Journal of Object Technology | RESEARCH ARTICLE

I I JOURNAL OF
OBJECT TECHNOLOGY

Evolution of Bad Smells in LabVIEW Graphical Models

Saheed Popoola, Xin Zhao, and Jeff Gray
University of Alabama, Tuscaloosa, USA

ABSTRACT Bad smells often indicate potential problems in software, which may lead to long-term challenges and expensive
maintenance efforts. Although bad smells often occur in source code, bad smells also exist in representations of design
descriptions and models. We have observed that many users of graphical modeling environments (e.g., LabVIEW) are systems
engineers who may not be aware of core software engineering techniques, such as refactoring of bad smells. Systems engineers
often focus on implementation correctness and may be unaware of how their designs affect long-term maintenance properties
that may increase design smells. There exists a large body of research focused on analysing bad smells embedded in the
source code of textual languages, but there has been limited research on bad smells in systems models of graphical languages.
In this paper, we present a semi-automated approach for extracting design smells across versions of LabVIEW graphical models
through user-defined queries. We describe example queries that highlight the emergence of design smells that we discovered
from posts in the LabVIEW user’s forum. We then demonstrate the use of the example queries in understanding the evolution
of seven bad smells we found in 81 LabVIEW models stored in 10 GitHub repositories. We analyze the evolution of these
smells in order to understand the prevalence and introduction of bad smells, as well as the relationship between bad smells and
the structural changes made to the models. Our results show that all of the models contain instances of at least one type of
bad smell and the number of smells fluctuates as the size of a model increases. Furthermore, the majority of the structural
changes across different versions of LabVIEW models involve the addition of new elements with a corresponding increase in
the presence of design smells. This paper summarizes the need for better analysis of design smells in systems models and
suggests an approach that may assist in improving the structure and quality of systems models developed in LabVIEW.

KEYWORDS LabVIEW models, bad smells, user queries.

potential weaknesses in design that may increase the risk of
bugs in the future. Studies have shown that code with many bad
smells takes 32% longer to debug and causes more frustration
to programmers (Zaman et al. 2012). Therefore, bad smells
represent a major challenge to the quality and maintenance of
large and complex software systems.

1. Introduction

The design of software systems may contain flaws that nega-
tively affect quality and maintainability. These flaws (known
as “bad smells”) are generally considered undesirable in the
practice of software engineering because they tend to reduce the
overall quality of the software, increase the complexity of future
refactoring activities, decrease the understanding of the software
code, and reduce the reusability features of system components
(Roberts et al. 1999). Bad smells are not bugs (i.e., they do not
prevent the program from functioning correctly), but suggest

Software repositories usually provide a rich source of his-
torical data related to software analysis and quality evaluation
due to the version histories of software systems preserved in
these repositories. Historical data in a software repository also
depicts the evolution of software design and the various refactor-
ing activities that have been performed over the life cycle of a

JOT reference format:

Saheed Popoola, Xin Zhao, and Jeff Gray. Evolution of Bad Smells in
LabVIEW Graphical Models. Journal of Object Technology. Vol. 20, No. 1,
2021. Licensed under Attribution - No Derivatives 4.0 International (CC
BY-ND 4.0) http://dx.doi.org/10.5381/jot.2021.20.1.a1

system. Hence, it is not surprising that much research has been
devoted to extracting, manipulating, and analysing the data em-
bedded in repositories in order to support software maintenance,
detect and refactor bad software designs, and conduct empirical

An AITO publication

http://dx.doi.org/10.5381/jot.2021.20.1.a1

validation of new research techniques (Robbes et al. 2017).

Bad smells may be introduced at the initial version of a sys-
tem, and propagated through subsequent versions, while new
smells may also be introduced at any version of the system
(Olbrich et al. 2009). Therefore, as a system ages, the instances
of bad smells embedded in the system continue to evolve and
may lead to larger and more complex architectural problems.
Past research resolved bad smells via data extracted from public
software repositories in textual programming languages (Chatzi-
georgiou & Manakos 2014; Tahmid et al. 2016). This body
of research is very important in understanding and analysing
the evolution of bad smells in software. However, the major-
ity of data stored in software repositories and the approaches
developed to manipulate them have targeted the source code
of text-based languages. There is a considerably less amount
of software engineering research on graphical languages, in
general, related to bad smells in system evolution.

Graphical models have been used for many decades in soft-
ware engineering to capture concepts within the problem space,
and abstract external complexities such as infrastructure depen-
dencies or programming environments that simplify software
design concepts (Ludewig 2003). The graphical nature of mod-
els also aids in visualizing different aspects of a system, thereby
easing the learning curve for developing new models to cap-
ture essential system properties. As a result, paradigms such
as Model-Based Systems Engineering (MBSE) have been de-
veloped to promote the use of models as first-class artifacts for
virtually any software development task such as implementation,
testing, and analysis. The analysis of systems models is very
important because a model primarily abstracts the design con-
cepts of a system to be developed; therefore, design problems
such as bad smells may emerge in the model used to represent
a system. Unfortunately, there is limited research on the evolu-
tionary analysis of bad smells in graphical models and systems
developed via graphical environments.

The Laboratory Virtual Instrument Engineering Workbench
(LabVIEW) by National Instruments is an extensible systems
modeling platform that is currently used by hundreds of thou-
sands of users in more than 15,000 companies all over the world
(Services n.d.; Falcon 2017). LabVIEW provides a graphical
programming environment for developing test instruments and
software systems that require fast access to hardware data. How-
ever, despite the extensive industrial and academic usage of
this platform in developing complex and sometimes critical
systems, LabVIEW systems models rarely gain attention in
software engineering research. Furthermore, the platform is
mostly used by traditional engineers (e.g., systems engineers
or mechanical engineers) who may not be familiar with basic
software engineering concepts; thereby increasing the possi-
bility of bad software designs and high maintenance effort. A
previous study has shown that LabVIEW developers often tend
to prioritize correctness over other properties that may affect the
maintainability of the software over a period of time (Chambers
& Scalffidi 2013).

This paper introduces an approach for analysing the evolution
of bad smells in LabVIEW graphical models via user-defined
queries. We focus our work on LabVIEW because it has a large

2 Popoola et al.

number of industrial and academic users. In this paper, we
describe an approach for mining LabVIEW models in software
repositories via user-defined queries to detect and analyse the
presence of four of the design smells identified by end users in
(Zhao & Gray 2019). We extend a tool named Hawk (Barmpis &
Kolovos 2014)(Garcia-Dominguez et al. 2019) to query histories
of LabVIEW models stored in GitHub repositories. The queries
were used to extract and analyse the evolution of bad smells
that were present in the version history of 81 models across 10
GitHub repositories'. The analysis of the query results show that
all repositories contain at least one type of smell and most smells
are often introduced in the initial version of the repositories.
Furthermore, the number of smell instances in these models
tends to increase steadily for a period, and then decrease even
though the size of the models continues to increase throughout
the system’s life cycle. The contributions of this paper include:

1. We propose a semi-automated approach to detect bad
smells in graphical languages via user-defined queries.

2. We investigate the presence of seven bad smells in 10
LabVIEW GitHub projects.

3. We also present the evolutionary analysis of the persistence
of these bad smells across the life cycle of the LabVIEW
models in these projects.

