL and domain specific traceability models.
This tools/approach stands for the class of tools where repair is
carried out with tight user interaction. Other approaches in this
class are e.g. Xlinkit (Nentwich et al. 2003), Beanbag (Xiong et
al. 2009).

NMF is an MDE library and internal DSL for .NET provid-
ing code generation facilities. It is based on the EMF file format
and built on a concept of incremental computations. Further,
it comprises a bidirectional synchronization framework influ-
enced by the algebraic lens framework (Hinkel & Burger 2019).
NMF is a representative for (functional) programming-based
approaches based on mathematical frameworks, such as e.g.
BiGUL (Ko et al. 2016), Boomerang (Foster et al. 2007), etc.

7. Findings
During the design of our feature model and review of the as-
sociated literature, we collected a list of issues in model man-
agement. A lot of these issues have been reported by other
researchers before but still persist to the present day.

16 Stünkel et al.

eMoflon Echo Epsilon NMF

Models

TechSpace EMF, JVM EMF EMF, Other (EOL) .NET, EMF

Formalism Graphs Logical OO Categorical

Changes

Representation Structural-Delta State-Based State-Based Operational-Delta

Definition Fixed Customizable Customizable Customizable

Types Rename, Insert, Update, Delete,
Move

Insert, Delete Insert, Update, Delete, Move Rename, Insert, Update, Delete,
Move, Split, Merge

Recording Offline, Change Identification Offline Offline Online (non-intrusive)

Meta-Information Previous State n/a n/a Full History

Consistency

Definition Grammar Builtin, OCL (QVTr) Builtin, EVL (OCL-like) Combinator Library

Invocation on-demand event-based event-based event-based

Reporting boolean elements elements elements

Inconsistency Level n/a n/a fixed (2) n/a

Meta-Information repair hint n/a repair hint repair hint, scope

Formats

Conformance Typing, Constraints Constraints Typing, Constraints Typing

Representation Type Graph Knowledge Base Metamodel Type System

Migration n/a n/a n/a n/a

Multi-Models

Corr. Representation Traces Traces Traces Transformations

Corr. Definition Formulas Formulas Formulas Formulas

Arity binary multi-ary multi-ary binary

Informational Overlap symmetric symmetric symmetric symmetric

Paradigms heterogeneously typed heterogeneously typed heterogeneously typed homogeneous

Synthesis n/a Merging Language Extension n/a

Authority n/a n/a n/a n/a

Privacy n/a n/a n/a n/a

Communication n/a n/a n/a n/a

Concurrency serial (parallel?) serial serial serial

Repair

Implementation Declarative Rules (Syntactical,
Semantical, Generative),

Optimization (for matching)

SMT Solver (alloy/kodkod) Operational Rules Universal Solutions, Operational
Rules

Human Interaction n/a Cost Specification, Result
Selection

Strategy Selection n/a

Incrementality persisted traces n/a persisted traces incremental computation

Results single multiple (ordered) single single

Properties correctness, completeness correctness, hippocraticness, least
change

none correctness, hippicraticness,
compositionality

Table 1 Tool classification

Multi-Model Evolution through Model Repair 17

Standards A noteworthy share of tools, e.g. most of the ones
mentioned in (Hidaka et al. 2016), is no longer retrievable be-
cause of broken URLs, non existing source code repositories,
or dependencies towards outdated Eclipse versions, which are
no longer runnable on recent operating systems. Thus, there is
a need for standardized tool repositories and benchmarks for
making evaluations reproducible. Promising endeavors in this
direction have already started, see e.g. (Anjorin et al. 2019;
Basciani et al. 2014), but have to be pursued further. Regard-
ing file formats, EMF has become the de-facto standard in the
MDE community for storing metamodels and models. However,
yet there is no commonly agreed upon standard for expressing
model modifications because changes are conceived differently
(state-based vs. delta-based). Version control systems express
changes as line insertions and removals, which is generally not
well aligned with EMF/XMI semantics and necessitates change
identification procedures. We argue that the delta-based change
representation is superior over the state-based representation
since deltas convey more information and allow strict trace-
ability, which is generally lost in the state-based case. Thus,
a technical standard for EMF file versioning and modification
representation is paramount for model management and first
attempts in this direction have already started (Yohannis et al.
2019). Regarding the definition of consistency rules, OCL (and
its variations) are the most common means but their use is not
equally as widespread as the EMF format. It is even more
complicated when it comes to global consistency of multiple
inter-related models.

Management of Multi-Models We analyzed the nature of
multi-models and extended the feature model in (Macedo et
al. 2017) by making multi-models a dimension of its own right.
Multi-models are based on a correspondence relation, which
can be represented in different ways: An underlying system
model, cross-reference links, model transformations or model
enhancement. Thus, there is also no standard for the definition
and encoding of correspondences, which makes it challeng-
ing to compare update propagation tools, see (Anjorin et al.
2019). QVT-r (Object Management Group 2016a) has once
been proposed as a possible standard but never got a widespread
acceptance due to its semantic issues (Stevens 2008). Aside
from this, other aspects such as authority, privacy, concurrency
and issues with network communication are less investigated in
the model management literature so far.

Integration of approaches We identified clusters of features
often used in combination. All of the rule-based approaches
show a tight connection between the consistency rule defini-
tion and repair implementation, which is established via repair
hints. Those approaches, which utilize a more abstract logical
formulation of consistency rules are more likely to implement
model repair in a search-based way. The different dimensions
(human interaction, learning, rule- and search-based implemen-
tations) of repair approaches show that they are not competing
with each other but can instead be worthwhile to combine. No-
table attempts can be found in the ModelAnalyzer (Reder &
Egyed 2012) (combines human interaction and rule-based re-
pair), eMoflon (Leblebici et al. 2014) (combines search- and

rule-based approaches) or the approach in (Kessentini et al.
2018) (combines a search-based approach with human interac-
tion).

The repair problem itself The general repair problem is NP-
complete (complexity of general search problems) or even unde-
cidable (think of contradicting consistency rules), i.e. having no
solution. In general completely automated repair is not possible.
Hence, it may be more worthwhile to focus further research
in this direction on particular domains where one can harness
domain dependent expert knowledge, which can help to find
“the best” solution. See also the conclusions in the report on the
least surprise principle (Cheney et al. 2015).

8. Conclusion, Related and Future Work
Our work is directly related to the major surveys in the fields of
model repair, update propagation/bx, multi-viewpoint modeling
and model migration. While those studies are of secondary
nature, our work can be considered tertiary since it is based on
a thorough study of the above. The added value in this paper
is a refined feature model that combines the different aspects
of model management and allows to compare more distinct
approaches and tools. It is important to note that our model
further extends the model in (Macedo et al. 2017) especially
w.r.t. the implementation of model repair identifying universal
solutions as a third approach besides rule- and search-based
approaches.