The remainder of the paper is organized as follows: Section
2 offers an overview of bad smells across graphical models
and text-based programs, while Section 3 provides an overview
of the LabVIEW modelling platform. Section 4 discusses the
research questions that motivate our study. Section 5 gives
a detailed description of the seven bad smells that have been
selected for analysis in this paper, while Section 6 introduces
the Hawk framework for mining repositories of graphical mod-
els. We also discuss how Hawk queries were generated for
the selected bad smells. Section 7 presents the evaluation of
the queries on 81 models in 10 LabVIEW repositories and the
analysis of the results returned by the queries across the version
history of the models. The section also presents answers to
the research questions that motivate this research. Section 8
mentions the threats that may challenge the results analysed in
Section 7, while Section 9 discusses related work and highlights
how our work extends existing literature. Finally, Section 10
offers our concluding comments and also outlines our future
plans to enhance the evolution analysis of graphical models.

2. Bad Smells in Systems Models and Text-
Based Programs

The concept of bad smells evolved from the research on de-
sign patterns. Gamma et al. (Gamma et al. 1995) categorically
presented a catalog of succinct solutions to commonly occur-
ring design problems. Their 23 design patterns assist software
developers in creating more flexible, elegant, and reusable de-
signs without having to rediscover the design solutions. Opdyke
formalized refactoring to support the design, evolution and

! http://bit.ly/LMeta

http://bit.ly/LMeta

reuse of object-oriented application frameworks in his Ph.D.
dissertation (Opdyke 1992). The refactorings are defined to be
behavior preserving and remove bad smells in Object-Oriented
Programming (OOP), provided that their preconditions are met.
Although bad smells have been studied thoroughly in the con-
text of text-based programming environments over the past two
decades, the examination of bad smells in graphical models is
particularly limited.

Bad smells in systems models (also known as “model
smells”) indicate bad designs that usually correspond to a deeper
problem in a systems model. Bad smells in systems models are
related to bad smells in OOP, but there also exist significant dif-
ferences between bad smells in OOP and bad smells in systems
models. OOP has a correspondence with textual programming
language (such as Java, C++, and Python), but systems models
largely adopt graphical representations (such as Simulink and
LabVIEW models). In textual languages, source code often
defines the executable order of a computation; in graphical lan-
guages, a communication medium (such as wires in LabVIEW
and Simulink systems models) for passing data between dif-
ferent blocks is always required. This distinction leads to bad
smell summarization differences. For example, Unorganized
Wires is a bad smell reported by LabVIEW end-users (Zhao &
Gray 2019). It refers to the use of unorganized wires to connect
different parts of models, thus making the model hard to read
and understand. However, no similar bad smells are discussed
in existing literature in the context of OOP. Bad smells in OOP
and systems models also share some commonalities. For exam-
ple, Long Parameter List is a bad smell mentioned in existing
literature that occurs when a method includes too many formal
parameters. A similar bad smell is found in LabVIEW systems
models (Chambers & Scaffidi 2013). A deeper analysis of bad
smells in systems models has the potential to provide engineers
with more insight on how to improve the maintainability and
reliability of systems models.

3. Overview of LabVIEW

LabVIEW is a systems modelling tool for managing model-
based systems engineering processes. The tool provides a
graphical language named G that can be used to model and
develop applications that require fast access to hardware and
test data (Johnson 1997). The tool also provides support for
many third-party hardware and software vendors, as well as the
ability to extend the tool to develop custom user interfaces and
commands.

LabVIEW models are composed of Virtual Instruments (VIs)
that are often stored in separate files similar to how classes are
handled in OOP. A VI can run on its own or it can be grouped
together with other VIs to provide a common functionality.
A VI is composed of two main components: a front-panel
that captures the front-end or user interface of the application,
and a block-diagram that stores the main program logic of the
application. A third component named icon is used to store
external images used in the model. Figure 1 shows the front-
panel and block-diagram of a VI that adds two inputs and returns
a result as output to the user. LabVIEW models were originally

26 <Wire Id="32" Joints="N(21:Value) |

stored in binary format which makes it hard to analyse using
automated tools. However, the recent LabVIEW NXG version
stores models in XML, making it more amenable to read and
analyse by external tools. This study focuses on LabVIEW
programs developed in the new NXG version. Listing 1 shows
how the VI in Figure 1 is persisted as files. Lines 2 to 7 contain
information about “input 1” terminal; lines 2 to 4 are used to
capture the input value while lines 5 to 7 are used to capture
the name of the terminal (i.e., input 1). Similarly, Lines 8 to 13
represent information about “input 2” terminal, while lines 14 to
19 represent the output terminal. Line 20 represents the addition
operation, while lines 21,22, and 23 represent the different
wires that links input 1, input 2, and output terminals with the
“addition” node.

I <BlockDiagram Id="12">
<DataAccessor Id="16" Label="19">
<Terminal DataType="Double" Direction=
"Qutput" />

</DatalAccessor>

6 <NodeLabel AttachedTo="16" Id="19">
<p.Text>Input 1</p.Text>

8 </NodeLabel>

9 <DataAccessor Id="21" Label="24" >

10 <Terminal DataType="Double" Direction=
1 "Qutput"/>

</DatalAccessor>
<NodeLabel AttachedTo="21" Id="24">

14 <p.Text>Input 2</p.Text>

</NodeLabel >

16 <DataAccessor Id="26" Label="29" >

<Terminal DataType="Double" Direction=

18 "Input"/>

19 </DatalAccessor>

20 <NodeLabel AttachedTo="26" Id="29">
21 <p.Text>0utput</p.Text>

</NodeLabel>

<Add Id="30" Terminals="0=33, cO0tOv=31, cltOv
=32" />

<Wire Id="31" Joints="N(16:Value)| N(30:

c0tOov)" />

N(30:
cltov)" />

28 <Wire Id="33" Joints="N(30:0)|N(26:Value)" />

</BlockDiagram>

Listing 1 Simplified Block Diagram Part of a VI file

4. Research Questions

We analysed the evolution of bad smells in LabVIEW models.
Our aim was to discover the prevalence of smells in LabVIEW,
at what point in time the smells are introduced, and the code
changes that introduce, increase, or decrease the smells in the
models. Specifically, our study answers the following three
research questions.

RQ1 How prevalent are bad smells in LabVIEW models? Cham-
bers et al. (Chambers & Scaffidi 2013) conducted a study
to show that LabVIEW developers tend to prioritize the
correctness of the software to be developed over other
properties that may affect the maintainability of the soft-
ware over a period of time. This suggests that LabVIEW
models may be a ripe source for bad smells. However,

Evolution of Bad Smells in LabVIEW Graphical Models 3

m Diagrarmn lcon

Panel Diagram Icon

Input 1

Cutput

Input 2

Input 1 (EE8>

@Z} Output

Input 2 (EEE>

Figure 1 A Front Panel and Block Diagram to Add Two Numbers

we do not know of any study that validates this assump-
tion. Our study aims to discover the prevalence of several
selected bad smells in LabVIEW models stored in open
repositories.

RQ2 When are bad smells introduced in LabVIEW models?
Fowler (Roberts et al. 1999) proposes that bad smells in
software programs are often introduced due to the evolu-
tion and maintenance activities that are performed through-
out the program’s life cycle. This may indicate that bad
smells are often introduced at later stages of the software
development cycle. However, Tufano et al. (Tufano et
al. 2015) conducted a study of 5 types of smells in over
200 open source Android, Apache and Eclipse projects.
Their results show that most smells are present in the first
version of a program. Therefore, the results from both
Fowler (Roberts et al. 1999) and Tufano et al. (Tufano
et al. 2015) suggest the bad smells may creep into soft-
ware at various stages of development. We do not know
of a similar study that has been conducted to investigate
when smells are introduced in LabVIEW models, or graph-
ical models, in general. Our study aims to discover the
common trends of how bad smells are first introduced in
LabVIEW repositories.

RQ3 What is the relationship between the bad smells and struc-
tural changes made to a model? This phase of the research
work aims to unravel the set of changes to a model that led
to the introduction of new smells in the model and the set
of changes that led to an increase, reduction or removal
of bad smells in the model. This is a first step to generate
a set of best practices for writing programs with minimal
smells, as well as the anti-patterns that should be avoided
due to the likelihood of introducing new smells to a model.

To answer the research questions mentioned above, we imple-
mented the following approaches.

1. We selected 10 repositories from GitHub. These reposito-
ries were selected by searching for the keyword "labview
nxg" in GitHub and the repositories were checked to con-

4 Popoola et al.

tain at least one LabVIEW NXG file. We were able to
gather 10 repositories.

2. We extended the Hawk tool (see Section 6) to support
querying the evolution history of LabVIEW models. This
makes it easy to extract the history of LabVIEW models in
selected GitHub repositories.

3. We constructed seven Hawk queries to detect instances of
seven smells in LabVIEW. The execution of the queries
in Hawk will produce the evolution history of smells in
selected models.

4. We manually analysed the results of the queries to answer
the research questions discussed above.

5. Smell Selection

Many smells in LabVIEW have been identified in previous
works. Chambers and Scaffidi (Chambers & Scaffidi 2013) iden-
tified smells based on an interview conducted with experienced
LabVIEW developers while Carcao et al. (Carcao 2014)(Cargao
et al. 2014) identified more smells based on the rate of energy
consumed when LabVIEW programs are executed. However,
these smells are more related to performance issues and do not
cover a wider range of developer’s experience (e.g., a new de-
veloper may find some tasks challenging and it may be trivial
to an expert). Due to the number of smells that can be detected,
it is practically infeasible for us to analyse all possible smells
that can be detected in LabVIEW models. In this paper, we
analysed selected smells that have been extracted from posts in
LabVIEW discussion forums (Zhao & Gray 2019). Due to the
open-nature of these online forums, various issues are discussed
by developers with a wide-range of expertise; hence, we believe
that the smells captured in this way are representative both in
terms of the needs of LabVIEW developers and the category
of programs involved. Moreover, statistical results show that
end-users are deeply interested in reviewing and replying to
posts related to LabVIEW model smells. From 2000 to 2019,
the average review and reply per post are 1197.39 and 5.94,
respectively; while the average review and reply related to bad
smell posts are 1356.02 and 15.55, respectively.

Zhao and Gray (Zhao & Gray 2019) identified 15 bad smells,
while Chambers and Scaffidi (Chambers & Scaffidi 2013) iden-
tified 13 smells. Six of these smells were reported in both
papers; thereby, resulting in a net total of 22 smells. We se-
lected seven of the smells for this study due to the limited cost
and time required to effectively analyse all of the 22 smells.
The seven smells studied in this paper are: 1) Large Variables,
2) No Wait in a Loop, 3) Build Array in a Loop, 4) Excessive
Property Nodes, 5) String Concatenation in Loop 6) Multi-
ple Nested Loops, and 7) Deeply Nested Subsystem Hierarchy.
These smells are selected for the following reasons.

1. Ease of validation. The selected smells have well-defined
criteria for affirming the presence of the specific smell in
the set of models. For example, the smell No Wait in a Loop
means that the absence of a Wait element in any loop is
considered a smell. Hence, we only need to check whether
any of the loops in a set of models does not contain the
Wait element in order to affirm the presence of the smell in
the models.

2. Scope of inclusion. The selected smells cover two major
perspectives of a VI: performance and structure. Perfor-
mance relates to the model execution, such as the time a
model needs to run, and the memory a program consumes
while executing. No Wait in a Loop is likely to cause
synchronization issues (Chambers & Scaffidi 2013) while
the Build Array in a Loop smell and the String Concate-
nation in a Loop smell slows the program’s performance
and causes memory issues (Chambers & Scaffidi 2013).
Multiple Nested Loops occurs when loop structures are
embedded in another loop structure. This increases the
model’s structural complexity, reduces readability, and
may also lead to other control and performance issues.
Large Variables refers to the use of many variables in a
model, Excessive Property Nodes refers to the usage of
Property Nodes element in a model, and Deeply Nested
Subsystem Hierarchy refers to when a VI contains too
many levels of subVIs. These three smells increase the
structural complexity of a model, thus affecting the model
understandability.

3. Level of granularity. The selected smells represent dif-
ferent levels of granularity within a VI. Large Variables
examines the usage of the most basic data unit that a VI
uses. Four smells: No Wait in a Loop, Build Array in a
Loop, Excessive Property Nodes, and String Concatena-
tion in Loop, focus on the investigation of smells related
to a single node/structure in a systems model. Multiple
Nested Loops explores multiple nodes/structures within
a VI that may affect system models and Deeply Nested
Subsystem Hierarchy analyses bad smells from a structural
aspect. The inspection of these smells at different gran-
ularity levels helps us to better understand bad smells in
systems models and observe how different smells evolve
over time.

The following paragraphs provide a detailed description of
each of the seven smells in our study.

A Large Variables

Large Variables refers to the adoption of too many local
variables in a model. In LabVIEW, a local variable is used
to communicate between structures within one module.
It is similar to formal parameters of a method in OOP.
Overusing local variables, such as using them to avoid
long wires across a block diagram or using them instead
of data flow, can lead to several maintenance issues. Local
variables make copies of data buffers. If users adopt too
many local variables to transfer large amounts of data from
one place on the block diagram to another, more memory
is consumed and may result in slower execution.

No Wait in a Loop

This bad smell often occurs during a data acquisition pro-
gram. In a general object-oriented program, when a For
Loop or a While Loop finishes executing one iteration, it
may immediately begin running the next. The frequency
of one iteration is usually not considered. In LabVIEW
modeling, however, it is often beneficial to control how
often a loop executes. For example, in industrial practice,
it is important to mark the data acquisition rate. If users
want to acquire data in a loop, they would need a method
to control the frequency of the data acquisition. In this
situation, a pause in a loop is necessary. Timing a loop also
allows the processor time to complete other tasks such as
updating and responding to the user interface.

Build Array in a Loop

This bad smell refers to the construction of an array inside
a loop structure. When an array node is inside a loop, every
time the loop starts a new iteration, a new copy of the array
is constructed. This process leads to increased memory
consumption and may cause severe performance issues.