For the near future, we plan to apply our feature model
to many more tools and approaches mentioned in the litera-
ture. Furthermore, we plan to investigate the format feature and
model migration tools in more detail, since this dimension has
received a less thorough treatment in this paper. Also, we plan
to use this feature model to develop a tool infrastructure for
model management in the spirit of (Anjorin et al. 2019), which
allows the integration of heterogeneous model repair tools. With
this regard, the abstract megamodel build system (Stevens 2020)
can be a promising candidate for the technological foundation.

Acknowledgments
We would like to thank all the anonymous reviewers for their
helpful comments, which helped to improve the quality of this
paper substantially.

References
Aizenbud-Reshef, N., Nolan, B. T., Rubin, J., & Shaham-Gafni,

Y. (2006). Model traceability. IBM Systems Journal, 45(3),
515–526. doi: 10.1147/sj.453.0515

Alanen, M., & Porres, I. (2003). Difference and union of
models. In P. Stevens, J. Whittle, & G. Booch (Eds.), Uml
2003 - the unified modeling language, modeling languages
and applications, 6th international conference (Vol. 2863, pp.
2–17). Springer. doi: 10.1007/978-3-540-45221-8_2

Ambler, S. W., & Sadalage, P. J. (2006). Refactoring Databases:
Evolutionary Database Design (paperback). Pearson Educa-
tion.

18 Stünkel et al.

Anjorin, A., Buchmann, T., Westfechtel, B., Diskin, Z., Ko,
H.-S., Eramo, R., . . . Zündorf, A. (2019, September). Bench-
marking bidirectional transformations: theory, implemen-
tation, application, and assessment. Software and Systems
Modeling. doi: 10.1007/s10270-019-00752-x

Anjorin, A., Diskin, Z., Jouault, F., Ko, H.-S., Leblebici, E., &
Westfechtel, B. (2017). Benchmarx reloaded: A practical
benchmark framework for bidirectional transformations. In
BX@ETAPS 2017.

Antkiewicz, M., & Czarnecki, K. (2008). Design Space of
Heterogeneous Synchronization. In R. Lämmel, J. Visser, &
J. Saraiva (Eds.), GTTSE 2007 (pp. 3–46). Berlin, Heidelberg:
Springer. doi: 10.1007/978-3-540-88643-3_1

Arenas, M., Barceló, P., Libkin, L., & Murlak, F. (2014). Foun-
dations of Data Exchange. Cambridge: Cambridge University
Press. doi: 10.1017/CBO9781139060158

Atkinson, C., & Kühne, T. (2001). The Essence of Multilevel
Metamodeling. In M. Gogolla & C. Kobryn (Eds.), UML
2001 (pp. 19–33). Berlin, Heidelberg: Springer. doi: 10.1007/
3-540-45441-1_3

Atkinson, C., Stoll, D., & Bostan, P. (2010). Orthographic
Software Modeling: A Practical Approach to View-Based
Development. In L. A. Maciaszek, C. González-Pérez, &
S. Jablonski (Eds.), Enase 2009 (pp. 206–219). Springer
Berlin Heidelberg. doi: 10.1007/978-3-642-14819-4_15

Bancilhon, F., & Spyratos, N. (1981). Update Semantics of
Relational Views. ACM Trans. Database Syst., 6(4), 557–
575.

Barbosa, D. M., Cretin, J., Foster, N., Greenberg, M., & Pierce,
B. C. (2010). Matching Lenses: Alignment and View Update.
In ICFP ’10 (pp. 193–204). New York, NY, USA: ACM. doi:
10.1145/1863543.1863572

Barr, M., & Wells, C. (1990). Category theory for computing
science. Prentice Hall.

Barriga, A., Rutle, A., & Heldal, R. (2018). Automatic model
repair using reinforcement learning. In Proceedings of MOD-
ELS 2018 workshops: Modcomp, mrt, ocl, flexmde, exe, com-
mitmde, mdetools, gemoc, morse, mde4iot, mdebug, mod-
evva, me, multi, hufamo, ammore, PAINS co-located with
ACM/IEEE 21st international conference on model driven
engineering languages and systems (MODELS 2018), copen-
hagen, denmark, october, 14, 2018. (pp. 781–786). Retrieved
from http://ceur-ws.org/Vol-2245/ammore_paper_1.pdf

Barriga, A., Rutle, A., & Heldal, R. (2020, July). Improving
model repair through experience sharing. Journal of Object
Technology, 19(2), 13:1-21. (The 16th European Conference
on Modelling Foundations and Applications (ECMFA 2020))
doi: 10.5381/jot.2020.19.2.a13

Basciani, F., Rocco, J. D., Ruscio, D. D., Salle, A. D., Iovino, L.,
& Pierantonio, A. (2014). MDEForge: an Extensible Web-
Based Modeling Platform. In R. F. Paige, J. Cabot, M. Bram-
billa, L. M. Rose, & J. H. Hill (Eds.), CloudMDE@MoDELS
2014 (Vol. 1242, pp. 66–75). CEUR-WS.org. Retrieved
2020-03-24, from http://ceur-ws.org/Vol-1242/paper10.pdf

Bennani, S., Ebersold, S., El Hamlaoui, M., Coulette, B., &
Nassar, M. (2019, June). A Collaborative Decision Approach
for Alignment of Heterogeneous Models. In 2019 IEEE

28th International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE) (pp.
112–117). (ISSN: 2641-8169) doi: 10.1109/WETICE.2019
.00032

Bergmann, G., Ráth, I., Varró, G., & Varró, D. (2012, July).
Change-driven model transformations. Software & Systems
Modeling, 11(3), 431–461. doi: 10.1007/s10270-011-0197-9

Bernstein, P. A. (2003). Applying Model Management to
Classical Meta Data Problems. In CIDR.

Bézivin, J., Jouault, F., Rosenthal, P., & Valduriez, P. (2005).
Modeling in the Large and Modeling in the Small. In U. Aß-
mann, M. Aksit, & A. Rensink (Eds.), Model driven architec-
ture: European mda workshops: Foundations and applica-
tions, mdafa 2003 and mdafa 2004 (pp. 33–46). Berlin,
Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/
11538097_3

Biermann, E., Ermel, C., & Taentzer, G. (2008). Precise Se-
mantics of EMF Model Transformations by Graph Transfor-
mation. In K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, &
M. Völter (Eds.), Model 2008 (pp. 53–67). Berlin, Heidel-
berg: Springer Berlin Heidelberg. doi: 10.1007/978-3-540
-87875-9_4

Boronat, A., Knapp, A., Meseguer, J., & Wirsing, M. (2009).
What Is a Multi-modeling Language? In Wadt 2008 (pp.
71–87). Berlin, Heidelberg: Springer Berlin Heidelberg.

Boronat, A., & Meseguer, J. (2010, May). An algebraic se-
mantics for MOF. Formal Aspects of Computing, 22(3), 269–
296. Retrieved 2020-03-26, from https://doi.org/10.1007/
s00165-009-0140-9 doi: 10.1007/s00165-009-0140-9

Brambilla, M., Cabot, J., & Wimmer, M. (2017). Model-
Driven Software Engineering in Practice (2nd ed.). Morgan
& Claypool Publishers.

Bruneliere, H., Burger, E., Cabot, J., & Wimmer, M. (2019,
June). A feature-based survey of model view approaches.
Software & Systems Modeling, 18(3), 1931–1952. doi: 10
.1007/s10270-017-0622-9

Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., &
Sabetzadeh, M. (2006). A Manifesto for Model Merging. In
GaMMa ’06 (pp. 5–12). New York, NY, USA: ACM. doi:
10.1145/1138304.1138307

Buchmann, T. (2019, October). BXtend - A Framework for
(Bidirectional) Incremental Model Transformations. In Mod-
elsward 2019 proceedings (pp. 336–345). doi: 10.5220/
0006563503360345

Bézivin, J. (2004). In search of a Basic Principle for Model-
Driven Engineering. Novatica – Special Issue on UML (Uni-
fied Modeling Language), 5(2), 21–24. Retrieved 2020-08-11,
from https://hal.archives-ouvertes.fr/hal-00442702

Bézivin, J. (2005, May). On the unification power of models.
Software & Systems Modeling, 4(2), 171–188. Retrieved
2020-06-29, from https://doi.org/10.1007/s10270-005-0079
-0 doi: 10.1007/s10270-005-0079-0

Bézivin, J., Jouault, F., & Valduriez, P. (2004, October). On the
Need for Megamodels. In Proceedings of the OOPSLA/G-
PCE: Best Practices for Model-Driven Software Develop-
ment workshop, 19th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applica-

Multi-Model Evolution through Model Repair 19

http://ceur-ws.org/Vol-2245/ammore_paper_1.pdf
http://ceur-ws.org/Vol-1242/paper10.pdf
https://doi.org/10.1007/s00165-009-0140-9
https://doi.org/10.1007/s00165-009-0140-9
https://hal.archives-ouvertes.fr/hal-00442702
https://doi.org/10.1007/s10270-005-0079-0
https://doi.org/10.1007/s10270-005-0079-0

tions,(2004). Vancouver, Canada. Retrieved 2019-09-05,
from https://hal.archives-ouvertes.fr/hal-01222947

Cheney, J., Gibbons, J., McKinna, J., & Stevens, P. (2015).
Towards a Principle of Least Surprise for Bidirectional Trans-
formations. Proceedings of the 4th International Workshop
on Bidirectional Transformations co-located with Software
Technologies: Applications and Foundations (STAF 2015),
1396, 66–80.

Cicchetti, A., Ciccozzi, F., & Leveque, T. (2012). Sup-
porting Incremental Synchronization in Hybrid Multi-view
Modelling. In J. Kienzle (Ed.), Models in Software Engi-
neering (pp. 89–103). Berlin, Heidelberg: Springer. doi:
10.1007/978-3-642-29645-1_11

Cicchetti, A., Ciccozzi, F., & Pierantonio, A. (2019, December).
Multi-view approaches for software and system modelling: a
systematic literature review. Software and Systems Modeling,
18(6), 3207–3233. doi: 10.1007/s10270-018-00713-w

Cicchetti, A., Di Ruscio, D., Eramo, R., & Pierantonio, A.
(2011). JTL: A Bidirectional and Change Propagating Trans-
formation Language. In B. Malloy, S. Staab, & M. van den
Brand (Eds.), Sle 2011 (pp. 183–202). Springer Berlin Hei-
delberg. doi: 10.1007/978-3-642-19440-5_11

Cleve, A., Kindler, E., Stevens, P., & Zaytsev, V. (2019). Multi-
directional Transformations and Synchronisations (Dagstuhl
Seminar 18491). Dagstuhl Reports, 8(12), 1–48. doi:
10.4230/DagRep.8.12.1

Codd, E. F. (1970, June). A Relational Model of Data for Large
Shared Data Banks. Commun. ACM, 13(6), 377–387. doi:
10.1145/362384.362685

Cohn, P. M. (1965). Universal Algebra (1st edition ed.). Harper
& Row.

Courcelle, B. (1997). The expression of graph properties
and graph transformations in monadic second-order logic.
In G. Rozenberg (Ed.), Handbook of graph grammars and
computing by graph transformation (pp. 313–400). River
Edge, NJ, USA: World Scientific Publishing Co., Inc.

Czarnecki, K., Foster, N., Hu, Z., Lämmel, R., Schürr, A., &
Terwilliger, J. F. (2009). Bidirectional Transformations: A
Cross-Discipline Perspective. In Icmt 2009 (pp. 193–204).

de Lara, J., Guerra, E., Kienzle, J., & Hattab, Y. (2018, Oc-
tober). Facet-oriented modelling: open objects for model-
driven engineering. In Sle 2018 (pp. 147–159). Boston,
MA, USA: Association for Computing Machinery. doi:
10.1145/3276604.3276610

Di Ruscio, D., Eramo, R., & Pierantonio, A. (2012). Model
Transformations. In M. Bernardo, V. Cortellessa, & A. Pieran-
tonio (Eds.), SFM 2012 (pp. 91–136). Berlin, Heidelberg:
Springer. doi: 10.1007/978-3-642-30982-3_4

Diskin, Z. (2009). Model Synchronization: Mappings, Tiles,
and Categories. In J. M. Fernandes, R. Lämmel, J. Visser,
& J. Saraiva (Eds.), GTTSE 2009 (pp. 92–165). Berlin,
Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/
978-3-642-18023-1_3

Diskin, Z., Gholizadeh, H., Wider, A., & Czarnecki, K. (2016,
January). A three-dimensional taxonomy for bidirectional
model synchronization. J. Syst. Softw, 111, 298–322. doi:
10.1016/j.jss.2015.06.003

Diskin, Z., Kokaly, S., & Maibaum, T. (2013). Mapping-aware
megamodeling: Design patterns and laws. LNCS, 8225, 322–
343. doi: 10.1007/978-3-319-02654-1_18

Diskin, Z., König, H., & Lawford, M. (2018). Multiple Model
Synchronization with Multiary Delta Lenses. In A. Russo &
A. Schürr (Eds.), FASE’18 proceedings (pp. 21–37). Springer
International Publishing.

Diskin, Z., König, H., & Lawford, M. (2019, November).
Multiple model synchronization with multiary delta lenses
with amendment andK-Putput. Formal Aspects of Computing,
31(5), 611–640. doi: 10.1007/s00165-019-00493-0

Diskin, Z., Maibaum, T., & Czarnecki, K. (2012). Inter-
modeling, Queries, and Kleisli Categories. In J. de Lara
& A. Zisman (Eds.), Fundamental Approaches to Software
Engineering (pp. 163–177). Berlin, Heidelberg: Springer.
doi: 10.1007/978-3-642-28872-2_12

Diskin, Z., Maibaum, T., & Czarnecki, K. (2015). A Model
Management Imperative: Being Graphical Is Not Sufficient,
You Have to Be Categorical. In G. Taentzer & F. Bordeleau
(Eds.), Modelling Foundations and Applications (pp. 154–
170). Cham: Springer International Publishing. doi: 10.1007/
978-3-319-21151-0_11

Diskin, Z., & Wolter, U. (2007). A diagrammatic logic for
object-oriented visual modeling. In Accat ’07 (pp. 19–41).