Excessive Property Nodes

The purpose of Property Nodes in a LabVIEW model is
to programmatically control the properties of a front-end
or user interface object, such as color, visibility, position,
numeric and display format. For example, users could
change the color of a dial to go through blue, green, and red
as its numerical value increases. However, the excessive
usage of Property Nodes can introduce several issues in
LabVIEW models. One of the issues is that there is a lot of
overhead with Property Nodes. Each Property Node access
will result in a context switch to the Ul thread, which will
slow model execution.

String Concatenation in a Loop

This bad smell, as the name suggests, refers to the adoption
of String Concatenation structure inside the body of a
loop. Chambers and Scaffidi (Chambers & Scaffidi 2013)
first identified this bad smell from their interview with
LabVIEW experts. They affirm that the implementation
of String Concatenation structure in the body of a loop
causes slow performance and memory issues.

Evolution of Bad Smells in LabVIEW Graphical Models 5

F Multiple Nested Loops

This bad smell refers to placing loop structures inside the
body of another loop structure. Multiple Nested Loops are
considered as a negative programming practice because it’s
execution is time consuming and it also increases the pro-
gram’s complexity. Many works have been conducted
to solve deeply nested problems (Quilleré et al. 2000)
(Karunaratne et al. 2018). Similar to other programming
languages, the use of nested loops in LabVIEW models
reduces readability (Chambers & Scaffidi 2013) and some-
times can be problematic when introducing other structures
in the outer loop. Due to the nature that LabVIEW is a
dataflow-driven programming paradigm, the introduction
of other structures inside of a loop may contribute to con-
trol and design issues. Many discussions related to these
issues are found in the LabVIEW discussion forum (such
as nested loop control’, design issue?).

G Deeply Nested Subsystem Hierarchy

Modularity is essential for software systems and is sup-
ported by decoupling software into reusable units (Exman
2014). In LabVIEW, modularity is achieved by the adop-
tion of a SubVI. A SubVl is the same as a VI and it also
contains a front panel and a block diagram, but a SubVI is
called within a VI. The relationship between a VI calling
a SubVI is similar to a public method in a class calling
another method in a separate class. In LabVIEW, users can
define their SubVIs and customize an icon for each SubVI.
The icon is equivalent to the SubVI in the block diagram.

Deeply Nested Subsystem Hierarchy suggests that a VI
may contain too many levels of SubVIs. For example,
myModel.vi includes a myModelSub.vi; myModelSub.vi
includes a myModelSubSub.vi... A model with too many
hierarchies may increase the difficulty in understanding
the model because sub-levels hide the logic and imple-
mentation details from top levels. This bad smell is also
identified and analysed in Simulink model smells (Gerlitz
et al. 2015).

6. Queries to Detect Smells in Model Reposito-
ries

To support querying of LabVIEW models in repositories, we
extended the Hawk platform to support LabVIEW models, and
developed a metamodel that captures the properties and rela-
tionships across elements in LabVIEW models. The following
subsections discuss how the Hawk framework and LabVIEW
metamodel help to simplify the writing of queries to detect
smells in LabVIEW models.

6.1. Hawk

Hawk is a platform for querying version histories of models
stored in file-based repositories such as the models that are

2 https://forums.ni.com/t5/LabVIEW/Nested-while-loops/td-p/2167378
?profile.language=en

3 https://forums.ni.com/t5/LabVIEW/Nested-FOR-loops-and-flat-sequence-A
-good-design/td-p/2454042 ?profile.language=en

6 Popoola et al.

available in Version Control Systems (VCS). A VCS (e.g., Git)
provides capabilities for tracking changes made to files and
handling conflicts due to file edits by multiple users. However,
a traditional VCS does not provide support for managing the
complex relationships among elements in models that are stored
as files; thereby, leaving such complexities to be handled by the
user (Bartelt 2008).

Hawk provides a common interface for querying models
where various parts of the model are stored in different files.
This interface provided by Hawk allows the users to manage
the model-specific complexities not handled by a traditional
VCS while still providing full access to the typical VCS ca-
pabilities. The queries supported by Hawk include: detecting
changes across files in a repository, adding new model files, and
extracting models that conform to some metamodel. Figure 2
provides a graphical overview of Hawk.

The Hawk tool adopts a component-based architecture where
each component can be extended towards a more specific re-
quirement. The VCS manager component detects and retrieves
changes in files stored in a VCS, such as Git, while the Model
Resource Factory (or model interpreter) translates the files into
a compatible EMF representation. The model updater com-
pares the models with the latest version that has been stored
in a backend database. The model updater then performs an
incremental update on the backend database to reflect the newly
added models. The query engine provides capabilities to re-
trieve information about the models that have been stored in
the backend database. The time-aware dialect of Hawk is able
to support time-aware indexing where changes in the models
are associated with a timestamp that corresponds to when the
changes were made. Hawk also provides a time-aware query
engine that can extract historic information about the models.

In this paper, we extend the time-aware dialect of Hawk to
support LabVIEW models via a model interpreter and a Lab-
VIEW metamodel that captures the properties and relationships
across elements in existing LabVIEW models. The model inter-
preter extracts model elements from LabVIEW model files and
converts the elements to a format supported by Hawk. The Hawk
tool then validates the resulting Hawk-format model against the
LabVIEW metamodel, thereby ensuring the consistency of the
models processed by Hawk. Our adaptation of Hawk allows
efficient querying of LabVIEW models in file-based reposito-
ries. Figure 3 is a graphical overview of our extended Hawk
tool. The next subsection discusses the LabVIEW metamodel
in detail.

6.2. LabVIEW Metamodel

To the best of our knowledge, there is no open-source meta-
model for LabVIEW nor is there any available specification
document that captures the concepts in LabVIEW and the re-
lationship among these concepts. Hence, in our previous work
we developed a LabVIEW metamodel (Popoola & Gray 2019)
via example-driven techniques (such as those used in (L6pez-
Fernandez et al. 2015)) by curating over 100 LabVIEW models
from the LabVIEW examples repository that is present in the
LabVIEW IDE. The metamodel captures several types of Lab-
VIEW dependencies and the relationships that exist across these

https://forums.ni.com/t5/LabVIEW/Nested-while-loops/td-p/2167378?profile.language=en
https://forums.ni.com/t5/LabVIEW/Nested-while-loops/td-p/2167378?profile.language=en
https://forums.ni.com/t5/LabVIEW/Nested-FOR-loops-and-flat-sequence-A-good-design/td-p/2454042?profile.language=en
https://forums.ni.com/t5/LabVIEW/Nested-FOR-loops-and-flat-sequence-A-good-design/td-p/2454042?profile.language=en

VCS
File A
Version Model
File B > Control > Resource
Manager Factory
File C

Figure 2 The Hawk Tool (Barmpis et al. 2020)

Extended Hawk

Advanced Model
Query Engine Interpreter
Smell Query LabVIEW EMF

queries Results File Resource
Base Hawk

Backend Que_ry
Engine
Model | < > Query 2
Updater |
EMF Resource
conforms fo LabVIEW
Metamodel
Monitor for
changed files
Changed files
GitHub

Figure 3 The Extended Hawk Tool

Evolution of Bad Smells in LabVIEW Graphical Models

dependencies. Figure 4 shows a simplified view of the meta-
model.