Diskin, Z., Xiong, Y., & Czarnecki, K. (2010). From State-
to Delta-Based Bidirectional Model Transformations. In
L. Tratt & M. Gogolla (Eds.), Theory and Practice of Model
Transformations (pp. 61–76). Springer Berlin Heidelberg.

Diskin, Z., Xiong, Y., & Czarnecki, K. (2011). Specifying
Overlaps of Heterogeneous Models for Global Consistency
Checking. In Mdi@models 2010 (pp. 165–179).

Egyed, A. (2007). Fixing inconsistencies in UML design
models. Proceedings - International Conference on Software
Engineering, 292–301. doi: 10.1109/ICSE.2007.38

Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., & Taentzer, G.
(2007). Information Preserving Bidirectional Model Trans-
formations. In M. B. Dwyer & A. Lopes (Eds.), Fundamental
Approaches to Software Engineering (pp. 72–86). Springer
Berlin Heidelberg.

Ehrig, H., Ehrig, K., & Hermann, F. (2008, June). From
Model Transformation to Model Integration based on the
Algebraic Approach to Triple Graph Grammars. Electronic
Communications of the EASST , 10(0). Retrieved 2018-08-30,
from https://journal.ub.tu-berlin.de/eceasst/article/view/154
doi: 10.14279/tuj.eceasst.10.154

Ehrig, H., Ehrig, K., Prange, U., & Taentzer, G. (2006). Funda-
mentals of algebraic graph transformation. Springer.

El Hamlaoui, M., Bennani, S., Nassar, M., Ebersold, S., &
Coulette, B. (2018, March). A MDE Approach for Heteroge-
neous Models Consistency. In Proceedings of the 13th Inter-
national Conference on Evaluation of Novel Approaches to
Software Engineering (pp. 180–191). Funchal, Madeira, Por-
tugal: SCITEPRESS - Science and Technology Publications,
Lda. Retrieved 2020-06-29, from https://doi.org/10.5220/
0006774101800191 doi: 10.5220/0006774101800191

Engels, G., Hausmann, J. H., Heckel, R., & Sauer, S. (2000).
Dynamic Meta Modeling: A Graphical Approach to the Op-

20 Stünkel et al.

https://hal.archives-ouvertes.fr/hal-01222947
https://journal.ub.tu-berlin.de/eceasst/article/view/154
https://doi.org/10.5220/0006774101800191
https://doi.org/10.5220/0006774101800191

erational Semantics of Behavioral Diagrams in UML. In
A. Evans, S. Kent, & B. Selic (Eds.), UML 2000 — The Uni-
fied Modeling Language (pp. 323–337). Berlin, Heidelberg:
Springer. doi: 10.1007/3-540-40011-7_23

Eramo, R., Malavolta, I., Muccini, H., Pelliccione, P., & Pieran-
tonio, A. (2012, February). A model-driven approach to
automate the propagation of changes among Architecture De-
scription Languages. Software & Systems Modeling, 11(1),
29–53. doi: 10.1007/s10270-010-0170-z

Eramo, R., Pierantonio, A., & Rosa, G. (2015, October). Man-
aging uncertainty in bidirectional model transformations. In
SLE 2015 (pp. 49–58). Pittsburgh, PA, USA: Association for
Computing Machinery. doi: 10.1145/2814251.2814259

Favre, J.-M., & NGuyen, T. (2005). Towards a Megamodel to
Model Software Evolution Through Transformations. Elec-
tronic Notes in Theoretical Computer Science, 127(3), 59–74.
doi: https://doi.org/10.1016/j.entcs.2004.08.034

Feldmann, S., Kernschmidt, K., Wimmer, M., & Vogel-Heuser,
B. (2019, July). Managing inter-model inconsistencies in
model-based systems engineering: Application in automated
production systems engineering. Journal of Systems and
Software, 153, 105–134. doi: 10.1016/j.jss.2019.03.060

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., &
Goedicke, M. (1992, March). Viewpoints: a framework for
integrating multiple perspectives in system development. In-
ternational Journal of Software Engineering and Knowledge
Engineering, 02(01), 31–57. (Publisher: World Scientific
Publishing Co.) doi: 10.1142/S0218194092000038

Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C.,
& Schmitt, A. (2007, may). Combinators for Bidirectional
Tree Transformations: A Linguistic Approach to the View-
update Problem. ACM Trans. Program. Lang. Syst., 29(3).
doi: 10.1145/1232420.1232424

Giese, H., & Wagner, R. (2009, February). From model transfor-
mation to incremental bidirectional model synchronization.
Software & Systems Modeling, 8(1), 21–43. Retrieved 2018-
08-30, from https://doi.org/10.1007/s10270-008-0089-9 doi:
10.1007/s10270-008-0089-9

Gomes, C., Barroca, B., & Amaral, V. (2014, September). Clas-
sification of Model Transformation Tools: Pattern Matching
Techniques. In Model-Driven Engineering Languages and
Systems (pp. 619–635). Springer, Cham. Retrieved 2018-
01-04, from https://link.springer.com/chapter/10.1007/978-3
-319-11653-2_38 doi: 10.1007/978-3-319-11653-2_38

Gruschko, B., Kolovos, D., & Paige, R. (2007). Towards
Synchronizing Models with Evolving Metamodels. In Modse
2007.

Habel, A., & Pennemann, K.-H. (2009, April). Correctness of
high-level transformation systems relative to nested condi-
tions†. Mathematical Structures in Computer Science, 19(2),
245–296. doi: 10.1017/S0960129508007202

Hebig, R., Khelladi, D. E., & Bendraou, R. (2017, May). Ap-
proaches to Co-Evolution of Metamodels and Models: A
Survey. IEEE Transactions on Software Engineering, 43(5),
396–414. doi: 10.1109/TSE.2016.2610424

Hermann, F., Ehrig, H., Ermel, C., & Orejas, F. (2012). Concur-
rent Model Synchronization with Conflict Resolution Based

on Triple Graph Grammars. In J. de Lara & A. Zisman (Eds.),
Fase 2012 (pp. 178–193). Springer Berlin Heidelberg. doi:
10.1007/978-3-642-28872-2_13

Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z.,
& Xiong, Y. (2011). Correctness of Model Synchronization
Based on Triple Graph Grammar. In J. Whittle, T. Clark,
& T. Kühne (Eds.), Models 2011 (pp. 668–682). Berlin,
Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3
-642-24485-8_49

Hidaka, S., Hu, Z., Inaba, K., Kato, H., & Nakano, K. (2011,
November). GRoundTram: An integrated framework for de-
veloping well-behaved bidirectional model transformations.
In 2011 26th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2011) (pp. 480–483). doi:
10.1109/ASE.2011.6100104

Hidaka, S., Tisi, M., Cabot, J., & Hu, Z. (2016, jul). Feature-
based Classification of Bidirectional Transformation Ap-
proaches. Softw. Syst. Model., 15(3), 907–928.

Hinkel, G. (2018). NMF: A Multi-platform Modeling Frame-
work. In A. Rensink & J. Sánchez Cuadrado (Eds.), The-
ory and Practice of Model Transformation (pp. 184–194).
Cham: Springer International Publishing. doi: 10.1007/
978-3-319-93317-7_10

Hinkel, G., & Burger, E. (2019, February). Change Propagation
and Bidirectionality in Internal Transformation DSLs. Softw.
Syst. Model., 18(1), 249–278. doi: 10.1007/s10270-017-0617
-6

Hofmann, M., Pierce, B., & Wagner, D. (2012). Edit Lenses.
In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (pp.
495–508). New York, NY, USA: ACM. doi: 10.1145/
2103656.2103715

Hohpe, G., & Woolf, B. (2012). Enterprise integration pat-
terns: Designing, building, and deploying messaging solu-
tions. Pearson Education.

Huth, M., & Ryan, M. (2004). Logic in Computer Sci-
ence: Modelling and Reasoning about Systems (2nd ed.).
Cambridge: Cambridge University Press. doi: 10.1017/
CBO9780511810275

ISO/IEC JTC 1/SC 7 Software and systems engineering. (2011,
December). Iso/iec/ieee 42010:2011 - systems and software
engineering — architecture description. https://www.iso.org/
standard/50508.html.

Jackson, D. (2016). Software Abstractions: Logic, Language,
and Analysis. The MIT Press.

Johnson, M., & Rosebrugh, R. (2007, December). Fibrations
and universal view updatability. Theoretical Computer Sci-
ence, 388(1), 109–129. doi: 10.1016/j.tcs.2007.06.004

Johnson, M., & Rosebrugh, R. (2017). Symmetric delta lenses
and spans of asymmetric delta lenses. The Journal of Object
Technology, 16(1), 2:1. doi: 10.5381/jot.2017.16.1.a2

Johnson, M., Rosebrugh, R., & Wood, R. (2010, March). Al-
gebras and Update Strategies. j-jucs, 16(5), 729–748. doi:
10.3217/jucs-016-05-0729

Johnson, M., & Rosebrugh, R. D. (2016). Unifying Set-Based,
Delta-Based and Edit-Based Lenses. In A. Anjorin & J. Gib-
bons (Eds.), Bx@ETAPS 2016 (Vol. 1571, pp. 1–13). CEUR-

Multi-Model Evolution through Model Repair 21

https://doi.org/10.1007/s10270-008-0089-9
https://link.springer.com/chapter/10.1007/978-3-319-11653-2_38
https://link.springer.com/chapter/10.1007/978-3-319-11653-2_38
https://www.iso.org/standard/50508.html
https://www.iso.org/standard/50508.html

WS.org.
Johnson, M., & Stevens, P. (2018, April). Confidentiality

in the process of (model-driven) software development. In
Conference Companion of the 2nd International Conference
on Art, Science, and Engineering of Programming (pp. 1–8).
Nice, France: Association for Computing Machinery. doi:
10.1145/3191697.3191714

Kehrer, T., Taentzer, G., Rindt, M., & Kelter, U. (2016). Au-
tomatically Deriving the Specification of Model Editing Op-
erations from Meta-Models. In P. Van Gorp & G. Engels
(Eds.), Theory and Practice of Model Transformations (pp.
173–188). Cham: Springer International Publishing. doi:
10.1007/978-3-319-42064-6_12

Kessentini, W., Sahraoui, H., & Wimmer, M. (2019, February).
Automated metamodel/model co-evolution: A search-based
approach. Information and Software Technology, 106, 49–67.
doi: 10.1016/j.infsof.2018.09.003

Kessentini, W., Wimmer, M., & Sahraoui, H. (2018, October).
Integrating the Designer in-the-loop for Metamodel/Model
Co-Evolution via Interactive Computational Search. In Pro-
ceedings of the 21th ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems (pp.
101–111). New York, NY, USA: Association for Comput-
ing Machinery. Retrieved 2020-08-19, from https://doi.org/
10.1145/3239372.3239375 doi: 10.1145/3239372.3239375

Kitchenham, B., Charters, S., Budgen, D., Brereton, P., Turner,
M., Linkman, S., . . . Visaggio, G. (2007, jul). Guidelines
for performing Systematic Literature Reviews in Software
Engineering (techreport No. 1). Software Engineering Group
School of Computer Science and Mathematics Keele Univer-
sity Keele, Staffs ST5 5BG, UK: Evidence Based Software
Engineering.

Klare, H., & Gleitze, J. (2019, September). Commonalities for
Preserving Consistency of Multiple Models. In MODELS
2019 companion (pp. 371–378). doi: 10.1109/MODELS-C
.2019.00058

Klare, H., Syma, T., Burger, E., & Reussner, R. (2019). A Cat-
egorization of Interoperability Issues in Networks of Trans-
formations. Journal of Object Technology, 18(3), 1–20. doi:
10.5381/jot.2019.18.3.a4.

Kleiner, M., Del Fabro, M. D., & Albert, P. (2010). Model
Search: Formalizing and Automating Constraint Solving in
MDE Platforms. In T. Kühne, B. Selic, M.-P. Gervais, &
F. Terrier (Eds.), Ecmfa 2010 (pp. 173–188). Springer Berlin
Heidelberg. doi: 10.1007/978-3-642-13595-8_15

Knapp, A., & Mossakowski, T. (2018). Multi-view Consistency
in UML: A Survey. In Graph Transformation, Specifications,
and Nets (pp. 37–60). Springer, Cham. doi: 10.1007/978-3
-319-75396-6_3

Ko, H.-S., Zan, T., & Hu, Z. (2016). BiGUL: A Formally
Verified Core Language for Putback-based Bidirectional
Programming. In PEPM ’16 (pp. 61–72). ACM. doi:
10.1145/2847538.2847544

Kolovos, D., Paige, R., & Polack, F. (2008). Detecting and
Repairing Inconsistencies Across Heterogeneous Models. In
Proceedings of the 2008 International Conference on Soft-
ware Testing, Verification, and Validation (pp. 356–364).