We simplify the amount of effort required to translate a bad
smell into an efficient query method via an extensible and care-
fully designed metamodel that captures the relationships among
the elements in a LabVIEW model. The metamodel supports
OOP concepts such as inheritance, thereby making it possible to
group related elements. The selected bad smells focus on struc-
tures and certain characteristics that have been known to suggest
a bad design. The constructed metamodel captures these struc-
tures and characteristics, thereby simplifying the query needed
to identify these properties in a LabVIEW model. The query to
identify smells has to be manually constructed, but the detection
and historical evolution of smells based on the queries has been
automated. A sample query was developed for each of the bad
smells (from Section 5) to detect the presence of the bad smells
in the repositories. It should be noted that the metamodel can
be used to simplify the query for detecting any arbitrary bad
smells that focus on the structural properties of a LabVIEW
model. Furthermore, because the LabVIEW metamodel was
developed by curating sample models, it is possible that the
metamodel may not cover all possible features in a LabVIEW
model. However, the metamodel is open-source and extensible;
therefore, it can be easily extended by anyone to accommodate
more features that are not currently covered.

For Large Variables, we extracted the total number of vari-
ables in each model. The No Wait in a Loop bad smell was
extracted by examining all of the loops (Both While Loop and
For Loop) and recursively checking for the presence of a Wait
element in any of the loops. The Build Array in a Loop and the
String Concatenation in Loop bad smells were identified in a
similar way to the No Wait in a Loop smell, except that the Build
Array and String Concatenation elements were respectively the
object of interest in the loops. The Excessive Property Nodes
bad smell was extracted via the Property Node type defined in
the metamodel. Multiple Nested Loops was extracted by search-
ing for all the loop structures that have another loop structure
embedded within them. Finally, instances of the Deeply Nested
Subsystem Hierarchy smell was detected by first extracting all
the subVI’s in a Model, and then searching through the extracted
subVIs for any one that has at least one subVI. In LabVIEW, a
subVI is usually a complete VI in another file that is called by
its parent VL.

The correctness of the queries has been manually verified
by randomly selecting four models that return a positive result
for a smell and four models where the execution of a query did
not detect instances of the smell. This process was repeated
for all of the seven queries. The only exception was the Build
Array in the Loop smell where the execution of the query de-
tected instances of the smell in only two models. Therefore,
only two models were used to verify the positive result. The
results of the verification process shows that the queries were
100% correct. The complete open-source LabVIEW metamodel,
model interpreter, and all of the seven queries developed to ex-
tract the bad smells are publicly available online (please see
http://bit.ly/LMeta).

8 Popoola et al.

Repo \ URL for Repository # of # of

Properties Models

Repo 1 https://github.com/ni/webvi- 1 680
examples

Repo 2 https://github.com/JKISoftware/ | 10 5537
JKI-State-Machine-NXG

Repo 3 https://github.com/ni/labview- 14 270
nxg-jenkins-build

Repo 4 | https://github.com/rajsite/ webvi- | 11 654
hack

Repo 5 https://github.com/prestwick/ 5 1650
customizing-webvis

Repo 6 | https://github.com/therinoy/ 3 1312
LabVIEW-NXG-BL1.1W-Web-
App-Project

Repo 7 https://github.com/navinsubrama-| 15 487
ni/develop-and-deploy-WebVI

Repo 8 https://github.com/wimtormans/ | 8 1947
LabVIEWRaspber-
ryPI_IndoorMonitoring

Repo 9 https://github.com/eyesonvis/ 3 538
niweek2019-webVI-hands-on

Repo 10 | https://github.com/doczhivago/ | 6 171
DownloadUploadAFileWebVI

Table 1 Overview of 10 Repositories and Identified Smells.

7. Research Questions and Analysis

We developed three research questions to study the evolution
of LabVIEW models. The research questions deal with the
introduction and prevalence of bad smells in LabVIEW reposi-
tories, as well as the structural changes to models that are likely
to introduce bad smells. The research questions, which were
discussed in more detail in Section 4, are as follows:

RQ1 How prevalent are bad smells in a LabVIEW model?
RQ2 When are bad smells introduced in a LabVIEW model?

RQ3 What is the relationship between the bad smells and struc-
tural changes made to the models?

To answer these research questions, a preliminary investigation
and analysis of the selected seven bad smells was performed
on 81 LabVIEW models stored in 10 GitHub repositories of
varying size and complexity. An initial set of selected projects
were identified and the models embedded in these projects were
validated against our LabVIEW metamodel. The metamodel
was also updated to accommodate new relationships that were
observed across the 10 public projects containing 81 LabVIEW
models. Table 1 gives an overview of the repositories. The
following subsections address each of the research questions

Elements

1

NodeLabel

NodeObject

DataAccessor ‘ ‘MethodCall‘ | Wire

‘BIockDiagram‘
\
Object GroupObject
‘ ‘Comment‘ ‘WhiIeLoop‘ ‘ If ‘

1

Literal

‘ ForlLoop ‘

I Datatype ‘ ‘Tenninal ‘

Figure 4 A simplified LabVIEW metamodel (Popoola & Gray 2019)

and provides an in-depth study of the evolution of bad smells in
LabVIEW models.

7.1. Prevalence of Bad Smells in LabVIEW Models

To answer the question related to the prevalence of bad smells
in LabVIEW models, we queried the repository to check for the
presence of each of the seven selected bad smells in the iden-
tified repositories. Table 2 shows that most of the repositories
contain instances of 2 or 3 kinds of smells across the life cycle
of the models embedded in the repositories. Furthermore, the
size and complexity of the models embedded in the repositories
does not seem to affect the possibility of the models containing
a bad smell. This may also validate the hypothesis that the
developers are not very familiar with software engineering de-
sign principles because bad smells are often associated with bad
software engineering practices (Van Emden & Moonen 2002).
Table 2 gives a breakdown of the presence of each of the bad
smells in the life cycle of the models stored in the repositories.

7.2. When are Bad Smells Introduced?

The introduction and consequent increase/decrease of instances
of a bad smell is very important to understand the impact of
maintenance activities in the life cycle of LabVIEW models.
To answer this research question, we first checked for when
instances of each smell was first detected in each repository.
The results show that 55% of the smells were introduced in
the first version of the repositories, 17% of the smells were
introduced in the second version, and the remaining 27% were
introduced in other versions. This result shows that bad smells
are introduced at various stages of the software development
process, but most of the smells were introduced at the initial
version. This suggests that software maintenance activities are
not solely responsible for the introduction of bad smells. Figure
5 summarizes the results corresponding to when a bad smell is
introduced.

The number of bad smell instances also tends to increase
steadily over time, and then decline after a peak period. Figures
6,7, 8, 9 shows the evolution of four types of smells across the
version history of the repositories. It should be noted that the
smells String Concatenation in Loop, Deeply Nested Subsys-
tem Hierarchy, and Build Array in a Loop have been omitted
from the figures. This is because only trivial changes were
observed in the number of smell instances across the version
history of models in all the repositories. Furthermore, some of
the repositories have less than 7 versions; hence, there may be
a constant value from the last version number to the “current
version” specified in the figures. We also analysed the evolution
of all the smells in each repository as the size of the models
increased. While the full data is provided in the GitHub reposi-
tory, we provide a sample analysis of repository 2. Figure 10
gives an overview of the evolution of smells in repository 2,
while Figure 11 shows the increasing size of the models in the
repository within the same period. However, it should be noted
that while the overall size of the models increased throughout
the life cycle of repository 2, the number of model elements
actually decreased in versions after the peak period.

7.3. Structural Changes Related to Bad Smells

The evolution of a model necessitates the continuous introduc-
tion of new changes to the model. These changes are needed
for various reasons such as adapting the model to new require-
ments, fixing a bug, or making the model easier to understand.
However, these changes may introduce new unintended smells
within the model. This phase of the research identifies the set
of structural changes that led to the introduction, increase or
reduction of bad smells in the models.

We used EMFCompare (Toulmé & Inc 2006) to extract the
structural differences between different versions of LabVIEW
Models. EMFCompare is a model differencing framework for
extracting differences between two or three sets of models. Two-
way differencing involves the direct comparison of two models,

Evolution of Bad Smells in LabVIEW Graphical Models 9

Repo \Smells Large No Wait Build Array ~ Property String Con- Nested Loop Nested Sub-
Variables Node catenation system
Repo 1 yes yes no no no yes yes
Repo 2 yes yes no yes no yes yes
Repo 3 no no no yes no no no
Repo 4 yes yes no yes no no no
Repo 5 yes yes no yes no yes no
Repo 6 no yes yes no yes no no
Repo 7 yes yes no yes no yes no
Repo 8 yes yes no yes no no no
Repo 9 yes yes no no no no no
Repo 10 yes yes no yes no no no

Number of Repositories
R w

—

o

Table 2 Detection of Each Smell across 10 Repositories.

Large Variables

m 1st smell instance in 1st version

10 Popoola et al.

No Wait

Figure 5 Smell Introduction across Repositories

Build Array

Property Node

Smells

String
Concatenation

Nested Loop

Nested
Subsystem

1st smell instance in 2nd version m 1st smell instance in other versions

4 ~
. L\

Version 1 Version 2 Version 3 Version 4 Version 5 Version 6 Current
version

Number of Instances
N

Version History

———Repo 1 ====Repo 2 Repo 5 e===Repo7

Figure 6 Evolution of Multiple Nested Loops Across Version
History of LabVIEW Models

-
o N

Number of Instances

o N OB OO

Version 1 Version 2 Version 3 Version 4 Version 5 Version 6 Current
version

Version History

=———Rep0 1 ====Repo 2 Repo 3 ====Repo 4 ==Repo 5

Repo 10

Repo 7 Repo 8 Repo 9

Figure 7 Evolution of No Wait in a Loop Across Version
History of LabVIEW Models

20
18
16
14
12
10

Number of Instances

;/
_—
Version 1 Version 2 Version 3 Version 4 Version 5 Version 6 Version 7
Version History

on e

—Rep0 | e Repo 2 Repo 4 e Repo 5
—— REPO 6 w— R0 8 wm—Repo 9

Figure 8 Evolution of Excessive Property Nodes Across
Version History of LabVIEW Models

-
o

Number of Instances

—_—t

O = N W, d N oo

/

Version 1 Version 2 Version 3 Version 4 Version 5 Version 6 Version 7
Version History

e Repo 1 e==Repo 2 Repo 8 e===Repo 9

Figure 9 Evolution of Large Variables Across Version History

of LabVIEW Models

10
9
]
2
57
b5
‘06 5
5 4
2 3
§ : : ¥
1 _Q
0
Version 1Version 2Version 3Version 4Version 5Version 6Version 7Version 8
Version History
== Nested Loop == Nested Subsystem No Wait in Loop
e Property Node e \/ariable
Figure 10 Evolution of Bad Smells in Repository 2
6000
v
‘€ 5000
[
5
i 4000
3
O 3000
=
k]
.. 2000
[
g
S 1000
z

Version Version Version Version Version Version Version Version

Version History

Figure 11 Evolution of the Model Size in Repository 2

Evolution of Bad Smells in LabVIEW Graphical Models 11

Repo Avg Avg Avg Avg
\Diff ADD DELETE CHANGE MOVE
Kind

Repo 1 322 0 0 0
Repo 2 998 0 0 0
Repo 3 270 0 0 0
Repo 4 228.8 1.5 12.2 10.6
Repo 5 453.2 52.1 82.4 7.9
Repo 6 658 1 5 0
Repo 7 487 0 0 0
Repo 8 894 25 105 15
Repo 9 538 0 0 0
Repo 10 159 0 0 0

Table 3 Average Number of Difference Types Across Version
History.

while three-way differencing involves the comparison of two
models based on their evolution via a third common model.
For this study, we used the two-way differencing for direct
comparison between models in a specific version and models in
the succeeding version. EMFCompare supports four types of
changes between two sets of models: ADD to indicate addition
of new elements, DELETE to show removal of existing elements,
CHANGE to indicate the change of attribute values, and MOVE
to indicate reordering of elements.

To analyse the differences in models across various versions,
each version of the models in the identified repository was ex-
tracted, converted to an XMI format, and then compared with its
succeeding version using EMFCompare for efficient extraction
of changes between the versions. These sets of changes were
then aggregated and analysed for all versions in a repository.
This analysis makes it easy to understand the changes that ne-
cessitate the evolution of LabVIEW programs. These structural
changes to the models were then mapped to the changes in the
bad smells exhibited by such models.

The results of the analysis of changes across the version
history of LabVIEW models in the 10 repositories show that
the majority of the changes involved addition of new elements.
Table 3 shows the average number of modifications that are
performed across each version in the repositories.

The addition of new elements to succeeding versions also
corresponds to increasing instances of smells in the repository.
Furthermore, versions with a lower number of smell instances
are also associated with a higher number of deletions and at-
tribute changes than number of additions. Figure 12 shows the
trend of different kinds of changes in repository 2. It should be
noted that there was a sharp increase in the number of deletions
and re-orderings (move) of elements. There was also a decrease

12 Popoola et al.

Evolution of Change Kinds

1800
1600
1400
1200
1000

800
600
400
200 -
/\ <
—

Versionl Version2 Version3 Version4 Version5 Version6 Version?7

—— ADD DELETE CHANGE MOVE

Figure 12 Evolution of Change Kinds in Repository 2

in the number of additions. This corresponds to the decrease in
bad smells shown in Figures 6 to 9.

8. Threats to Validity

This paper presents an analysis of bad smells in LabVIEW mod-
els. Although, a number of steps have been taken to ensure that
the results presented in this paper are valid and generalizable,
we have identified at least four main threats to the validity of
the results presented in this paper:

A Small sample size: The sample size of the models used in
this evaluation is rather small and thus the results may not
be generalizable to all LabVIEW models. The small sam-
ple size is due to the relative young age of the LabVIEW
NXG platform and the limited number of open-source
repositories that contain LAbBVIEW NXG models.