Washington, DC, USA: IEEE Computer Society. Retrieved
2019-10-08, from https://doi.org/10.1109/ICST.2008.23 doi:
10.1109/ICST.2008.23

Kolovos, D. S., Di Ruscio, D., Pierantonio, A., & Paige, R. F.
(2009). Different Models for Model Matching: An Anal-
ysis of Approaches to Support Model Differencing. In
Proceedings of the 2009 ICSE Workshop on Comparison
and Versioning of Software Models (pp. 1–6). Washing-
ton, DC, USA: IEEE Computer Society. doi: 10.1109/
CVSM.2009.5071714

König, H., & Diskin, Z. (2016). Advanced Local Checking
of Global Consistency in Heterogeneous Multimodeling. In
Ecmfa 2016 (pp. 19–35). doi: 10.1007/978-3-319-42061-5
_2

König, H., & Diskin, Z. (2017). Efficient Consistency Checking
of Interrelated Models. In Ecmfa 2017 (pp. 161–178). doi:
10.1007/978-3-319-61482-3_10

Kühne, T. (2006, December). Matters of (Meta-) Modeling.
Software & Systems Modeling, 5(4), 369–385. doi: 10.1007/
s10270-006-0017-9

Lämmel, R. (2014). Coupled software transformations (Ex-
tended Abstract). In Proceedings 1st international workshop
on software evolution transformations (pp. 31–35).

Leblebici, E., Anjorin, A., & Schürr, A. (2017). Inter-model
Consistency Checking Using Triple Graph Grammars and
Linear Optimization Techniques. In Proceedings of the 20th
International Conference on Fundamental Approaches to
Software Engineering - Volume 10202 (pp. 191–207). New
York, NY, USA: Springer-Verlag New York, Inc. doi: 10
.1007/978-3-662-54494-5_11

Leblebici, E., Anjorin, A., & Schürr, A. (2014). Developing
eMoflon with eMoflon. In D. Di Ruscio & D. Varró (Eds.),
Theory and Practice of Model Transformations (pp. 138–145).
Springer International Publishing. doi: 10.1007/978-3-319
-08789-4_10

Ludovico, I., Barriga, A., Rutle, A., & Heldal, R. (2020, July).
Model repair with quality-based reinforcement learning. Jour-
nal of Object Technology, 19(2), 17:1-21. (The 16th Euro-
pean Conference on Modelling Foundations and Applications
(ECMFA 2020)) doi: 10.5381/jot.2020.19.2.a17

Macedo, N., & Cunha, A. (2016, July). Least-change bidi-
rectional model transformation with QVT-R and ATL. Soft-
ware & Systems Modeling, 15(3), 783–810. doi: 10.1007/
s10270-014-0437-x

Macedo, N., Cunha, A., & Pacheco, H. (2014). Towards a
framework for multidirectional model transformations. In
EDBT/ICDT 2014 (pp. 71–74).

Macedo, N., Jorge, T., & Cunha, A. (2017, July). A Feature-
Based Classification of Model Repair Approaches. IEEE
Transactions on Software Engineering, 43(7), 615–640. doi:
10.1109/TSE.2016.2620145

Mantz, F., Taentzer, G., Lamo, Y., & Wolter, U. (2015).
Co-evolving meta-models and their instance models: A
formal approach based on graph transformation. Science
of Computer Programming, 104(1), 2–43. doi: 10.1016/
j.scico.2015.01.002

Mens, T., Taentzer, G., & Runge, O. (2007, September).

22 Stünkel et al.

https://doi.org/10.1145/3239372.3239375
https://doi.org/10.1145/3239372.3239375
https://doi.org/10.1109/ICST.2008.23

Analysing refactoring dependencies using graph transforma-
tion. Software & Systems Modeling, 6(3), 269–285. Retrieved
2020-06-29, from https://doi.org/10.1007/s10270-006-0044
-6 doi: 10.1007/s10270-006-0044-6

Mens, T., & Van Der Straeten, R. (2007). Incremental Res-
olution of Model Inconsistencies. In J. L. Fiadeiro & P.-
Y. Schobbens (Eds.), Recent Trends in Algebraic Develop-
ment Techniques (pp. 111–126). Springer Berlin Heidelberg.
doi: 10.1007/978-3-540-71998-4_7

Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S.,
Hirschfeld, R., & Jazayeri, M. (2005, September). Chal-
lenges in software evolution. In IWPSE’05 (pp. 13–22). doi:
10.1109/IWPSE.2005.7

Narayanan, A., Levendovszky, T., Balasubramanian, D., &
Karsai, G. (2009). Automatic Domain Model Migra-
tion to Manage Metamodel Evolution. In A. Schürr &
B. Selic (Eds.), Model Driven Engineering Languages and
Systems (pp. 706–711). Berlin, Heidelberg: Springer. doi:
10.1007/978-3-642-04425-0_57

Nassar, N., Kosiol, J., Arendt, T., & Taentzer, G. (2018).
OCL2AC: Automatic Translation of OCL Constraints to
Graph Constraints and Application Conditions for Transfor-
mation Rules. In L. Lambers & J. Weber (Eds.), Graph
Transformation (pp. 171–177). Cham: Springer International
Publishing. doi: 10.1007/978-3-319-92991-0_11

Nassar, N., Radke, H., & Arendt, T. (2017). Rule-Based Repair
of EMF Models: An Automated Interactive Approach. In
E. Guerra & M. van den Brand (Eds.), Theory and Practice of
Model Transformation (pp. 171–181). Springer International
Publishing. doi: 10.1007/978-3-319-61473-1_12

Nentwich, C., Emmerich, W., & Finkelsteiin, A. (2003). Con-
sistency Management with Repair Actions. In ICSE ’03 (pp.
455–464).

Nuseibeh, B., Easterbrook, S., & Russo, A. (2000, April).
Leveraging inconsistency in software development. Com-
puter, 33(4), 24–29. doi: 10.1109/2.839317

Object Management Group. (2012). Object Constraint Lan-
guage (OCL) v.2.3.1. Retrieved from http://www.omg.org/
spec/OCL/2.3.1/

Object Management Group. (2014). Business Process Model
And Notation (BPMN) v.2.0.2. Retrieved 14.01.2013, from
http://www.omg.org/spec/BPMN

Object Management Group. (2015a). Unified Modeling Lan-
guage (UML) v.2.4.1. Retrieved from http://www.omg.org/
spec/UML

Object Management Group. (2015b). XML Metadata Inter-
change (XMI) v.2.5.1. Retrieved from https://www.omg.org/
spec/XMI/2.5.1/

Object Management Group. (2016a). Meta Object Facility
(MOF) 2.0 Query/View/Transformation (QVT) v.1.3. http://
www.omg.org/spec/QVT/1.3. Retrieved from http://www
.omg.org/spec/QVT/1.3

Object Management Group. (2016b). Meta Object Facility
(MOF) Core Specification v. 2.4.1. Retrieved from http://
www.omg.org/spec/MOF

Object Management Group. (2019). Decision Model and
Notation (DMN) v.1.2. Retrieved 07.10.2019, from https://

www.omg.org/spec/DMN/About-DMN/
Paige, R. F., Kolovos, D. S., Rose, L. M., Drivalos, N., & Polack,

F. A. C. (2009). The Design of a Conceptual Framework
and Technical Infrastructure for Model Management Lan-
guage Engineering. In Proceedings of the 2009 14th IEEE
International Conference on Engineering of Complex Com-
puter Systems (pp. 162–171). Washington, DC, USA: IEEE
Computer Society. doi: 10.1109/ICECCS.2009.14

Paige, R. F., Matragkas, N., & Rose, L. M. (2016, January).
Evolving models in Model-Driven Engineering: State-of-the-
art and future challenges. Journal of Systems and Software,
111, 272–280. doi: 10.1016/j.jss.2015.08.047

Pearl, J. (1981). Heuristic Search Theory: Survey of Recent
Results. In Proceedings of the 7th International Joint Confer-
ence on Artificial Intelligence - Volume 1 (pp. 554–562). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Pinna Puissant, J., Van Der Straeten, R., & Mens, T. (2012).
Badger: A Regression Planner to Resolve Design Model
Inconsistencies. In A. Vallecillo, J.-P. Tolvanen, E. Kindler,
H. Störrle, & D. Kolovos (Eds.), Modelling Foundations and
Applications (pp. 146–161). Berlin, Heidelberg: Springer.
doi: 10.1007/978-3-642-31491-9_13

Pinna Puissant, J., Van Der Straeten, R., & Mens, T. (2015,
February). Resolving model inconsistencies using automated
regression planning. Software & Systems Modeling, 14(1),
461–481. Retrieved 2019-11-08, from https://doi.org/10
.1007/s10270-013-0317-9 doi: 10.1007/s10270-013-0317-9

Pottinger, R. A., & Bernstein, P. A. (2003, January). Merging
Models Based on Given Correspondences. In J.-C. Frey-
tag, P. Lockemann, S. Abiteboul, M. Carey, P. Selinger,
& A. Heuer (Eds.), Proceedings 2003 VLDB Conference
(pp. 862–873). San Francisco: Morgan Kaufmann. doi:
10.1016/B978-012722442-8/50081-1

Rabbi, F., Lamo, Y., & MacCaull, W. (2014, jan). Co-ordination
of Multiple Metamodels, with Application to Healthcare
Systems. Procedia Computer Science, 37, 473–480. doi:
10.1016/J.PROCS.2014.08.071

Reder, A., & Egyed, A. (2010, September). Model/analyzer:
a tool for detecting, visualizing and fixing design errors in
UML. In Proceedings of the IEEE/ACM international con-
ference on Automated software engineering (pp. 347–348).
Antwerp, Belgium: Association for Computing Machinery.
doi: 10.1145/1858996.1859069

Reder, A., & Egyed, A. (2012, September). Computing repair
trees for resolving inconsistencies in design models. In 2012
Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering (pp. 220–229). doi:
10.1145/2351676.2351707

Rivera, J. E., & Vallecillo, A. (2008). Representing and Operat-
ing with Model Differences. In R. F. Paige & B. Meyer (Eds.),
Objects, Components, Models and Patterns (pp. 141–160).
Springer Berlin Heidelberg. doi: 10.1007/978-3-540-69824
-1_9

Roddick, J. F. (1992, December). Schema Evolution in Database
Systems: An Annotated Bibliography. SIGMOD Rec., 21(4),
35–40.

Romero, J. R., Jaén, J. I., & Vallecillo, A. (2009). Realiz-

Multi-Model Evolution through Model Repair 23

https://doi.org/10.1007/s10270-006-0044-6
https://doi.org/10.1007/s10270-006-0044-6
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/BPMN
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML
https://www.omg.org/spec/XMI/2.5.1/
https://www.omg.org/spec/XMI/2.5.1/
http://www.omg.org/spec/QVT/1.3
http://www.omg.org/spec/QVT/1.3
http://www.omg.org/spec/QVT/1.3
http://www.omg.org/spec/QVT/1.3
http://www.omg.org/spec/MOF
http://www.omg.org/spec/MOF
https://www.omg.org/spec/DMN/About-DMN/
https://www.omg.org/spec/DMN/About-DMN/
https://doi.org/10.1007/s10270-013-0317-9
https://doi.org/10.1007/s10270-013-0317-9

ing Correspondences in Multi-viewpoint Specifications. In
EDOC’09 (pp. 138–147). Piscataway, NJ, USA: IEEE Press.
doi: 10.1109/EDOC.2009.23

Rose, L. M., Herrmannsdoerfer, M., Mazanek, S., Gorp, P. V.,
Buchwald, S., Horn, T., . . . Wimmer, M. (2014, February).
Graph and model transformation tools for model migration.
Software & Systems Modeling, 13(1), 323–359. doi: 10.1007/
s10270-012-0245-0

Rose, L. M., Kolovos, D. S., Paige, R. F., Polack, F. A. C., &
Poulding, S. (2014, May). Epsilon Flock: a model migration
language. Software & Systems Modeling, 13(2), 735–755.
Retrieved 2020-02-14, from https://doi.org/10.1007/s10270
-012-0296-2 doi: 10.1007/s10270-012-0296-2

Rubin, J., & Chechik, M. (2013). N-way Model Merging. In
ESEC/FSE 2013 (pp. 301–311). New York, NY, USA: ACM.
doi: 10.1145/2491411.2491446

Russell, S. J., & Norvig, P. (2010). Artificial Intelligence: A
Modern Approach. Prentice Hall.

Rutle, A., Rossini, A., Lamo, Y., & Wolter, U. (2009). A
Diagrammatic Formalisation of MOF-Based Modelling Lan-
guages. In Tools europe 2009 (pp. 37–56). Springer, Berlin,
Heidelberg.

Rutle, A., Rossini, A., Lamo, Y., & Wolter, U. (2012). A
formal approach to the specification and transformation of
constraints in MDE. JLAMP, 81(4), 422–457.

Sabetzadeh, M., & Easterbrook, S. (2005). An Algebraic
Framework for Merging Incomplete and Inconsistent Views.
In Re 2005 (pp. 306–315).

Saito, Y., & Shapiro, M. (2005, March). Optimistic replication.
ACM Computing Surveys, 37(1), 42–81. Retrieved 2020-
03-05, from https://doi.org/10.1145/1057977.1057980 doi:
10.1145/1057977.1057980

Salay, R., Mylopoulos, J., & Easterbrook, S. (2009). Using
Macromodels to Manage Collections of Related Models. In
P. van Eck, J. Gordijn, & R. Wieringa (Eds.), Advanced Infor-
mation Systems Engineering (pp. 141–155). Springer Berlin
Heidelberg. doi: 10.1007/978-3-642-02144-2_15

Samimi-Dehkordi, L., Zamani, B., & Kolahdouz-Rahimi, S.
(2018, August). EVL+Strace: a novel bidirectional model
transformation approach. Information and Software Technol-
ogy, 100, 47–72. doi: 10.1016/j.infsof.2018.03.011

Schürr, A. (1994). Specification of Graph Translators with
Triple Graph Grammars. In Wg ’94 (pp. 151–163).

Segen, J. C. (1992). The Dictionary of Modern Medicine. CRC
Press.