B Author demographics: We do not know the experience
of the engineers who published the selected projects and
how their experience affected the quality of the selected
models. It is possible that more experienced developers
are able to produce models with higher quality and fewer
instances of bad smells. Unfortunately, information about
the author demographics could not be extracted from the
GitHub repositories used in this study.

C LabVIEW-specific smells and models: The paper only con-
siders LabVIEW models for the evaluation and some of
the smells are specific to the LabVIEW environment. Fur-
thermore, even though some of the smells are applicable to
other systems modelling or data acquisition platforms, this
paper only considers the effect of the smells on LabVIEW
models. Hence, the results may not be generalizable for all
systems modeling or data acquisition environments.

D Correctness of the queries: The results presented in this
paper depend on the correctness of the queries used to
identify instances of bad smells in the LabVIEW models.
Although we have ensured that the queries in this paper
are correct, it may be possible that a new query generates
some false negatives or false positives.

We plan to address each of these concerns as part of future
work. However, we believe that the results reported in this
paper provide significant insight into the general evolution of
bad smells in systems models.

9. Related Work

Much work exists on bad smell identification in text-based lan-
guages. Chatzigeorgiou et al. (Chatzigeorgiou & Manakos
2014) investigated the presence and persistence of bad smells
in two open source projects. Their results show that bad smells
are introduced at the initial version and often persist up to the
current version of a project. Furthermore, the few eliminated
smells often occur from a side effect of routine maintenance
activities instead of a refactoring activity that specifically targets
the removal of the smell. Olbrich et al. (Olbrich et al. 2009)
also conducted a similar study and concluded that code with
smells are more prone to frequent changes than projects that do
not contain bad smells. Tahmid et al. (Tahmid et al. 2016) also
presented an approach for analysing bad smells in code reposi-
tories based on the relationships between different bad smells
and the architecture of the source code. The approach simplifies
the development of clusters of bad smells embedded in the code
for easy refactoring. However, all of these approaches focus
on text-based languages and none of them considered systems
models developed via graphical languages.

Some work has been done to identify bad smells in graphical
languages. Simulink provides an interactive, graphical envi-
ronment for modeling, simulating, and analysing of dynamic
systems. It includes a comprehensive library of predefined
blocks to be used to construct graphical models of systems us-
ing drag-and-drop mouse operations. Bad smells in Simulink
systems models are identified by Gerlitz et al. (Gerlitz et al.
2015). In this work, the authors summarized 21 bad smells
into 5 categories: name, partition, interface, signal flow and
signal structure. Two tools, Artshopr (Thomas et al. 2016) and
SLRefactor (Tran & Dziobek 2013), were implemented to ad-
dress these bad smells. Stephan and Cordy adopted near-miss
cross-clone detection to find instances of antipatterns derived
from the literature in public Simulink projects (Stephan & Cordy
2015).

Chambers and Scaffidi (Chambers & Scaffidi 2013) devel-
oped an approach for identifying bad smells in systems models
via interviews with modeling experts. In our own earlier work,
we developed an approach for identifying bad smells in Lab-
VIEW models from an end-users’ perspective by mining online
forum posts (Zhao & Gray 2019). However, both (Chambers
& Scaffidi 2013) and (Zhao & Gray 2019) do not investigate
the presence of the identified smells in code repositories nor do
they study the evolution of such smells. This paper extends the
literature by proposing techniques for identifying bad smells in
graphical languages and analysing the evolution of such smells
across the version history of the software systems developed.

10. Conclusion and Future Work

We introduced a semi-automated approach for detecting and
analysing bad smells in LabVIEW models via user-defined

queries. The support for inheritance relationships in the Lab-
VIEW metamodel was exploited to simplify the development of
user queries to detect known bad smells from systems models.
The approach has been evaluated on 69 models in 10 GitHub
repositories. The evaluation process includes the analysis of
four selected bad smells reported by end users. The prelimi-
nary results suggest that most smells are introduced in the early
versions of a model, and these smells often persist throughout
the life cycle of the modeled system. Furthermore, most of the
projects contain three or four types of smells. This may be an
indication of the need for more automated analysis and refactor-
ing support for systems engineers who may not be familiar with
bad smell identification and refactoring.

In the future, we plan to carry out an extensive analysis on
more GitHub projects and other graphical modeling tools such
as Simulink. The majority of the smells discussed in this paper
are specific to LabVIEW; hence, we plan to cover more smells
such as “Duplicate Model” that can be generalizable to other
graphical modelling environments. We also plan to conduct
qualitative studies that will complement the results presented in
this paper. We will conduct studies to understand the context
in which bad smells are introduced, the relationship between
author demographics and bad smells, and the level of consid-
eration given to bad smells by LabVIEW developers. Further-
more, we will implement and study the benefits of a refactoring
mechanism to address the challenges of bad smells from the
perspective of a systems engineer. Finally, we plan to improve
our study to identify refactoring activities that specifically target
the reduction of bad smells, discover the impacts of bad smells
on maintenance activities, and highlight the differences in the
analysis of bad smells in graphical and textual languages.

Acknowledgements

The authors would like to appreciate the contribution of Dr.
Taylor Riché (National Instruments) and Dr. Antonio Garcia-
Dominguez (Aston University, UK) for their help with general
questions for LabVIEW and Hawk respectively. We would
also like to thank the editors and reviewers for their time and
insightful feedback.

References

Barmpis, K., Garcia-Dominguez, A., Bagnato, A., & Abherve,
A. (2020). Monitoring model analytics over large repositories
with hawk and measure. In Model Management and Analytics
for Large Scale Systems (pp. 87-123). Elsevier.

Barmpis, K., & Kolovos, D. S. (2014). Towards scalable
querying of large-scale models. In /0th European Conference
on Modelling Foundations and Applications (pp. 35-50).

Bartelt, C. (2008). Consistence preserving model merge in
collaborative development processes. In Proceedings of the
International Workshop on Comparison and Versioning of
Software Models (pp. 13—18).

Cargao, T. (2014). Measuring and visualizing energy consump-
tion within software code. In IEEE Symposium on Visual
Languages and Human-Centric Computing (pp. 181-182).

Evolution of Bad Smells in LabVIEW Graphical Models 13

Cargao, T., Cunha, J., Fernandes, J. P., Pereira, R., & Saraiva, J.
(2014). Energy consumption detection in LabVIEW. In /IEEE
Symposium on Visual Languages and Human-Centric Com-
puting Travel Support Competition. http://www4.di.uminho
.pt/~jas/Research/Papers/nationallnstruments.pdf.

Chambers, C., & Scaffidi, C. (2013). Smell-driven performance
analysis for end-user programmers. In IEEE Symposium
on Visual Languages and Human Centric Computing (pp.
159-166).

Chatzigeorgiou, A., & Manakos, A. (2014). Investigating the
evolution of code smells in object-oriented systems. Innova-
tions in Systems and Software Engineering, 10(1), 3—18.

Exman, I. (2014). Linear software models: standard modu-
larity highlights residual coupling. International Journal of
Software Engineering and Knowledge Engineering, 24(02),
183-210.