Silva, M. A. A. d., Mougenot, A., Blanc, X., & Bendraou, R.
(2010, June). Towards Automated Inconsistency Handling
in Design Models. In Advanced Information Systems Engi-
neering (pp. 348–362). Springer, Berlin, Heidelberg. doi:
10.1007/978-3-642-13094-6_28

Spanoudakis, G., & Zisman, A. (2001). Inconsistency Manage-
ment in Software Engineering: Survey and Open Research
Issues. In Handbook of software engineering and knowledge
engineering (pp. 329–380). doi: 10.1142/9789812389718
_0015

Steinberg, D., Budinsky, F., Merks, E., & Paternostro, M. (2008).
EMF: Eclipse Modeling Framework. Pearson Education.

Stevens, P. (2008, dec). Bidirectional model transformations
in QVT: semantic issues and open questions. Software &
Systems Modeling, 9(1), 7. Retrieved from https://doi.org/10
.1007/s10270-008-0109-9 doi: 10.1007/s10270-008-0109-9

Stevens, P. (2017, June). Bidirectional Transformations In The
Large. In Models 2017 (pp. 1–11). doi: 10.1109/MODELS
.2017.8

Stevens, P. (2018). Towards Sound, Optimal, and Flexible Build-
ing from Megamodels. In Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering Lan-
guages and Systems (pp. 301–311). New York, NY, USA:
ACM. doi: 10.1145/3239372.3239378

Stevens, P. (2020, March). Connecting software build with
maintaining consistency between models: towards sound,
optimal, and flexible building from megamodels. Software
and Systems Modeling. doi: 10.1007/s10270-020-00788-4

Straeten, R. V. D., Puissant, J. P., & Mens, T. (2011). Assessing
the Kodkod Model Finder for Resolving Model Inconsisten-
cies. In ECMFA. doi: 10.1007/978-3-642-21470-7_6

Stünkel, P., König, H., Lamo, Y., & Rutle, A. (2018). Multi-
model correspondence through inter-model constraints. In
Conference companion of the 2nd international conference on
art, science, and engineering of programming (p. 9–17). New
York, NY, USA: Association for Computing Machinery. Re-
trieved from https://doi.org/10.1145/3191697.3191715 doi:
10.1145/3191697.3191715

Stünkel, P., König, H., Lamo, Y., & Rutle, A. (2020). Towards
multiple model synchronization with comprehensive systems.
In FASE 2020 (Vol. 12076). Springer, Cham. doi: 10.1007/
978-3-030-45234-6_17

Tanenbaum, A. S., & Steen, M. v. (2007). Distributed Systems:
Principles and Paradigms. Pearson Prentice Hall.

Vermolen, S., & Visser, E. (2008). Heterogeneous Coupled
Evolution of Software Languages. In K. Czarnecki, I. Ober,
J.-M. Bruel, A. Uhl, & M. Völter (Eds.), Model Driven En-
gineering Languages and Systems (pp. 630–644). Berlin,
Heidelberg: Springer. doi: 10.1007/978-3-540-87875-9_44

Xiong, Y., Hu, Z., Zhao, H., Song, H., Takeichi, M., & Mei, H.
(2009). Supporting Automatic Model Inconsistency Fixing.
In ESEC/FSE ’09 (pp. 315–324). New York, NY, USA: ACM.
doi: 10.1145/1595696.1595757

Xiong, Y., Song, H., Hu, Z., & Takeichi, M. (2013, February).
Synchronizing concurrent model updates based on bidirec-
tional transformation. Software & Systems Modeling, 12(1),
89–104. doi: 10.1007/s10270-010-0187-3

Yohannis, A., Rodriguez, R. H., Polack, F., & Kolovos, D.
(2019, July). Towards Efficient Comparison of Change-Based
Models. Journal of Object Technology, 18(2), 7:1–21. doi:
10.5381/jot.2019.18.2.a7

About the authors
Patrick Stünkel is a Ph.D. research fellow at the Department
of Computer science, Electrical engineering and Mathematical
sciences at the Western Norway University of Applied Sci-
ences (HVL) in Bergen, Norway. His research interests are
Software (Multi) Modeling, Interoperability, System Integration

24 Stünkel et al.

https://doi.org/10.1007/s10270-012-0296-2
https://doi.org/10.1007/s10270-012-0296-2
https://doi.org/10.1145/1057977.1057980
https://doi.org/10.1007/s10270-008-0109-9
https://doi.org/10.1007/s10270-008-0109-9
https://doi.org/10.1145/3191697.3191715

and Applications of Category Theory in Software Engineering.
In his thesis he investigates means for expression and restora-
tion of consistency in multi models. You can contact him at
past@hvl.no.

Harald König is a professor for Computer Science at the Uni-
versity of Applied Sciences, FHDW Hannover, Germany, and
Adjunct Professor at the Department of Computer science, Elec-
trical engineering and Mathematical sciences at the Western
Norway University of Applied Sciences (HVL), Bergen, Nor-
way. Before entering academy, he worked at SAP in Walldorf
and received his PhD in pure Mathematics from Leibniz Uni-
versity in Hannover, Germany. You can contact him at Har-
ald.Koenig@fhdw.de.

Yngve Lamo holds a PhD in Computer Science, from the Uni-
versity of Bergen, Norway. Lamo is a professor at the Depart-
ment of Computer science, Electrical engineering and Mathe-
matical sciences at the Western Norway University of Applied
Sciences (HVL), Bergen. His research interests span from for-
mal foundations of Model Driven Software Engineering over ap-
plications to Health Informatics. He is leading the work package
concerning the core clinical process in the Norwegian National
cross-disciplinary research project INTROMAT (INtroducing
personalized TReatment Of Mental health problems using Adap-
tive Technology). You can contact him at yla@hvl.no.

Adrian Rutle holds a PhD in Computer Science from the Univer-
sity of Bergen, Norway. Rutle is a professor at the Department
of Computer science, Electrical engineering and Mathematical
sciences at the Western Norway University of Applied Sciences
(HVL), Bergen. Rutle’s main interest is applying theoretical
results from the field of model-driven software engineering to
practical domains and has expertise in the development of mod-
elling frameworks and domain-specific modelling languages.
He also conducts research in the fields of modelling and simula-
tion for robotics, eHealth, digital fabrication, smart systems and
machine learning. You can contact him at aru@hvl.no.

Multi-Model Evolution through Model Repair 25

mailto:past@hvl.no?subject=Your paper "Multi-Model Evolution through Model Repair"
mailto:Harald.Koenig@fhdw.de?subject=Your paper "Multi-Model Evolution through Model Repair"
mailto:Harald.Koenig@fhdw.de?subject=Your paper "Multi-Model Evolution through Model Repair"
mailto:yla@hvl.no?subject=Your paper "Multi-Model Evolution through Model Repair"
mailto:aru@hvl.no?subject=Your paper "Multi-Model Evolution through Model Repair"