Falcon, J. (2017). Facilitating modeling and simulation of com-
plex systems through interoperable software. In Keynote ad-
dress at 20th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). De-
sign patterns: Elements of reusable object-oriented software.
USA: Addison-Wesley Longman Publishing Co., Inc.

Garcia-Dominguez, A., Bencomo, N., Parra-Ullauri, J. M., &
Garcia-Paucar, L. H. (2019). Querying and annotating model
histories with time-aware patterns. In 22nd ACM/IEEE In-
ternational Conference on Model Driven Engineering Lan-
guages and Systems (pp. 194-204).

Gerlitz, T., Tran, Q. M., & Dziobek, C. (2015). Detection and
handling of model smells for MATLAB/Simulink models.
In Modeling in Automotive Software Engineering Workshop
at the 18th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems (pp. 13-22).

Johnson, G. W. (1997). LabVIEW Graphical Programming.
Tata McGraw-Hill Education.

Karunaratne, M., Tan, C., Kulkarni, A., Mitra, T., & Peh, L.-S.
(2018). Dnestmap: mapping deeply-nested loops on ultra-
low power cgras. In Proceedings of the 55th Annual Design
Automation Conference (pp. 1-6).

Lépez-Fernandez, J. J., Cuadrado, J. S., Guerra, E., & De Lara, J.
(2015). Example-driven meta-model development. Software
and Systems Modeling, 14(4), 1323—-1347.

Ludewig, J. (2003). Models in software engineering—An intro-
duction. Software and Systems Modeling, 2(1), 5-14.

Olbrich, S., Cruzes, D. S., Basili, V., & Zazworka, N. (2009).
The evolution and impact of code smells: A case study of
two open source systems. In 3rd International Symposium
on Empirical Software Engineering and Measurement (pp.
390-400).

Opdyke, W. F. (1992). Refactoring object-oriented frameworks
(Unpublished doctoral dissertation). University of Illinois at
Urbana-Champaign Champaign, IL, USA.

Popoola, S., & Gray, J. (2019). A LabVIEW metamodel for
automated analysis. In International Conference on Com-
putational Science and Computational Intelligence (p. 1127-
1132).

Quilleré, F., Rajopadhye, S., & Wilde, D. (2000). Generation of

14 Popoola et al.

efficient nested loops from polyhedra. International Journal
of Parallel Programming, 28(5), 469-498.

Robbes, R., Kamei, Y., & Pinzger, M. (2017). Guest Editorial:
Mining software repositories. Empirical Software Engineer-
ing, 22(3), 1143-1145.

Roberts, D., Opdyke, W., Beck, K., Fowler, M., & Brant, J.
(1999). Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman Publishing Boston.

Services, E. (n.d.). Companies using labview. https://enlyft.com/
tech/products/labview. (Accessed: January 2020)

Stephan, M., & Cordy, J. R. (2015). Identification of Simulink
model antipattern instances using model clone detection. In
18th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (pp. 276-285).

Tahmid, A., Nahar, N., & Sakib, K. (2016). Understanding the
evolution of code smells by observing code smell clusters. In
23rd IEEE International Conference on Software Analysis,
Evolution, and Reengineering (Vol. 4, pp. 8—11).

Thomas, G., Norman, H., Christian, D., & Stefan, K. (2016).
Artshop: A continuous integration and quality assessment
framework for model-based software artifacts. In Dagstuhl
Workshops — Model Based Engineering of Embedded Systems
(pp. 13-22).

Toulmé, A., & Inc, I. (2006). Presentation of EMF Compare
utility. In Eclipse Modeling Symposium (pp. 1-8).

Tran, Q. M., & Dziobek, C. (2013). Approach to constructing
and maintaining Simulink models based on the use of trans-
formation/refactoring and generation operations. In Dagstuhl
Workshops — Model Based Engineering of Embedded Systems
(pp. 1-12).

Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M.,
De Lucia, A., & Poshyvanyk, D. (2015). When and why your
code starts to smell bad. In 37th ACM/IEEE International
Conference on Software Engineering (Vol. 1, pp. 403-414).

Van Emden, E., & Moonen, L. (2002). Java quality assurance
by detecting code smells. In Proceedings of the 9th Working
Conference on Reverse Engineering (pp. 97-106).

Zaman, S., Adams, B., & Hassan, A. E. (2012). A qualitative
study on performance bugs. In 9th IEEE Working Conference
on Mining Software Repositories (pp. 199-208).

Zhao, X., & Gray, J. (2019). BESMER: An approach for bad
smells summarization in systems models. In Models and
Evolution Workshop at the 22nd ACM/IEEE International
Conference on Model Driven Engineering Languages and
Systems (pp. 304-313).

About the authors

Saheed Popoola is a PhD candidate in the Department of Com-
puter Science at the University of Alabama. His doctoral re-
search deals with the evolution and design analysis of systems
models. His broad research interests deals with the application
of software engineering techniques to address software devel-
opment challenges in systems engineering. Prior to joining
the University of Alabama, he was a member of the Enter-
prise Systems Group, University of York where he obtained
an MSc (By Research) in Computer Science, under the su-

http://www4.di.uminho.pt/~jas/Research/Papers/nationalInstruments.pdf
http://www4.di.uminho.pt/~jas/Research/Papers/nationalInstruments.pdf
https://enlyft.com/tech/products/labview
https://enlyft.com/tech/products/labview

pervision of Prof. Dimitris Kolovos. You can contact him at
sopopoola@crimson.ua.edu or visit http://popoola.cs.ua.edu.

Xin Zhao is a PhD candidate in the Department of Computer
Science at the University of Alabama. His doctoral research
investigates the evaluation of systems models, including bad
smells categorization, model refactoring and metrics analyses of
systems models. He is also interested in software product lines
and CS education. He obtained his B.E. in the Hebei Normal
University, China. Before joining the University of Alabama,
he was a member of the National Engineering Research Center
for Multimedia Software, Wuhan University, China. You can
contact him at xzhao24 @crimson.ua.edu or visit http://xzhao24
.students.cs.ua.edu.

Jeff Gray is a Professor in the Department of Computer Science
at the University of Alabama. His research interests are in the
areas of software engineering, model-driven engineering, and
computer science education. Jeff is a Distinguished Member of
the ACM and a Senior Member of the IEEE. He is the co-Editor
in Chief of the Journal of Software and Systems Modeling
(SoSyM). You can contact him at gray @cs.ua.edu or visit http://
gray.cs.ua.edu.

Evolution of Bad Smells in LabVIEW Graphical Models

15

mailto:sopopoola@crimson.ua.edu?subject=Your paper "Evolution of Bad Smells in LabVIEW Graphical Models"
http://popoola.cs.ua.edu
mailto:xzhao24@crimson.ua.edu?subject=Your paper "Evolution of Bad Smells in LabVIEW Graphical Models"
http://xzhao24.students.cs.ua.edu
http://xzhao24.students.cs.ua.edu
mailto:gray@cs.ua.edu?subject=Your paper "Evolution of Bad Smells in LabVIEW Graphical Models"
http://gray.cs.ua.edu
http://gray.cs.ua.edu

